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Abstract. We consider the entropy dimension of G-shifts of finite type for

the case where G is a nonabelian monoid. Entropy dimension tells whether a
shift space has zero topological entropy. Suppose the Cayley graph CG of G

has a finite representation (that is, {CgG ∶ g ∈ G} is a finite set up to graph

isomorphism), and relations among generators of G are determined by a matrix
A. We reveal an association between the characteristic polynomial of A and

the finite representation of the Cayley graph. After introducing an algorithm
for the computation of the entropy dimension, the set of entropy dimensions
is related to a collection of matrices in which the sum of each row of every

matrix is bounded by the number of leaves of the graph. Furthermore, the

algorithm extends to G having finitely many free-followers.

1. Introduction

Let A be a finite alphabet. Given d ∈ N, a (d-dimensional) configuration is a

function from Zd to A, and a pattern is a function from a finite subset of Zd to
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Key words and phrases. Entropy dimension; free generator; Cayley graph; finite representation;
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A. A subset X ⊆ AZd

is called a shift space if X, denoted by X = XF , consists of

configurations which avoid patterns from some set F of patterns and the patterns

avoided in F are modulo translation. A shift space is called a shift of finite type

(SFT) if F is a finite set; Zd acts on X by translation of configurations, making

X a symbolic dynamical system. One of the many motivations in studying sym-

bolic dynamical systems is that it helps for the research of hyperbolic topological

dynamical systems. The interested reader can consult standard literature such as

[8, 22].

While almost all properties of Z-SFTs are decidable (cf. [17]), research of Zd-

SFTs for d ≥ 2 shows that many undecidability issues have been seen in it. It is even

undecidable if a Zd-SFT is nonempty [7]. Different kinds of mixing properties have

been introduced for examining the existence and density of periodic configurations

[9]. A straightforward generalization of Zd-SFTs is considering SFTs on G which

is associated with some algebraic structure. Since the d-dimensional lattice Zd is a

finitely generated abelian group, it is natural we start with the cases where G is a

finitely generated nonabelian group or a finitely generated free monoid. Whenever

G is a free monoid, it has been demonstrated that many such issues do not arise.

For instance, the conjugacy between two irreducible G-SFTs (i.e., SFTs over G) is

decidable [1]; furthermore, nonemptiness, extensibility, and the existence of periodic

configurations are decidable for G-SFTs [2, 4]. Aside from the dynamical point of

view, the phenomena from the computational perspective are also fruitful [3, 20, 21].

For the case where G = Z, the topological entropy of a G-SFT relates to the

spectral radius of an integral matrix, and the set of entropies of G-SFTs is the set

of logarithms of Perron numbers [16, 17]. When G = Zd for d ≥ 2, the entropy of a

G-SFT is a right recursively enumerable number which may not be algebraic and is

not computable in general [15, 18, 19]. However, the story is quite different when

G is a free monoid.

Suppose that G is a finitely generated free monoid. Let Σ be a finite set which

generates G. An element g ∈ G is called an i-word provided the minimal expression

of g = g1g2⋯gi for some g1, . . . , gi ∈ Σ. For n ∈ N, let Γn denote the set of n-blocks

in a G-SFT, where an n-block is a pattern whose support consists of all i-words in

G for i ≤ n. Petersen and Salama developed an algorithm to estimate the tree shift
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topological entropy of hom-shifts over G [20]. A hom-shift, roughly speaking, is a

G-SFT which is isotropic and symmetric; alternatively, a hom-shift is determined

by the same rule in each direction (herein, a direction means a generator of G). For

instance, a d-dimensional golden mean shift is a hom-shift. The interested reader is

referred to [11]. In [3], the authors showed that the topological entropy of a G-SFT

is achieved by an infinite series provided ∣A∣ = d = 2.

This paper considers the entropy dimension, which is known as entropy in [5], of

G-SFTs (defined in Equation (2), see [10] for more details) for the case where G is

a finitely generated nonabelian monoid. It is known that the entropy dimension of

a G-shift space (i.e., a shift space over G) with positive topological entropy is lnd

if G is a free monoid with d generators (cf. [6, 5, 4]). In other words, the research

of entropy dimension is related to revealing zero entropy systems. Meanwhile, it

remains open for the existence of a zero topological entropy G-shift space with

full entropy dimension. In this paper, a necessary and sufficient condition for

a G-SFT having full entropy dimension is addressed, which provides a criterion

for determining whether a G-SFT has zero entropy. Zero entropy systems have

drawn a lot of attention lately; many Zd-actions with zero entropy exhibit diverse

complexities. See [10, 12, 13, 14] and the references therein for more details. This

elucidation extends the computation of entropy dimension of G-SFTs to the case

where G is a monoid with finite representation (see Definition 2.1 and Theorem

4.2). Roughly speaking, a monoid G with finite representation means that the

Cayley graph of G is spatially periodic; that is, {gG ∶ g ∈ G} is finite. What is

more, the algorithm extends to the case where G has finitely many free-followers

(defined in Equation (5), see Section 6).

When G is a free monoid with d generators, the set of entropy dimensions of

G-SFTs is a finite subset of the set of logarithms of Perron numbers less than or

equal to d. More explicitly, the set of entropy dimensions of G-SFTs is

{lnρM ∶ ρM is the spectral radius of some matrix M ∈D},
whereD consists of k×k nonnegative integral matricesM satisfying∑kj=1M(i, j) ≤ d
for all i and k = ∣A∣. The interested reader is referred to [6] for more details.

This paper extends these results to SFTs over monoids having finitely many free-

followers. Theorems 5.1 and 5.3 demonstrate that the entropy dimension of a
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G-SFT is related to the maximal spectral radius of a collection of integral matrices

which are constrained by the structure of the Cayley graph of G. To be precise, let

M be the set consisting of

M =
⎛⎜⎜⎜⎜⎜⎝

C1 C2 C3 ⋯ Cd
I 0 ⋯ ⋯ 0
0 I 0 ⋯ 0⋮ ⋱ ⋮
0 ⋯ 0 I 0

⎞⎟⎟⎟⎟⎟⎠
for some l×l matrices Ci, l ≤ k, satisfying ∑lq=1Ci(p, q) ≤ ξi for all 1 ≤ i ≤ d, 1 ≤ p ≤ l,
where ξi represents the numbers of leaves of the Cayley graph of G. The entropy

dimension spectrum of G-SFTs is

H = {lnρM ∶ ρM is the spectral radius of M ∈M}.
We end this section with a summary of the remainder of the paper. Whenever

G is a monoid such that a matrix A determines the relationships among the gen-

erators of G and G has finite representation (see Section 2), the coefficients of the

characteristic polynomial of A relate to the number of leaves of the Cayley graph of

G (Theorem 3.1). After revealing an algorithm for the computation of the entropy

dimension (Theorem 4.3), the set of entropy dimensions consists of the spectral

radius of integral matrices being such that every coefficient of the characteristic

polynomial of A is an upper bound of the sum of a corresponding row (Theorems

5.1 and 5.3). Furthermore, Section 6 extends the algorithm to the case where G

has finitely many free-followers.

2. Definition and Notation

Let d be a positive integer. A semigroup is a set G = ⟨Σ∣R⟩ together with a

binary operation which is closed and associative, where Σ = {s1, . . . , sd} is the set

of generators and R is a set of equivalences which describe the relations among the

generators. A monoid is a semigroup with an identity element e.

Given a finite set of generators Σ = {s1, s2, . . . , sd} and a d×d binary matrix A, a

monoid G of the form G = ⟨Σ∣RA⟩ means that sisj = si is an equivalence relation in

RA if and only if A(i, j) = 0. Alternatively, si is a right (resp. left) free generator if

and only if A(i, j) = 1 (resp. A(j, i) = 1) for 1 ≤ j ≤ d. For example, the generators
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of the monoid G = ⟨Σ∣RA⟩ with

A = ⎛⎜⎝
0 1 1
0 0 1
1 1 1

⎞⎟⎠
satisfy the equivalences

s2
1 = s1, s2s1 = s2, s

2
2 = s2, and s3 is a free generator.

Let Σr (resp. Σ`) denote the set of right (resp. left) free generators of G. For

each g ∈ G, the length ∣g∣ indicates the number of generators used in its minimal

presentation; that is,

∣g∣ = min{j ∶ g = g1g2⋯gj , gi ∈ Σ for 1 ≤ i ≤ j}.
Hence, the length of g ∈ G is the (minimum) number of generators used including

repetitions, and e is the only element having zero length. We call g an n-word if

∣g∣ = n.

Suppose that C = (V,E) is the (right) Cayley graph of G. Define a subgraph

D = (VD,ED) ⊆ C, which is induced by VD, as follows.

(i) g ∈ V ∖ VD if and only if g = g′ag′′ for some a ∈ Σr and g′′ ∈ V with ∣g′′∣ ≥ 1;

(ii) (g, g′) ∈ ED if and only if (g, g′) ∈ E and g, g′ ∈ VD.

Definition 2.1. Suppose G = ⟨Σ∣R⟩ is a finitely generated monoid with generating

set Σ. Let D be the Cayley subgraph of G defined as above. Then G is said to

have a finite representation if D is a finite graph.

For H1,H2 ⊆ G, denote H1 ≃ H2 if the Cayley graph of H1 is isomorphic to the

Cayley graph of H2. It is known that ≃ is an equivalence relation. Observe that G

having a finite representation implies that {[gG]≃ ∶ g ∈ G} is a finite set. Roughly

speaking, G acts on G periodically. Furthermore, gG ≃ G if g ∈ VD and gs ∉ VD
for all s ∈ Σ. For the rest of this paper, G = ⟨Σ∣RA⟩ denotes a monoid with a finite

representation unless otherwise stated. See Example 2.2.

Example 2.2. Let d = 3 and Σ = {s1, s2, s3}. The relations among generators of

the monoid G = ⟨Σ∣RA⟩ with

A = ⎛⎜⎝
0 1 1
0 0 1
1 1 1

⎞⎟⎠
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(a) Part of Cayley graph of monoid G in Example 2.2.
e

s1 s2 s3

s1s2 s1s3 s2s3

s1s2s3

(b) Finite representation of the Cayley graph C of Example 2.2.

Figure 1. The Cayley graph of monoid G in Example 2.2 has a
finite representation. The generators s1, s2, s3 satisfy the equiva-
lences s2

1 = s1 and s2s1 = s2
2 = s2.

(i) g ∈ V ∖ VD if and only if g = g′ag′′ for some a ∈ Σr and g′′ ∈ V with ∣g′′∣ ≥ 1;

(ii) (g, g′) ∈ ED if and only if (g, g′) ∈ E and g, g′ ∈ VD.

Definition 2.1. Suppose G = ⟨Σ∣R⟩ is a finitely generated monoid with generating

set Σ. Let D be the Cayley subgraph of G defined as above. Then G is said to

have a finite representation if D is a finite graph.

For H1,H2 ⊆ G, denote H1 ≃ H2 if the Cayley graph of H1 is isomorphic to the

Cayley graph of H2. It is known that ≃ is an equivalence relation. Observe that G

having a finite representation implies that {[gG]≃ ∶ g ∈ G} is a finite set. Roughly

speaking, G acts on G periodically. Furthermore, gG ≃ G if g ∈ VD and gs ∉ VD
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are

s2
1 = s1, s2s1 = s2, and s2

2 = s2.

It follows that s3 is the only free generator and {[gG]≃}g∈G is finite. Therefore, G

has a finite representation with

VD = {e, s1, s2, s3, s1s2, s1s3, s2s3, s1s2s3}.
See Figure 1 for the Cayley graph of G and its finite subgraph.

Let A be a finite alphabet. A configuration (or labeled tree) is a function t ∶
G → A. For each g ∈ G, tg = t(g) denotes the label attached to the vertex g of the

Cayley graph of G. We call a configuration a labeled tree since all the monoids

considered in this paper can be represented as trees. The full shift AG is the set

of all labeled trees, and the (left) shift action σ ∶ G × AG → AG is defined as

(σgt)g′ ∶= σ(g, t)g′ = tgg′ for g, g′ ∈ G. For each n ≥ 0, let ∆n = {g ∈ G ∶ ∣g∣ ≤ n}. An

n-block is a function τ ∶ ∆n → A and we say that τ is a block if τ is an n-block for
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some n ∈ N. A labeled tree t accepts an n-block τ if there exists g ∈ G such that

tgg′ = τg′ for all g′ ∈ ∆n; otherwise, t avoids τ . A G-shift space is a set X ⊆ AG of

all labeled trees which avoid all of a certain set of blocks. More explicitly,

X = XF = {t ∈ AG ∶ t avoids τ for all τ ∈ F}
for some set of blocks F . A G-shift space X is called a G-shift of finite type (G-SFT)

if X = XF for some finite F .

3. Characterization of Finite Representation

In this section, we establish the correspondence between the coefficients of the

characteristic polynomial of A and ∂VD, where g ∈ ∂VD if and only if g ∈ VD and

gs ∉ VD for all s ∈ Σ. For each n ∈ N, let

ξn = #{g ∈ G ∶ ∣g = g1⋯gn∣ = n, gi ∈ Σ, and gn is the only right free generator}.
Theorem 3.1 reveals {ξn} plays an important role in the characteristic polynomial

of A.

Theorem 3.1. Suppose G = ⟨Σ∣RA⟩ is a monoid determined by a binary matrix A.

Then the characteristic polynomial of A is

(1) f(λ) = λd − d∑
i=1

ξiλ
d−i.

Before proving Theorem 3.1, it is essential to characterize the structure of the

Cayley graph of G. Let

Pn = {g ∈ G ∶ ∣g∣ = n + 1 and g1 = gn+1}
and

Ξn = {g ∈ Pn ∶ gn is the only right free generator}
be the sets of periodic (n + 1)-words and periodic (n + 1)-words whose second to

last symbol is the unique right free generator, respectively. It follows immediately

that ∣Pn∣ = tr(An) and ∣Ξn∣ = ξn.

Lemma 3.2. For each (n+ 1)-word g = g1g2⋯gng1 ∈ Pn, there exists 1 ≤ i ≤ n such

that gi is a right free generator.

Proof. Suppose not, it comes immediately that (g1⋯gn)m ∈ G is a vertex of D for

all m ∈ N, which contradicts that ∣VD ∣ <∞. The proof is complete. �
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Lemma 3.3. For each positive integer n > d, ξn = 0. That is, every (n + 1)-word

contains at least one right free generator.

Proof. Suppose there exists n > d and g = g1⋯gn ∈ G such that gn is the only free

generator. The pigeonhole principle asserts that gi = gj for some 1 ≤ i < j ≤ d + 1.

Lemma 3.2 demonstrates that there exists i ≤ ` ≤ j such that g` is a right free

generator, which is a contradiction. This derives the desired result. �

Let

T (Ξn) = {gi⋯gng1⋯gi ∶ i = 1, . . . , n, g = g1g2⋯gng1 ∈ Ξn}
collect the circular shifts of all elements of Ξn. Observe that ∣T (Ξn)∣ = nξn. Let

L(Pm,Ξn) = {g1⋯gαh1⋯hngα+1⋯gm+1 ∶ α = min
i

{i ≤m ∶ gi ∈ Σr}, g ∈ Pm, h ∈ Ξn}.
That is, L(Pm,Ξn) consists of words obtained by inserting the first n digits of

every h = h1⋯hn+1 ∈ Ξn in a periodic (m + 1)-word g right after the first right free

generator of g. Obviously, L(Pm,Ξn) ⊆ Pm+n.

Lemma 3.4. Suppose x = x1⋯xn+1 ∈ Pn contains at least two right free generators.

Let xr1 and xr2 be the first and second free generators, respectively. Then

r2 − r1 = l if and only if x ∈ L(Pn−l,Ξl).
Proof. If x ∈ L(Pn−l,Ξl), then x = g1⋯gr1h1⋯hlgr1+1⋯gn−l+1 for some g ∈ Pn−l, h ∈
Ξl, where r1 = min{i ≤ n − l ∶ gi ∈ Σr}. Since h ∈ Ξl, xr1+l = hl is the second right

free generator in x. This concludes that r2 − r1 = (r1 + l) − r1 = l.
For each x = x1⋯xn+1 ∈ Pn which contains at least two right free generators,

let g = x1⋯xr1xr1+l+1⋯xn+1 and let h = xr1+1⋯xr1+lxr1+1. Since gr1 = xr1 ∈ Σr,

xr1xr1+l−1 is a 2-word. Furthermore, x ∈ Pn and x1 = xn+1 indicate that g1 = gn−l+1.

Alternatively, g = g1⋯gn−l+1 ∈ Pn−l. Similarly, hl = xr1+l ∈ Σr shows that xr1+lxr1+1

is also a 2-word. The fact of xr2 = xr1+l being the second right free generator implies

that h1, . . . , hl−1, hl+1 ∉ Σr, hl ∈ Σr, and hl+1 = h1. Hence, h ∈ Ξl. We conclude that

x ∈ L(Pn−l,Ξl). This completes the proof. �

Lemma 3.4 shows that L(Pn−l,Ξl)⋂L(Pn−m,Ξm) = ∅ if and only if l ≠ m.

Proposition 3.5, additionally, reveals a partition of Pn.

Proposition 3.5. For each n ∈ N, {L(Pn−i,Ξi)}n−1
i=1 ⋃{T (Ξn)} forms a partition

of Pn.
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Proof. Obviously, L(Pn−i,Ξi)⋂T (Ξn) = ∅ for 1 ≤ i ≤ n − 1, since every element

of T (Ξn) has exactly one free generator, while L(Pn−i,Ξi) consists of words which

contain at least two free generators. The desired result comes immediately from

observing that

Pn = n−1⋃
i=1

L(Pn−i,Ξi)⋃T (Ξn).
Indeed, the definitions of L(Pn−i,Ξi) and T (Ξn) indicate that

n−1⋃
i=1

L(Pn−i,Ξi)⋃T (Ξn) ⊆ Pn.
For each x ∈ Pn, x ∈ T (Ξn) if x has exactly one free generator. Otherwise, x has

xr1 and xr2 as its first two free generators for some r1 < r2. Let l = r2 − r1. Lemma

3.4 shows that x ∈ L(Pn−l,Ξl). The proof is complete. �

Example 3.6. Let us continue with Example 2.2. Recall that

A = ⎛⎜⎝
0 1 1
0 0 1
1 1 1

⎞⎟⎠
and s3 is the only right free generator of G. Then Ξ1 = {s3s3} = T (Ξ1) = P1. Since

Ξ2 consists of words of the form u1s3u1 for u1 ≠ s3,

Ξ2 = {s1s3s1, s2s3s2} and T (Ξ2) = {s1s3s1, s3s1s3, s2s3s2, s3s2s3}.
As defined above, L(P1,Ξ1) = {s3s3s3} collects the words obtained by inserting

the first word of Ξ1 in each word of P1 right after the first right free generator. It

follows that

P2 = {s1s3s1, s2s3s2, s3s1s3, s3s2s3, s3s3s3} = T (Ξ2)⋃L(P1,Ξ1).
Similarly, Ξ3 = {s1s2s3s1} and T (Ξ3) = {s1s2s3s1, s2s3s1s2, s3s1s2s3}.

L(P2,Ξ1) = {s1s3s3s1, s2s3s3s2, s3s3s1s3, s3s3s2s3, s3s3s3s3},
L(P1,Ξ2) = {s3s1s3s3, s2s3s3s3}.

Then

P3 = {s1s2s3s1, s1s3s3s1, s2s3s1s2, s2s3s3s2, s3s1s2s3,

s3s1s3s3, s3s2s3s3, s3s3s1s3, s3s3s2s3, s3s3s3s3}
= T (Ξ3)⋃L(P2,Ξ1)⋃L(P1,Ξ2).

Furthermore, Ξn = ∅ for n ≥ 4.
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For each real d×d matrix A, there is a recursive formula for the coefficients of the

characteristic polynomial of A; more explicitly, f(λ) = det(A − λI) = ∑di=0 biλ
d−i,

where

b0 = (−1)d, b1 = −(−1)dA1, b2 = −1

2
(b1A1 + (−1)dA2),

b3 = −1

3
(b2A1 + b1A2 + (−1)dA3), . . . ,

bi = −1

i
(bi−1A1 + bi−2A2 +⋯ + b1Ai−1 + (−1)dAi), . . . ,

bd = −1

d
(bd−1A1 + bd−2A2 +⋯ + b1Ad−1 + (−1)dAd),

and Ai is the trace of Ai for 1 ≤ i ≤ d (cf. [23, p.303-305]).

Proof of Theorem 3.1. Proposition 3.5 shows that, for n ∈ N,

∣Pn∣ = ∣T (Ξn)∣ + n−1∑
i=1

∣L(Pi,Ξn−i)∣;
that is, A1 = ξ1 and An = nξn + ∑n−1

i=1 Aiξn−i for n ≥ 2. Since ξn = 0 for n > d,

Equation (1) follows from

ξn = 1

n
(An − n−1∑

i=1

Aiξn−i), 1 ≤ n ≤ d,
and the recursive formula of the coefficients of the characteristic polynomial of

A. �

4. Entropy Dimension of Shift Spaces on Monoids

Suppose that X is a G-shift space with alphabet A. Let Γ
[g]
n (X) denote the set

of n-blocks of X rooted at g; that is, the support of each block of Γ
[g]
n (X) is g∆n.

Let γ
[g]
n denote the cardinality of Γ

[g]
n (X). The entropy dimension of X is defined

as

(2) De(X) = lim sup
n→∞

ln lnγn(X)
n

,

where γn(X) = γ[e]n (X). The rest of this paper omits X from the notation when it

causes no confusion.

For each a ∈ A, let Γ
[g]
a,n ⊆ Γ

[g]
n consist of all the n-blocks rooted at g and labeled

a at the root. A symbol a is essential1 if γa,n = ∣Γa,n∣ ≥ 2 for some n ∈ N; otherwise,

1In one-dimensional symbolic dynamical systems, a graph presentation of an SFT is called

essential if there is no stranded vertex [17]. In other words, every vertex has its contribution in
the corresponding SFT. This paper extends the terminology to alphabet of a G-SFT X since a

symbol is essential if it contributes to the complexity of X.
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a is an inessential symbol. Proposition 4.1 indicates that only the essential symbols

contribute to the entropy dimension.

Proposition 4.1 (See [6]). Suppose that X is a G-SFT. Then

(3) De(X) = lim
n→∞

ln∑ki=1 lnγi,n

n
= lim
n→∞

ln∑i∈E lnγi,n

n
,

where E ⊆ A denotes the set of essential symbols and k = ∣A∣.
Theorem 4.2 shows that, whenever every symbol is essential, the entropy dimen-

sion of a G-SFT is the logarithm of the spectral radius of A (recall that G = ⟨Σ∣RA⟩
is determined by a d × d matrix A, see Section 2).

Theorem 4.2. Suppose that X is a G-SFT and every symbol is essential. Then

De(X) = lnρA, where ρA is the spectral radius of A.

Ban and Chang [6] developed an algorithm for computing the entropy dimension

of G-SFTs, where G is a finitely generated free monoid. The algorithm extends to

G = ⟨Σ∣RA⟩ with finite representation via analogous argument. For the sake of

brevity, this section rephrases the main ideas and propositions of the algorithm in

[6] via Example 4.4.

In [4], the authors showed that every SFT over a free monoid Fd = ⟨s1, . . . , sd∣⟩
is topologically conjugate to an Fd-SFT defined as

(4) XA = {x ∈ AFd ∶ Ai(xg, xgsi) = 1 for 1 ≤ i ≤ d, g ∈ Fd},
where A = {A1,A2, . . . ,Ad} is a collection of binary matrices indexed by A. In this

paper, we focus on G-SFTs defined by some A = {A1,A2, . . . ,Ad}. Since G has

a finite representation, the cardinality of n-blocks of each G-SFT is related to a

recurrence representation (or system of nonlinear recurrence equations, SNRE) of

the form

γi,n =∑ cjγ
j1,1
1,n−1⋯γjk,1

k,n−1γ
j1,2
1,n−2⋯γjk,2

k,n−2⋯γj1,l1,n−l⋯γjk,l

k,n−l
for some l ∈ N, where cj ∈ N, j = (j1,1, . . . , jk,1, . . . , j1,l, . . . , jk,l), and 1 ≤ i ≤ k = ∣A∣.
A subsystem of X is of the form

γi,n =∑ c′jγj1,11,n−1⋯γjk,1

k,n−1γ
j1,2
1,n−2⋯γjk,2

k,n−2⋯γj1,l1,n−l⋯γjk,l

k,n−l
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such that 0 ≤ c′j ≤ cj for each j and 1 ≤ i ≤ k, and a simple subsystem of X is of the

form

γi,n = γj1,11,n−1⋯γjk,1

k,n−1γ
j1,2
1,n−2⋯γjk,2

k,n−2⋯γj1,l1,n−l⋯γjk,l

k,n−l
for some j1,1, . . . , jk,1, . . . , j1,l, . . . , jk,l and 1 ≤ i ≤ k. Take logarithm on the above

equation and let

θn = (lnγ1,n, . . . , lnγk,n, lnγ1;n−1, . . . , lnγk,n−1, . . . , lnγ1,n−l+1, . . . , lnγk,n−l+1)′,
where v′ is the transpose of v. Then there exists a kl×kl matrix M called adjacency

matrix (of the simple subsystem) such that θn =Mθn−1 for n ≥ l + 1. Theorem 4.3

reveals that the entropy dimension of X is related to the maximum spectral radius

among the adjacency matrices of simple subsystems of X.

Theorem 4.3 (See [6]). Suppose that X is a G-SFT. Then

De(X) = max{lnρM ∶M is the adjacency matrix of a simple subsystem of X},
where ρM denotes the spectral radius of M .

Example 4.4. Let G be the monoid defined in Example 2.2. Suppose that X is

a hom-shift on G determined by a k × k binary matrix T ; that is, for each labeled

tree t ∈ X and g ∈ G, a pattern (tg, tgsi) is allowable if and only if T (tg, tgsi) = 1.

For instance, consider the case where k = 2 and T = (1 1
1 1

). A hom-shift defined

by T is a full G-shift space and De(X) = lnρA. This example shows that the above

algorithm derives the desired result.

It follows from s3 being a free generator that, for i = 1,2, γ
[g]
i,n = γi,n if g = g′s3

for some g, g′ ∈ G. Hence, for i = 1,2,

γi,n = (γ[s1]1,n−1 + γ[s1]2,n−1)(γ[s2]1,n−1 + γ[s2]2,n−1)(γ[s3]1,n−1 + γ[s3]2,n−1)
= (γ[s1]1,n−1 + γ[s1]2,n−1)(γ[s2]1,n−1 + γ[s2]2,n−1)(γ1,n−1 + γ2,n−1).

Combining

γ
[s1]
i,n−1 = (γ[s1s2]1,n−2 + γ[s1s2]2,n−2 )(γ[s1s3]1,n−2 + γ[s1s3]2,n−2 ) = (γ[s1s2]1,n−2 + γ[s1s2]2,n−2 )(γ1,n−2 + γ2,n−2),
γ
[s2]
i,n−1 = γ[s2s3]1,n−2 + γ[s2s3]2,n−2 = γ1,n−2 + γ2,n−2,

with

γ
[s1s2]
i,n−1 = γ[s1s2s3]1,n−3 + γ[s1s2s3]2,n−3 = γ1,n−3 + γ2,n−3
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derives that

γi,n = (4γ1,n−3γ1,n−2 + 4γ2,n−3γ1,n−2 + 4γ1,n−3γ2,n−2 + 4γ2,n−3γ2,n−2)⋅
(2γ1,n−2 + 2γ2,n−2)(γ1,n−1 + γ2,n−1).

Let

θn = (lnγ1,n, lnγ2,n, lnγ1,n−1, lnγ2,n−1, lnγ1,n−2, lnγ2,n−2)′.
For every simple subsystem of X, the corresponding adjacency matrix is of the form

M = ⎛⎜⎝
B1 B2 B3

I 0 0
0 I 0

⎞⎟⎠ ,
where Bl is a 2 × 2 matrix that satisfies ∑2

q=1Bl(p, q) = ξl for all l = 1,2,3, p = 1,2.

That is, θn =Mθn−1 for n ≥ 3. Let

v = (ρ2
A, ρ

2
A, ρA, ρA,1,1)′.

Observe that Mv = ρAv. Perron-Frobenius Theorem demonstrates that ρA is also

the spectral radius of M . In other words, De(X) = lnρA.

Proof of Theorem 4.2. The proof focuses on the case where X is a G-SFT deter-

mined by k × k binary matrices A1, . . . ,Ad for the sake of clarity, the proof of the

general case is analogous. In this case, for each labeled tree t ∈ X and g ∈ G,

(tg, tgsl) is allowable if and only if Al(tg, tgsl) = 1 for 1 ≤ l ≤ d.

Write Al = (al;i1,i2) for 1 ≤ l ≤ d,1 ≤ i1, i2 ≤ k. Since γ
[gsl]
i,n = γi,n for all

1 ≤ i ≤ k,n ∈ N, and g ∈ G provided sl is a free generator, we can derive that

γi,n = ∏
sl∈Σ

( k∑
j1=1

asl;i,j1γ
[sl]
j1,n−1)

= ∏
sl∉Σr

( k∑
j1=1

asl;i,j1γ
[sl]
j1,n−1) ∏

sl∈Σr

( k∑
j1=1

asl;i,j1γ
[sl]
j1,n−1)

= ∏
sl∉Σr

( k∑
j1=1

asl;i,j1γ
[sl]
j1,n−1) ∏

sl∈Σr

( k∑
j1=1

asl;i,j1γj1,n−1).
Observe that f1 = ∏sl∈Σr

(∑kj1=1 asl;i,j1γj1,n−1) is a polynomial of degree ξ1 over

γ1,n−1, . . . , γk,n−1.

Similarly, for each sl which is not a free generator,

γ
[sl]
j1,n−1 = ∏

slsm∈G(
k∑

j2=1

asm;j1,j2γ
[slsm]
j2,n−2)
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implies that

γi,n = f1 ⋅ ∏
slsm∈G,sl∉Σr

( k∑
j1,j2=1

asl;i,j1asm;j1,j2γ
[slsm]
j2,n−2).

Herein, we refer to gs ∈ G as gs ≠ g, where g ∈ G and s ∈ Σ; equivalently, g and gs

are two different vertices in the Cayley graph of G. Let

f2 = ∏
slsm∈G,sl∉Σr,sm∈Σr

( k∑
j1,j2=1

asl;i,j1asm;j1,j2γ
[slsm]
j2,n−2)

= ∏
slsm∈G,sl∉Σr,sm∈Σr

( k∑
j1,j2=1

asl;i,j1asm;j1,j2γj2,n−2).
Then f2 is a polynomial of degree ξ2. Repeating the same process decompose

γi,n = f1f2⋯f`, where ` = max{j ∶ ξj ≠ 0} ≤ d, and fj is a polynomial of degree ξj

over γ1,n−j , . . . , γk,n−j for 1 ≤ j ≤ `.
Let

θn = (lnγ1,n,⋯, lnγk,n, lnγ1,n−1,⋯, lnγk,n−1,⋯, lnγ1,n−d+1,⋯, lnγk,n−d+1)′.
For each simple subsystem of X, there exists

M =
⎛⎜⎜⎜⎜⎜⎝

B1 B2 B3 ⋯ B`
I 0 ⋯ ⋯ 0
0 I 0 ⋯ 0⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 I 0

⎞⎟⎟⎟⎟⎟⎠
,

where Bj is a k × k nonnegative integral matrix satisfies ∑kq=1Bj(p, q) = ξi for all

1 ≤ j ≤ `,1 ≤ p ≤ k, such that M is the corresponding adjacency matrix (note

that ξj = 0 for j > `). That is, θn = Mθn−1 is the designated simple subsystem.

Let v = (ρ`−1
A ⋯ρA1)′ ⊗ 1k, where ⊗ is the Kronecker product and 1k ∈ Rk is the

vector consisting of 1’s. It follows immediately that Mv = ρAv. Perron-Frobenius

Theorem implies that ρA is also the spectral radius of M . Hence, De(X) = lnρA.

This completes the proof. �

Remark 4.5. For the general cases, Proposition 4.1 demonstrates that Theorem

4.3 holds if the rows and columns of matrix M indexed by inessential symbols are

eliminated.
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5. Entropy Dimension Spectrum of G-SFTs

Theorem 4.2 reveals that the entropy dimension of G-SFTs is lnρA whenever

every symbol is essential. This section extends to the general case and gives the

complete characterization of entropy dimension spectrum of G-SFTs.

Let Z+ be the set of nonnegative integers. For m,n ∈ Zd+, define m ⪯ n if mi ≤ ni
for 1 ≤ i ≤ d, and m ≺ n if m ⪯ n and m ≠ n. Theorem 5.1 characterizes the

entropy dimension spectrum (i.e., the set of entropy spectrum) of G-SFTs for the

case where k = 2.

Theorem 5.1. Suppose that k = 2. Let ξ = (ξ1, . . . , ξd). The entropy dimension

spectrum of G-SFTs is

H = {lnλ ∶ λ = max{x ∶ xd − d∑
i=1

αix
d−i = 0} for some α ∈ Zd+, α ⪯ ξ}.

Proof. Obviously, if two symbols are inessential, then the entropy dimension is

0; Theorem 4.2 indicates the entropy dimension is lnρA and ρA = max{x ∶ xd −
∑di=1 ξix

d−i = 0} if every symbol is essential. It suffices to consider the case where

1 ∈ A is essential and 2 ∈ A is inessential.

Similar to the discussion in Example 4.4, write γ1,n = f1f2⋯fd, where

f1 = ∏
u1∈Σr

( 2∑
j1=1

au1;1,j1γj1,n−1)
and

fi = ∏
u1⋯ui∈G,u1,...,ui−1∉Σr,ui∈Σr

( 2∑
j1,...,ji=1

au1;1,j1au2;j1,j2⋯aui;ji−1,jiγji,n−i)
for 2 ≤ i ≤ d, and fi is a polynomial of degree ξi. Hence, every simple subsystem of

X is of the form

γ1,n = γη11,n−1γ
τ1
2,n−1γ

η2
1,n−2γ

τ2
2,n−2⋯γηd1,n−dγτd2,n−d,

γ2,n = γξ12,n−1γ
ξ2
2,n−2⋯γξd2,n−d,

where ηi + τi = ξi for 1 ≤ i ≤ d.
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Let θn = (lnγ1,n, lnγ2,n, lnγ1,n−1, lnγ2,n−1,⋯, lnγ1,n−d+1, lnγ2,n−d+1)′, and let

M =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1 τ1 η2 τ2 ⋯ ηd τd
0 ξ1 0 ξ2 ⋯ 0 ξd
1 0 0

1 ⋮ ⋮⋱ ⋮ ⋮⋱ ⋮ ⋮
1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then the simple subsystem is θn = Mθn−1. Since 2 is inessential, the entropy

dimension of such a simple subsystem is lnλ, where λ is the spectral radius of

M = ⎛⎜⎜⎜⎝
η1 η2 ⋯ ηd
1 0⋱ ⋮

1 0

⎞⎟⎟⎟⎠ .

A straightforward examination elaborates that λ = max{x ∶ xd −∑di=1 ηix
d−i = 0}.

This derives

H ⊆ {lnλ ∶ λ = max{x ∶ xd − d∑
i=1

αix
d−i = 0} for some α ∈ Zd+, α ⪯ ξ}.

To show that, for each α ∈ Zd+ satisfying α ⪯ ξ, there exists a G-SFT such that

DeX = lnλ with λ = max{x ∶ xd −∑di=1 αix
d−i = 0}, construct a one-step G-SFT as

follows. Without loss of generality, assume that ξi > 0 for i ≤ d. The symbol 2 is

inessential in the following construction, thus it suffices to mention where to label

1.

For n ∈ N, let S1 = {e} and, for n ≥ 2, let

Sn = {g = g1⋯gn−1 ∶ gs ∈ G for some s ∈ Σr, gi ∉ Σr for 1 ≤ i ≤ n − 1}.
Observe that Sn = ∅ if and only if n > d (under the assumption that ξn = 0 if and

only if n > d). Let

Sn = {gs ∶ g ∈ Sn, s ∈ Σ, gs ∈ G}.
Then ⋃di=1 Si is the set of supports of two-blocks of X up to shift. For n = 1, let

B1 ⊆ AS1 consists of 1-blocks φ which satisfy φg = 1 if and only if

g ∈ S1⋃Σ ∖Σr and ∣{g ∈ Σr ∶ φg = 1}∣ = α1.

In other words, each pattern of B1 labels 1 at, except from the root and non-free

generators, arbitrary α1 free generators. This makes max{p ∶ γp1,n−1∣γ1,n} = α1.
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Analogously, let B2 ⊆ AS2 consists of 1-blocks φ which satisfy φg = 1 if and only

if

g ∈ S2⋃{g′s ∈ S2 ∶ s ∉ Σr} and ∣{g′s ∈ S2 ∶ s ∈ Σr, φg′s = 1}∣ = α2.

Then max{p ∶ γp1,n−2∣γ1,n} = α2. Repeating the same process to construct Bi for

i ≤ d makes

max{p ∶ γp1,n−i∣γ1,n} = αi for 1 ≤ i ≤ d.
For each subset G′ ⊆ G such that G′ forms the support of a 1-block, observe that

there exists g ∈ G ended in free generator and 1 ≤ i ≤ d such that G′ = gG′′ for

some G′′ ⊆ Si. Then each labeled pattern of support G′ follows the same rule as

determined in Si. Notably, such a pattern is still in Bi.

Therefore, every simple subsystem of X generated by B = ⋃di=1Bi is of the form

γ1,n = c ⋅ γα1

1,n−1γ
β1

2,n−1γ
α2

1,n−2γ
β2

2,n−2⋯γαd

1,n−dγβd

2,n−d, γ2,n = γd2,n−1,

where c is a constant, and αi + βi = ξi for all i. A straightforward examination

indicates that DeX = lnλ with λ = max{x ∶ xd −∑di=1 αix
d−i = 0}.

The proof is complete. �

Remark 5.2. Notably, ξn = 0 for n ≥ 2 if and only if G is a free monoid. If this is

the case, then H = {0, ln 2, . . . , lnd}.

Theorem 5.3 extends Theorem 5.1 to the general case where k ≥ 2. The proof is

similar, thus it is omitted.

Theorem 5.3. Let M be the set consisting of

M =
⎛⎜⎜⎜⎜⎜⎝

C1 C2 C3 ⋯ Cd
I 0 ⋯ ⋯ 0
0 I 0 ⋯ 0⋮ ⋱ ⋮
0 ⋯ 0 I 0

⎞⎟⎟⎟⎟⎟⎠
for some l × l matrices Ci, l ≤ k, satisfying ∑lq=1Ci(p, q) ≤ ξi for all 1 ≤ i ≤ d,

1 ≤ p ≤ l. The entropy dimension spectrum of G-SFTs is

H = {lnρM ∶ ρM is the spectral radius of M ∈M}.
Corollary 5.4 follows from the proof of Theorem 5.1, and elaborates a necessary

and sufficient condition of a G-SFT achieved full entropy dimension.
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Corollary 5.4. Suppose that X is a G-SFT. Then De(X) = lnρA if and only if the

essential symbols form a subshift on right free generators; that is, for each s ∈ Σr

and φ is a one-block with support supp(φ) = sΣ, φg is essential for g ∈ supp(φ).

Proof. It suffices to consider the case where k = 2 since the demonstration of the

general case is analogous but more complicated. Recall that, in the proof of Theo-

rem 5.1, every simple subsystem of X is of the form

γ1,n = γη11,n−1γ
τ1
2,n−1γ

η2
1,n−2γ

τ2
2,n−2⋯γηd1,n−dγτd2,n−d,

γ2,n = γδ11,n−1γ
ι1
2,n−1γ

δ2
1,n−2γ

ι2
2,n−2⋯γδd1,n−dγιd2,n−d,

where ηi + τi = δi + ιi = ξi for 1 ≤ i ≤ d. In other words, De(X) = lnλ, where λ is

the spectral radius of one of the following matrix, which depends on the essential

symbols.

M1 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1 τ1 η2 τ2 ⋯ ηd τd
δ1 ι1 δ2 ι2 ⋯ δd ιd
1 0 0

1 ⋮ ⋮⋱ ⋮ ⋮⋱ ⋮ ⋮
1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

M2 =
⎛⎜⎜⎜⎝
η1 η2 ⋯ ηd
1 0⋱ ⋮

1 0

⎞⎟⎟⎟⎠ , M3 =
⎛⎜⎜⎜⎝
ι1 ι2 ⋯ ιd
1 0⋱ ⋮

1 0

⎞⎟⎟⎟⎠ .
It follows that λ = ρA if and only if exactly one of the following three conditions

holds.

a. (Case M1) Two symbols are essential.

b. (Case M2) Symbol 1 is essential and ηi = ξi for 1 ≤ i ≤ d.

c. (Case M3) Symbol 2 is essential and ιi = ξi for 1 ≤ i ≤ d.

This completes the proof. �

6. Groups with Finitely Many Free-Followers

Suppose that G is a monoid. For each g ∈ G, define the free-follower set (free-

follower for short) of g as

(5) Fg = {g′ ∈ G ∶ ∣gg′∣ = ∣g∣ + ∣g′∣}.
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Set F = {Fg ∶ g ∈ G}. Then G has finitely many free-followers if F is finite. It

is easily seen that if G is a finitely generated free monoid or has finite represen-

tation, then G has finitely many free-followers. The investigation in Sections 4

and 5 extends to the case where G has finitely many free-followers via analogous

elaboration. This section, rather than rephrasing every result in the previous two

sections, presents an example to address how to compute the entropy dimension of

a G-SFT (G has finitely many free-followers herein) for the sake of brevity.

Suppose that d = k = 2. In this case, Σ = {s1, s2} and A = {1,2}. Let G = ⟨Σ∣R⟩
be the monoid with R = {s2s

2i+1
1 s2 = s2}i≥0. It follows that G has finitely many

free-followers. Indeed, let

Fs1 = {e, s1, s2, s
2
1, s1s2, s2s1, s

2
2, . . .} = G,

Fs2 = {e, s1, s2, s
2
1, s2s1, s

2
2, s

3
1, s

2
1s2, . . .} = {sn1}n≥0⋃{s2i

1 s2g ∶ g = sn1 , s2j
1 s

n
2 , i, j, n ≥ 0},

Fs2s1 = {e, s1, s
2
1, s1s2, s

3
1, . . .} = {sn1}n≥0⋃{s2i+1

1 s2g ∶ g = sn1 , s2j
1 s

n
2 , i, j, n ≥ 0}.

An examination indicates that, for each g ∈ G,

Fg =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Fs1 , g = sn1 ;

Fs2 , g ends in s2s
2i
1 , i ≥ 0;

Fs2s1 , g ends in s2s
2i+1
1 , i ≥ 0.

A straightforward examination elaborates that there is a one-to-one correspondence

between the monoid G and the set of finite words of one-dimensional even-shift.

Let X be a hom-shift on G determined by T = (1 1
1 1

). Alternatively, X is a

full G-shift; it follows immediately that De(X) = lnλ, where λ = 1+√5
2

satisfies

λ2−λ−1 = 0. The following shows that the algorithm in Section 4 derives the same

result.

Observe that γ
[g]
i,n = γi,n for i = 1,2 since Fsj1

= G for j ∈ N. For i = 1,2,

γi,n = (γ[s1]1,n−1 + γ[s1]2,n−1)(γ[s2]1,n−1 + γ[s2]2,n−1)
= (γ1,n−1 + γ2,n−1)(γ[s2]1,n−1 + γ[s2]2,n−1).

Also, Fs22 = Fs2 and Fs2s21 = Fs2 imply that

γ
[s2]
i,n−1 = (γ[s2s1]1,n−2 + γ[s2s1]2,n−2 )(γ[s2s2]1,n−2 + γ[s2s2]2,n−2 )

= (γ[s2s1]1,n−2 + γ[s2s1]2,n−2 )(γ[s2]1,n−2 + γ[s2]2,n−2),
γ
[s2s1]
i,n−2 = γ[s2s21]1,n−3 + γ[s2s21]2,n−3 = γ[s2]1,n−3 + γ[s2]2,n−3.
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Hence, the SNRE of X is

γi,n = 2(γ1,n−1 + γ2,n−1)(γ[s2]1,n−2 + γ[s2]2,n−2)(γ[s2]1,n−3 + γ[s2]2,n−3)
for i = 1,2. Let θn = (lnγ[s2]1,n , lnγ

[s2]
2,n , lnγ

[s2]
1,n−1, lnγ

[s2]
2,n−1)′ and let

M = ⎛⎜⎜⎜⎝
η1 τ1 η2 τ2
δ1 ι1 δ2 ι2
1 0 0 0
0 1 0 0

⎞⎟⎟⎟⎠ .

Then, every simple subsystem of the invariant system lnγ
[s2]
1,n , lnγ

[s2]
2,n is of the form

θn =Mθn−1 with ηj + τj = δj + ιj = 1 for 1 ≤ j ≤ 2. It follows that lnγ
[s2]
i,n ≈ eλn for

i = 1,2 and n large enough.

Furthermore, every simple subsystem of X is of the form

lnγ1,n ≈ η lnγ1,n−1 + τ lnγ2,n−1 + e(n−2)λ + e(n−3)λ,
lnγ2,n ≈ δ lnγ1,n−1 + ι lnγ2,n−1 + e(n−2)λ + e(n−3)λ,

where η + τ = δ + ι = 1. A straightforward examination shows that

De(X) = lim
n→∞

ln(lnγ1,n + lnγ2,n)
n

= lnλ.

This concludes the desired result.
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