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Purpose: Directly extracting the respiratory phase pattern of the tumor using cone-beam computed
tomography (CBCT) projections is challenging due to the poor tumor visibility caused by the
obstruction of multiple anatomic structures on the beam’s eye view. Predicting tumor phase informa-
tion using external surrogate also has intrinsic difficulties as the phase patterns between surrogates
and tumors are not necessary to be congruent. In this work, we developed an algorithm to accurately
recover the primary oscillation components of tumor motion using the combined information from
both CBCT projections and external surrogates.
Methods: The algorithm involved two steps. First, a preliminary tumor phase pattern was acquired
by applying local principal component analysis (LPCA) on the cropped Amsterdam Shroud (AS)
images. In this step, only the cropped image of the tumor region was used to extract the tumor phase
pattern in order to minimize the impact of pattern recognition from other anatomic structures. Sec-
ond, by performing multivariate singular spectrum analysis (MSSA) on the combined information
containing both external surrogate signal and the original waveform acquired in the first step, the pri-
mary component of the tumor phase oscillation was recovered. For the phantom study, a QUASAR
respiratory motion phantom with a removable tumor-simulator insert was employed to acquire CBCT
projection images. A comparison between LPCA only and our method was assessed by power spec-
trum analysis. Also, the motion pattern was simulated under the phase shift or various amplitude con-
ditions to examine the robustness of our method. Finally, anatomic obstruction scenarios were
simulated by attaching a heart model, PVC tubes, and RANDO� phantom slabs to the phantom,
respectively. Each scenario was tested with five real-patient breathing patterns to mimic real clinical
situations. For the patient study, eight patients with various tumor locations were selected. The per-
formance of our method was then evaluated by comparing the reference waveform with the extracted
signal for overall phase discrepancy, expiration phase discrepancy, peak, and valley accuracy.
Results: In tests of phase shifts and amplitude variations, the overall peak and valley accuracy was
�0.009 � 0.18 sec, and no time delay was found compared to the reference. In anatomical obstruc-
tion tests, the extracted signal had 1.6 � 1.2 % expiration phase discrepancy, �0.12 � 0.28 sec peak
accuracy, and 0.01 � 0.15 sec valley accuracy. For patient studies, the extracted signal using our
method had �1.05 � 3.0 % overall phase discrepancy, �1.55 � 1.45% expiration phase discrep-
ancy, 0.04 � 0.13 sec peak accuracy, and �0.01 � 0.15 sec valley accuracy, compared to the refer-
ence waveforms.
Conclusions: An innovative method capable of accurately recognizing tumor phase information was
developed. With the aid of extra information from the external surrogate, an improvement in predic-
tion accuracy, as compared with traditional statistical methods, was obtained. It enables us to employ
it as the ground truth for 4D-CBCT reconstruction, gating treatment, and other clinic implementa-
tions that require accurate tumor phase information. © 2020 American Association of Physicists in
Medicine [https://doi.org/10.1002/mp.14298]
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1. INTRODUCTION

Radiation therapy requires precise dose delivery to the
intended treatment region. Accurate treatment delivery to

lung cancers is particularly challenging as the tumor is con-
tinuously moving along with the respiratory cycles during the
treatment. Respiratory-induced tumor motion is one of the
potential sources of error in lung radiation therapy. Many
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motion management approaches1,2 have been developed to
improve the delivery accuracy to the lung tumors. Respiratory
gating3 is one of these. Respiratory gating controls the radia-
tion beam on/off status depending on whether the tumor is
inside or outside the treatment fields during the treatment. It
often uses either external or internal surrogates to trigger the
beam.4–7 However, respiratory phase inconsistency between
the tumor and surrogates is not uncommon and largely
depends on the tumor location and patient respiratory pat-
tern.8–11 Thus, the ability to accurately extract the phase cor-
relation between the tumor and surrogates becomes crucial to
ensure accurate gating-based delivery. Four-dimensional
cone-beam computed tomography (4D-CBCT) is another
contemporary technique for respiratory motion management.
As 4D-CBCT images include both spatial and temporal infor-
mation of tumor and surrounding anatomy, they allow the
clinician to determine the tumor motion range and make sub-
sequently clinical decisions with regard to tumor alignment.
Tumor phase information also plays a crucial role in the
imaging reconstruction process of 4D-CBCT. Correct phase
sorting can largely reduce the motion artifact of the recon-
structed images of each phase.

Directly tracing lung tumor movement and extracting the
phase information has traditionally been a difficult task, pri-
marily due to the inability of acceptable tumor-soft tissue dis-
tinction using traditional image modalities for tumor tracking
(e.g., kilovoltage (KV) x-ray images, megavoltage (MV) x-ray
images, CBCT images, ultrasound images, etc.). Magnetic res-
onance-guided radiation therapy (MRgRT) provides the poten-
tial to extract tumor motion since it provides a decent contrast
between the tumor and surrounding tissues.12 However, due to
the high cost and limited production, the use of MRgRT is still
limited, and the use of it for tumor tracking is still in the
research stage.13 An alternative strategy for tumor phase
extraction is to extract tumor phase information using surro-
gate information in lieu of the tumor itself. Two major method-
ologies using such a strategy have been widely developed and
applied. One uses external surrogate information to extract the
phase information, whereas the other uses internal surrogate
information. The former has become much more popular than
the latter for recent clinical applications, as most of the exter-
nal surrogate information can be easily acquired by readily
available detection devices such as pressure sensors and infra-
red cameras, etc. Typical external surrogate acquisition system
includes the bellow system (Phillips Healthcare, Cleveland,
OH, USA), real-time position management (RPM) system
(Varian Medical Systems, Palo Alto, CA, USA), AlignRT�
system (Vision RT, London, England). The information
extracted by those systems contains the distinct oscillation of
respiratory cycles. However, the extracted information pos-
sesses an intrinsic discrepancy with the real tumor motion
since the phase between external surrogates and internal tumor
or anatomical structures is not necessarily congruent.8–10 Inter-
nal surrogate-based methods can potentially overcome such
drawbacks. Ideally, if the surrogate is proximal or even inside
the tumor, the detected phase information can be treated as the
phase information of the tumor. Such attempts have been made

by implanting fiducial markers14–17 or electromagnetic
transponder beacons18–20 into the tumor region and then using
x-ray image modalities or radiofrequency methods to track
them. However, the implanting procedures are invasive, which
can cause the risk of pneumothorax21,22 or pulmonary hemor-
rhage.23 Moreover, the implanted surrogate may experience
migration throughout the treatment.24,25

Considering the practicality and risks of marker implanta-
tion methods, clinicians and researchers have developed alter-
native methods to reconstruct the tumor waveform using
projected KV images. Many researchers have attempted to
recover the internal respiratory phase information using
CBCT projections. The strategies include intensity-based
methods such as the Amsterdam Shroud (AS) method,26 the
intensity analysis (IA) method27; frequency domain methods,
such as the Fourier transform method (FT)28; and statistical-
based methods such as the local principal component analysis
(LPCA) algorithm9 and a two-step L1-norm LPCA method.10

All of these methods can effectively recover the phase infor-
mation using the identifiable surrogate information. The
LPCA statistical method is more robust than intensity-based
methods in general.9 It not only uncovers the underlying
structure of the dataset, but also provides the flexibility of
choosing the principal components and, at the same time, dis-
cards sources of noise and outliers. Nevertheless, the limita-
tions of these methods are significant. First, due to the
weakness of tumor phase information in the original projec-
tions, surrogates with strong and distinct signals (e.g., dia-
phragm) have to be included in order to enhance the
reconstructed signals. However, this process would only
extract internal-surrogate-like information rather than the true
tumor phase information. The discrepancies largely depend
on the relative anatomical location of the tumor with respect
to the surrogate, as well as respiratory physiology. Addition-
ally, missing surrogate information from the images due to
poor contrast, anatomical obstruction, or imaging cutout can
also undermine the quality of the phase signal reconstruction
with these approaches.

In this study, we proposed a robust statistical method to
overcome the disadvantage of current surrogate methods by
utilizing both external surrogate and CBCT projection
images. With the assistance of external motion information,
this method is able to improve the phase information extrac-
tion accuracy, as compared with traditional statistical meth-
ods. A validation experiment using phantom and patient data
was also assessed and the results are presented.

2. MATERIALS AND METHODS

Prior to the detailed description of our method, an algo-
rithm outline was given here for the sake of clarity. First, the
tumor-only region of each projection was cropped to generate
the AS image. Second, the LPCA method was used to extract
the initial respiratory waveform signal from the AS image.
Third, the surface motion (used as the external surrogate) was
acquired by recording the movement of an infrared marker on
the patient or the phantom. Finally, the multivariate singular
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spectrum analysis (MSSA) method was applied to recover the
tumor’s respiratory cycles in a waveform format by combin-
ing the oscillatory information from both the external surro-
gate and the internal structures.

In the following section, equipment and methodologies
used for projections and external signal acquisitions were first
introduced. A phase reconstruction algorithm using acquired
signals was then described systematically. The evaluation
methods tested on both phantoms and patients were depicted
in the end.

2.A. Raw data acquisition of CBCT projections and
external signals

2.A.1. Acquisition of the projections using CBCT

3D-CBCT projections were used as the raw data to recon-
struct the initial internal signal. An Elekta Versa HDTM linac
accelerator (Elekta Inc., Stockholm, Sweden) with an x-ray
volume imaging (XVI) system was utilized for CBCT scan. As
shown in Fig. 1(a), XVI system consists of a kilovoltage (KV)
x-ray source and a KV flat panel detector mounted on the linac
gantry. A typical 360-degree acquisition for a full CBCT scan
took about 2 min to accomplish and produces around 700 pro-
jection images. Each projection image with 512 9 512 pixels
was acquired by a KV image receptor with a 0.8 mm pixel
size. The sampling rate was around 0.183 sec per projection.

2.A.2. Acquisition of the external signal using the
Optical Tracking System (OTS)

The external surrogate for the test objects was an infrared
marker attached to the surface of the test object (either phan-
toms or patients) and its real-time position was captured by
the optical tracking system (OTS) with a pair of infrared

cameras mounted on the room ceiling, as shown in Fig. 1(b).
For phantoms, the infrared reflective marker was attached to
the outside of the phantom’s movable insert, as shown in
[Fig. 1(a) and 1(c)]; for patients, an infrared reflective (IR)
marker was placed on the skin surface of the abdominal
region approximately 5 cm inferior to the xiphoid process at
the midline of the patient.

2.A.3. Synchronization between internal and
external data

The acquisition of the temporal correlation between inter-
nal and external data is essential for signal reconstruction. An
additional reflective marker was attached to the KV flat panel
to setup such a correlation, shown in [Fig. 1(a)]. Since the
relationship between the gantry angle and the KV panel mar-
ker position can be empirically determined, the correspon-
dence between the gantry angle of projection acquisition and
the surface marker position during the scan can be indirectly
established by simultaneously tracing the KV panel marker
and the surface external surrogate marker. By mining the
CBCT acquisition log file, one-to-one correspondence
between the projection and its acquired gantry angle was
extracted. Accordingly, the final correlation between the
acquired projection images and their corresponding surface
marker positions during the scan was ultimately determined.

2.B. Tumor phase reconstruction algorithm using
external signal and CBCT projections

2.B.1. Amsterdam Shroud (AS) image generation
using CBCT projections

In this work, an AS image of the CBCT projection was
used as the initial input signal for tumor phase reconstruction.

FIG. 1. The experiment design for the study. (a) The cone-beam computed tomography (CBCT) system with KV x-ray source and KV flat panel detector are
shown. Infrared reflective markers were attached to the side of KV flat panel and to the movable insert of the phantom. (b) The optical tracking system (OTS) is
equipped with two infrared cameras to capture the real-time positions of the reflective markers. (c) The motion direction of the QUASARTM respiratory motion
phantom is indicated by the white arrow. The circle indicates the location of the attached infrared reflective marker. Its real-time location was used as the ground
truth for the phantom study.
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The construction method of AS images (taken from selected
literature9,10) that was applied in our study is described as fol-
lows. First, each projection image was initially converted to
the inversed intensity image and further converted to the
attenuation image by taking the logarithm of the intensity
image. This process is able to improve the image contrast and
tumor visibility. Second, the cranial-caudal (CC) derivative
image was generated from the attenuation image in order to
enhance the anatomic features of the image. Third, the deriva-
tive images of the tumor region with 5 mm margins were
cropped for column array generation. Fourth, an initial AS
image was formed by affixing all the column arrays together
(in the order of projection image received) into a 2D matrix.
Last, to improve the homogeneity of the AS images, the ini-
tial AS image was reprocessed to generate the final AS image
by applying the adaptive z-normalization method suggested
by Chao et al.10 The detailed steps of the adaptive z-normal-
ization process are described in the work of Chao et al.10 and
will not be repeated here. The overall workflow is illustrated
in Fig. 2 for a better understanding.

The distinction between our method and other methods9,10

is the region-of-interest (ROI) selection for column array gen-
eration. Unlike other methods that use the whole projection
images, we only employed the cropped ROI in the tumor
region. The rationale behind this was to minimize the impact
of the signal interference from surrounding anatomic struc-
tures (e.g., diaphragm) and/or nonhuman tissue artifacts (e.g.,
pacemaker, implants, or treatment couch top). The size and
location of the region-of-interested (ROI) were determined by
the patient’s tumor location, tumor size, and tumor motion
range estimated from the four-dimensional computed

tomography (4D-CT) scans. The central location of the ROI
on the projection image was defined as the projection point
for the centroid of the internal tumor volume (ITV) on the
projection images. The ROI is shown as the rectangle shape
in Fig. 2, which covers the ITV projection on the CBCT pro-
jection images with a 5 mm expansion on each side.

2.B.2. Initial respiratory waveform extraction using
Local Principal Component Analysis (LPCA)

Once the tumor-AS image was obtained, it was then used
as the input signal for the initial phase signal extraction using
the LPCA method. The LPCA method can effectively recon-
struct the waveform for the cases presented in the original
paper.9 However, its accuracy can be affected by the pixel
intensity of the surrounding structures, especially the dia-
phragm. LPCA also performed poorly when the tumor was
obstructed by multiple anatomical structures, which takes
place frequently in the clinical environment. Nevertheless, it
does provide a reasonable starting point to generate the initial
waveform. Figure 3 shows the basic workflow of the algo-
rithm, which can be briefly depicted as follows.

First, a LPCA window width, W, is selected, and the win-
dow moves sequentially by one column along the horizontal
direction on the tumor-AS image. In the first window, the
eigenvectors associated with the first PC are selected for the
principal direction since they reflect the most significant vari-
ance in the data, and the PC scores are used as the extracted
signal for columns 1 to [W/2]+1. To ensure the continuity of
the extracted curve for the following windows, the correlation
of each of the first five PCs with the PC obtained from the

FIG. 2. Tumor-Amsterdam Shroud (AS) image generation. (a) The image processing steps from the original projection image to a column array where only the
pixel values within the tumor region-of-interest were summed. (b) The initial AS image was generated by assembling each column array in the order of each pro-
jection that was received to form a tumor-AS image and the final AS image after applying adaptive z-normalization.
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previous window is calculated. Subsequently, the PC with the
highest correlation is selected as the principal direction for
the current step. The corresponding PC score for the center
column is selected as the extracted signal for this column. To
keep the principal direction consistent with the one obtained
from the previous step, a sign reversal may be necessary
(since the PCA cannot distinguish between the positive and
negative direction). In this study, the directional information
was fed in from the real-time external surrogate signal by the
OTS. This process was repeated until the last window, from
N-W + 1 to N, was reached. In this study, we chose W from
one to three breathing cycles, as suggested by Yan et al.9

2.B.3. Final respiratory waveform reconstruction
using external surrogate information

On one hand, the initial respiratory waveform obtained
using LPCA could potentially present some inconsistent and
perturbed patterns, especially for the observation window
formed by the lateral projection views. On the other hand,
unlike internal signals, this phenomenon is not presented in
the external surrogate signal since no obstruction is presented
between the surrogate (fiducial marker) and the detection sys-
tem (infrared camera). Thus, if we can utilize the external sig-
nal to enhance the perturbed signals of the initial waveform,
the unperturbed internal signal can conceivably be recon-
structed. Following this concept, a statistic method, called
multivariate singular spectrum analysis (MSSA), was intro-
duced in this study to achieve this goal. The algorithm details
are provided as follows:

First, let us define the initial respiratory waveform
acquired using LPCA as a one-dimensional time series
denoted by X = xt : t 2 1; . . .;Nf g, where t represents the
observation of the time series from 1 to N with an equal time
interval (gantry angle interval between projections); xt repre-
sents the magnitude at t. Then, a trajectory matrix, Y, is

created by stacking Xi from i = 1 to K, which possesses M
consecutive observations and offset starting elements, as indi-
cated in Eq. (1). M is an embedding time-delayed dimension,
typically, 1 to 3 breathing cycles, and K ¼ N �M þ 1.

Y ¼

X1

X2

X3

..

.

Xk

2
666664

3
777775 ¼

x1 x2 x3 � � � xM
x2 x3 x4 � � � xMþ1

x3 x4 x5 � � � xMþ2

..

. ..
. ..

. . .
. ..

.

xK xKþ1 xKþ2 � � � xN

2
666664

3
777775: (1)

The structure of matrix Y innately correlates the underly-
ing oscillation respiratory pattern as the time evolved. It
allows us to capture the signature of the dynamic behavior of
the respiratory waveform in a much easier way than does the
original time-series format.

Applying the same method, we can construct a time series
and its corresponding trajectory matrix for the external surro-
gate signal as well. Now, two channels of time series are cre-
ated in our study: Channel 1 is the external surrogate signal
from OTS denoted by X1 tð Þ; channel 2 is the preliminary
result from LPCA step denoted by X2 tð Þ. Y1 and Y2 are the
corresponding trajectory matrix, respectively. Now, a grand
covariance matrix between the two time series can be formed
using Eq. (2), as illustrated in Fig. 4.

C ¼ Y
0
Y N �M þ 1ð Þ asY ¼ Y1; Y2½ � (2)

where �ð Þ0 indicates the transpose of a matrix.
Matrix C represents the covariance between Xt and Xtþs

with time lag of s ¼ 0; . . .;M � 1. It includes auto- and
cross-covariance from both of the time series,
X1 tð Þ and X2 tð Þ. More specifically, four-quadrant submatrix
of C: C(1,1), C(1,2), C(2,1), and C(2,2) represent the covari-
ance between the neighbor observations of X1 tð Þ and itself,
X1 tð Þ and its X2 tð Þ counterpart, and X2 tð Þ and its X1 tð Þ
counterpart, and X2 tð Þ and itself, respectively.

FIG. 3. Local principal component analysis (LPCA) application on the Tumor-Amsterdam Shroud image. Note that N is the total number of projections, W is the
LPCA window width, and P is the variable that depends on the selected tumor ROI size. W is the window width while performing LPCA and the number of
observations is equal to W, in for the case shown.
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With this mathematical arrangement, the correlation of
each data point was established. The establishment was not
limited to the neighboring data points in the same time series;
it also included the correlation between corresponding points
from both time series.

Second, the eigenvalues and eigenvectors of C are
obtained by performing singular value decomposition (SVD).
Since C is a symmetric and positive semi-definite matrix, let
us denote its ordered eigenvalues by k1 � k2 � . . .� kd � 0
and the corresponding orthogonal eigenvectors by
e1; e2; . . .; ed. Let D ¼ max i : ki [ 0f g(i.e., the number of
eigenvalues) and the matrix for eigenvectors (V) is:

V ¼ e1 : . . . : eD½ � ¼

v1;1 v2;1 � � � vD;1
v1;2 v2;2 � � � vD;2
v1;3 v2;3 � � � vD;3
..
. ..

. . .
. ..

.

v1;2M v2;2M � � � vD;2M

2
666664

3
777775: (3)

Once the orthogonal eigenvectors were obtained, the prin-
cipal component (PC) can be calculated by projecting the
data, Y, onto linearly uncorrelated orthogonal axes in the
principal component space. This is a grouping step where it
is disjointed into D subsets. Thus, each principal component
can be calculated using Eq. (4)

PCj ¼ Yej j ¼ 1; . . .;Dð Þ: (4)

To reconstruct the trajectory matrix, Y rð Þ, possessing only
the most dominant PCs, an invert projection method is used
as shown in Eq. (5) and (6). Each PC, PCj is projected back
to the original data-centric coordinates. It yields Yj as fol-
lows:

Yj ¼ Y1j;Y2j
� � ¼ PCje

0
j ¼ Yeje

0
j : (5)

Then, the linear combination of the invert projected princi-
pal component yields the best approximation of Y as
Y� Y

rð Þ�� �� is the minimum.

Y
rð Þ ¼ Y1 rð Þ;Y2 rð Þ

h i
¼

Xm

j¼1
Yj ¼

Xm

j¼1
Y1j;Y2j
� �

(6)

where m (m�D) represents the index of the first m number
of the most dominant PCs.

The selection of m is based on the weight of each PC. It
required the summation of its corresponding eigenvalue, nor-
malized to the summation of the total eigenvalues, be greater
than a threshold, T , ranging from 0.9 to 0.98 (manually cho-
sen for each case in our study). This can be expressed mathe-
matically as:

min m :

Pm
i¼1 kiPD
j¼1 kj

� T

( )
: (7)

Lastly, we reconstruct internal tumor waveform, X2 rð Þ;
from Y2 rð Þ using the Hankelization procedure. The detailed
procedure will not be repeated here. The interested reader can
refer to Golyandina et al.29

2.C. Algorithm evaluation using phantom and
patient data

2.C.1. Phantom study

A QUASARTM 4D respiratory motion phantom (Modus
Medical Devices Inc., London, Canada) was employed for
respiratory simulations. The signal received from the IR mar-
ker on the movable insert was used as the ground truth; the
extracted tumor motion signal from the CBCT projection
images is utilized for the reconstructed waveform. Our
method consisted of four parts: (a) The reconstructed results
between the LPCA and our LPCA–MSSA method were com-
pared in the frequency domain using power spectrum analysis
for a sinusoidal respiratory motion case. (b) The sensitivity of
the CBCT scanning uncertainty was tested for the respiratory
waveforms reconstructed by both the LPCA–MSSA and the
LPCA method using 10 repeated CBCT scans. Peak-Valley
time differences and phase discrepancy from the ground truth
among repeated scans were analyzed. (c) The robustness test
of the LPCA–MSSA method on the phase shift and ampli-
tude variation of the external surrogate was performed as
well. Three arbitrary phase shifts and three amplitude varia-
tions were altered from the original external surrogate signal
(a 12 breath-per-minute (BPM) sinusoidal waveform) with
multiple sine functions and weightings for testing purposes.
(d) Lastly, the influence of anatomical structure obstructions
on the waveform reconstruction was assessed. Three

FIG. 4. The grand block structure of covariance C. Y1 and Y2 are the trajectory matrix of time series X1 tð Þ and time series X2 tð Þ, respectively.
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anatomical obstruction scenarios were simulated. The first
scenario simulated obstruction by the heart using a solid-
filled three-dimensional (3D)-printed heart placed at the side
of the phantom. The second scenario simulated rib obstruc-
tion by placing polyvinyl chloride (PVC) tubes on the top and
two sides of the phantom in a parallel arrangement. The third
scenario simulated multiple tissue perturbations in the lung
region with Rando� phantom slabs placed around the QUA-
SARTM 4D phantom. Figure 5 demonstrates the placement
of the various simulated structures. Five respiratory patterns,
including sinusoidal, cardiac artifact, jitter artifact, triangular,
and typical fast breathing waveform, were applied for each
obstruction scenario to ensure the versatility of the
method. The extracted results were then compared to the
ground truth.

2.C.2. Patient study

Eight patient cases with various tumor sizes (range from
2.8 c.c. to 63.2 c.c.) and locations inside the lungs [demon-
strated in Fig. 6(a)] were investigated in this study. Two of
them have artificial implants of high-density materials proxi-
mate to the lung areas, which are shown on the CBCT projec-
tion images of [Fig. 6(b)]. The tumor size varies from 1.5 to
5.5 cm, and the tumor motion range is from 3.5 to 20 mm.
Unlike the phantom study, for which internal tumor motion
can be accurately simulated and confirmed, the actual tumor
motions of patients are unknown. However, a reference tumor
motion waveform can still be extracted by tracing the tumor
position on the projection images using the following proce-
dure. First, the window and level of each projection image are
manually adjusted in order to obtain the best visibility of the
tumor on each projection. Second, the most superior and infe-
rior extent of the tumor on each projection was identified by a
radiation oncologist and subsequently projected onto the
tumor-AS image. Third, the corresponding tumor center posi-
tion was obtained by averaging the corresponding superior
and inferior extents. Finally, the reference waveform of the
center of the tumor was established by tracing the corre-
sponding center locations on the tumor-AS image.

The congruency between the reference waveform and
the extracted waveform was examined with respect to over-
all phase discrepancy, expiration phase discrepancy, peak
accuracy, and valley accuracy. In addition, the percentage
of variance and the number of PCs required were also
assessed.

3. RESULTS

3.A. Phantom study

The power spectrum density (PSD) generated by the
ground truth waveforms and the waveforms reconstructed by
the LPCA method and the LPCA–MSSA method are shown
in Fig. 7. The overall trend of the PSD generated by the
LPCA–MSSA method matches well with the ground truth
trend line. LPCA–MSSA demonstrates the capability to not
only suppress the high-frequency noise but also to preserve
the primary frequency (~ 0.2) of the signal. Meanwhile, the
LPCA-only method fails to perform well in both regard.

Figure 8 shows the sensitivity of the LPCA and LPCA–
MSSA methods for 10 repeated CBCT scans in a scatter chart
form. Each group contains 10 colored dots where one dot rep-
resents the comparison result of the reconstructed waveform
versus the ground truth for one scan. Figure 8(a) shows the
valley accuracy and peak accuracy and [Fig. 8(b)] shows the
phase discrepancy comparison between the reconstructed
waveform and the ground truth waveform.

The overall sensitivity of the LPCA–MSSA method is less
than 0.2 sec in time accuracy and less than 5% in phase dis-
crepancy. The 95% confidence interval (CI) for the LPCA–
MSSA approach was � 0.1 sec in time accuracy
and � 3.4% for overall phase discrepancy. Furthermore, the
most distinct difference between the two methods falls in the
expiration phase discrepancy, the LPCA-only method has a
95% CI of � 9.8 %, and the LPCA–MSSA method has a
95% CI of � 0.4%. In general, the respiratory waveforms
reconstructed by the LPCA–MSSA method show smaller
uncertainties than their counterpart reconstructed by the
LPCA-only method with different scans.

FIG. 5. Simulation of anatomic obstructions, including hearts, ribs, and other normal tissues, on a QUASARTM respiratory motion phantom.
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Figure 9(a) shows the effect of waveform reconstruction
using LPCA–MSSA method on phase-shifting of the external
surrogate signal. Figure 9(b) shows the effect using LPCA–
MSSA method on arbitrary magnitude variation of external
surrogate signal. Under both scenarios, the LPCA–MSSA
method performs well for waveform reconstruction whereas
waveforms reconstructed by LPCA-only method possess
large discrepancy to the ground truth. Among all the scenar-
ios we tested, the overall peak and valley accuracy of recon-
structed waveforms by LPCA–MSSA method is
�0.009 � 0.18 sec.

Figure 10 displays the effect of anatomical obstruction on
waveform reconstruction using the LPCA–MSSA method. In

[Fig. 10(a)], the dash-line framed area is the projection region
with most of the obstruction. The performance of the LPCA-
only method is deficient in those regions. By contrast, the
waveform reconstructed by the LPCA–MSSA method
matched the oscillation pattern of the ground truth closely, as
shown in [Fig. 10(b)]. The waveform reconstructed by the
LPCA–MSSA method has an expiration phase deviation of
1.59 � 1.98%, a peak accuracy of �0.12 � 0.28 sec, and a
valley accuracy 0.01 � 0.15 sec, compared with the ground
truth for all of the anatomical obstruction scenarios and all of
the waveforms we examined.

3.B. Patient study

Table I shows the results for the discrepancy and accuracy
of the extracted waveform compared to the reference wave-
form. For the LPCA–MSSA method, there was an overall
phase discrepancy of �1.05 � 3.0 %, an expiration phase
discrepancy of �1.55 � 1.45%, a peak accuracy of
0.04 � 0.13 sec, and a valley accuracy of �0.01 � 0.15 sec,
compared with the reference waveforms. All phase discrepan-
cies were within � 5% for all cases, and the peak-valley
accuracy was within 0.3 sec. The paired t-test of the phase
discrepancy for the LPCA-only and LPCA–MSSA methods
gave p-value of 0.0058 and 0.11. Moreover, attempts made to
determine the time accuracy for the LPCA-only method were
unsuccessful for half of the cases due to noisy waveforms.
Therefore, the results are not provided.

Table II shows the variance distribution of each principal
component (PC) for all cases. Only the PCs in bold were
selected for the final waveform reconstruction. It shows that
the first PC for all cases contains more than 80% of the total
variance. The total percentage variance used for reconstruc-
tion ranges from 89.4 to 98% (two to nine principal compo-
nents) in the patient study.

FIG. 6. Clinical lung patient selections. (a) Tumor locations in the lungs of the selected clinical patients from cases 1 through 8. (b) Two patients’ cases present-
ing high-density implants in their bodies. Patient 1 has an arm bone implant. Patient 3 has a pacemaker implant. The boxes indicate regions of tumors.

FIG. 7. The results of a sinusoidal respiratory simulation were analyzed using
power spectrum density (PSD) in the frequency domain with a logarithmic
scale on the vertical axis. The red arrow indicates the peak location that
matches the frequency of the original breathing waveform and the rest of the
frequencies across the spectrum are induced by the noise of the signal.
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Figure 11 shows the reconstructed waveforms compared
with the reference waveforms and their corresponding vari-
ance distributions for cases 4 and 6. It illustrates that the
LPCA–MSSA approach can accurately recover the respira-
tory oscillation information by choosing an appropriate per-
centage variance.

4. DISCUSSIONS

The results suggest that the proposed method is able to
reconstruct tumor waveforms with accurate phase informa-
tion. The accuracy is less than 1/10th of phase discrepancy,
which is the typical phase sorting requirement. By adding the
external surrogate signal into the system, the waveform
reconstructed by the LPCA-only method was improved. The
MSSA method, which has been widely used in economics,30

geophysics,31–34 and other fields, demonstrated its excellent

capability of noise removal, oscillation extraction,35 and
time-series (tumor waveforms due to respiration) reconstruc-
tion in our study.

In the phantom study, our method shows superior perfor-
mance compared with the LPCA-only method. A sample case
illustrated the perfect match of the trend and peak frequency
between the LPCA–MSSA reconstructed waveform and the
ground truth in the frequency domain as indicated in Fig. 7.
Our method also demonstrates its insensitivity to the timing
of the CBCT scan. Since each CBCT acquisition was started
arbitrarily, the same angle projection might capture different
tumor phase information depending on the patient’s respira-
tory condition during the CBCT scan acquisition. Therefore,
the intensity and pattern of the tumor-AS image might vary
from scan to scan. This can potentially affect the consistency
and precision of the reconstructed waveform. Figure 8 shows
the comparison of the reconstruction consistency between

FIG. 8. The sensitivity of the LPCA-only and LPCA–MSSA methods with 10 repeated CBCT scans without any anatomical obstructions. Each circle indicates
the discrepancy between the signal extracted from the algorithm and the ground truth for each scan. (a) Peak accuracy versus valley accuracy in seconds (b) Over-
all phase discrepancy versus expiration phase discrepancy in percentage.

FIG. 9. The assessment of the robustness of the multivariate singular spectrum analysis (MSSA) algorithm. (a) The result of LPCA–MSSAwaveform compared
to the ground truth (lower panel) while there is a 35% phase shift on the altered external surrogate signal. (b) The result of the LPCA–MSSAwaveform compared
to the ground truth (lower panel) while there is a gradual amplitude variation on the altered external surrogate signal.
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LPCA-only and our method. The charts demonstrate that our
method is much less sensitive to the scan timing than LPCA.
The consistency of our method is particularly crucial for the
respiratory phase sorting used by 4D-CBCT reconstruction.

Since our approach relies on the external signal for tumor
waveform reconstruction, the influence of the external signal
quality on the accuracy of the final reconstructed waveform
becomes a vital evaluation indicator. Figure 9 suggests that
the minimum deterioration effect on the final reconstruction
occurs with the proposed method when artificial amplitude

variation or phase shift is applied to the original external sur-
rogate signal. It demonstrates the robustness of our method
on external surrogate variation. By unique operation of the
MSSA method, the correlation between the original and aux-
iliary signal was built by the covariance matrix. The com-
bined matrix Y

rð Þ (in Eq. 6) possesses common oscillation
features from both signals through the PC selection process.
Therefore, the auxiliary signal (external surrogate) is able to
enhance the oscillation feature of the original signal without
altering its phase or amplitude. Our method is extremely

FIG. 10. A cardiac artifact waveform with Rando� phantom slabs. The dashed line indicates the ground truth signal from the optical tracking system. (a) The
result of the LPCA-only method compared with the ground truth. The dash-framed regions indicate where the nearly lateral projection angles are. (b) The recon-
structed waveform of the LPCA–MSSA method compared with the ground truth.

TABLE I. The phase discrepancy and time accuracy of the extracted respiratory waveform compared with the reference waveform for lung patients. The average
breathing period was estimated from the external surrogate waveform. The P-value of the paired t-test for the LPCA–MSSA versus the LPCA-only method are
listed in the bottom row.

ID
Tumor
location

Average period
(second)

Average
phase discrepancy

(%)
Average expiration phase

discrepancy (%)

Average
peak accuracy

(second)

Average
valley accuracy

(second)

LPCA–MSSA
LPCA
only LPCA–MSSA LPCA only LPCA–MSSA LPCA–MSSA

1 LLL 2.9 0.84 6.80 �1.25 3.99 �0.03 �0.07

2 LML 3.8 �4.86 1.46 0.38 3.62 0.2 0.2

3 LML 3.8 �1.84 1.31 �4.42 2.73 0.06 �0.1

4 LUL 3.9 4.01 7.14 �2.47 6.54 �0.06 �0.09

5 RLL 3.1 1.59 5.27 �1.23 4.18 �0.05 �0.08

6 RML 3.3 �1.95 �2.35 �1.92 �2.08 0.07 �0.01

7 RML 2.6 �1.96 1.26 �0.3 3.67 0.05 0.04

8 RUL 4.9 �4.2 �3.65 �1.2 �8.62 0.20 0.12

P-value 0.0058 0.11 – –

Abbreviation: LLL, Left lower lung; LML, left middle lung, LUL, Left upper lung; RLL, right lower lung; RML, right middle lung; RUL, right upper lung; SD, standard
deviation.
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beneficial when reconstructing signals with severe distur-
bance, as shown in Fig. 10. In the figure, the dash-line-
framed regions are the regions with severe disturbance in the
AS images due to lateral anatomical obstruction. The LPCA-
only failed to reconstruct those regions well, whereas our
method demonstrated accurate reconstruction capability with
the assistance of external surrogate signals. Table I summa-
rizes phase discrepancies between the ground truth and
LPCA–MSSA results as well as the phase discrepancies
between the ground truth and LPCA-only results. With all
four factors listed in the table, LPCA–MSSA results are all
superior to the LPCA-only results. Yet, average expiration
phase between two methods does not show statistical signifi-
cance (P = 0.11). Thus, we believe more data are needed in
the future to demonstrate the superiority of LPCA–MSSA.

Another essential factor that helps our method outperform
traditional methods (e.g., LPCA) is the unique AS image gen-
eration process. Traditional methods use the whole projection
image to generate the AS image in order to enhance the wave-
form signals. However, these possess some intrinsic draw-
backs. Since the projection images include whole lung
regions, the generated AS image mixes the phase information
of the tumor region with other anatomical regions inside the
lung. This causes the true phase information of the tumor
itself to be blended into the stronger amplitude signals of the
other anatomical regions (e.g., diaphragm). Thus, the phase
information of the acquired waveform can be influenced
more by those regions than by the tumor itself. Considering
the phase difference between the upper lung regions and the
diaphragm, the waveform reconstructed using whole projec-
tions could have some innate phase discrepancy compared to
the real tumor phase, depending on the location of the tumor.
By contrast, our method uses only the cropped tumor region
to generate the tumor-AS image, so the nontumor distur-
bances are disregarded and the tumor-only phase information
is acquired. The signal enhancement is eventually produced

by the MSSA algorithm with the assistance of the external
surrogate signals.

In the patient study, different strategies for CI threshold
selection were tested to model an optimal clinical environ-
ment. A scoring system was developed for the CI threshold
value selection. The threshold values were chosen on a case-
by-case basis and determined by the irregularity of the initial
LPCA waveform (category 1) and the degree of anatomic
obstruction (category 2) for each CBCT scan. More specifi-
cally, if the initial LPCA waveform presented irregularities
(when any of the breathing cycle lengths possessed more than
1 sec variation compared to the median breathing cycle
length), the scan was scored as 1 in category 1, and 0 other-
wise; if the tumor was situated in the upper lung, the scan
was scored as 1 in category 2 because it contained severe
shoulder obstruction on the lateral projection views, and 0
otherwise. The final score was obtained by summing the
scores for these two categories. Finally, the CI threshold was
set at various levels according to the final score for each case:
0.9 (total score = 0), 0.95 (total score = 1), or 0.98 (total
score = 2). As shown in Table II, patient case No. 4 is an
upper lung case (category 2, score = 1) with irregular breath-
ing pattern (category 1, score = 1); it required the CI to be
equal to or greater than 98%. With this scoring system, all
cases presented in our study achieved excellent waveform
reconstruction accuracy. A balance between the number of
components used and the accuracy of the reconstructed phase
information was conducted subjectively. A more robust and
systematic strategy needs to be developed in the future.

In this study, an OTS reflective marker was used as a res-
piratory oscillation indicator for continuous monitoring dur-
ing the treatment. Moreover, the external surrogate signal can
be any distinct oscillation signal related to the patient respira-
tory motion, such as external surface signals36 or internal
ultrasound tracking signals.37 These can all be used to assist
tumor phase recognition by applying the proposed algorithm

TABLE II. The variance distribution (%) of the principal component (PC) for each patient. The PCs are listed in descending order based on their eigenvalues.
Only the PCs in bold were used for the final respiratory waveform reconstruction, and the sum of the confidence intervals (CI) for those PCs is shown in the last
two rows.

Patient ID

1 2 3 4 5 6 7 8

Variance distribution (%) PC1 80.74 83.86 82.34 87.85 81.70 83.06 83.35 76.56

PC2 11.14 5.13 2.61 3.40 5.30 5.44 4.40 3.79

PC3 6.34 4.89 2.56 3.20 4.97 5.13 4.35 3.76

PC4 0.95 0.95 1.92 0.89 1.34 1.04 3.36 2.98

PC5 0.34 0.76 1.90 0.84 1.29 0.90 1.79 2.51

PC6 0.19 0.70 1.07 0.74 1.16 0.81 0.74 2.48

PC7 0.1 0.65 0.96 0.45 0.60 0.64 0.42 1.24

PC8 0.06 0.63 0.94 0.35 0.56 0.39 0.32 0.96

PC9 0.06 0.57 0.43 0.28 0.42 0.28 0.32 0.94

Number of PCs used 2 4 4 9 5 4 4 9

Confidence interval (%) 91.9 94.8 89.4 98.0 94.6 94.7 95.5 95.2

Abbreviation: PC, principal component; CI, confidence interval.
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to future clinical implementation. For example, the phase
sorting method can be utilized for 4D-CBCT phase sorting.
To further utilize the existing correlation from the covariance,
our algorithm could be used as a model-free based approach
to reconstruct the respiratory phase information in real time.
The MSSA can feed in the multiple channels that are greater
than 2, and has the ability to predict the dynamics of the res-
piratory phenomena. For future clinical applications, it can
be used for determination of gating threshold for gating-based
treatment.

One limitation of our study is that the current technique
was only tested on ELEKTA CBCT acquisition settings.
Thus, further investigation with other commercial linac accel-
erator systems or technology needs to be performed to assess
the robustness of our method in future.

5. CONCLUSIONS

The LPCA–MSSA algorithm is capable of extracting tumor
phase information at all imaging angles. With the aid of the

oscillation information of the external surrogate, and accompa-
nying information of the preliminary internal tumor signal, the
prediction accuracy was improved as compared to the LPCA-
only algorithm. Most importantly, with sufficient accuracy, it
enables us to use it as the ground truth for 4D-CBCT recon-
struction, respiratory gating treatment, and other clinic imple-
mentations that require accurate tumor phase information.
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right upper panel displays the LPCA-only waveform compared with the reference waveform; the right lower panel displays the LPCA–MSSAwaveform compared
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