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Abstract: Myometrial invasion affects the prognosis of endometrial cancer. However, discrepancies
exist between pre-operative magnetic resonance imaging staging and post-operative pathological
staging. This study aims to validate the accuracy of artificial intelligence (AI) for detecting the depth
of myometrial invasion using a deep learning technique on magnetic resonance images. We obtained
4896 contrast-enhanced T1-weighted images (T1w) and T2-weighted images (T2w) from 72 patients
who were diagnosed with surgico-pathological stage I endometrial carcinoma. We used the images
from 24 patients (33.3%) to train the AI. The images from the remaining 48 patients (66.7%) were used
to evaluate the accuracy of the model. The AI then interpreted each of the cases and sorted them into
stage IA or IB. Compared with the accuracy rate of radiologists’ diagnoses (77.8%), the accuracy rate
of AI interpretation in contrast-enhanced T1w was higher (79.2%), whereas that in T2w was lower
(70.8%). The diagnostic accuracy was not significantly different between radiologists and AI for both
T1w and T2w. However, AI was more likely to provide incorrect interpretations in patients with
coexisting benign leiomyomas or polypoid tumors. Currently, the ability of this AI technology to
make an accurate diagnosis has limitations. However, in hospitals with limited resources, AI may
be able to assist in reading magnetic resonance images. We believe that AI has the potential to
assist radiologists or serve as a reasonable alternative for pre-operative evaluation of the myometrial
invasion depth of stage I endometrial cancers.

Keywords: artificial intelligence; endometrial neoplasms; magnetic resonance imaging (MRI);
neoplasm staging; neural networks (computer)

1. Introduction

Endometrial cancer is one of the leading gynecologic malignancies in industrialized countries.
The incidence of endometrial cancer has been increasing significantly worldwide in the past 10 years [1,2].
Myometrium, the middle layer of the uterine wall, serves as a barrier to prevent further expansion
of endometrial cancer [3,4]. When the disease is diagnosed at an advanced stage, poor prognoses
can be expected. One of the key parameters used to determine the stage is the depth of myometrial
invasion. This is a prognostic factor used to categorize patients into high or low–intermediate risk
categories, leading to different postoperative treatment approaches [5]. Therefore, accurate diagnoses
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followed by appropriate treatments in the early stages are the keys to good prognoses [6–8]. Currently,
magnetic resonance imaging (MRI) is the primary tool used to evaluate the depth of myometrial
invasion in endometrial cancer [9–11].

With the development of artificial intelligence (AI), radiologists have begun to use this technology to
read medical images for various diseases [12–14]. AI comprises a collection of algorithms, mathematical
functions, interrelated practical approaches, and overlapping areas of mathematics and statistics,
which are well-suited for radiology because the pixel values of an MRI image are quantifiable [14,15].
Artificial neural network (ANN), for instance, is one technique used in the subdiscipline of classification
systems. In ANN, the idea of deep learning (DL) has gained considerable attention. Various types
of sub-algorithms concerning advances in fast processing, memory enhancement, and new model
features and designs are continually being developed and upgraded [15]. The most common ANN
used by DL is the convolutional neural network (CNN), which is the most suitable neural network for
radiology when images are the primary units of analyses [15,16]. CNN is biologically inspired network
mimicking the behavior of the brain cortex, which contains a complex structure of cells sensitive to
small regions of the visual field. CNN not only comprises a series of layers which maps the image
inputs to desired end points, but also learns higher-level imaging features [17].

According to the International Federation of Gynecology and Obstetrics (FIGO) classification
system, endometrial cancer can be categorized as Stage I to IV, and Stage I can be further separated
into IA and IB, which are distinguished based on the depth of myometrial invasion (less than vs.
more than 50% myometrial invasion) [6]. However, the ability to determine the pre-operative MRI
stages based, mainly, on personal expertise and experience which vary dramatically from person
to person [18]. Additionally, various pathological factors—such as hematometra, interference due
to a large coexisting leiomyoma or adenomyosis, or differences in the histological subtypes of the
endometrial carcinoma—may lead to incorrect myometrial invasion diagnoses [10,19]. Discrepancies
often exist between the pre-operative MRI staging and the post-operative pathological staging.

The previous literature about AI assistance in endometrial cancer diagnosis focuses on the
performance of “post-operative” diagnosis (histopathological hematoxylin and eosin image) made by
CNN-based classifier [20], while research examines the “pre-operative” MRI staging and performance
of AI interpretation on endometrial cancer is rare. Our study is the pilot one to examine whether AI has
the ability to assist physicians in making diagnoses of MRI before invasive surgery, i.e., pre-operative
diagnosis. To achieve this goal, we compared the myometrial invasion diagnostic accuracy rate of the
DL model with that of radiologists. Here, we used CNN to identify the myometrial invasion depth of
endometrial cancer at an early stage and discussed the implications using AI as an auxiliary resource
for making more comprehensive judgements.

2. Materials and Methods

2.1. Study Population

This is a retrospective study examining data from 72 endometrial cancer patients who received
surgical treatment. Originally, there were 262 patients who had surgeries at the Tri-Service General
Hospital in Taipei, Taiwan from January 2014 to September 2018. However, since we were interested in
examining the ability of AI to validate myometrial invasion in early stage cancer, we excluded patients
whose endometrial cancer was staged based merely on post-operative pathology without preoperative
MRI scans and patients with stage II, III, and IV cancer. Eventually, 72 patients were qualified for this
study (see Table 1). Among these, 53 were diagnosed with stage IA cancer, and 19 were diagnosed with
stage IB based on permanent pathology. The average age of the patients was 59.7, with a minimum age
of 39 and maximum age of 85. In terms of menopausal status, 63 (87.5%) postmenopausal. In terms of
histology grade, 27, 32, and 13 belonged to grades 1, 2, 3 (5 were serous carcinomas, 1 was clear cell,
and 3 were mixed). Among all the patients, 29 (40.3%) had uterine leiomyomas, and 43 (59.7%) did not.
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Table 1. Clinical and pathologic characteristics of all patients.

Characteristics n = 72

Age (year) [mean ± SD a] (range) 59.7 ± 9.08 (39–85)

Menopausal status
Postmenopausal 63 (87.5%)
Premenopausal 9 (12.5%)

ECOG b performance status
0 54
1 18
2 0
3 0
4 0

FIGO c Stage
IA 53 (73.6%)
IB 19 (26.4%)

Histology subtype

Type I
Grade 1 endometrioid 27 (37.5%)
Grade 2 endometrioid 32 (44.4%)

Type II
Grade 3 endometrioid 4 (5.6%)

Serous 5 (6.9%)
Clear cell 1 (1.4%)

Mixed 3 (4.2%)

Histology grade
1 27 (37.5%)
2 32 (44.4%)
3 13 (18.1%)

Uterine leiomyomas
Present 29 (40.3%)
Absent 43 (59.7%)

Characteristics are presented based on the pathology reports. a SD: standard deviation. b ECOG: Eastern Cooperative
Oncology Group. c FIGO: International Federation of Gynecology and Obstetrics.

A total of 4896 MRI slices (3456 slices of contrast-enhanced T1w, and 1440 slices of T2w) with
detailed preoperative radiology reports were collected from these 72 patients. Patients were divided
into training, validation, and testing groups. The training group was comprised of patients whose
results from the radiologists’ diagnoses and from the pathology reports were compatible. One third
of the patients (24 patients) were selected as the training group that was used to train the DL model
and generate the model parameters. Then, the performance of the model was checked by evaluating
the error function using an independent validation group (6 patients). The model that generated the
smallest error was selected as the final model. Finally, the test group was comprised of a dataset
that was independent of the training group (42 patients plus the 6 patients in the validation group),
and this group was used to appraise the accuracy rate of the novel AI-based system (see Figure 1).
Two gynecologic oncologists with 25 and 14 years of clinical experience, respectively, were recruited to
label the MRI images of each patient, including the contours of the uterus, lesion of the endometrium,
and lining of the endometrium. Our research team then double-checked their work. Contrast-enhanced
T1w and T2w images were both labeled to provide the AI model with appropriate information for
image segmentation and training. Results of the histopathological report were used as a reference to
calculate the accuracy rates.
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Figure 1. Workflow diagram demonstrating the process and preparation of the MR image dataset and 
training convolutional neural network models. The consecutive steps of MR image analysis include 
image upload, convolutional neural network model selection, and diagnosis output. 

2.2. Artificial Intelligence Systems Selection 

CNN is an efficient recognition algorithm that is frequently used in image processing and 
pattern recognition [21,22]. In this study, we used a deep neural network architecture known as U-
Net as a model for segmentation of MR images, which consist of equal amount of up- and down-
sampling layers. U-Net combines them with the so-called skip connections between opposing 
convolution and deconvolution layers. It concatenates a contracting path and expansive path while a 
large number of feature channels during up-sampling allows the propagation of the context 
information to higher resolution layers [17,23]. The U-Net architecture has proven to be useful for 
biomedical segmentation applications and medical image analyses [24–27]. Furthermore, using 
different methods of weights initialization within the same architecture (known as fine tuning) to 
initialize the weights for an encoder of the network, VGG11, VGG16, and ResNet34 pre-trained 
encoder models which converge considerably faster to a steady value and reduce training time in 
comparison to the non-pre-trained network, were used [28,29]. Based on the findings from previous 
research [30], the training settings of the aforementioned three architectures included 
hyperparameters such as batch size, epoch, learning rate, and optimizer that can be adjusted to 
enhance recognition accuracy. The training results of the AI models were evaluated using data from 
the validation group [31]. 

2.3. Images Processing and Analysis 

Figure 1. Workflow diagram demonstrating the process and preparation of the MR image dataset and
training convolutional neural network models. The consecutive steps of MR image analysis include
image upload, convolutional neural network model selection, and diagnosis output.

2.2. Artificial Intelligence Systems Selection

CNN is an efficient recognition algorithm that is frequently used in image processing and pattern
recognition [21,22]. In this study, we used a deep neural network architecture known as U-Net as a
model for segmentation of MR images, which consist of equal amount of up- and down-sampling
layers. U-Net combines them with the so-called skip connections between opposing convolution and
deconvolution layers. It concatenates a contracting path and expansive path while a large number
of feature channels during up-sampling allows the propagation of the context information to higher
resolution layers [17,23]. The U-Net architecture has proven to be useful for biomedical segmentation
applications and medical image analyses [24–27]. Furthermore, using different methods of weights
initialization within the same architecture (known as fine tuning) to initialize the weights for an
encoder of the network, VGG11, VGG16, and ResNet34 pre-trained encoder models which converge
considerably faster to a steady value and reduce training time in comparison to the non-pre-trained
network, were used [28,29]. Based on the findings from previous research [30], the training settings of the
aforementioned three architectures included hyperparameters such as batch size, epoch, learning rate,
and optimizer that can be adjusted to enhance recognition accuracy. The training results of the AI
models were evaluated using data from the validation group [31].
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2.3. Images Processing and Analysis

In this study, MR images were obtained using 1.5T (Optima MR450W, GE Healthcare, Chicago,
IL, USA) and 3T superconducting units (Discovery MR 750, GE Healthcare, Chicago, IL, USA).
The imaging protocol for MR imaging scanners typically include sagittal, contrast-enhanced T1w
(TR/TE, 501/Minimum ms; section thickness, 4 mm; gap, 1.2 mm; matrix, 288 × 192; and FOV, 280 mm),
and sagittal T2w (TR/TE, 5000/90 ms; section thickness, 5 mm; gap, 1 mm; echo-train length, 19; matrix,
320× 224; and FOV, 240 mm). Since the MR images have different formats and resolutions, initial quality
control is important to filter out images with improper formats and low resolutions. We cropped all
the raw images into 896 × 896 pixel resolution by using the equation for altered resolution: P′i = (Pi −
Pmean)/Pstd. Here, Pi represents each pixel, Pmean and Pstd are the mean and standard deviation
of all pixels, respectively, and P′i is the resulting altered pixel. Moreover, to improve DL efficiency,
data augmentation was conducted by multiplying, horizontally flipping, vertically flipping, and using
affine transformation on all MR images. Thus, multiple images were derived from the original ones
used for AI model training. The augmented dataset was used only for training and not for validation or
testing [32]. Thereafter, segmentation was carried out, which involves assigning a label to every pixel
in an image such that pixels with the same label share certain characteristics [33]. After processing
the MR images, the training and validation groups were used to establish and validate the models,
respectively. We used Intersection over Union (IoU) to evaluate the performance of the AI model.
IoU is an evaluation metric used to measure the accuracy of an object detector on a particular dataset,
which is often used for evaluation the performance of CNN detectors.

2.4. Establishing AI Models

After testing several different models, the U-Net with ResNet34, VGG16, and VGG11 encoders,
pre-trained on ImageNet architectures, was used to establish the CNN-based AI models. The above
models were established using a QNAP TS-2888X Linux based server with an Intel Xeon CPU, four GPU
cards, and 512 GB available RAM for training and validation. During the training process, the original
MR and mask images were initially adjusted to have the same size and resolution as the training input
images, and the MR images of endometrium and uterus were learned through AI training. The layers
were trained by a stochastic gradient descent in a relatively small batch size (16 images) because of
the variations in the size and shape of the uterus and endometrial lesions, with a learning rate of
0.001. To determine the best model, the training for all categories was performed for 150 epochs
and the loss was calculated using the Dice-coefficient loss function, rather than by the cross entropy
loss function, because of its advantage in solving the problem of disparity between the size of the
endometrium and non-endometrial areas in the image (Figure A1). After adjusting the parameters,
segmentation of the uterus and endometrial lesions in contrast-enhanced T1w exhibited significant
and superior performance for the U-Net with VGG11 model and achieved 94.20% and 79.16% of
the mean IoU, respectively (Tables A1, A4 and A5). However, the U-Net with ResNet34 model for
segmentation training of T2w exhibited better performance than the other models and achieved 91.66%
and 79.31% of the mean IoU of the uterus and endometrial lesion, respectively (Tables A2, A6 and A7).
The parameters of the best model were selected (see Figure 2) and used for the validation, and these
are listed in Table A3.
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Figure 2. Performance and validation curves for each architecture of the trained convolutional neural
network (CNN) models (VGG11 and Resnet34) on MRI. The prediction (intersection over union) score
of CNN models in reading the uterus on contrast-enhanced T1w (A) and T2w (B). The prediction score
of CNN models in reading endometrium on contrast-enhanced T1w (C) and T2w (D).

2.5. Statistical Analysis

To determine the differences between diagnoses by the radiologists and AI interpretations,
Chi-square tests were used to identify whether two categorical variables were independent of each
other, including the “accuracy,” “over-staged/under-staged,” and “whether the concomitant conditions
(coexisting uterine leiomyoma, different histology types) affect the diagnoses.” For continuous variables,
Pearson correlation was applied to examine the positive or negative relationships between the degree
(depth) of myometrial invasion from the pathology reports and the degree (depth) of myometrial
invasion interpreted by AI. These two variables were both measured as fractions (myometrial invasion
over myometrial thickness). Box and whisker plots were used to compare the accuracy of diagnoses
made by radiologists and those made by AI (the center, spread, and overall range of the depth of
myometrial invasion were used as determinants), and a one-way analysis of variance (ANOVA)
was used to generate the F-statistics and p-value (α = 0.05 was the standard used to determine any
significant differences). This study used STATA 14 software (StataCorp Limited Liability Company,
College Station, TX, USA) for statistical analyses.

2.6. Ethical Approval

Our research was a retrospective study using the MRI images, pathological reports, and other
demographic information of patients. All data/samples were fully anonymized before we accessed
them. Only serial numbers were associated with the collected data/samples. We could not identify
any individual based on the serial numbers. The data collection period was between January 2019 to
November 2019. The IRB approved our study as “Low Risk” (IRB No.: 1-107-05-165).

3. Results

3.1. Verification of the Final Model

To verify the established AI model, a total of 48 patients were used, and the AI calculated the depth
of myometrial invasion by endometrial cancer and then classified each as stage IA or IB. The architecture
of our AI model was adopted from Iglovikov and Shvets [24] and modified from Shvets, Iglovikov,
Rakhlin, and Kalinin [25] (see Figure 3). The results were compared with the surgico-pathological
findings. The accuracy rates for the contrast-enhanced T1w, T2w, and radiologists were 79.2%, 70.8%,
and 77.8%, respectively. The chi-square tests showed that there were no significant differences between
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the AI interpretations for both T1w and T2w and radiologist’s diagnoses (p = 0.856 and p = 0.392,
respectively) (see Table 2). However, we did notice a relatively higher “over-diagnosis rate” from the
radiologists. Among the incompatible cases in T1w, 7 out of 10 were over diagnosed (over-diagnosis
rate: 70.0%). Among the incompatible cases in T2w, 9 out of 14 were over diagnosed (over-diagnosis
rate: 64.3%). However, for the incompatible cases in radiologists’ diagnoses, 14 out of 16 were over
diagnosed (over-diagnosis rate: 87.5%).
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Figure 3. Consecutive steps of MR image analysis include image upload, interpretation of image by
AI, and diagnosis output. The architecture of our AI model includes convolutional neural networks
consisting of convolution layers, max pooling layers, and a fully connected layer. Each layer extracts
different image features; subsequently, all of the extracted features are integrated. The result includes
the depth of myometrial invasion and stage classification (FIGO stage IA or IB).

Table 2. Accuracy rates of AI and radiologists.

Results
Pathology Report

Accuracy Rates
IA IB

AI Interpretation

Contrast-enhanced T1w
79.2%
(38/48)<50% Invasion 30 (compatible) 3 (under diagnosed)

≥50% Invasion 7 (over diagnosed) 8 (compatible)

T2w
70.8%
(34/48)<50% Invasion 29 (compatible) 5 (under diagnosed)

≥50% Invasion 9 (over diagnosed) 5 (compatible)

Radiologists’ Diagnoses
77.8%
(56/72)IA 39 (compatible) 2 (under diagnosed)

IB 14 (over diagnosed) 17 (compatible)

Chi-square test results: For Contrast-enhanced T1w and Radiologists: χ2 = 0.033, p = 0.856; For T2w and Radiologists:
χ2 = 0.738, p = 0.392.

3.2. Effects of Concomitant Conditions on MR Image Interpretation

In addition to the aforementioned findings, we found that the MR images interpreted by AI
were more likely to be inaccurate when the patients had coexisting uterine leiomyoma, (p = 0.027
for contrast-enhanced T1w and p = 0.12 for T2w). In contrast, coexisting leiomyoma usually did
not affect the radiologist’s MRI interpretations (p = 0.140). Other than uterine leiomyoma, different
histological subtypes did not affect the accuracy of the radiologists (p = 0.413) or the AI (p = 0.549 for
contrast-enhanced T1w; p = 0.727 for T2w) (see Table 3).
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Table 3. Influence of concomitant conditions on the accuracy rates of AI and radiologists.

Pathology Report

Results IA IB IA IB Accuracy Rates p-Value

Uterine leiomyoma + − +/−

AI Interpretation
Contrast-enhanced T1w 60%/87.9% 0.027

<50% Invasion 9 * 1 21 * 2
≥50% Invasion 5 0 * 2 8 *

T2w 56.3%/78.1% 0.115
<50% Invasion 8 * 1 21 * 4
≥50% Invasion 6 1 * 3 4 *

Radiologists’ Diagnoses
(MR stage) 69%/83.7% 0.140

IA 16 ** 1 23 ** 1
IB 8 4 ** 6 13**

Histology Type I Type II Type I/II

AI Interpretation
Contrast-enhanced T1w 81.1%/72.7% 0.549

<50% Invasion 26 * 2 4 * 1
≥50% Invasion 5 4 * 2 4 *

T2w 71.1%/70% 0.727
<50% Invasion 25 * 4 4 * 1
≥50% Invasion 7 2 * 2 3 *

Radiologists’ Diagnoses
(MR stage) 79.7%/69.2% 0.413

IA 35 ** 1 4 ** 1
IB 11 12 ** 3 5 **

* “compatible” between pathology report and AI interpretation; ** “compatible” between pathology report and
radiologists’ diagnoses.

In addition, we found a positive correlation between the depth of myometrial invasion
(the percentage of myometrial invasion over myometrial thickness) from the pathology report and
that interpreted by AI (r = 0.54 for contrast-enhanced T1w, p = 0.026; r = 0.52 for T2w, p = 0.004)
(see Figure A2). We also found that the distribution of the percentage of myometrial invasion may
lead to discrepancies between the stages diagnosed by radiologists or AI. Results are presented in
Tables 4 and 5. Table 4 and Figure 4 show the results of radiologists’ diagnoses. As shown in the
table, when the degree of myometrial invasion was relatively small or large, radiologists were less
likely to make incorrect decisions. However, when the depth of myometrial invasion was around 50%,
radiologists’ diagnoses tended to be incompatible with the pathology reports. The box and whisker
plots display the distribution of myometrial invasion. Table 5 and Figure 5 show the results of AI
interpretation. Similarly, when the degree of myometrial invasion was at the two extremes, AI was
more likely to generate a correct answer; however, when the depth of myometrial invasion was in the
middle range (50%), AI also generated incompatible results. Particularly, the range for AI to make
discrepant results for the T2w (from 1.5% to 86.7%) was significantly wider than that for the T1w or
for the radiologists. Results of the ANOVA showed that the closer the depth of myometrial invasion
was to 50%, the easier it was for both radiologists (F-value = 99.06, p < 0.001) and AI (F-value = 44.46,
p < 0.001 for contrast-enhanced T1w; F-value = 17.68, p < 0.001 for T2w) to provide incorrect diagnoses.
We found the results reasonable since the ability to determine the pre-operative MRI stages based,
mainly, on personal expertise and experience which vary from person to person. On the other hand,
using AI to determine the depth of myometrial invasion may also be affected by various pathological
factors, such as irregular endomyometrial junction inside single uterus, hematometra, endometrial
polyps, exophytic tumor growth, adenomyosis or extensive leiomyomas. These factors may inevitably
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cause both human beings and AI to come up with incorrect diagnoses, especially when there is a clear
cut-off value, below or above 50% myometrial invasion.

Table 4. Results of radiologists′ diagnoses and pathological stages.

Results Min Q1 Median Q3 Max

IA/IA * (compatible) 0 0.043 0.114 0.2 0.48
Discrepancy 0.015 0.276 0.333 0.422 0.68

IB/IB+ (compatible) 0.5 0.643 0.75 0.8 0.867

IA/IA *: pathological stage/clinical stage; IB/IB+: pathological stage/clinical stage; MI: myometrial invasion; ANOVA:
F-value = 99.06, p = 0.000.

Table 5. Results of AI interpretation and pathological stages (contrast-enhanced T1w and T2w).

Contrast-Enhanced T1w T2w

Min Q1 Median Q3 Max Min Q1 Median Q3 Max

IA/IA *
(Compatible) 0.004 0.063 0.2 0.333 0.48 IA/IA *

(compatible) 0.017 0.05 0.2 0.333 0.48

Discrepancy 0.05 0.313 0.388 0.5 0.75 Discrepancy 0.015 0.222 0.388 0.68 0.867
IB/IB+

(Compatible) 0.75 0.76 0.785 0.835 0.867 IB/IB+
(compatible) 0.533 0.643 0.758 0.8 0.846

IA/IA *: pathological stage/clinical stage; B/IB+: pathological stage/clinical stage; MI: myometrial invasion; ANOVA:
Contrast-enhanced T1w: F-value = 44.46, p = 0.000; T2w: F-value = 17.68, p = 0.000.

Int. J. Environ. Res. Public Health 2020, 17, x 9 of 19 

Table 4. Results of radiologists′ diagnoses and pathological stages. 

Results Min Q1 Median Q3 Max 
IA/IA * (compatible) 0 0.043 0.114 0.2 0.48 

Discrepancy 0.015 0.276 0.333 0.422 0.68 
IB/IB+ (compatible) 0.5 0.643 0.75 0.8 0.867 

IA/IA *: pathological stage/clinical stage; IB/IB+: pathological stage/clinical stage; MI: myometrial 
invasion; ANOVA: F-value = 99.06, p = 0.000. 

 

Figure 4. Box and Whisker Plot of data from radiologists′ diagnoses and pathological stages. 

Table 5. Results of AI interpretation and pathological stages (contrast-enhanced T1w and T2w). 

Contrast-enhanced T1w T2w 
 Min Q1 Median Q3 Max  Min Q1 Median Q3 Max 

IA/IA * 
(Compatible) 0.004 0.063 0.2 0.333 0.48 

IA/IA * 
(compatible) 0.017 0.05 0.2 0.333 0.48 

Discrepancy 0.05 0.313 0.388 0.5 0.75 Discrepancy 0.015 0.222 0.388 0.68 0.867 
IB/IB+ 

(Compatible) 
0.75 0.76 0.785 0.835 0.867 IB/IB+ 

(compatible) 
0.533 0.643 0.758 0.8 0.846 

IA/IA*: pathological stage/clinical stage; B/IB+: pathological stage/clinical stage; MI: myometrial 
invasion; ANOVA: Contrast-enhanced T1w: F-value = 44.46, p = 0.000; T2w: F-value = 17.68, p = 0.000. 

 
Figure 5. Box and Whisker Plot of data from AI interpretation and pathological stages (contrast-
enhanced T1w and T2w). 

4. Discussion 

0 .2 .4 .6 .8
MI (%)

IB/IB+

Discrepancy

IA/IA*

0 .2 .4 .6 .8
MI (%)

IB/IB+

Discrepancy

IA/IA*

0 .2 .4 .6 .8
MI (%)

IB/IB+

Discrepancy

IA/IA*

Figure 4. Box and Whisker Plot of data from radiologists′ diagnoses and pathological stages.

Int. J. Environ. Res. Public Health 2020, 17, x 9 of 19 

Table 4. Results of radiologists′ diagnoses and pathological stages. 

Results Min Q1 Median Q3 Max 
IA/IA * (compatible) 0 0.043 0.114 0.2 0.48 

Discrepancy 0.015 0.276 0.333 0.422 0.68 
IB/IB+ (compatible) 0.5 0.643 0.75 0.8 0.867 

IA/IA *: pathological stage/clinical stage; IB/IB+: pathological stage/clinical stage; MI: myometrial 
invasion; ANOVA: F-value = 99.06, p = 0.000. 

 

Figure 4. Box and Whisker Plot of data from radiologists′ diagnoses and pathological stages. 

Table 5. Results of AI interpretation and pathological stages (contrast-enhanced T1w and T2w). 

Contrast-enhanced T1w T2w 
 Min Q1 Median Q3 Max  Min Q1 Median Q3 Max 

IA/IA * 
(Compatible) 0.004 0.063 0.2 0.333 0.48 

IA/IA * 
(compatible) 0.017 0.05 0.2 0.333 0.48 

Discrepancy 0.05 0.313 0.388 0.5 0.75 Discrepancy 0.015 0.222 0.388 0.68 0.867 
IB/IB+ 

(Compatible) 
0.75 0.76 0.785 0.835 0.867 IB/IB+ 

(compatible) 
0.533 0.643 0.758 0.8 0.846 

IA/IA*: pathological stage/clinical stage; B/IB+: pathological stage/clinical stage; MI: myometrial 
invasion; ANOVA: Contrast-enhanced T1w: F-value = 44.46, p = 0.000; T2w: F-value = 17.68, p = 0.000. 

 
Figure 5. Box and Whisker Plot of data from AI interpretation and pathological stages (contrast-
enhanced T1w and T2w). 

4. Discussion 

0 .2 .4 .6 .8
MI (%)

IB/IB+

Discrepancy

IA/IA*

0 .2 .4 .6 .8
MI (%)

IB/IB+

Discrepancy

IA/IA*

0 .2 .4 .6 .8
MI (%)

IB/IB+

Discrepancy

IA/IA*

Figure 5. Box and Whisker Plot of data from AI interpretation and pathological stages (contrast-enhanced
T1w and T2w).



Int. J. Environ. Res. Public Health 2020, 17, 5993 10 of 18

4. Discussion

We compared the accuracy rates of the radiologists’ diagnoses and AI interpretations based
on the depth of myometrial invasion. The results indicated that the AI interpretations for both
contrast-enhanced T1w and T2w were similar to radiologists’ diagnoses. Although small differences
exist, they were not statistically significant. However, we found that the closer the depth of myometrial
invasion was to 50%, the easier it was for both the radiologists and AI to provide incorrect judgements.
However, compared with AI, radiologists were more likely to “over-stage” the results from IA to IB.
We believe these findings shed light on the fact that human beings tend to act conservatively when
making critical decisions. In clinical practice, when facing with a situation where it is necessary to
choose the lesser of two evils, radiologists would rather let the patients receive more evaluations or
treatments than receive insufficient ones. More treatments usually include more extensive surgeries
(lymph nodes dissection), radiation therapy, and/or chemotherapy. However, receiving more treatments
are not always beneficial, and they also come with additional risks. Patients are more likely to suffer
from surgical complications or therapy-related complications.

In addition, we found that when patients had coexisting leiomyoma, AI was more likely to
provide incorrect interpretations. However, the coexisting leiomyoma did not affect the radiologists’
judgements. We believe that was because the myometrial compression from a leiomyoma or bulky
polypoid tumor would lead to unclear boundaries between the tumor and myometrium, which would
make it difficult for the AI to calculate the depth. The histological types of endometrial carcinoma,
on the contrary, did not affect the radiologists or AI. Such findings suggested that the primary role of
MRI used in gynecologic oncology is in delineating the extent of the disease, not for analyzing the
morphological features or histological types [34].

Still, AI technology is potentially useful especially in hospitals without radiologists specializing
in gynecology. There are several benefits of using AI to predict myometrial invasion before surgery.
First, it can affect the choice of surgical approach methods, and second, it can be used to determine if
lymphadenectomy is necessary. In the early stages, patients have the chance to choose either exploratory
laparotomy or micro-invasive laparoscopic surgery. The result of a Gynecologic Oncology Group
LAP2 trial for early stage endometrial cancer reported favorable recurrence and survival outcomes
of laparoscopy surgical staging [35]. In another Cochrane review published in 2018 [36], the key
results revealed no difference in perioperative mortality risk, overall survival, and disease-free survival
between laparoscopy and laparotomy. Furthermore, laparoscopy is associated with significantly
shorter hospital stays. In hospitals without radiologists specializing in gynecology, AI technology
could help identify low-risk patients with stage IA disease, and therefore, the gynecological oncologist
may feel more comfortable performing laparoscopic surgery.

In addition, the necessity of routine lymphadenectomy in staging surgery has been widely debated.
The Mayo group described the criteria of patients with a low risk of nodal disease spread and a high
disease-free survival rate: grade 1 to 2 tumors, less than 50% myometrial invasion, and tumor size
less than 2 cm [37]. In GOG Lap 2 trial, in 971 patients with type 1 endometrioid carcinoma, 40% met
Mayo low-risk criteria and only 0.8% (3/389) had positive nodes. Therefore, with careful selection of
low risk patients, lymphadenectomy may be safely avoided, which reduces surgery-related morbidity
such as lower limb lymphedema or intra-abdominal lymphocele formation. In hospitals without
radiologists specializing in gynecology and gynecologists specializing in oncologic surgery, with help
of AI pre-operative diagnosis, a general gynecological surgeon could perform simple hysterectomy,
bilateral salpingo-oophorectomy without lymphadenectomy for selective low-risk patients. In remote
area with limited medical resources, AI pre-operative diagnosis will reduce the need of transferring
low-risk patients to tertiary medical center.

We noted a few potential limitations of our study. First, our datasets were built based on cases from
one institution. The diagnoses made using MRI and pathology were based on personal expertise and
experience, which exhibit individual differences. Although the Tri-Service General Hospital is a medical
center in Taipei, we still cannot eliminate the possibility of that there is bias in the data. Second, the key



Int. J. Environ. Res. Public Health 2020, 17, 5993 11 of 18

imaging sequence used to assess uterine cavity tumors involves choosing a sagittal T2w. However,
a multiparametric approach which combines T2w and contrast-enhanced T1w along with different
planes may represent the most comprehensive approach to assess tumor spread. Also, our study did
not analyze the diffusion-weighted imaging or the MR spectroscopy, which may could serve as one
potential research subject in diagnosing endometrial cancer. Training AI from a two-dimensional
approach (largest cross-sectional tumor area) to a three-dimensional approach (whole tumor) could
lead to differences in establishing the AI-based model or affect the accuracy of the interpretation of the
results, especially for results obtained by assessing only the sagittal plane of T2w and contrast-enhanced
T1w [38,39]. Third, different CNN architectures might be suitable for the interpretation of different
diseases’ images, and thereby selecting and establishing appropriate architectures might provide
slightly different results [23–26]. Fourth, the impact of ethnic differences was not examined because all
the patients in this study were Taiwanese. Therefore, using AI to determine the depth of myometrial
invasion still has its weak spot given the limited cases using for AI training regarding the endometrial
cancer. The AI’s decision cannot be final at this point. However, if more diverse cases can be used
for deep learning in the future, or if we can develop a multicenter database for this purpose, we may
further enhance the validity of the AI and improve the quality of our health care. Alternatively,
we could further design a prospective randomized study to identify a population of patients with
endometrial cancer to examine the efficacy of AI-assisted method. Our paper, as a pilot study in this
uncharted territory, shows that using AI as an assist to interpret the depth of myometrial invasion of
MRI is indeed advantageous to prevent the high interobserver variability among radiologists [18].

5. Conclusions

In summary, although current AI technology may not be able to replace the expertise and experience
of physicians, AI could be used as an auxiliary resource. From the perspective of balancing human
proactive errors and passive errors, it could be beneficial for the physicians to have a “second opinion”
from the AI technology before making critical judgement calls on endometrial cancer. Our research is
the first attempt to use AI technology to evaluate the invasion depth of myometrium in early stage
endometrial cancers. There have not been any publications about AI applications in endometrial
cancers. In the future, refinement of selection and establishment of a deep learning model with a larger
image database are essential to improve the accuracy. We believe artificial intelligence has the potential
to assist radiologists or serve as a reasonable alternative for pre-operative evaluation of the myometrial
invasion depth of stage I endometrial cancers.
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Figure A1. Performance and validation curves for all three architectures of the trained CNN models
(VGG11, VGG16 and Resnet34) on MRI. The prediction (IoU) score of CNN models in reading the
uterus on contrast-enhanced T1w (A) and T2w (B). The prediction (IoU) of CNN models in reading
endometrium on contrast-enhanced T1w (C) and T2w (D).
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Figure A2. Graphs showing the relationship between pathologic and imaging findings regarding
myometrial invasion. The correlation coefficient for contrast-enhanced T1w (A) and T2w (B) of a
patient without uterine leiomyoma is 0.538 and 0.518, respectively.
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Table A1. Verification summary of the performance of three AI models on contrast-enhanced T1w
using the validation dataset. The parameters of accuracy, sensitivity and specificity for both uterus and
endometrium are shown.

U-Net with VGG 11 U-Net with VGG 16 U-Net with ResNet34

Accuracy (Uterus) 96.83% 76.83% 97.06%
Accuracy (Endometrium) 85.96% 73.13% 84.31%

Mean loU (Uterus) 94.20% 75.30% 93.92%
Mean loU (Endometrium) 79.16% 67.54% 77.23%

Mean Dice (Uterus) 96.94% 84.01% 96.78%
Mean Dice (Endometrium) 87.62% 78.22% 86.24%

Mean Precision (Uterus) 97.05% 97.44% 96.51%
Mean Precision (Endometrium) 89.54% 88.86% 88.53%

Mean Recall (Uterus) 96.83% 76.83% 97.06%
Mean Recall (Endometrium) 85.96% 73.13% 84.31%

Mean Specificity (Uterus) 96.83% 76.83% 97.06%
Mean Specificity (Endometrium) 85.96% 73.13% 84.31%

Table A2. Verification summary of the performance of three AI models on T2w using the validation
dataset. The parameters of accuracy, sensitivity and specificity for both uterus and endometrium
are shown.

U-Net with VGG 11 U-Net with VGG 16 U-Net with ResNet34

Accuracy (Uterus) 95.80% 95.49% 96.86%
Accuracy (Endometrium) 83.60% 82.88% 87.34%

Mean loU (Uterus) 88.78% 90.61% 91.66%
Mean loU (Endometrium) 73.18% 73.63% 79.31%

Mean Dice (Uterus) 93.75% 94.88% 95.49%
Mean Dice (Endometrium) 82.60% 82.95% 87.56%

Mean Precision (Uterus) 91.90% 94.28% 94.20%
Mean Precision (Endometrium) 81.67% 83.02% 87.78%

Mean Recall (Uterus) 95.80% 95.50% 96.86%
Mean Recall (Endometrium) 83.60% 82.88% 87.34%

Mean Specificity (Uterus) 95.80% 95.49% 96.86%
Mean Specificity (Endometrium) 83.60% 82.88% 87.34%

Table A3. Performance of each architecture of the trained CNN models on contrast-enhanced T1w and
T2w. The parameters of learning rate, batch size, total epochs, epochs with the best value of IoU and
mean IoU of both the uterus and endometrium are shown.

Contrast-Enhanced T1w T2w

Type Uterus / Endometrium

Architecture U-Net with VGG 11 U-Net with ResNet34

Optimizer Adam

Learning Rate 1e-4

Batch size 16

Total number of epochs run during training 150

Epochs with the maximum value of loU (best model) 89/95 137/77

Mean loU of validation of Uterus/Endometrium (best model) 92.64%/80.40% 91.66%/79.31%
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Table A4. Parameters and performance of all three architectures on “contrast-enhanced T1w” of the “uterus.”

Loss Weight Batch Size Loss Learning Rate Architecture
(U-Net with #) Data Augmentation Best Epoch Mean IoU

(%)
IoU 0
(%)

IoU 1
(%)

Mean Dice
(%)

Dice 0
(%)

Dice 1
(%)

10 16 dice 0.0001 VGG11 T1WI TRUE 101 94.20 99.45 88.95 96.94 99.73 94.15

10 16 Cross
Entropy 0.0001 VGG11 T1WI TRUE 98 94.10 99.44 88.76 96.88 99.72 94.04

10 16 dice 0.0001 VGG16 T1WI TRUE 150 75.30 97.70 52.89 84.01 98.83 69.19
10 16 dice 0.0001 ResNet34 T1WI TRUE 131 93.92 99.42 88.42 96.78 99.71 93.86
10 16 dice 0.0001 ResNet34 T1WI FALSE 133 92.06 99.24 84.87 95.72 99.62 91.82
10 32 dice 0.0001 ResNet34 T1WI FALSE 115 91.62 99.18 84.06 95.46 99.59 91.34
10 32 dice 0.0001 ResNet34 T1WI TRUE 140 93.66 99.40 87.93 96.64 99.70 93.57

10 32 Cross
Entropy 0.0001 ResNet34 T1WI TRUE 104 91.17 99.26 83.08 95.19 99.63 90.76

Table A5. Parameters and performance of all three architectures on “contrast-enhanced T1w” of the “endometrium.”.

Loss Weight Batch Size Loss Learning Rate Architecture
(U-Net with #) Data Augmentation Best Epoch Mean IoU

(%)
IoU 0
(%)

IoU 1
(%)

Mean Dice
(%)

Dice 0
(%)

Dice 1
(%)

10 16 dice 0.0001 VGG11 T1WI TRUE 149 79.16 93.74 64.59 87.62 96.77 78.48
10 16 dice 0.0001 VGG11 T1WI FALSE 32 73.53 91.86 55.19 83.44 95.75 71.13
10 16 dice 0.0001 VGG16 T1WI TRUE 133 67.54 91.07 44.01 78.22 95.33 61.12
10 16 dice 0.0001 VGG16 T1WI FALSE 4 47.37 94.73 0.00 48.65 97.29 0.00
10 16 dice 0.0001 ResNet34 T1WI FALSE 113 75.38 92.34 58.42 84.89 96.02 73.75
10 16 dice 0.0001 ResNet34 T1WI TRUE 72 79.59 93.82 65.36 87.93 96.81 79.05
10 32 dice 0.0001 ResNet34 T1WI TRUE 135 77.23 93.13 61.33 86.24 96.44 76.03
10 32 dice 0.0001 ResNet34 T1WI FALSE 85 75.93 97.12 54.75 84.65 98.54 70.76
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Table A6. Parameters and performance of all three architectures on “T2w” of the “uterus.”

Loss Weight Batch Size Loss Learning Rate Architecture
(U-Net with #) Data Augmentation Best Epoch Mean IoU

(%)
IoU 0
(%)

IoU 1
(%)

Mean Dice
(%)

Dice 0
(%)

Dice 1
(%)

10 16 dice 0.0001 VGG11 T2WI TRUE 135 88.78 98.92 78.64 93.75 99.46 88.04
10 16 dice 0.0001 VGG11 T2WI FALSE 59 85.59 98.55 72.64 91.71 99.27 84.15
10 16 dice 0.0001 VGG16 T2WI TRUE 141 90.61 98.92 82.30 94.88 99.46 90.29
10 16 dice 0.0001 VGG16 T2WI FALSE 115 87.56 98.70 76.41 92.99 99.34 86.63
10 16 dice 0.0001 ResNet34 T2WI FALSE 148 85.73 98.52 72.94 91.80 99.25 84.35
10 16 dice 0.0001 ResNet34 T2WI TRUE 137 91.66 99.19 84.14 95.49 99.59 91.38
10 32 dice 0.0001 ResNet34 T2WI FALSE 149 78.67 97.53 59.82 86.80 98.75 74.86
10 32 dice 0.0001 ResNet34 T2WI TRUE 124 89.25 98.92 79.58 94.04 99.46 88.63
5 64 dice 0.00005 ResNet34 T2WI TRUE 148 83.45 98.16 68.73 90.27 99.07 81.46
5 64 dice 0.0001 ResNet34 T2WI TRUE 143 88.84 98.88 78.80 93.79 99.43 88.14
5 64 dice 0.0002 ResNet34 T2WI TRUE 136 90.90 99.12 82.68 95.04 99.56 90.52
10 64 dice 0.00005 ResNet34 T2WI TRUE 148 82.10 98.00 66.21 89.33 98.99 79.67
10 64 dice 0.0001 ResNet34 T2WI TRUE 141 87.93 98.77 77.10 93.22 99.38 87.07
10 64 dice 0.0002 ResNet34 T2WI TRUE 127 90.30 99.02 81.58 94.68 99.51 89.85
20 64 dice 0.00005 ResNet34 T2WI TRUE 133 86.37 98.62 74.13 92.22 99.31 85.14
20 64 dice 0.0001 ResNet34 T2WI TRUE 132 89.42 98.96 79.87 94.14 99.48 88.81
20 64 dice 0.0002 ResNet34 T2WI TRUE 135 91.33 99.16 83.49 95.29 99.58 91.00
10 16 Cross Entropy 0.0001 ResNet34 T2WI TRUE 134 91.50 99.19 83.80 95.39 99.59 91.19
10 72 Cross Entropy 0.0001 ResNet34 T2WI TRUE 124 88.57 98.85 78.29 93.62 99.42 87.82
10 72 Cross Entropy 0.0002 ResNet34 T2WI TRUE 131 90.22 99.03 81.40 94.63 99.51 89.74
10 72 Cross Entropy 0.0004 ResNet34 T2WI TRUE 80 90.07 99.04 81.11 94.54 99.52 89.57

Table A7. Parameters and performance of all three architectures on “T2w” of the “endometrium.”

Loss Weight Batch Size Loss Learning Rate Architecture
(U-Net with #) Data Augmentation Best Epoch Mean IoU

(%)
IoU 0
(%)

IoU 1
(%)

Mean Dice
(%)

Dice 0
(%)

Dice 1
(%)

10 16 dice 0.0001 VGG11 T2WI FALSE 18 77.88 94.63 61.12 86.56 97.24 75.87
10 16 dice 0.0001 VGG11 T2WI TRUE 43 79.07 95.23 62.90 87.39 97.56 77.23
10 16 dice 0.0001 VGG16 T2WI FALSE 69 73.63 95.56 51.70 82.95 97.73 68.16
10 16 dice 0.0001 VGG16 T2WI TRUE 3 46.67 93.33 0.00 48.28 96.55 0.00
10 16 dice 0.0001 ResNet34 T2WI TRUE 77 79.31 95.39 63.24 87.56 97.64 77.48
10 64 dice 0.00005 ResNet34 T2WI TRUE 136 77.87 95.17 60.57 86.48 97.52 75.44
20 64 dice 0.00005 ResNet34 T2WI TRUE 143 78.31 95.35 61.27 86.80 97.62 75.98



Int. J. Environ. Res. Public Health 2020, 17, 5993 16 of 18

References

1. American Cancer Society. Global Cancer Facts & Figures, 4th ed.; American Cancer Society: Atlanta, GA,
USA, 2018.

2. Lortet-Tieulent, J.; Ferlay, J.; Bray, F.; Jemal, A. International patterns and trends in endometrial cancer
incidence, 1978–2013. J. Natl. Cancer Inst. 2018, 110, 354–361. [CrossRef]

3. SGO Clinical Practice Endometrial Cancer Working Group; Burke, W.M.; Orr, J.; Leitao, M.; Salom, E.;
Gehrig, P.; Olawaiye, A.B.; Brewer, M.; Boruta, D.; Herzog, T.J.; et al. Endometrial cancer: A review and
current management strategies: Part I. Gynecol. Oncol. 2014, 134, 385–392. [CrossRef]

4. SGO Clinical Practice Endometrial Cancer Working Group; Burke, W.M.; Orr, J.; Leitao, M.; Salom, E.;
Gehrig, P.; Olawaiye, A.B.; Brewer, M.; Boruta, D.; Herzog, T.J.; et al. Endometrial cancer: A review and
current management strategies: Part II. Gynecol. Oncol. 2014, 134, 393–402. [CrossRef]

5. Colombo, N.; Creutzberg, C.L.; Amant, F.; Bosse, T.; González-Martín, A.; Ledermann, J.; Marth, C.; Nout, R.;
Querleu, D.; Mirza, M.; et al. ESMO-ESGO-ESTRO consensus conference on endometrial cancer: Diagnosis,
treatment and follow-up. Int. J. Gynecol. Cancer 2016, 26, 2–30. [CrossRef]

6. Meissnitzer, M.; Forstner, R. MRI of endometrium cancer—How we do it. Meissnitzer Forstner Cancer Imaging
2016, 16, 11. [CrossRef]

7. Larson, D.M.; Connor, G.P.; Broste, S.K.; Krawisz, B.R.; Johnson, K.K. Prognostic significance of gross
myometrial invasion with endometrial cancer. Obstet. Gynecol. 1996, 88, 394–398. [CrossRef]

8. Mitamura, T.; Watari, H.; Todo, Y.; Kato, T.; Konno, Y.; Hosaka, M.; Sakuragi, N. Lymphadenectomy can
be omitted for low-risk endometrial cancer based on preoperative assessments. J. Gynecol. Oncol. 2014, 25,
301–305. [CrossRef] [PubMed]

9. Alcázar, J.L.; Gastón, B.; Navarro, B.; Salas, R.; Aranda, J.; Guerriero, S. Transvaginal ultrasound versus
magnetic resonance imaging for preoperative assessment of myometrial infiltration in patients with
endometrial cancer: A systematic review and meta-analysis. J. Gynecol. Oncol. 2017, 28, e86. [CrossRef]
[PubMed]

10. Hricak, H.; Rubinstein, L.V.; Gherman, G.M.; Karstaedt, N. MR imaging evaluation of endometrial carcinoma:
Results of an NCI cooperative study. Radiology 1991, 179, 829–832. [CrossRef] [PubMed]

11. Choi, H.-J.; Lee, S.; Park, B.K.; Kim, T.-J.; Kim, C.K.; Park, J.J.; Choi, C.H.; Lee, Y.-Y.; Lee, J.-W.; Bae, D.-S.; et al.
Long-term outcomes of magnetic resonance imaging-invisible endometrial cancer. J. Gynecol. Oncol. 2016,
27, e38. [CrossRef]

12. Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.;
Abbosh, C.; Dunn, I.F.; et al. Artificial intelligence in cancer imaging: Clinical challenges and applications.
CA Cancer J. Clin. 2019, 69, 127–157. [CrossRef] [PubMed]

13. Weidlich, V.; Weidlich, G.A. Artificial intelligence in medicine and radiation oncology. Cureus 2018, 10, e2475.
[CrossRef] [PubMed]

14. Mendelson, E.B. Artificial intelligence in breast imaging—Potentials and limitations. AJR Am. J. Roentgenol.
2019, 212, 293–299. [CrossRef] [PubMed]

15. Hwang, D.-K.; Hsu, C.-C.; Chang, K.-J.; Chao, D.; Sun, C.-H.; Jheng, Y.-C.; Yarmishyn, A.A.; Wu, J.-C.;
Tsai, C.-Y.; Wang, M.-L.; et al. Artificial intelligence-based decision-making for age-related macular
degeneration. Theranostics 2019, 9, 232–245. [CrossRef]

16. Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level
classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [CrossRef]

17. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.;
Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017,
42, 60–88. [CrossRef]

18. Woo, S.; Kim, S.Y.; Cho, J.Y.; Kim, S.H. Assessment of deep myometrial invasion of endometrial cancer on
MRI: Added value of second-opinion interpretations by radiologists subspecialized in gynaecologic oncology.
Eur. Radiol. 2017, 27, 1877–1882. [CrossRef]

19. Beddy, P.; Moyle, P.; Kataoka, M.; Yamamoto, A.K.; Joubert, I.; Lomas, D.J.; Crawford, R.; Sala, E. Evaluation of
depth of myometrial invasion and overall staging in endometrial cancer: Comparison of diffusion-weighted
and dynamic contrast-enhanced MR imaging. Radiology 2012, 262, 530–537. [CrossRef]

http://dx.doi.org/10.1093/jnci/djx214
http://dx.doi.org/10.1016/j.ygyno.2014.05.018
http://dx.doi.org/10.1016/j.ygyno.2014.06.003
http://dx.doi.org/10.1097/IGC.0000000000000609
http://dx.doi.org/10.1186/s40644-016-0069-1
http://dx.doi.org/10.1016/0029-7844(96)00161-5
http://dx.doi.org/10.3802/jgo.2014.25.4.301
http://www.ncbi.nlm.nih.gov/pubmed/25142623
http://dx.doi.org/10.3802/jgo.2017.28.e86
http://www.ncbi.nlm.nih.gov/pubmed/29027404
http://dx.doi.org/10.1148/radiology.179.3.2028000
http://www.ncbi.nlm.nih.gov/pubmed/2028000
http://dx.doi.org/10.3802/jgo.2016.27.e38
http://dx.doi.org/10.3322/caac.21552
http://www.ncbi.nlm.nih.gov/pubmed/30720861
http://dx.doi.org/10.7759/cureus.2475
http://www.ncbi.nlm.nih.gov/pubmed/29904616
http://dx.doi.org/10.2214/AJR.18.20532
http://www.ncbi.nlm.nih.gov/pubmed/30422715
http://dx.doi.org/10.7150/thno.28447
http://dx.doi.org/10.1038/nature21056
http://dx.doi.org/10.1016/j.media.2017.07.005
http://dx.doi.org/10.1007/s00330-016-4582-1
http://dx.doi.org/10.1148/radiol.11110984


Int. J. Environ. Res. Public Health 2020, 17, 5993 17 of 18

20. Sun, H.; Zeng, X.; Xu, T.; Peng, G.; Ma, Y. Computer-aided diagnosis in histopathological images of the
endometrium using a convolutional neural network and attention mechanisms. IEEE J. Biomed. Health Inform.
2019, 24, 1664–1676. [CrossRef]

21. Yasaka, K.; Abe, O. Deep learning and artificial intelligence in radiology: Current applications and future
directions. PLoS Med. 2018, 15, e1002707. [CrossRef]

22. Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.;
Yan, F.; et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018,
172, 1122–1131. [CrossRef] [PubMed]

23. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation.
arXiv 2015, arXiv:1505.04597. Available online: https://arxiv.org/abs/1505.04597 (accessed on 17 August 2020).

24. Iglovikov, V.; Shvets, A. TernausNet: U-Net with VGG11 encoder pre-trained on ImageNet for image
segmentation. arXiv 2018, arXiv:1801.05746v1. Available online: https://arxiv.org/abs/1801.05746 (accessed on
17 August 2020).

25. Shvets, A.A.; Iglovikov, V.I.; Rakhlin, A.; Kalinin, A.A. Angiodysplasia detection and localization using deep
convolutional neural networks. In Proceedings of the 2018 17th IEEE International Conference on Machine
Learning and Applications, Orlando, FL, USA, 17–20 December 2018.

26. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385.
Available online: https://arxiv.org/abs/1512.03385 (accessed on 17 August 2020).

27. Iglovikov, V.; Mushinskiy, S.; Osin, V. Satellite imagery feature detection using deep convolutional neural
network: A Kaggle competition. arXiv 2017, arXiv:1706.06169. Available online: https://arxiv.org/abs/1706.
06169 (accessed on 17 August 2020).

28. Iglovikov, V.; Rakhlin, A.; Kalinin, A.; Shvets, A. Pediatric bone age assessment using deep convolutional
neural networks. arXiv 2017, arXiv:1712.05053. Available online: https://arxiv.org/abs/1712.05053 (accessed on
17 August 2020).

29. Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K.; Kalinin, A.A.; Do, B.T.; Way, G.P.; Ferrero, E.; Agapow, P.-M.;
Zietz, M.; Hoffman, M.M.; et al. Opportunities and obstacles for deep learning in biology and medicine.
bioRxiv 2017, 142760. [CrossRef]

30. Wang, G.; Li, W.; Ourselin, S.; Vercauteren, T. Automatic brain tumor segmentation using cascaded
anisotropic convolutional neural networks. arXiv 2017, arXiv:1709.00382v2. Available online: https:
//arxiv.org/pdf/1709.00382.pdf (accessed on 17 August 2020).

31. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. ENet: A deep neural network architecture for real-time
semantic segmentation. arXiv 2016, arXiv:1606.02147v1. Available online: https://arxiv.org/abs/1606.02147
(accessed on 17 August 2020).

32. Arieno, A.; Chan, A.; Destounis, S.V. A review of the role of augmented intelligence in breast imaging:
From automated breast density assessment to risk stratification. AJR 2019, 212, 259–270. [CrossRef]

33. Yuheng, S.; Hao, Y. Image segmentation algorithms overview. arXiv 2017, arXiv:1707.02051. Available online:
https://arxiv.org/abs/1707.02051 (accessed on 17 August 2020).

34. Vargas, H.A.; Akin, O.; Zheng, J.; Moskowitz, C.; Soslow, R.A.; Abu-Rustum, N.; Barakat, R.R.; Hricak, H.
The value of MR imaging when the site of uterine cancer origin is uncertain. Radiology 2011, 258, 785–792.
[CrossRef] [PubMed]

35. Walker, J.L.; Piedmonte, M.R.; Spirtos, N.M.; Eisenkop, S.M.; Schlaerth, J.B.; Mannel, R.S.; Barakat, R.;
Pearl, M.L.; Sharma, S.K. Recurrence and survival after random assignment to laparoscopy versus laparotomy
for comprehensive surgical staging of uterine cancer: Gynecologic Oncology Group LAP2 Study. J. Clin. Oncol.
2012, 30, 695–700. [CrossRef] [PubMed]

36. Khadra, G.; Hannah, D.; Andrew, B.; Alberto, D.L. Laparoscopy versus laparotomy for the management of
early stage endometrial cancer. Cochrane Database Syst. Rev. 2018, 10, CD006655.

37. Andrea, M.; Maurice, J.W.; Gary, L.K.; Michael, G.H.; Giliola, C.; Karl, C.P. Low-risk corpus cancer:
Is lymphadenectomy or radiotherapy necessary? Am. J. Obstet. Gynecol. 2000, 182, 1506–1519.

http://dx.doi.org/10.1109/JBHI.2019.2944977
http://dx.doi.org/10.1371/journal.pmed.1002707
http://dx.doi.org/10.1016/j.cell.2018.02.010
http://www.ncbi.nlm.nih.gov/pubmed/29474911
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1801.05746
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1706.06169
https://arxiv.org/abs/1706.06169
https://arxiv.org/abs/1712.05053
http://dx.doi.org/10.1098/rsif.2017.0387
https://arxiv.org/pdf/1709.00382.pdf
https://arxiv.org/pdf/1709.00382.pdf
https://arxiv.org/abs/1606.02147
http://dx.doi.org/10.2214/AJR.18.20391
https://arxiv.org/abs/1707.02051
http://dx.doi.org/10.1148/radiol.10101147
http://www.ncbi.nlm.nih.gov/pubmed/21212371
http://dx.doi.org/10.1200/JCO.2011.38.8645
http://www.ncbi.nlm.nih.gov/pubmed/22291074


Int. J. Environ. Res. Public Health 2020, 17, 5993 18 of 18

38. Ueno, Y.; Forghani, B.; Forghani, R.; Dohan, A.; Zeng, X.Z.; Chamming’S, F.; Arseneau, J.; Fu, L.; Gilbert, L.;
Gallix, B.; et al. Endometrial Carcinoma: MR Imaging-based Texture Model for Preoperative Risk
Stratification-A Preliminary Analysis. Radiology 2017, 284, 748–757. [CrossRef]

39. Ytre-Hauge, S.; Dybvik, J.A.; Lundervold, A.; Salvesen, Ø.O.; Krakstad, C.; Fasmer, K.E.; Werner, H.M.;
Ganeshan, B.; Høivik, E.; Bjørge, L.; et al. Preoperative tumor texture analysis on MRI predicts high-risk
disease and reduced survival in endometrial cancer. J. Magn. Reson. Imaging 2018, 48, 1637–1647. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1148/radiol.2017161950
http://dx.doi.org/10.1002/jmri.26184
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Population 
	Artificial Intelligence Systems Selection 
	Images Processing and Analysis 
	Establishing AI Models 
	Statistical Analysis 
	Ethical Approval 

	Results 
	Verification of the Final Model 
	Effects of Concomitant Conditions on MR Image Interpretation 

	Discussion 
	Conclusions 
	
	References

