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Locating Infinite Discontinuities in Computer Experiments∗1

Ying-Chao Hung† , George Michailidis‡ , and Horace PakHai Lok§2

3

Abstract. Identification of input configurations so as to meet a pre-specified output target under a limited4
experimental budget has been an important task for computer experiments. Such a task often5
involves the development of response models and design of experimental trials that rely on the6
models exhibiting continuity and differentiability properties. Motivated by two canonical examples7
in systems and manufacturing engineering, we propose a strategy for locating the boundary of the8
response surface in computer experiments, wherein on one side the response is finite, whereas on9
the other side is infinite, leveraging ideas from active learning and quasi-Monte Carlo methods. The10
strategy is illustrated on an example from computer networks engineering and one from precision11
manufacturing and shown to allocate experimental trials in a fairly effective manner. We conclude12
by discussing extensions of the proposed strategy to characterize other types of output discontinuity13
or non-differentiability in high-cost experiments, including jump discontinuities in the target output14
response or pathological structures such as kinks and cusps.15

Key words. Computer experiments, Infinite discontinuity, Active learning, Support vector machines, Quasi-16
Monte Carlo methods17

AMS subject classifications. 60G15, 62M20, 62K99, 65Y20, 91B7418

1. Introduction. Computer experiments involve complex computer codes underlying some19

physical phenomenon or experiment. They act as surrogates to explore the relationship be-20

tween the corresponding input factors and an output measure of interest. However, running21

such computer codes is usually computationally expensive in terms of CPU time [47]. A nat-22

ural question arising is how to obtain a comprehensive understanding of output performance23

over the input domain by utilizing a limited number of experimental trials, which leads to24

how to best model the input-output relationship and select the corresponding computer code25

trials.26

The Gaussian Stochastic Process (GASP) model has been the most popular technique27

for modeling the input-output relationship of computer experiments [40, 45, 46, 47], briefly28

summarized next. Denote the code output corresponding to K-dimensional inputs (locations)29

x1, . . . , xn by y(x1), . . . , y(xn). The stationary GASP model models such pairs of inputs-30

outputs as y(xi) = µ + z(xi), where µ is the output mean and z(xi) is a spatial process31

with mean zero, constant variance σ2, and covariance Cov(z(xi), z(xj)) = σ2Rij , where Rij32

is a correlation function defined by a measure of spatial distance between inputs xi and33

xj . Further, it is assumed that y(X) follows a multivariate normal distribution with mean34

vector 1nµ and covariance matrix σ2[Rij ]. The benefit of adopting the GASP model is that35

∗Submitted to the editors DATE.
Funding: This work was supported in part by research grant MOST 106-2118-M-004-002-MY2 (YCH) and NSF

IIS 1632730 and NSF DMS 1830175 (GM).
†Department of Statistics, National Chengchi University, Taipei 11605, Taiwan (hungy@nccu.edu.tw).
‡Department of Statistics and the Informatics Institute, University of Florida, Gainesville, FL 32611, USA

(gmichail@ufl.edu).
§Department of Statistics, National Chengchi University, Taipei 11605, Taiwan (105354008@nccu.edu.tw).

1

This manuscript is for review purposes only.

mailto:hungy@nccu.edu.tw
mailto:gmichail@ufl.edu
mailto:105354008@nccu.edu.tw


2 YING-CHAO HUNG, GEORGE MICHAILIDIS, AND HORACE PAKHAI LOK

the explicit form of the best linear unbiased predictor (BLUP) at a new input location can36

be obtained in closed form [46, 47], thus allowing researchers to explore the experiment’s37

output performance over the entire input space. There is a considerable body of work on38

related models, including limit kriging [27], co-kriging [16], blind kriging [28], Bayesian treed39

Gaussian process models [19] and scaled Gaussian stochastic process [20], just to name a few.40

Based on the above-mentioned characteristics, there exists a number of design methods that41

aim to select the experimental trials so as to minimize uncertainty in estimating the GASP42

model estimation, as well as output predictions. Examples include a sequential design based43

on a designated improvement function for contour estimation [44], a design over non-convex44

regions based on multidimensional scaling to the geodesic distance [43], and a sequential45

design strategy based on maximum mutual information [2], etc. A large portion of such46

design strategies belongs to the framework of space filling designs [26, 47].47

Note that GASP based modeling and the associated design techniques developed for com-48

puter experiments automatically assume that the output response surface is smooth (continu-49

ous and differentiable) [2]. This assumption provides a convenient mathematical formulation50

and corresponding solution, but may not be suitable for certain settings as outlined next.51

For example, a fundamental issue in many service engineering systems is to identify possible52

input configurations so that some performance measure of interest does not increase in an un-53

bounded manner to infinity [4, 8, 15, 34, 50]. This is related to the problem of system stability54

and often needs to be validated through a long-run simulation. Another example is the laser55

cutting epoxy film in manufacturing engineering, for which the goal is to detect the physical56

cutting limits by characterizing a number control factors. Since the cutting limits refer to57

the boundary of input configurations that produce “nonzero” outputs (or the boundary of58

the no-cut region), by taking the reciprocal of the output value, the goal here is exactly the59

same as identifying input configurations that produce finite outputs. Due to the complexity of60

the laser cutting process, a computer surrogate model is often utilized to understand how the61

control factors affect the outputs. Note that experimental trials needed to identify the input62

configurations for such problems are often computationally expensive. A detailed description63

of these two examples is provided in Section 2.64

The broad objective of this paper is to develop methodology to identify input configura-65

tions in computer experiments that trace the boundary that separates infinite valued outputs66

from finite valued ones. Technically, it aims to locate the boundary in the input domain67

(henceforth referred to as the set of infinite discontinuities) in an efficient and accurate man-68

ner. As pointed out in the literature [19], the popular GASP model cannot predict well69

non-continuous changes in the output (e.g. jumps). To overcome this limitation, we propose70

to formulate the problem of locating infinite outputs as a classification one. In this case, input71

configurations that lead to finite output values are labeled as belonging to class “+1”, while72

those that lead to infinite output values are labeled as belonging to another class “−1”. Hence,73

the problem becomes to identify the decision boundary separating the two classes. Based on74

this, the proposed strategy leverages ideas from active learning, a semi-supervised machine75

learning technique (see [33] and references therein), whose primary goal is to train a good76

classifier for predicting the output labels by using a small amount of sampled data. Note that77

rather than randomly obtaining a full training data set, active learning iteratively selects the78

most “informative” instances and query their labels to train the classifier. Further, the use79

This manuscript is for review purposes only.



LOCATING INFINITE DISCONTINUITIES 3

of active learning for the problem at hand belongs to the pool-based sampling [36, 53] and is80

related to sequential experimental designs. Further, active learning in our strategy is based81

on the powerful formalism of support vector machines (SVM) [3, 10, 42, 48, 54] for label pre-82

dictions. However, the sampling technique is different from those employed by conventional83

methods in active learning. In order to obtain a good initial training set (i.e., the passive84

learning process) and accommodate well the training samples selected at later learning stages85

(i.e., the active learning process), our sampling strategy utilizes a robust quasi-Monte Carlo86

(QMC) method - called uniform design (UD) in the statistical literature [12, 13].87

Note that conceptually the problem addressed in this paper shares similarities to the so-88

called regression discontinuity design (RDD) that has many applications in economics and89

engineering [25, 32, 35, 51]. The remainder of the paper is organized as follows. In Section 2,90

a motivating example that addresses the stability issue of queueing service engineering sys-91

tems is described in detail. In Section 3, the strategy based on the concept of active learning92

is introduced. The focus is on (i) how to choose an adequate initial training set and unlabeled93

instances at later learning stages from a pool of candidate instances; and (ii) how to develop94

sophisticated SVM based active learners for label prediction. Note that there are two itera-95

tively updated weight functions associated with data involved in this active learning process96

- one is designed to improve the accuracy of the SVM learner, while the other to represent97

the sample informativeness/importance based on which the training data can be best selected98

by UD. In Section 4, the proposed strategy is illustrated on a queueing service engineering99

system and numerical evaluations are provided. A discussion and some concluding remarks100

are drawn in Section 5. Finally, an accelerated algorithm for implementing UD in higher di-101

mensional spaces and the Hierarchical Mixing Linear SVMs (HMLSVM, see [55]) for locating102

infinite discontinuities with piecewise linear shapes are given in Appendix A and Appendix C,103

respectively.104

2. Motivating Examples. Next, we describe in considerable detail two motivating exam-105

ples from systems engineering and precision manufacturing.106

2.1. Example 1: Stability of Queueing Systems. Consider a multi-class queueing system
comprised of Q parallel, infinite capacity, and first-in-first-out (FIFO) queues, with each queue
containing traffic from a different job class. Each job of class q arrives according to a random
process, carries a random amount of workload (or service requirement), and waits in line for
service. For generosity here we assume each arrival process has a time-heterogeneous rate
(i.e., the instantaneous input rate can vary over time). Thus, it is reasonable to define a
time-averaged arrival rate for each input class q, i.e.,

xq = lim
T→∞

E[Aq(T )]

T
,

where Aq(T ) is the amount of workload arriving at queue q before time T , q = 1, . . . , Q.107

These time-averaged input rates can be collected in a vector x = (x1, . . . , xQ), where each108

element xq is assumed to be non-degenerate. At any point in time, the system can be in109

one of M (M ≥ 2) service modes indexed by m ∈ {1, . . . ,M}. When the system switches110

into the m-th service mode, the jobs in queue q receive service at a constant rate µmq (i.e.,111

the amount of work that can be processed in one time unit). Therefore, mode m is asso-112

This manuscript is for review purposes only.



4 YING-CHAO HUNG, GEORGE MICHAILIDIS, AND HORACE PAKHAI LOK

ciated with the service rate vector Um = (µm1, . . . , µmQ). Note that the switching scheme113

between service modes automatically introduces intricate dependencies amongst the queues.114

For a general real-life system, we assume the switching time between any two service modes115

i and j (denoted by ∆ij) is non-negligible, while no service is provided during each switching116

epoch. This particular queueing system is known as the Switched Processing System (SPS)117

and captures the essence of the fundamental resource allocation problem in many modern118

service engineering applications involving heterogeneous processors and multiple classes of119

job traffic flows; examples include network switches for routing traffic through the Internet,120

modern flexible manufacturing processes, and automatic call distributor (ACD) (see [1, 23]121

and references therein).122

A fundamental issue for SPS studies is to characterize the allowable range of input rates123

(i.e. x) so that system can achieve a certain level of “stability” under a given service-124

mode switching policy. For example, denote by Wq(t) the workload (or remaining service125

requirement) of queue q at time t, which is obviously a function of the input rate vector126

x. Since each arrival process is time-heterogeneous, system stability can be defined based127

on the time-averaged expected amount of workload [57]. That is, given an input-rate vector128

x = (x1, . . . , xQ), the system is stable if129

(2.1) θq(x) = lim
T→∞

∫ T

0

E[Wq(t)]

T
dt <∞ for all q = 1, . . . , Q.130

On the other hand, the system is characterized as “unstable” if θq(x) is infinite for at least131

one queue q. Given a service-mode switching policy π, the maximum set of input-rate vectors132

x satisfying (2.1) is called the stability region.133

Note that based on the definition in (2.1), the outer boundary of the stability region134

clearly represents the set of infinite discontinuities. However, identifying this boundary is135

mathematically intractable for even very small systems and hence in practice is approximated136

through computer simulations of the underlying system. To illustrate, let us consider a simple137

2-queue system with three service modes U1 = (0, 5), U2 = (6, 4), U3 = (7, 0) and assume138

that the switching time between any two service modes is constant, say, ∆ij ≡ ∆ for all139

i, j. Jobs of each input arrive according to a compound Poisson process with exponentially140

distributed service requirements, having a rate of one. Suppose a well-known service-mode141

switching policy called the MaxProduct is employed [1, 23, 24], the estimated stability regions142

are shown in Figure 1 for two selected switching times ∆ = 0.5 and 1.0, where stability is143

validated based on (2.1) by simulating the system at a set of superimposed input-rate grids144

over an R2 region [7, 0] × [0, 5]. Note that for comparison purpose, the maximum stability145

region (i.e. when ∆ = 0) is also included in Figure 1.146

Note that for a system with the stability region shown in Figure 1, we can simply define147

θ(x) = θ1(x), θ2(x), or θ1(x) + θ2(x). Thus, by (2.1) θ(x) is characterized as “finite” when148

the input-rate vector x = (x1, x2) is inside the stability region. Specifically, θ(x) becomes149

substantially larger when x gets fairly close to the boundary of the stability region and jumps150

to “infinity” when x reaches or crosses the boundary. The later case naturally leads to an151

output model characterized by jump discontinuities. The main challenge of identifying the152

stability region based on simulation is the associated computational cost, since for each input153

configuration the system needs to be simulated for a large number of events (job arrivals,154
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Figure 1. The estimated stability regions S∆(U) with service-mode switching times ∆ = 0.5 (the dotted
area in the left panel) and ∆ = 1.0 (the dotted area in the right panel) under the MaxProduct policy. The
polygon with the boundaries described by the dashed lines refers to the maximum stability region with ∆ = 0.

switching between service modes epochs, job service and departures), so that the long term155

average defined in equation (2.1) can be estimated accurately. This computational time grows156

fast for larger systems compromising of more queues and more switching modes, or for input157

configurations close to the boundary of the stability region.158

2.2. Example 2: Limits of Laser Cutting Process. Laser cutting epoxy film has replaced159

the conventional die cutting film and is being widely used for circuit board attachment to160

carriers and housings in defense electronics, commercial radio frequency (RF) microwave and161

microelectronics industries. An important issue in such manufacturing process is to detect162

the physical cutting limits by characterizing the control factors such as laser power, beam163

radius, pulse duration, focal position, and Rayleigh length. Denote the cutting width at the164

bottom of the material by y(x1, x2), where x1 represents the pulse duration (e.g. in µs), x2165

represents the laser power (e.g. in watts), while other factors are kept constant. The goal is to166

identify the control factor settings (x1, x2) so that cut through does not occur (i.e. the cutting167

width y(x1, x2) = 0). However, identifying the limits of the cutting process is a challenging168

task since (i) the relationship between the cutting width and other control factors may not be169

trivial; and (ii) each experimental trial is physically expensive [32]. Thus, simulation of such170

complex processes along with an adequate surrogate model is often used to understand how171

the control factors affect the outputs.172

Suppose that the experiment is emulated, say, with a proper transformation of scales, by173

the following functional relationship (see [32] for a similar function):174

y(x1, x2) =

{
1

100

{
[(x1−7)2+(x2−7)2−62]

2
+[(x1−7)2−0.5(x1−7)−0.5(x2−7)−1.5]

2
}

+10 if x2
1+x2

2>80,

0 if x2
1+x2

2≤80.
(2.2)175

The interpolated surface and the contour plot of function (2.2) over the 2-dimensional square176

domain [0, 14]× [0, 14] are depicted in Figure 2. As can be seen, the boundary of the blue-color177
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Figure 2. The interpolated surface (left panel) and the contour plot (right panel) of function (2.2) based on
50 × 50 = 2, 500 grids superimposed over the input domain [0, 14] × [0, 14]. The blue-color area in the contour
plot represents the settings of “no cut” (i.e. y(x1, x2) = 0) in the input domain.

area in the right panel of Figure 2 represents the set of discontinuities in the input domain,178

which is the focus of this work. Also note that identifying the limits (i.e. discontinuities) of179

the cutting process can be thought as a “dual” problem to that given in Example 1, since one180

can consider the reciprocal of y(x1, x2) as the response in Example 1. In words, by letting181

θ(x) = 1/y(x1, x2), the input points that produce the “zero” output are equivalent to the182

infinite discontinuities described in Example 1.183

3. Locating Infinite Valued Discontinuities via Active Learning. Since the GASP model184

is not suitable for finding the infinite valued discontinuities, we propose next an alternative185

strategy based on the concept of active learning. The strategy is also sequential and formulates186

the primary problem as a classification one. Further, it includes two main components: (i)187

a quasi-Monte Carlo method called uniform design (UD) for sampling the training data (or188

allocating experimental trials); and (ii) an SVM classifier for estimating the discontinuities.189

Note that there are two well-designed weight functions associated with these two components.190

The first one represents the importance of data to be sampled, while the second one represents191

the importance of sampled data for training the SVM classifier. We start with introducing192

the sampling technique based on UD, while active learning with SVM is discussed afterwards.193

3.1. Sampling Based on Quasi-Monte Carlo Methods. The quasi-Monte Carlo (QMC)194

method is a deterministic version of the Monte Carlo method. It yields a faster convergence195

rate for numerical integration and has proved to be a robust technique for exploring relation-196

ships between input factors and experiments outputs. The key idea of QMC is to choose a set197

of n points P = {p1, . . . , pn} that are uniformly distributed on a bounded input domain D,198

D ⊂ RK . Let Z(n) be the collection of all possible sets {p1, . . . , pn} on D. A uniform design199

(UD) is an efficient QMC that seeks the best set P ∈ Z(n) such that a measure of uniformity200
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LOCATING INFINITE DISCONTINUITIES 7

M(P) is minimized. That is,201

(3.1) P∗ = arg min
P∈Z(n)

M(P).202

The most popular choice for the measure of uniformity is the so-called “discrepancy” [13, 14,203

21]. In this study, we employ a measure named the central composite discrepancy (CCD),204

which is developed to overcome the limitations of conventional space filling designs [9, 38].205

The CCD is attractive from the following perspectives: (i) the solution is robust to the output206

model and has a faster convergence rate than traditional random sampling procedures (i.e. the207

property of quasi-Monte Carlo methods); (ii) it can be applied to any shape of design domains;208

(iii) the solution is invariant to rotations; (iv) the optimal design P∗ can be obtained to explore209

a designated output response by placing different weights at the input configurations. Note210

that (iv) is the key element of our proposed framework, since all allocated experimental points211

may not be equally important in locating the desired discontinuities. The formulation of the212

CCD with weights is given next.213

At a particular learning stage s, let fs(x) be the weight function such that fs(x) > 0 for214

all x ∈ D and assume
∫
D fs(x)dx = 1 (this can be done by a simple normalization). With this215

formulation, the weight function fs(x) can also be viewed as the probability density function216

of all data points defined on D. To find a set of n points P = {p1, . . . , pn} in D so that they217

have a “good representation” for fs(x), we define218

(3.2) WCCDfs,p(n,P) =

 1

v(D)

∫
D

1

2K

2K∑
k=1

∣∣∣∣N(Dk(x),P)

n
− F (Dk(x))

∣∣∣∣p dx


1/p

,219

where v(D) is the volume of D, N(Dk(x),P) is the number of points allocated in the subregion220

Dk(x) (note that D is partitioned into 2K subregions at each x), F (Dk(x)) =
∫
Dk(x) fs(x)dx is221

the proportion of points expected to be allocated in Dk(x), k = 1, . . . , 2K . Therefore, a good222

representation for fs(x) will be the set of points P∗ that minimizes (3.2). Note that solving P∗223

is an NP-hard problem as the number of allocated design points goes to infinity. In practice,224

one can superimpose a set of grid points Z over the input domain D and approximate the225

solution by using sophisticated search algorithms [6, 9, 38]. The solution of such a discretized226

optimization problem is known as the nearly uniform design (NUD), which minimizes the227

approximation of WCCDfs,p(n,P),228

(3.3) ŴCCDfs,p(n,P) =

 1

|Z|
∑
z∈Z

1

2K

2K∑
k=1

∣∣∣∣N(Dk(z),P)

n
− F (Dk(z))

∣∣∣∣p


1/p

,229

where P ∈ Z(n) ⊂ Z, and |Z| represents the cardinality of Z. It should be noted that the230

solution P∗ here is deterministic and is different from the solution obtained by stochastic231

sampling methods (e.g. random sampling).232

3.2. Acceleration of the Sampling Procedure. Next, we discuss how to accelerate the233

associated sampling procedure. Suppose a UD of size n needs to be found based on N234
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grid points (i.e. let |Z| = N) superimposed over the input domain D. Under the natural235

assumption that K < n � N , an exhaustive search requires computational time of order236

O(Nn) for finding P∗. To reduce the computation load, Chuang and Hung (2010) [9] proposed237

a Switching Algorithm and showed that an NUD can be constructed within the computational238

time of order O(N (2+p)). Although the algorithm provides a good approximation to P∗ in239

lower dimensions, it may still be computationally intensive for many problems with multi-240

dimensional inputs. To see this, let us look at a rectangular domain with K = 3, N = 103, n =241

6 and p = 2 (wherein an `2-distance is considered). Note that even for such a simple example,242

exhaustive search requires computation of order 1018, while the Switching Algorithm requires243

computation up to order of 1012, which represents a big improvement in absolute terms, but244

not still sufficient for most applications.245

In order to implement UD with a more manageable time line, we introduce next an246

accelerated algorithm for finding an NUD. Let ψi be a non-degenerate subset of {1, . . . ,K}247

and denote by Zψi the projection of Z onto the corresponding axes in a lower |ψi|-dimensional248

space, |Zψi | ≥ n. The idea of the proposed accelerated algorithm is to first locate the design249

points based on the lower |ψi|-dimensional uniformity. Then, by augmenting the selected250

locations in the lower |ψi|-dimensional space, we sequentially increase the dimensionality of251

Zψi so that the design points are relocated step by step to achieve better uniformity in the252

primary input space. It should be highlighted that the acceleration algorithm is developed253

to search a flexible and bigger area than that of the well-known Latin Hypercube Designs254

(LHD) [11], while retaining the property of uniformity and a fairly fast computation speed. A255

detailed description of the acceleration algorithm and discussion of its performance are given256

in Appendix A.257

We next introduce how to develop an adequate response model g(x) at each design stage,258

so as to improve the estimation of the discontinuities based on the concept of active learning.259

3.3. Active Learning with SVM. Let us recall the example of the queueing system intro-260

duced in Section 2 and unify some notations. Denote the input rate vector by x, the labeled261

response, say, θ(x) = θ1(x) by y(x), and the stability region S∆(U) by T (x), respectively. To262

overcome the difficulty of modeling infinite outcomes, we formulate the problem as a binary263

classification one. That is, label y(x) = +1 represents the case that the input point x is inside264

the target region (or equivalently θ(x) <∞), while label y(x) = −1 represents the case that x265

is outside the target region (or θ(x) =∞). Therefore, the objective of locating/estimating the266

boundary of T (x) becomes that of identifying the decision boundary between design points267

with labels y(x) = +1 and −1 in the primary data space, wherein the allocated experimental268

trials are treated as training samples. Since labeling data is time consuming or costly, instead269

of obtaining the training samples at random, active learning selects “informative” samples so270

as to maximize the classification accuracy with less training data. We focus on active learning271

based on an SVM classifier since: (i) SVM is a proven powerful classification tool capable of272

dealing with different shapes of decision boundaries; and (ii) the distance of a sample x to273

the decision boundary of T (x) can be easily computed (see below) and subsequently used as274

a measure of information about input x.275

Denote the training data set (i.e. the existing experimental trials) at a particular learning276

stage by {(x1, y1), . . . , (xn, yn)}, where xi = (xi1, . . . , xiK) is a K-dimensional input vector277
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and yi = y(xi) ∈ {−1,+1} is the corresponding output label. In order to obtain flexible278

decision boundaries (as shown in Figure 1), the SVM algorithm projects the training data279

into a higher dimensional feature space H using a mapping function Φ(·). With this mapping,280

it is shown that the optimal solution depends on data merely through the inner products in H281

[54], that is, on functions of the form 〈Φ(xi),Φ(xj)〉. Hence, a computationally less expensive282

approach is to use a kernel function K(xi, xj) = 〈Φ(xi),Φ(xj)〉 instead of explicit mappings283

Φ(xi) and Φ(xj). This is known as the kernel trick - a commonly used technique in machine284

learning [49].285

Since different data points may have different contributions to the training of a classifier,286

we use the weighted version of SVM (termed as WSVM) for active learning. Let Wi represent287

the weight assigned to each training sample xi, i = 1, . . . , n. To obtain the WSVM based on288

all weighted training data (xi, yi,Wi) with a mapping function Φ(·), one solves the constrained289

convex optimization problem [59]:290

minimize
w,b

1

2
w′w + C

n∑
i=1

Wiξi291

subject to

{
yi (〈w,Φ(xi)〉+ b) ≥ 1− ξi, i = 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n.
(3.4)292

where 〈w,Φ(x)〉 + b represents the hyperplane separating the yi’s in the feature space H, w293

is the coefficient vector, b controls the offset of the decision boundary from the origin, ξi are294

known as slack variables that penalize wrong classifications of yi, and C > 0 controls the295

tradeoff between classification accuracy and the margin between two bounding planes. The296

standard approach for solving (3.4) is to formulate its dual given by [59]:297

maximize
αi

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi, xj)298

subject to

{
0 ≤ αi ≤ CWi, i = 1, . . . , n,∑n

i=1 αiyi = 0,
(3.5)299

where αi are the associated Lagrange multipliers. Solving (3.5) yields the decision function300

(3.6) g(x) = sign (〈w,Φ(x)〉+ b) = sign

(
n∑
i=1

αiyiK(xi, x) + b

)
,301

where w =
∑n

i=1 αiyiΦ(xi) (readers can refer to LIBSVM [5] for how to obtain the WSVM302

learner in practice). Note that a popular choice of the kernel function is the radial basis303

function (RBF), which has the form K(xi, xj) = exp
{
−γ‖xi − xj‖2

}
, γ > 0. The RBF304

kernel offers the following two advantages in practice: (i) it can produce nonlinear decision305

boundaries by mapping data into high (or infinite) dimensional space; and (ii) it has rela-306

tively low complexity for model selection. Therefore, it is particularly suitable for exploring307

high-dimensional data structures. In practice, the two parameters (C, γ) can be chosen by308

performing an appropriate grid search in R2
+ and utilizing the idea of cross-validation (CV) so309
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that the “prediction error rate” is minimized [22, 29, 31]. However, there are some alternative310

methods that have been shown to achieve better efficiency and/or accuracy than traditional311

grid search based on CV. For example, the optimal value of γ can be found by minimizing the312

Fisher discriminant function [56], by considering parameter selection as a recognition problem313

[58], and by optimizing simultaneously the overall accuracies (for within-class samples) and314

kappa accuracies (for between-class samples) [37], just to name a few.315

Let us denote the decision function obtained at learning stage s by gs(x), x ∈ D. Analogous316

to the idea of boosting [17, 18], the weight for each sampled point xi is chosen as317

(3.7) Wi = 1 +M s
i = 1 +

s−1∑
t=1

I{yi · gt(xi) < 0},318

where M s
i represents the total number of times that xi was wrongfully labeled (i.e. the319

decision function yields a different label from yi, such as yi = +1 and gt(xi) < 0, or yi = −1320

and gt(xi) > 0) in the past s − 1 stages, M1
i = 0 for all i. Note that if M s

i is large, the321

weight Wi at stage s is set to be large, while Wi is set to be small if M s
i is small. Intuitively,322

this will force the decision function gs(x) to accommodate all the training samples based on323

their classification history, thus improving the overall classification accuracy. Once gs(x) is324

obtained at a particular learning stage s, the boundary of T (x) can be simply estimated by325

(3.8) ∂T̃s(x) = {x ∈ D : gs(x) = 0} .326

Note that the goal of obtaining ∂T̃s(x) is to quantify the “informativeness” (or importance)327

of all unlabeled samples, based on which a suitable weight function can be incorporated into328

UD for choosing the next-stage instance from the pool.329

Next, we proceed to introduce how the weight function fs(x) in (3.2) is defined in accor-330

dance with the quantified measure of information. For each instance x, compute its minimum331

Euclidean distance to the estimated boundary of the target region, that is,332

(3.9) d(x, ∂T̃s(x)) = min
δ∈∂T̃s(x)

‖x− δ‖.333

If x is unlabeled and has a smaller d(x, ∂T̃s(x)), we say that it is more informative for training334

the SVM classifier and thus more likely to be selected at the next stage. This idea is quite335

similar to that of the Simple Margin querying method [53], which chooses the unlabeled sample336

closest to the decision boundary in H. Based on this argument, the weight function fs(x) for337

implementing UD is given by338

(3.10) fs(x) = exp

{
−d(x, ∂T̃s(x))

β(s)

}
.339

As can be seen in (3.10), the weight of an instance x becomes exponentially larger when it340

gets closer to the estimated decision boundary and becomes exponentially smaller when it341

gets farther away from the boundary. This will push the next-stage learning to query an342

instance near the estimated decision boundary ∂T̃s(x). Further, β(s) is chosen as a decreasing343
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function of learning stage s, which is similar to the concept of learning rate [41]. The goal of344

this setup is to accelerate the process of querying unlabeled instances near the “true” decision345

boundary, thus improving the estimation efficiency at subsequent stages. To normalize the346

weight function, we simply set347

(3.11) f∗s (x) =
fs(x)∫

x∈D fs(x)dx
.348

Remark:349

(a) For nonlinear decision boundaries the computation of d(x, ∂T̃s(x)) may not be trivial,350

especially when the data dimension is high. A computationally cheaper way is to represent351

the input domain D as a pool of superimposed grid points Z (as done in Subsection 3.1) so352

that ∂T̃s(x) can be approximated by a subset of Z, say,353

(3.12) ∂T̃s(z) = {z ∈ Z : −ε < gs(z) < ε},354

where ε > 0 is known as the tolerance level and chosen by the designer. Therefore, d(x, ∂T̃s(x))355

can be approximated by356

(3.13) d(x, ∂T̃s(z)) = min
z∈∂T̃s(z)

‖x− z‖.357

To evaluate the quality of the approximation based on (3.12), let us denote |Z| = N by the358

total number of equal-size grids z superimposed over a typical K-dimensional input domain359

D = [0, d]K . The value of N reflects the total computational cost one can afford so as to360

implement the quasi-Monte Carlo method. By definition, we then have361

(3.14) N = (d/l)K ,362

and thus l = dN−(1/K), where l is the side-length of each K-dimensional grid z ∈ Z. Note363

that if we use (3.12) to approximate the decision boundary obtained in (3.8), the maximum364

error corresponds to the “diameter” of each superimposed grid z, which is given by365

(3.15)
√
Kl =

√
KdN−(1/K).366

It is easy to see that the approximation is influenced by the number of input dimensions (K),367

domain size (d) and maximum affordable computational cost (N).368

(b) Instead of using d(x, ∂T̃s(x)) to formulate the weight function fs(x) in (3.10), for compu-369

tational simplicity, one may consider the following two alternatives: (i) consider the distance370

between x and the obtained decision boundary 〈w,Φ(x)〉 + b = 0 in H, which has a simple371

mathematical expression |〈w,Φ(x)〉+ b| /||w||. Then, assign the weight for each x as372

(3.16) fs(x) = exp

{
−|〈w,Φ(x)〉+ b| /||w||

β(s)

}
;373

(ii) consider the predictive value gs(x) and assign the weight for each x as374

(3.17) fs(x) = exp

{
−‖gs(x)‖

β(s)

}
.375
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Note that assigning the weight based on the decision value is straightforward since gs(x) = 0 on376

the decision boundary. Further, the decision values are readily available from software pack-377

ages (e.g. the R package e1071). Thus, for computational simplicity purposes, we strongly378

recommend assigning the weight for each x by using (3.17).379

380

We summarize the detailed steps of our strategy for estimating the target region with381

nonlinear boundaries in Algorithm 3.1. Note that we denote by P∗s the training set obtained382

at learning stage s, where |P∗s | = ns, s = 1, 2, . . ..383

384

Algorithm 3.1 Active Learning with SVM

1: Determine an appropriate training domain D associated with a set of superimposed grid
points Z. Set the learning stage to s = 1 and determine the size of the initial training
set n1. Find the initial training set P∗1 of size n1 that minimizes (3.3) based on Z, where
p = 2 and the weight function is initially placed as f0(x) ≡ 1. Train a kernel WSVM
classifier based on P∗1 with the weights Wi ≡ 1 and obtain the decision boundary ∂T̃1(z)
by (3.12).

2: while the stopping criterion is not met do
3: Update the weight functions fs(x) and f∗s (x) by (3.17) and (3.11), respectively. Set

s = s+ 1.
4: Select an unlabeled instance z∗ from the pool Z \ P∗s−1 so that P∗s = P∗s−1 ∪ {z∗}

minimizes (3.3). Query the label of z∗.
5: Update the weights Wi for all instances in P∗s by (3.7) and train a kernel WSVM

classifier based on P∗s . Obtain a new decision boundary ∂T̃s(z).
6: end while
7: return ∂T̃s(z)

We highlight a few important issues regarding the implementation of Algorithm 3.1.385

• A suitable input domain D should be considered, so as to accurately and efficiently386

estimate the desired decision boundary. This often relies on the practitioner’s knowl-387

edge about the response model. If possible, one can choose D in the form of hyper-388

rectangles, so as to accelerate the implementation of Algorithm 3.1.389

• The number of grid points superimposed on D depends on the computational com-390

plexity of the proposed framework and the executing processor’s performance. For391

example, if the input domain is high dimensional and/or the executing processor has392

moderate efficiency, a smaller number of grid points in Z should be considered.393

• In cases where there is lack of knowledge regarding the output label, it is recommended394

to allocate a larger portion of the experimental budget to the initial training set395

(i.e., for the passive learning process) so as to better accommodate the model/sample396

uncertainty and improve the estimation efficiency. A rule of thumb for this proportion397

is about 20 ∼ 50%, which was suggested by a large number of experimental scenarios.398

• The choice of β(s) in (3.10) controls the speed of convergence for the estimated de-
cision boundary - it is basically a positive decreasing function of the learning stage
s. However, if β(s) decays too fast, the algorithm will be forced to stop at an earlier
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stage (since almost all the experimental trials are allocated near the estimated deci-
sion boundaries). This will apparently accelerate the convergence of the algorithm,
but lose the opportunity of exploring the output model at some unlabeled input lo-
cations. Due to the sampling feature of the proposed framework (i.e. only one query
at each learning stage), it is recommended that β(s) be chosen to have a moderately
slow decay. For example, one may consider

β(s) = a0 × (c)−s,

where a0 is a positive constant and c ' 1 (i.e. c is a positive constant greater than399

(but close to) one). Note that such β(s) apparently has a slower decay than the400

exponential function. Numerical results also show that it performs well for various401

types of computer experiments (see Section 4).402

• The algorithm stops usually when the experimental budget is expended or the esti-403

mated decision boundary has achieved a stable status.404

• Note that one can speed up the learning of Algorithm 3.1 by selecting a batch of405

samples at each learning stage. Such sampling process refers to the so-called batch-406

mode active learning [52].407

It should be mentioned that if we know a priori that the target region has a piecewise408

linear boundary (e.g. the stability region when ∆ = 0 in Figure 1 or target regions comprising409

of a number of unidentifiable linear constraints), the strategy of using the RBF kernel SVM410

may not be plausible when the size of the training data is small. An alternative strategy is to411

employ a technique analogous to the so-called Hierarchical Mixing Linear SVMs (HMLSVMs)412

introduced in [55]. The idea of HMLSVMs is quite similar to that of the hierarchical classifi-413

cation tree, but it assigns different weights to the training data and uses the linear SVM (thus414

known as the WLSVM) as the decision function to split the nodes. The detailed description of415

how this technique is implemented at each learning stage of our proposed framework is given416

in Appendix C.417

4. Performance Assessment. In this section, we illustrate the proposed strategy on the418

two motivating examples and evaluate its performance. All numerical results presented here419

were performed by using the statistical software package R (version 3.2.5) and executed on a420

3.2 GHz Intel R© CoreTM i5-6500 processors with 16 GB of memory under the operating system421

of Microsoft Windows 7 64-bit Service Pack 1 (SP1). The SVM techniques were implemented422

by utilizing the R package “e1071” and “wSVM”, while all the tuning parameters used in the423

proposed framework were determined based on a number of sensitivity tests.424

4.1. Queueing Example. Let us consider the queueing example with a service-mode425

switching time ∆ = 0.5 introduced in Subsection 2.1. The “true” stability region was ob-426

tained by simulating the system at 50 × 70 = 3, 500 superimposed grid points, as shown in427

the left panel of Figure 1. We now demonstrate how to estimate the stability region based428

on active learning with SVM, as given in Algorithm 3.1. Since no evidence indicates that429

the target region has a linear (or piecewise linear) boundary, the RBF kernel is a reasonable430

choice for fitting the WSVM model. Note that the initial training set P∗1 is obtained by UD,431

whose size is chosen to be n1 = 10 (see Figure 3). For fitting the RBF kernel WSVM model,432
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the parameters (C, γ) are chosen to minimize the prediction error (based on the 10-fold cross-433

validation) based on the set of candidate grid points (ei, ej), where i, j = −10,−9, . . . , 9, 10.434

As a result, the grid search yields the best parameters (C, γ) = (1096.633, 0.0183). Since435

all computations now are based on the superimposed grid points, at each learning stage the436

estimated boundary of the target region has the form of (3.12), wherein ε is chosen to be 0.01.437

We then update the weight function by using (3.17), wherein we choose β(s) = 100× (1.1)−s438

so that it has a moderately slow decay as the design stage moves. The estimated boundaries439

∂T̃s(z) and the contour lines of the associated weight functions fs(x) at learning stages s = 8440

(ns = 17), s = 19 (ns = 28), s = 46 (ns = 55), s = 66 (ns = 75) are depicted in Figure 3 and441

Figure 4, respectively.

Figure 3. The estimated boundary ∂T̃s(z) (the red curve) based on WSVM at the learning stage s = 8
(upper left), s = 19 (upper right), s = 46 (lower left) and s = 66 (lower right), respectively. The dotted
lines represent the true stability region, the big dots represent the selected initial training data, while the small
numbered dots represent the selected samples at later learning stages.

442

As can be seen from Figure 3, the estimated target region gets closer to the true one as443
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Figure 4. The contour lines of the weight functions fs(x) at the learning stages s = 8 (upper left), s = 19
(upper right), s = 46 (lower left) and s = 66 (lower right). The red line represents the weight function on the
estimated boundary.

the learning stage increases. In addition, the initially selected training set uniformly spreads444

out the experimental trials over the input domain, while thereafter it tends to allocate the445

experimental trials closer and closer to the boundary of the estimated target region. Note446

that an adequate choice of the control process β(s) in the weight function fs(x) allows us447

to allocate experimental trials in the areas not been explored at early design stages. These448

phenomena are also supported by the contour plots of the weight function shown in Figure 4.449

To evaluate the efficiency of Algorithm 3.1, we compute the label error rate of the estimated450

target region based on the superimposed 3,500 grid points and compare with that obtained by451

(i) passive learning with SVM (i.e. allocate all experimental trials at once based on the UD);452

(ii) GASP modeling technique along with a sequential sampling strategy for contour estimation453

(a modification of the method introduced in [44], see Appendix B for detailed steps); and (iii)454

the GASP modeling technique based on pure UD (i.e. allocate all experimental trials at once).455
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Note that for (ii), we take the reciprocal of the primary response (i.e. y(x)=1/θ(x)=1/θ1(x))456

for building the GASP model. Thus, the contour of interest has height “close to zero” (but457

not equal to zero) and can be estimated in a stepwise manner by using a stage-dependent458

improvement function. The numerical results with respect to different sizes of training samples459

are depicted in Figure 5, where each GASP model is estimated by using the R package “GPfit”460

[39].

Number of Experimental Trials
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Figure 5. The error rates for estimating the stability region based on passive and active learning with SVM
(red lines) and the GASP model for contour estimation (blue lines). The solid lines refer to the results by using
the sequential sampling strategy; the dashed lines refer to the results by sampling at once based on UD.

461
As can be seen from Figure 5, the error rate of the proposed strategy based on active462

learning reduces in a steady manner to zero as the experimental budget increases. Note that463

the convergence may not be particularly fast, which is due to the spiky shape of the target464

region in the middle part of the experimental domain. However, the estimation error rate465

is no more than 6% when the total number of experimental trials exceeds 52. On the other466

hand, the error rate based on the GASP model is significantly larger. The estimation error467

rate remains high (above 26%), even when the number of experimental trials is increased468

to 80. Such a slow convergence rate may be induced by over-allocating experimental trials469

outside the target region, which is a consequence of utilizing the sampling strategy based470

on improvement function. Not surprisingly, the strategy of allocating all experimental trials471

at once based on UD does not work well for estimating the desired boundary. Even if we472

increase the size of training data to 80, the estimation error rate is always above 9% for both473

the GASP and SVM modeling methodologies. In conclusion, the strategy of employing active474
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learning with SVM outperforms that of employing passive learning and the GASP model for475

estimating the desired input boundary of infinite valued outcomes.476

4.2. The Laser Cutting Process. Let us consider the laser cutting problem introduced477

in Subsection 2.1, where the process has four control factors and the experiment is emulated478

by the following functional relationship479

(4.1)480

y(x1, x2, x3, x4)481

=

{
[(x1+x2−7)2+(x3+x4−7)2−62]

2
+[(x1+x2−7)2−0.5(x1+x2−7)−0.5(x3+x4−7)−1.5]

2

100
+10 if (x1+x2)2+(x3+x4)2>80,

0 if (x1+x2)2+(x3+x4)2≤80.
482

Suppose now we are interested in identifying the limits of the cutting process (i.e. the input483

boundary that results in y(x) = 0) over the 4D hypercube domain D = [0, 7]4 and 104 grid484

points are superimposed over D. The prediction error rates for the methods based on GASP485

and SVM with two sampling strategies are given in Figure 6, where the remaining simulation486

setups are the same as those given in Subsection 4.1. As can be seen from Figure 6, the487

error rate of the proposed strategy based on active learning drops down stably to zero as the488

experimental budget increases. It is no more than 5% when the total number of experimental489

trials exceeds 50. On the other hand, the error rate based on GASP with the sequential490

sampling strategy appears to be significantly larger and the decay is relatively slow. The491

estimation error rate remains high (above 17%), even when the number of experimental trials492

is increased to 80. Interestingly, estimation does not benefit much by using the sequential493

sampling strategy based on contour extraction. In summary, the strategy of utilizing active494

learning with SVM (i) performs slightly better than that of utilizing passive learning (i.e.495

sampling at once by utilizing UD); and (ii) significantly outperforms both sampling strategies496

based on GASP.497

We next examine the performance of the proposed method for larger-scale systems. In498

order to reduce the computational burden increased by high dimensionality, here we provide499

some useful implementation guidelines.500

501

Guidelines for Conducting Experiments for Large-scale Systems502

503

• Consider a set of rather “coarse grid” Z points over the experimental domain D. For ex-504

ample, here we consider 10 grid points (0.7, 1.4, 2.1, 2.8, 3.5, 4.2, 4.9, 5.6, 6.3, 7.0) for each505

dimension xi. Thus, there are 104 grid points in D. A quick numerical examination shows506

that there are 2,082 grid points with the output y(x) = 0.507

508

• Select a simpler version of (3.3) to implement the quasi-Monte Carlo method. For example,509

by choosing K = 0 in (3.3), we consider “uniformity” merely through one subregion D1(z) (i.e.510

the hyper-rectangular subregion from 0 to a grid point z) instead of through 2K subregions.511
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Figure 6. The error rates for estimating the 4D laser cutting boundaries based on passive and active
learning with SVM (red lines) and the GASP model for contour estimation (blue lines). The solid lines refer
to the results by using the sequential sampling strategy; the dashed lines refer to the results by sampling at once
based on UD.

That is, the NUD minimizes512

(4.2) ŴCCDfs,p(n,P) =

{
1

|Z|
∑
z∈Z

∣∣∣∣N(D1(z),P)

n
− F (D1(z))

∣∣∣∣p
}1/p

,513

where P ∈ Z(n) ⊂ Z, |Z| represents the cardinality of Z, and F (D1(z)) =
∑

g∈D1(z) f
∗
s (g) is514

the proportion of points expected to be allocated in D1(z), where
∑

z∈Z f
∗
s (z) = 1 (summa-515

tion of all normalized weights is equal to one). This simplified measure is the hybrid of the516

so-called Lp-discrepancy and F -discrepancy [9], based on which the optimal design requires517

significantly less computation load. For simplicity, we can choose p = 1 in (4.2).518

519

• To further reduce the computation load of finding the best new design point, we can im-520

plement the accelerated algorithm shown in Appendix A. The idea is to augment on the521

lower-dimensional design and increase one dimension each step to find the location of a new522

design point.523

524

Let us now consider the laser cutting problem with eight control factors and the experiment525
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is emulated by the following functional relationship526

y(x1, x2, x3, x4, x5, x6, x7, x8)527

= I{(∑4
i=1 xi)

2+(
∑8

i=5 xi)
2>120} ×528

1
100

{
[(
∑4

i=1 xi−7)4+(
∑8

i=5 xi−7)2−62]
2
+[(

∑4
i=1 xi−7)2−0.5(

∑4
i=1 xi−7)−0.5(

∑8
i=5 xi−7)−1.5]

2
}

+10.(4.3)529

Analogously, we are interested in identifying the limits of the cutting process (i.e. the input530

boundary that results in y(x) = 0) over the 8D hypercube domain D = [0, 3]8. To accelerate531

the implementation of the proposed procedure by using the above guidelines, we consider 3532

coarse grid points (1.0, 2.0, 3.0) for each input dimension xi. Thus, there are 6, 561 grid points533

superimposed over D, among which 2, 299 grid points have the output value y(x) = 0. Further,534

the quasi-Monte Carlo method is implemented by using a simpler version of the discrepancy535

measure (say, (4.2) with p = 1) and the accelerated search algorithm shown in Appendix A,536

with an initial design of size n0 = 20. The prediction error rates for the methods based on537

GASP and SVM with two different sampling strategies are given in Figure 7.
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Figure 7. The error rates for estimating the 8D laser cutting boundaries based on passive and active
learning with SVM (red lines) and the GASP model for contour estimation (blue lines). The solid lines refer
to the results by using the sequential sampling strategy; the dashed lines refer to the results by sampling at once
based on UD.

538

It can be seen that Figure 7 reveals similar patterns to those shown in Figure 6. The539

error rate of the proposed method based on active learning and SVM drops down quickly to540

zero, as the experimental budget increases. It is no more than 5% when the total number of541

experimental trials exceeds 100. On the other hand, the error rates based on GASP with both542

sampling strategies appear to be significantly larger and their decay is rather slow. It is also543
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worth noting that for the method based on SVM, active learning significantly outperforms544

passive learning (i.e. sampling at once based on UD) in terms of both estimation efficiency545

and stability.546

5. Conclusion and Discussion. Although the GASP model is particularly popular for547

output analysis of computer experiments, it nevertheless exhibits certain drawbacks in ad-548

dressing the problem under study: (i) it cannot predict well outputs exhibiting sharp changes549

in nearby locations due to its underlying assumption of continuity and differentiability [19];550

(ii) it may encounter serious computational issues (i.e. parameter estimation) for large designs551

[30]; (iii) the associated design methods may not provide efficient allocations for estimating552

the desired outputs. In this article, we propose a strategy for locating infinite discontinuities553

in computer experiments leveraging ideas from active learning. The strategy formulates the554

problem as a binary classification one and employs active learning with an SVM classifier and555

UD to predict the output discontinuities and allocate the experimental trials in a more effec-556

tive manner. Numerical results show that, given a limited experimental budget, the proposed557

strategy is superior to the modeling strategy based on GASP, as well as strategies based on558

a pure uniform design (i.e. with all experimental trials allocated at once by UD) in terms of559

both efficiency and prediction accuracy.560

It should be mentioned that the sampling technique here is different from the conventional561

methods in active learning, for which the initial training set (for passive learning) is usually562

obtained by random sampling or LHD. In general, the quality and cost of the initially selected563

training set in active learning are beyond consideration. However, we believe that for computer564

experiments significant attention needs to be paid to the selection of the initial design, since it565

can take up a large portion of the total experimental budget and thus significantly influences566

the output analysis. The sampling method employed in our strategy belongs to the class of567

quasi-Monte Carlo methods and has proven more robust than random sampling and other568

space filling designs. Further, with the placement of a well-designed weight function, the UD569

can be automatically incorporated into the sampling process of active learning. For practical570

implementation, we have also provided an accelerated algorithm so that the solution of UD can571

be fairly well approximated within a more reasonable computational time. Such acceleration572

is particularly useful and necessary for designs with a large number of input factors. Finally,573

another learning technique called HMLSVMs is introduced so as to better deal with infinite574

valued discontinuities that lead to piecewise linear shapes.575

We believe that the proposed strategy can be extensively used to identify other types of576

output discontinuity or non-differentiability in computer or other physical experiments. For577

example, to identify (finite) jump discontinuities one can examine the magnitude of response578

y(x) in the neighborhood of each input point x; to identify pathological structures like kinks579

and cusps (which are essential in manufacturing processes and computer graphics) one may580

examine the “gradients” of response in the neighborhood of each input point x and determine581

suitable class labels (note that the gradients for kinks and cusps are not continuous). However,582

these problems will require a more delicate/complicated formulation.583

Appendix A. Accelerated Algorithm for Finding an NUD.584

The accelerated algorithm for constructing an NUD is shown as follows.585

The following theorem describes how much computation can be saved by Algorithm A.1586
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Algorithm A.1 Acceleration for Finding an NUD

1: Consider a set of superimposed grid points Z over D. Select ψ0 ⊂ {1, . . . ,K}, find the
optimal design P∗0 in the selected |ψ0|-dimensional space (e.g. by using the exhaustive
search or Switching Algorithm). Set i = 0.

2: while |ψi+1| < K do
3: Select ψi+1 ⊂ {1, . . . ,K} \ ψi, set ψi+1 = ψi+1 ∪ ψi.
4: Find the optimal design P∗i+1 in Zψi+1 by augmenting the design P∗i in the lower di-

mensional input domain Zψi .
5: Set i = i+ 1.
6: end while
7: return P∗i+1

for finding an NUD.587

Theorem A.1 (Computational time of Algorithm A.1). If the number of superimposed grid588

points in each dimension of D is taken to be N
1
K and |ψi| = d(i+1) for each iteration i (where589

d is divisible by K), the accelerated exhaustive search has the computational time O(N
nd
K ),590

while the accelerated Switching Algorithm has the computational time up to O(N
d
K

(2+p)).591

Proof. Note that |ψi| = d(i + 1) indicates that at each iteration i, an additional d-
dimensional subspace of D is aggregated with the current design space so as to find the
optimal design P∗i . Therefore, for fixed values of K, d and n, the accelerated exhaustive
search requires the computational time(

K

d

)(
N

d
K

n

)
+

(
K − d
d

)(
N

d
K

n

)
+ · · ·+

(
d

d

)(
N

d
K

n

)
= O(N

nd
K ).

On the other hand, the accelerated Switching Algorithm requires the computational time up
to

(K/d) ·O(N
d
K

(2+p)) = O(N
d
K

(2+p)).

Note that in practice the accelerated algorithm would have a dramatic reduction on the592

computational time of finding an NUD (though there may be a minor loss of uniformity in the593

primary space). To see this, let us recall the early example with K = 3, d = 1, n = 6, p = 2594

and N = 103. The accelerated exhaustive search requires merely 106 computations for finding595

an NUD, while the search requires 1018 computations without acceleration. The accelerated596

Switching Algorithm requires up to 104 computations for finding an NUD, while the search597

requires up to 1012 computations without acceleration.598

To evaluate the numerical performance of Algorithm A.1, we consider a simple design area599

D = [0, 1]× [0, 1]. Suppose there are 100 candidate grids superimposed over D (so 1001/2 = 10600

grids for each dimension), and we choose d = 1 and p = 2. The CCD are then computed by601

utilizing (3.3) (with F chosen as an identity function) based on the four algorithms: Exhaustive602

Search, Switching, Accelerated Exhaustive Search, and Accelerated Switching. The results603

for n = 1, . . . , 10 are shown in Figure 8. Note that the CCD for the Switching algorithm604

is computed by taking the average of 1,000 initial designs based on random sampling, while605
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the CCD for the Accelerated Switching algorithm is computed by taking the average of all606

solutions based on a set of NUDs found in the first dimension (i.e. a set of P∗1 ). As can607

be seen, for this small design area both the Switching and Accelerated Switching algorithms608

approximate very well the optimal design based on Exhaustive Search. This provides a strong609

numerical evidence that the proposed accelerated algorithm is adequate for finding an NUD.
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Figure 8. The estimated CCD (with p = 2) for the Exhaustive, Switching, Accelerated Exhaustive and
Accelerated Switching algorithms with respect to the number of allocated experimental trials. Here the input
domain is D = [0, 1]2.

610

We next consider the laser cutting example in Subsection 4.2 with an 8D hypercube domain611

D = [0, 3]8, while 3 grid points (0.5, 1.5, 2.5) are considered for each input dimension so as612

to evaluate the performance of the above algorithms. Thus, there are N = 38 = 6, 561 grid613

points superimposed over D. To accelerate the computation of Algorithm A.1, we choose614

d = 2 (augmenting two dimensions one at a time to find the optimal design), K = 0 and615

p = 1 in (3.3), i.e., a simplified version of WCCD with merely one subregion D1(z) and616

the L1-norm distance is considered. Since now the design is unweighted (i.e. F is chosen617

as an identity function), it is clear that F (D1(z)) = |D1(z)|/|D|, which corresponds to the618

proportion of the volume taken up by the subregion D1(z). Under such setup, the WCCD619

reduces to the form of so-called L1-discrepancy. Figure 9 yields the values of L1-discrepancy620

associated with the number of design points allocated in D based on the above algorithms. As621

can be seen, for this 8D domain with coarse grid points, the trend of discrepancy measure is622

somewhat different from that shown in Figure 8 - it does not drop down monotonically as we623
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increase the number of design points. However, numerical values show that both the Switching624

and the Accelerated Switching algorithms approximate fairly well the optimal design based625

on Exhaustive Search. The empirical evidence renders strong support that our proposed626

accelerated algorithm performs well in finding an NUD for larger scale systems.
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Figure 9. The estimated L1-discrepancy for the Exhaustive, Switching, Accelerated Exhaustive and Accel-
erated Switching algorithms with respect to the number of allocated design points. Here the input domain is
D = [0, 3]8.

627

Appendix B. A sequential sampling strategy based on GASP and contour estimation.628

629

Suppose one would like to estimate a contour S(a) = {x : y(x) = a} (the set of input630

points with the response value a) based on the GASP model, a useful strategy is to start with631

a relatively small experimental design (called initial design) and then sequentially allocate632

experimental trials near the estimated contour and/or input locations with large prediction633

uncertainty [44]. Specifically, consider the following improvement function634

(B.1) I(x) = ε2(x)−min{(y(x)− a)2, ε2(x)},635

where ε(x) = αs(x) for some α > 0 and y(x) ∼ N(ŷ(x), s2(x)). Here ŷ(x) and s2(x) represent636

the best linear predictor and the associated mean squared error at any non-sampled point637

x, respectively. Therefore, at each design stage one tends to select an untried point that638

maximizes I(x) over the input space. However, due to the uncertainty of un-sampled design639

points, the expected value of the improvement function is considered instead. The follow-640

ing mathematical expression, which was given in [7], provides a simpler way for calculating641
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E[I(x)]:642

E[I(x)] =
[
α2s2(x)− (ŷ(x)− a)2 − s2(x)

]
· [Φ(u2)− Φ(u1)]643

+s2(x) [u2φ(u2)− u1φ(u1)] + 2s(x)(ŷ(x)− a) [φ(u2)− φ(u1)] ,(B.2)644

where u1 = (a− ŷ(x)−αs(x))/s(x), u2 = (a− ŷ(x) +αs(x))/s(x), Φ(·) and φ(·) represent the645

cdf and pdf of a standard normal random variable, respectively. Thus, in the standard contour646

estimation problem a not yet tested point x is chosen to maximize (B.2) at each design stage.647

Note that the goal is to locate the “boundary” for the set of input points x with y(x) = 0,648

which is different from identifying the contour line of height a = 0 associated with a contin-649

uous response surface. Thus, we need to modify accordingly the above sequential sampling650

procedure. Suppose there are Nj available experimental trials at a particular design stage j651

and we denote by x1, . . . , xNj and y(x1), . . . , y(xNj ) the input locations and their associated652

outputs, respectively. After fitting the GASP model based on the Nj experimental trials, the653

estimated contour (i.e. target boundary) is given by654

(B.3) ∂T̃j(x) = {x ∈ D : 0 < ŷ(x) ≤ aj},655

where656

(B.4) aj =
1

2
·min{y(xi) : y(xi) > 0, i = 1, . . . , Nj}.657

We next introduce a stage-dependent improvement function658

(B.5) Ij(x) = ε2(x)−min{(y(x)− aj)2, ε2(x)},659

and thus the next-stage design point is chosen as660

(B.6) x∗ = arg max
x/∈{xi,...,xNj

}
E[Ij(x)],661

where the computation of E[Ij(x)] can be done by using (B.2).662

Since y(x) = 0 for all x /∈ T (x), the sampling strategy based on the concept of improve-663

ment function tends to over-allocate experimental trials outside the target region (this is also664

validated by numerical investigations). Unfortunately, certain portions of such trials are not665

particularly informative for estimating the boundary ∂T (x) (e.g. data far away from the666

boundary). The goal of utilizing aj instead of 0 in (B.5) is to reduce the amount of over-667

sampled data outside the target region T (x). Intuitively, the approximation of ∂T (x) should668

then be done in a more efficient manner. Now we proceed to prove that the estimated ∂T̃j(x)669

converges to the true boundary ∂T (x) as Nj → ∞. It is clear that the GASP model is not670

able to fit well the primary output surface y(x), which is neither continuous nor differentiable671

on ∂T (x). However, as we learn that y(x) becomes continuous on ∂T (x) after a reciprocal672

transformation (though it is still not differentiable), it suffices to show [44]:673

(B.7) lim
j→∞

sup
x∈D\∂T (x)

E[Ij(x)] = 0.674
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Let us now break the input domain D into two parts: one for x ∈ T (x) and the other for
x /∈ T (x) (both not including the boundary ∂T (x)). Since the output surfaces y(x) for both
parts are continuous and differentiable, the proof of Theorem 1 in [44] yields

sup
x∈D\∂T (x)

s2(x)→ 0 as Nj →∞,

and thus

sup
x∈D\∂T (x)

Ij(x)→ 0 as Nj →∞.

This then implies (B.7) and the proof of convergence is complete. The detailed steps of the675

above procedure based on a set of superimposed grid points Z are shown in Algorithm B.1.676

Algorithm B.1 Sampling based on contour estimation and GASP

1: Determine an appropriate experimental domain D associated with a set of superimposed
grid points Z. Set the design stage j = 1 and determine the size of the initial design
n1. Allocate an adequate initial design P∗1 (e.g. by UD) based on Z and obtain the
experimental outcomes y(z) for all z ∈ P∗1 . Compute a1 by (B.4) and fit the GASP model
based on all z ∈ P∗1 . Compute E[I1(z)] by (B.2) for all z ∈ Z \ P∗1 .

2: while the stopping criterion is not met do
3: Select the next-stage design point z∗ which maximizes E[Ij(z)] over the set Z \ P∗j .
4: Obtain the experimental outcome for z∗ and set P∗j+1 = P∗j ∪ {z∗}.
5: Compute aj+1 by (B.4) and fit the GASP model based on all z ∈ P∗j+1.
6: Set j = j + 1.
7: end while
8: return ∂T̃j+1(z)

Appendix C. Active Learning with HMLSVMs.677

We briefly introduce how to develop a learner based on HMLSVMs by utilizing the idea of678

classification tree. Let [I] be a node of the hierarchical tree and denote the root node by [0],679

the left child node of [I] by [I]+, the right child node of [I] by [I]−, respectively. Let g[I](x)680

be the decision function of fitting an LSVM at node [I] and denote the associated “order of681

split” in the hierarchical tree by i. We simply write g[I](x) = g(i)(x) and, it is clear that682

g[0](x) = g(1)(x). For the classification tree having m splits, we denote the set of all decision683

functions by Fm = {g(1)(x), . . . , g(m)(x)}. We next introduce how to split the nodes so as to684

grow the decision tree.685

Denote the set of training data associated with a node [I] by T[I], where T[0] = {(y1, x1),686

. . . , (yn, xn)}. The training data associated with the left child and right child node of [I]687

are then denoted by T[I]+ = {x ∈ T[I] : g[I](x) > 0} and T[I]− = {x ∈ T[I] : g[I](x) < 0},688

respectively. In order to best split the training data in a node, we need to define the so-called689

host training center and guest training center. Given the current tree with m splits, denote690

the set of training samples having “wrong classifications” by W. For any xi ∈ T[0], denote the691

set of its k “nearest” training samples with the same labels as yi by Nk(xi). The host training692
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center is then defined as693

(C.1) xh = arg max
xi∈W

∑
xj∈Nk(xi)

exp

{
−‖xj − xi‖

2

σ2

}
Ej ,694

where Ej = min
{

1,max{0, 1− yj ·G(m)(xj)}
}

and σ2 is a positive constant. By this defi-695

nition, the selected host training center appears to have the largest density of misclassified696

training samples over its k nearest neighbors. Suppose now xh ∈ T[I] for some node [I], the697

guest training center is then defined as698

(C.2) xg = arg max
xi∈N̄k(xh)

∑
xj∈Nk(xi)

exp

{
−‖xi − xj‖

2 + ‖xj − xh‖2

σ2

}
,699

where N̄k(xh) represents the set of xh’s k nearest training samples, with different labels from700

yh. In short, the guest training center is a training sample that is close to the host training701

center and at the same time has a large density of correctly classified training samples over its702

k nearest neighbors. Note that such setup is quite similar to the concept of “local likelihood”,703

while the goal is to split node [I] based on the two selected centers xh and xg.704

To develop the decision function to split node [I], we first define the weights of the training705

samples in Nk(xh) and Nk(xg) as706

(C.3) Wi =

exp
{
−‖xi−xh‖

2

σ2

}
, if xi ∈ Nk(xh);

exp
{
−‖xi−xg‖

2

σ2

}
, if xi ∈ Nk(xg).

707

As can be seen, the weight of each training sample in both sets becomes exponentially larger708

as it gets closer to xh or xg and exponentially smaller as it gets farther away. The WLSVM709

is then used to develop a decision function gNk
(x) based on the two sets Nk(xh) and Nk(xg).710

Once we have gNk
(x), the decision function for all training samples in node [I] is obtained by711

mixing gNk
(x) with the decision function of its parent node [Ip], that is,712

g[I](x) =

{
max{g[Ip](x), gNk

(x)}, if [I] = [Ip]
−;

min{g[Ip](x), gNk
(x)}, if [I] = [Ip]

+.
(C.4)713

Denote by g[I](x) = g(m+1)(x), then after the (m+ 1)-th split, the set of all decision functions714

for the tree is given by715

(C.5) Fm+1 = Fm ∪ {g(m+1)(x)}.716

Denote by Fms = {g(1)
s (x), . . . , g

(m)
s (x)} the set of all decision functions obtained by

HMLSVMs at a particular learning stage s, where

g(i)
s (x) = sign

(
〈w(i)

s , x)〉+ b(i)s

)
is the linear decision function for the i-th split at stage s, i = 1, . . . ,m. Then, for each input717

point x we can analogously compute the distance (3.9) and the weight (3.10) so that the718
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weighted UD can be utilized to sample an instance at the next stage. Note that due to the719

structure of the developed decision tree, the computation of (3.9) can be intricate as the size720

of the tree becomes large - even when the input dimension is low. However, for some cases721

where the estimated target regions have a “convex” shape, the computation can be done in a722

simpler way. To see this, for any input point x inside the estimated target region T̃s(x), its723

distance to the boundary can be directly computed by724

(C.6) d(x, ∂T̃s(x)) = min
i∈{1,...,m}

|〈w(i)
s , x〉+ b

(i)
s |

‖w(i)
s ‖

.725

If an input point x is outside the estimated target region, one will have to identify which726

facet/vertex of ∂T̃s(x) is closest to x and then compute the distance accordingly. We summa-727

rize the detailed steps of our framework for estimating the target region with piecewise linear728

boundaries in Algorithm C.1.729

730

Algorithm C.1 Active Learning with HMLSVMs

1: Determine an appropriate training domain D associated with a set of superimposed grid
points Z. Set the learning stage s = 1 and determine the size of the initial training set n1.
Find the initial training set P∗1 of size n1 that minimizes (3.3) based on Z, where p = 2
and the weight function is initially placed as f0(x) ≡ 1. Train an HMLSVMs classifier
based on P∗1 with the weights Wi ≡ 1 in the root node [0] and (C.3) for later splits, obtain
the decision boundary ∂T̃1(z) based on the set of resulting decision functions Fm1 .

2: while the stopping criterion is not met do
3: Update the weight functions fs(x) and f∗s (x) by (3.10) and (3.11), set s = s+ 1.
4: Select a sample z∗ ∈ Z \ P∗s−1 so that P∗s = P∗s−1 ∪ {z∗} minimizes (3.3). Query the

label of z∗.
5: Train an HMLSVMs classifier based on P∗s with the weights Wi ≡ 1 in the root node

[0] and (C.3) for later splits, obtain the decision boundary ∂T̃s(z) based on the set of
resulting decision functions Fms .

6: end while
7: return ∂T̃s(z)

Figure 10 yields the decision tree and estimated stability region for the queueing system731

shown in Figure 1 (with ∆ = 0) based on HMLSVMs with two splits, where the host center732

xh and guest center xg for the second split were computed based on two nearest samples. To733

evaluate the performance of Algorithm C.1, the prediction error rate along with the design734

stage is shown in Figure 11. Note that the prediction error rate here is calculated based on735

40×40 = 1, 600 grid points and the control process β(s) = 100×(1.3)−s, while for comparison736

purpose the result based on the GASP model and Algorithm B.1 is also attached. As can be737

seen, for such a small system the prediction error rate of our proposed method is below 2%738

as the number of experiments exceeds 27 and remains stable after that. On the other hand,739

the prediction error rate of the GASP model appears to have a relatively slow decay by using740

the same number of experimental trials.741

742
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Figure 10. Illustration of the decision tree based on HMLSVMs with two splits (left panel) and the estimated
stability region for the queueing system shown in Figure 1 (with ∆ = 0) along with the host center xh and guest
center xg by choosing k = 2 (right panel). Here the red symbol “×” represents the objects with a true class label
“−1”, while the blue symbol “◦” represents objects with a true class label “+1”.

Number	of	Experimental	Trials	

10																						15																										20																									25																									30	

							GASP	+	Sequen?al	
							SVM	+	Sequen?al	

Figure 11. The error rates for estimating the piecewise linear boundaries based on passive and active
learning with SVM (red line) and the GASP model for contour estimation (blue line). Note that both methods
here utilize the associated sequential sampling strategy.

Remark: If we know a priori that the true target region is convex, one would not expect the743

decision tree to end up with a non-convex shape. To possibly avoid this issue, one can either744

(i) assign larger weights Wi to the training samples with label y(x) = +1 (i.e. points inside745

the true target region) when fitting the LSVM model or (ii) assign larger weights fs(x) to the746

input points inside the estimated target region so as to allocate the experimental trials based747

on WCCD. Intuitively, such strategy will push the decision boundary at each node of the tree748

to move “outward”, thus retaining as much as possible the convex shape of the estimated749
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target region.750
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