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Abstract
This paper develops a stochastic approach to impose regularity properties on a direc-
tional output distance function (DODF) and an output distance function, which can 
be estimated by maximum likelihood. We use the resulting parameter estimates to 
evaluate efficiency and total factor productivity (TFP) growth for Taiwan’s com-
mercial banks over the period 2002–2015 and claim that the failure of considering 
the regularity restrictions and the exclusion of undesirables lead to miscalculated 
efficiency measures and productivity gains. The outcomes from the regularity-
constrained DODF reveal that almost all data-points satisfy the regularity proper-
ties, that the managerial abilities of the banks improve after the subprime crisis of 
2007, and that the sample banks’ TFP grow at an average rate of 1.93% per annum, 
whereby technical change is the driving force. However, our estimates show down-
ward trends in the growth rate of TFP and technical change.
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1 Introduction

There are two popular approaches to examine firms’ efficiency and productivity 
change: non-parametric data envelopment analysis (DEA) and parametric sto-
chastic frontier analysis (SFA). Both approaches have their own strengths and 
weaknesses. DEA is a mathematical programming technique that does not require 
specifying a production or a cost function form, which is usually unknown to the 
researchers. However, DEA estimates a deterministic frontier and treats all devia-
tions from the frontier as inefficiency, which can be confounded with the effects 
of data noise or random shocks. O’Donnell and Coelli (2005) note that this may 
lead to biased estimates of the shape and position of the frontier surface.

Pioneered by Aigner et  al. (1977) and Meeusen and van den Broeck (1977), 
SFA is an econometric approach that requires one to specify the boundary of the 
production technology with a composite error term consisting of non-negative 
inefficiency and a noise component. Production, cost, and profit frontiers are 
commonly used to measure banks’ efficiency and productivity, e.g., Berger et al. 
(1993) and Berger et  al. (1999). Output and directional distance functions are 
becoming popular recently, due possibly to the fact that they are able to describe 
the technology relationship between multiple inputs and multiple outputs with-
out requiring information on prices, particularly when prices are not available 
or inaccurate. See, for example, Färe et al. (2005), Koutsomanoli-Filippaki et al. 
(2009), Feng and Serletis (2010), Feng and Zhang (2012), Huang et  al. (2015), 
and Huang and Chung (2017).

Distance functions must satisfy theoretical regularity properties, i.e., mono-
tonicity and curvature. Specifically, the directional output distance function 
(DODF) is non-decreasing in inputs and undesirable outputs, non-increasing in 
outputs, and jointly concave in desirable and undesirable outputs. Most previ-
ous studies in various industries’ productivity literature have failed to check or 
impose those theoretical regularity conditions, except for, e.g., Terrell (1996), 
Griffiths et al. (2000), Kleit and Terrell (2001), O’Donnell and Coelli (2005), and 
Feng and Serletis (2010, 2014), who apply a Bayesian approach to impose the 
required restrictions. Although Geweke (1986), Poirier (1995), and Feng and Ser-
letis (2010) have addressed the relative advantages of the Bayesian approach, it 
has some disadvantages. Please see, for example, Robert (2007, Chapter 11) for 
more in-depth comments on Bayesian analysis.

Kuosmanen (2008), Seijo and Sen (2011), and Yagi et al. (2018) suggest the 
use of convex non-parametric least squares (CNLS) to impose the regularity 
conditions, but this requires solving the quadratic programming (QP) problem. 
Kuosmanen and Kortelainen (2012) and Mekaroonreung and Johnson (2012) also 
rely on employing the QP formulation in the first stage and estimating technical 
efficiency in the second stage through the modified OLS. Du et al. (2013) and Li 
et al. (2017) offer a non-parametric regression model that is able to impose mono-
tonicity and curvature.

Failure to consider theoretical regularity conditions into a distance function 
may lead the estimated unconstrained function to be inconsistent with those 
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conditions, at least for a part of sample points. The subsequent calculations of 
efficiency scores and productivity changes may be unreliable, if not implausi-
ble, and lack any reference. Moreover, the violation of the monotonicity condi-
tion results in misleading partial derivatives that are further applied to calculate, 
e.g., shadow prices, elasticities, and cost shares. For instance, a negative partial 
derivative of DDF with respect to some input for some data points implies that 
an increase in that input, while holding other inputs and outputs constant, will 
decrease (increase) the inefficiency (efficiency) of the corresponding firms, which 
is economically doubtful.

The current paper examines efficiency and productivity issues for banks in Tai-
wan over the sample period 2002–2015, by imposing the theoretical regularity 
conditions on DODF without depending on a Bayesian approach or programming 
techniques. The Taiwan government passed a financial holding company (FHC) act 
in 2001, and there are now 16 FHCs operating in the island. A  financial holding 
company is a financial institution engaged in banking-related activities, offering cus-
tomers a wide range of  financial  services, such as purchasing insurance products 
and investment in securities. The commercial banks in Taiwan can be classified into 
three types. A financial holding bank (FHB) is a subsidiary of an FHC, and its scale 
is usually larger than non-financial holding banks (Non-FHBs) that do not belong to 
any financial group. A foreign bank is obligated to follow the regulations of both the 
home and host countries, and its scale is close to Non-FHBs in Taiwan.

After entering the World Trade Organization in 2002, banks in Taiwan experi-
enced either regulatory change, e.g., the “First Financial Restructuring” from 2002 
to 2003 aiming to write off the non-performing loans (NPLs) of financial institutions 
and encouraging mergers and acquisitions between banks, or financial distresses, 
e.g., the U.S. subprime crisis starting in August 2007 and the European debt cri-
sis in 2010. Whether the above events have spurred efficiency and productivity in 
this sector is an interesting and important topic worth studying. Hsiao et al. (2010) 
apply DDF to explore the efficiency of Taiwan’s banking industry using DEA. They 
find that banks have a lower operating efficiency during the FFR reform period, but 
have a higher operating efficiency in the post-reform period. Chen (2012) finds that 
public and private banks in Taiwan have similar efficiency scores and productivity 
gains, after taking account of the risk input.

We propose a stochastic approach to deal with the regularity conditions under the 
SFA framework, which can be implemented by the standard maximum likelihood 
(ML). The estimators have desirable asymptotic properties and allow for conduct-
ing statistical inferences. In contrast, non-parametric programming techniques suffer 
from the lack of statistical properties. This research appears to be the first one in 
the literature on the evaluation of banking performance that imposes the regularity 
conditions using a stochastic approach. Another advantage of our approach is that it 
will not destroy the flexibility of the translog cost function, as pointed out by, e.g., 
Diewert and Wales (1987) and Ryan and Wales (2000).1

1 We do not show the relevant results for brevity.
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We select DODF for two reasons. First, this function explicitly takes account of 
undesirables, which are byproducts that are often not marketed, and their disposal 
is often subject to regulation and hence consumes resources. Since the disposal of 
undesirables requires firms employing more resources, it is suggested that any per-
formance evaluation model consider their characteristics, e.g., Färe and Grosskopf 
(2005), Feng and Serletis (2010, 2014), Huang et  al. (2015), Huang and Chung 
(2017), to mention a few. To highlight the importance of including bad outputs we 
also estimate the output distance function (ODF) that excludes undesirables. Sec-
ond, DODF, like other forms of distance function and production function, requires 
quantity information only, which is subject to less degrees of measurement problem. 
The estimation of a cost or a profit function needs input and/or output price informa-
tion, which is criticized to be susceptible to measurement errors. Kauko (2009) and 
Feng and Serletis (2010) have mentioned this problem.

The rest of the paper is arranged as follows. Section 2 introduces the quadratic 
DODF and translog ODF, proposes the methods of imposing the monotonicity and 
curvature restrictions on DODF and ODF under a stochastic approach, and illus-
trates the decomposition of total factor productivity (TFP) changes with respect to 
DODF and ODF. Section 3 deals with data issues. Section 4 employs our method-
ology to conduct an empirical study using panel data of 51 commercial banks in 
Taiwan, discusses the effects of incorporating monotonicity and curvature with and 
without the inclusion of undesirables, and presents the estimates of TFP growth for 
both DODF and ODF. The last section concludes the paper.

We use the following diagram to illuminate the research framework of the current 
paper.
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2  Methodology

This section develops a stochastic approach to impose monotonicity and curvature 
conditions on DODF and ODF and describes the estimation procedures using ML.

2.1  Directional Output Distance Function

Input quantities are defined by x =
(
x1,… , xN

)�
∈ RN

+
 , and the output vector is 

defined as y =
(
y1,… , yM

)�
∈ RM

+
 . In this paper we identify a bad output of non-

performing loans, which is jointly produced with the desirable output of various 
loans and is denoted by b ∈ R+ . The technology set is expressed as:
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T = {(x, y, b): x can be used by banks to produce (y, b)}.
The output set P(x) is defined as:

A directional vector is written as g =
(
gy,−gb

)� , in which gy ∈ RM
+

 and gb ∈ R+ . 
We describe DODF as:

It gives the maximum amount by which a desirable (undesirable) output vector 
can be expanded (contracted) in the direction g, in order to be able to produce on the 
production frontier with a given input vector. In other words, DODF translates the 
(y, b) vector in the direction g onto the border of the technology.2

Since (y, b) is usually interior to technology P(x) , the DODF value is non-nega-
tive. A bank having a value of 

⇀

Do(x, y, b;g) = 0 means that it is already producing at 
the technology frontier, while a value of 

⇀

Do(x, y, b;g) > 0 indicates that the bank’s 
actual (x, y, b) is below the frontier. Following Färe et  al. (2005), Koutsomanoli-
Filippaki et al. (2009), Feng and Serletis (2010, 2014), Huang et al. (2015), Huang 
and Chung (2017), and many others, we specify the directional vector herein as 
g = (1, − 1), which means that a bank can reach the boundary if it simultaneously 
reduces its undesirable outputs by � units and increases outputs by � units along 
with the direction (1, − 1).

For notational brevity, we assume that the sample banks hire three inputs to pro-
duce two desirable outputs and a single undesirable output. We specify DODF as a 
flexible quadratic functional form that allows for a non-neutral technological change. 
After imposing restrictions the symmetry and translation properties and appending 
a random disturbance term of v1 ∼ N

(
0, �2

v1

)
 , we express DODF as the following 

regression equation:

where y3 = b, t signifies the time trend that is used to capture possible technological 
advances,

P(x) = {(y, b)|(x, y, b) ∈ T}.

⇀

Do(x, y, b;g) = sup{� ∶ (y + �gy, b − �gb) ∈ P(x)}.

(1)y1 =
����⃗Do

(
y2 − y1, y3 + y1, x, t;1,−1

)
− u1 + v1

����⃗Do

(
y2 − y1, y3 + y1, x, t;1,−1

)

= 𝛽0 + 𝛼2
(
y2 − y1

)
+ 𝛼3

(
y3 + y1

)
+ 𝛾1x1 + 𝛾2x2 + 𝛾3x3 + 𝛽𝜏 t +

1

2
𝛼22

(
y2 − y1

)2
+

1

2
𝛼33

(
y3 + y1

)2

+ 𝛼23
(
y2 − y1

)(
y3 + y1

)
+

1

2
𝛾11x

2

1
+

1

2
𝛾22x

2

2
+

1

2
𝛾33x

2

3
+ 𝛾12x1x2 + 𝛾13x1x3 + 𝛾23x2x3

+
1

2
𝛽𝜏𝜏 t

2 + 𝛿12x1
(
y2 − y1

)
+ 𝛿13x1

(
y3 + y1

)
+ 𝛿22x2

(
y2 − y1

)
+ 𝛿23x2

(
y3 + y1

)
+ 𝛿32x3

(
y2 − y1

)

+ 𝛿33x3
(
y3 + y1

)
+ 𝛼𝜏2t

(
y2 − y1

)
+ 𝛼𝜏3t

(
y3 + y1

)
+ 𝛾𝜏1tx1 + 𝛾𝜏2tx2 + 𝛾𝜏3tx3

2 We implicitly impose the assumption of null-joint production and weak disposability of good and bad 
outputs, and strong disposability of the good output y. Please see, e.g., Färe and Grosskopf (2005), for 
the related definitions.
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and u1 = ����⃗Do(y, b, x, t;1,−1) ∼
|||N

(
0, 𝜎2

u1

)||| denotes technical inefficiency. Terms v1 
and u1 are conventionally assumed to be statistically independent.

2.1.1  Monotonicity and Curvature Constraints

When estimating (1), its theoretical properties of monotonicity and curvature con-
ditions have to be considered, as pointed out by, e.g., Chambers (2002), Färe et al. 
(2005), Färe and Grosskopf (2005), and Feng and Serletis (2010, 2014). Specifi-
cally, monotonicity in our case requires that ����⃗Do(y, b, x, t;1,−1) be non-increasing in 
good outputs and non-decreasing in inputs and bad outputs. The cases of good and 
bad outputs require:

Equations (2)–(4) are linearly dependent, and it can be shown that Eq.  (2) plus 
(3) equals Eq. (4) minus unity, which is non-positive, i.e., (2) + (3) = (4) − 1 ≤ 0, or 
equivalently:

Equation (5) contains two restrictions, i.e., 0 ≤ (4) and (4) ≤ 1 , meaning that the 
set of restrictions (2)–(4) is the same as (3) and (5) in essence. We therefore choose 
to impose restrictions (3) and (5) on (1).

The monotonicity restrictions in (2)–(4) ensure that the good and bad outputs 
have non-negative shadow prices. See, for example, Färe et al. (2005).3 Specifically, 
the condition 𝜕����⃗Do∕𝜕yi ≤ 0 , i = 1, 2, ( �Do∕�y3 ≥ 0 ), implies that a bank’s technical 
inefficiency does not increase (decrease) when it can produce more of any output (a 
bad output) under a given input mix. The property �Do∕�xn ≥ 0 , n = 1, 2, 3, implies 
that a bank’s technical inefficiency does not decrease when it hires more of an input 
to produce the same levels of desirables.

Note that (3) and (5) are inequalities that need to be further transformed into 
equalities, i.e.:

(2)

𝜕����⃗Do

𝜕y1
= −1 − 𝛼2 + 𝛼3 − 𝛼22

(
y2 − y1

)
+ 𝛼33

(
y3 + y1

)
− 𝛼23

(
y3 + y1

)
+ 𝛼23

(
y2 − y1

)

− 𝛿12x1 + 𝛿13x1 − 𝛿22x2 + 𝛿23x2 − 𝛿32x3 + 𝛿33x3 + 𝛼𝜏2t + 𝛼𝜏3t ≤ 0

(3)
𝜕����⃗Do

𝜕y2
= 𝛼2 + 𝛼22

(
y2 − y1

)
+ 𝛼23

(
y3 + y1

)
+ 𝛿12x1 + 𝛿22x2 + 𝛿32x3 + 𝛼𝜏2t ≤ 0

(4)
�

⇀

Do

�y3
= �3 + �33

(
y3 + y1

)
+ �23

(
y2 − y1

)
+ �13x1 + �23x2 + �33x3 + ��3t ≥ 0.

(5)0 ≤ (4) ≤ 1.

3 Färe et  al. (2005) estimate the stochastic DODF without imposing monotonicity, which violates the 
monotonicity conditions 57 out of 209 times in 1993 and 20 out of 209 times in 1997.
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Here, we first subtract a non-negative random variable (u) from the right-hand 
side of the equation with the inequality sign “ ≤ 0 ” and add a non-negative random 
variable (u) to the right-hand side of the equation with the inequality sign “ ≥ 0 ”. 
Terms uj , j = 2, 3, 4, are three non-negative random variables and assumed to have 
half-normal distributions for simplicity, i.e., uj ∼

||||N
(
0, �2

uj

)|||| . They can be viewed 

like technical inefficiency. Since their presence in (6)–(8) is to assure that the equal-
ity signs hold, at least theoretically, it is not suggested to presume that they have 
some complex distributions, like the truncated normal or Gamma distribution.4 
Next, we add the two-sided error terms of v2 , v3 , and v4 to (6)–(8), respectively, in 
order to reflect random shocks and make them become regression equations. Those 
three error terms are conventionally assumed to be normally distributed with zero 
means and constant variances, i.e., vj ∼ N

(
0, �2

vj

)
 , j = 2,…, 4. They are also assumed 

to be respectively independent of uj , j = 2,…, 4.
For the cases of inputs, monotonicity requires that DODF is non-decreasing in 

inputs. Following the same rule as (6)–(8), we transform the three inequalities into 
the following three regression equations:

The foregoing assumptions on v and u are also applicable to (9)–(11) and hence 
ignored here. It is worth stressing that the presence of uj , j = 2,…, 7, is the core of the 
current paper, because their existence in (6)–(11) ensures those inequalities (mono-
tonicity property) intact in essence, on the one hand, and transforms the inequality 
signs into equalities, on the other hand.

Curvature requires ����⃗Do(y, b, x, t;1,−1) be jointly concave in desirable and undesir-
able outputs. Let F be the Hessian matrix of DODF with respect to good and bad 
outputs, i.e.:

(6)�2 + �22
(
y2 − y1

)
+ �23

(
y3 + y1

)
+ �12x1 + �22x2 + �32x3 + ��2t = v2 − u2

(7)�3 + �33
(
y3 + y1

)
+ �23

(
y2 − y1

)
+ �13x1 + �23x2 + �33x3 + ��3t = v3 + u3

(8)
�3 + �33

(
y3 + y1

)
+ �23

(
y2 − y1

)
+ �13x1 + �23x2 + �33x3 + ��3t − 1 = v4 − u4.

(9)�1 + �11x1 + �12x2 + �13x3 + �12
(
y2 − y1

)
+ �13

(
y3 + y1

)
+ ��1t = v5 + u5

(10)�2 + �22x2 + �12x1 + �23x3 + �22
(
y2 − y1

)
+ �23

(
y3 + y1

)
+ ��2t = v6 + u6

(11)
�3 + �33x3 + �13x1 + �23x2 + �32

(
y2 − y1

)
+ �33

(
y3 + y1

)
+ �23t = v7 + u7

4 It is noteworthy that if different distributions are assumed, then the resulting parameter estimates and 
the number of constraint violations may change somewhat.
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According to Morey (1986), concavity in outputs will be confirmed if and only if 
all the principal minors of F that are of odd-numbered order are non-positive and all 
the principal minors that are of even-numbered order are non-negative. The curva-
ture conditions imply that:

1. 

2. 
 5The above two sets of inequality restrictions involve unknown parameters only.

Redefine �22 and �33 as �22 = −a2
22

 and �33 = −a2
33

 , respectively. We then esti-
mate a22 and a33 , instead of the original �22 and �33 . This technique ensures that the 
concavity condition holds and is in the same spirit as Wiley, Schmidt, and Bramble 
(1973) and Diewert and Wales (1987). Equation (13) is difficult to directly impose 
on (1). However, the imposition of (12) is usually sufficient to ensure (13) to hold. 
If the restriction of (13) fails to hold by chance, then we suggest re-estimating (1) 
by giving a different set of initial values for the unknown parameters until all of 
the inequality restrictions are met.6 For the case of ODF the inequality restrictions, 
derived by the curvature conditions, contain the unknown parameters and input and 
output variables, which can be transformed into equalities. Please see Eqs. (36)–(39) 
in the “Appendix” for details.

2.1.2  Estimation Procedure

Equations (1) and (6)–(11) construct a system of regressions with composed errors. 
Since Eqs.  (6)–(8) are linearly dependent, we arbitrarily drop (7) from the system 
of equations and propose estimating the remaining six equations simultaneously by 
ML. In this manner, we can similarly impose monotonicity on the DODF of (1) to 
the usage of a Bayesian approach. To simplify the derivation of the likelihood func-
tion, we assume that all of the seven composed errors, either v + u or v − u, in those 
equations are statistically independent; otherwise, the copula methods used by, e.g., 
Lai and Huang (2013), Amsler et al. (2014), and Huang et al. (2018), or the closed 
skew normal family of distributions developed by Chen et al. (2014) have to be uti-
lized to get the required joint distributions. The resulting likelihood function will be 
complicated and quite difficult to converge during the estimation process.

It is widely known that the probability density function (pdf) of the composed 
error of � = v ± u can be shown to be:

F1 =

[
�22 �23
�23 �33

]
.

(12)
�22 ≤ 0 and �33 ≤ 0,

(13)||F1
|| =

||||
�22 �23
�23 �33

|||| = �22�33 − �2
23

≥ 0.

5 It can be shown that ||F2
|| =

||||
�22 �23
�23 �33

|||| = �22�33 − �2

23
= ||F3

|| =
||||
�11 �13
�13 �33

|||| =
||F1

|| ≥ 0.

6 Since our likelihood function may have multiple local maxima, a change in initial conditions tends to 
result in distinct parameter estimates.
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where � = �u∕�v and � =
√

�2
u
+ �2

v
 . The joint pdf for a bank is simply the multipli-

cative of (14) over the seven composed errors, and the corresponding likelihood 
function for the entire sample can be obtained by multiplying the above joint pdf 
over each bank and the sample period.

The independence assumption among those composed errors appears to be 
strong, but in fact harmless, since the parameter estimators are still consistent and 
the inclusion of (6)–(11) into the likelihood function is mainly for taking monoto-
nicity into account such that the estimated parameters of (1) are in line with produc-
tion theories at each sample point, instead of enhancing the efficiency of the estima-
tors.7 It is noteworthy that the presence of Eqs. (6)–(11) in the likelihood function 
does not increase the number of parameters to be estimated, except for the variances 
of vj and uj , j = 2,…, 7, in those equations.

Recall that the concavity conditions of (12) and (13) involve only the unknown 
parameters and omit all input and output variables. We thus do not translate them 
from inequality signs into equality signs by appending composed errors like 
(6)–(11). Rather, we recommend jointly estimating (1), (6), and (8)–(11) by ML and 
examine whether the estimated coefficients satisfy (12) and (13). If the conditions 
are violated, then we adjust the starting values of the set of parameters and re-run 
the program until the conditions are met.

Once the coefficient estimates are obtained, we can use them to calculate the level 
of technical inefficiency (TI) according to the following formula:

where �1 = v1 − u1 , �2
1
= �2

v1
+ �2

u1
 , �∗1 = −�1�

2
u1
∕�2

1
 , and �2

∗1
= �2

u1
�2
v1
∕�2

1
 . Since 

the scale of our sample banks varies considerably, we further transform the TI level 
into the measure of technical efficiency (TE) to eliminate the scale differences, i.e.,

where “^” over a variable means the predicted value of that variable. Note that the 
technical efficiency score of ����⃗TE must lie between 0 and 1.

A caveat worth mentioning is that the resulting set of slope coefficient estimates 
may not be able to insure that all monotonicity conditions are satisfied for all data 
points. This can be ascribable to the presence of the disturbances vj’s, j = 2,…, 7, 
inherent in Eqs. (6)–(11). Perhaps there are some observations undergoing sizeable 

(14)f (�) =
2

�
�
(
�

�

)
�
(
±��

�

)
,

(15)TI = E
(
u1|�1

)
= �∗1 + �∗1

�
(

−�∗1

�∗1

)

1 −�
(

−�∗1

�∗1

) ,

(16)����⃗TE = 1 −
∧

TI ∕

∧

����⃗Do,

7 Note that our simultaneous estimation procedure with respect to (2) and (7)–(12) can still raise the effi-
ciency of the estimators somewhat due to the imposition of cross-equation restrictions on the coefficients 
under study.
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and favorable or unfavorable impacts, such that vj − uj > 0 or vj + uj < 0 , j = 2,…, 7, 
leading them to be outliers or extreme input or output mixes and accordingly con-
flicting with monotonicity. Viewed from this angle, this may not be regarded as a 
disadvantage, as opposed to the use of a Bayesian approach, by which the resulting 
parameter estimates guarantee the restrictions to be observed for all data points irre-
spective of the occurrence of heavy shocks.

The “Appendix” describes how to impose monotonicity and curvature on an 
ODF, under the framework of a stochastic approach, and addresses the estimation 
procedure.

2.2  TFP Changes

We can use the parameter estimates of DODF and ODF to calculate TFP changes for 
the sample banks due to the availability of panel data. According to Trivedi (1981) 
and Diewert and Fox (2008), continuous time Divisia indices can be approximated 
by discrete-time Törnqvist formulae. Under the case of DODF, Feng and Serletis 
(2014) approximate the continuous-time technological change component of the 
Divisia–Luenberger productivity index  (TCL) between periods t and t + 1 by:

and the efficiency change  (ECL) component by:

where Z(t) ≡ (y(t), x(t)) . The sum of (17) and (18) yields the discrete-time Divi-
sia–Luenberger productivity index  (PGL):

A positive (negative) value of  TCL means that the efficient frontier shifts upward 
(downward) over time, corresponding to technological progress (regress). A posi-
tive (negative) value of  ECL implies that the actual production level of a bank is 
moving toward (away from) the efficient frontier. Taking the natural exponent of 
(19), one obtains a Malmquist-type index, akin to the Malmquist–Luenberger pro-
ductivity index proposed by Chung et  al. (1997). The difference between them is 
the chosen directional vector, where (19) is constant, as opposed to y(t) used by the 
Malmquist–Luenberger productivity index.

(17)

TCL(t, t + 1) ≡
1

2

⎧
⎪⎨⎪⎩
ln

⎡⎢⎢⎣
1 +

⇀

Do(Z(t), t + 1;g)

1 +
⇀

Do(Z(t), t;g)

⎤⎥⎥⎦
+ ln

⎡⎢⎢⎣
1 +

⇀

Do(Z(t + 1), t + 1;g)

1 +
⇀

Do(Z(t + 1), t;g)

⎤⎥⎥⎦

⎫⎪⎬⎪⎭
,

(18)ECL(t, t + 1) ≡ −ln

⎡⎢⎢⎣
1 +

⇀

Do(Z(t + 1), t + 1;g)

1 +
⇀

Do(Z(t), t;g)

⎤⎥⎥⎦
,

(19)

PGL(t, t + 1) ≡
1

2

⎧
⎪⎨⎪⎩
ln

⎡⎢⎢⎣
1 +

⇀

Do(Z(t), t;g)

1 +
⇀

Do(Z(t + 1), t;g)

⎤⎥⎥⎦
+ ln

⎡⎢⎢⎣
1 +

⇀

Do(Z(t), t + 1;g)

1 +
⇀

Do(Z(t + 1), t + 1;g)

⎤⎥⎥⎦

⎫⎪⎬⎪⎭
.
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Under the case of ODF, Feng and Serletis (2014) show the respective components 
of technological change  (TCS) and efficiency change  (ECS) as:

The positive (negative) values of  TCS and  ECS have similar implications to  TCL 
and  ECL, respectively. The sum of the above two equations yields the TFP index 
 (PGS):

Finally, taking the natural exponent of (22), we obtain the Malmquist (output-
oriented) TFP change index between period t and period t + 1, as suggested by Färe 
et al. (1994).8

3  The Data

We extract a total of 51 commercial banks in Taiwan from the Taiwan Economic 
Journal database, spanning 2002–2015, i.e., after the country’s entrance into WTO. 
Five out of the 51 banks are foreign banks (FORB), fourteen of them are financial 
holding banks (FHB), and the remaining are non-financial holding banks (Non-
FHB).9 The resulting unbalanced panel data contain 526 bank-year observations. We 
identify three inputs, two good outputs, and an undesirable according to the inter-
mediation approach, proposed by Sealey and Lindley (1977). Specifically, banks are 
treated as financial intermediaries employing deposits ( x1 ), capital ( x2 ), and labor 
( x3 ) to produce two desirable outputs, i.e., investments ( y1 ) and loans ( y2 ), and a 
single undesirable, i.e. non-performing loans (NPL, y3 ). Input x1 includes various 
deposits and borrowed money, x2 is defined as the value of net fixed assets, and x3 
is defined as the number of full-time equivalent employees. Output y1 is defined as 
other earning assets, including government and corporate securities, y2 is the sum 
of short- and long-term loans, and the bad output of y3 is defined as NPLs that 
are jointly produced with loans. All of the above variables, except for labor, are 

(20)TCS(t, t + 1) ≡
1

2

{
ln

[
Do(Z(t), t + 1)

Do(Z(t), t)

]
+ ln

[
Do(Z(t + 1), t + 1)

Do(Z(t + 1), t)

]}
,

(21)ECS(t, t + 1) ≡ ln

[
Do(Z(t + 1), t + 1)

Do(Z(t), t)

]
.

(22)PGS = TCS + ECS

8 Although the use of ODF allows one to decompose the Malmquist TFP change index into three items, 
i.e., TCS, ECS, and SC (a scale component), DODF is unable to address the term of SC. Since this paper 
mainly focuses on the use of DODF, we follow Feng and Serletis (2014) who ignore this scale compo-
nent.
9   A  financial holding company (FHC) is a  financial  institution engaged in  banking-related activities, 
offering customers a wide range of financial services, such as purchasing insurance products and invest-
ment in securities. An FHB is a subsidiary of an FHC, and its scale is usually larger than Non-FHBs, 
which do not belong to any financial group. Here, a foreign bank is obligated to follow the regulations of 
both the home and host countries, and its scale is close to Non-FHBs in Taiwan.
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measured in terms of millions of New Taiwan dollars (NTD) and are deflated by the 
consumer price index (CPI) of Taiwan with the base year of 2011. Table 1 summa-
rizes the descriptive statistics for the above input and output variables.

During the sample period, the mean values of y1 and y2 grow with time until 
2007. After then, the growth rates slow down due to the occurrence of the U.S. sub-
prime financial crisis. The average NPL decreases in the sample period, indicating 
that the degrees of financial soundness of the sample banks improve over time. As 
for the three inputs, the average values of deposits and labor increase steadily over 
time, while average fixed assets initially go up until 2008 and stay stable after then.

Recall that there are three forms of banks, i.e., FHB, Non-FHB, and FORB. 
Generally speaking, FHB has the largest scale in terms of loans, deposits, and fixed 
assets, followed by Non-FHB and FORB. As far as the undesirable output is con-
cerned, Non-FHB has the highest average y3 until 2005, and FHB experiences the 
highest NPLs thereafter, followed by Non-FHB and FORB. Figure  1 depicts the 
trends of the six variables.

4  Empirical Results

4.1  Parameter Estimates

Table 2 shows the coefficient estimates of DODF with and without the imposition 
of regularity properties, denoted by restricted and unrestricted models, respectively. 
As expected, the log-likelihood value of the restricted model is far less than that 
of the unrestricted model. The vast majority of the parameter estimates for both 
models are significant at least at the 5% level. Although most of their slope param-
eters (except two) have the same signs, the standard errors of the restricted model 
are much smaller than those of the corresponding unrestricted model. This can be 
attributed to the fact that the former takes the regularity conditions into account and 
adopts a simultaneous estimation procedure, which, in fact, imposes the cross-equa-
tion restriction. This leads the coefficient estimates to be more efficient, as stressed 
by footnote 3.

Table 1  Sample statistics

*Measured by millions of NTD and deflated by Taiwan’s CPI with the base year of 2011
**Measured by number of persons

Mean SD Minimum Maximum

investments ( y1)* 154,173.12 191,484.50 333.55 1,394,612.12
loans ( y2)* 504,108.06 512,893.02 7786.71 2,298,267.25
NPL ( y3)* 7732.08 12,979.60 0.00 105,588.77
deposits ( x1)* 671,655.43 679,729.70 1018.73 3,718,464.50
net fixed assets ( x2)* 12,718.39 16,421.74 535.88 105,981.63
employees ( x3)** 3541.50 2437.54 382.00 10,708.00
Number of observations 526
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Table 3 presents the coefficient estimates of ODF with and without the consid-
erations of monotonicity and curvature constraints, also denoted by restricted and 
unrestricted models, respectively. Only 14 out of 41 parameter estimates from the 
restricted model attain significance at least at the 10% level, due possibly to the 
exclusion of undesirables from the model such that ODF is unable to appropriately 
characterize the production technology for banks. In addition, the restricted model 
estimates 18 additional distribution parameters for � and � , which largely reduce the 
degrees of freedom of the restricted model. The unrestricted model is found to have 
15 out of 23 significant estimates at least at the 10% level, and the log-likelihood 
value of the restricted model is far less than that of the unrestricted model.

On the basis of the foregoing discussion, we argue that the imposition of the theo-
retical properties causes substantial differentiation of the coefficient estimates among 
the restricted and unrestricted models for both DODF and ODF, in terms of their 
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Table 2  Parameter estimates of DODF

Variable Restricted model Un-restricted model

Estimate Standard error Estimate Standard error

Intercept − 7.28E+08*** 1.73E−01 − 7.28E+08*** 3.521E+01
x1 − 3.45*** 3.79E−09 − 3.5030*** 1.30E−06
x2 9.23E+01*** 4.21E−08 9.2192 E+01*** 1.51E−05
x3 1.67E+01*** 2.57E−07 1.4556 E+01*** 8.29E−05
y2 − y1 1.34E+01*** 3.84E−09 1.3455 E+01*** 1.33E−06
y3 + y1 1.87*** 6.06E−09 1.8963*** 1.96E−06

0.5x2
1

6.69E−08*** 4.95E−17 6.70E−08*** 2.03E−14

0.5x2
2

1.20E−05*** 6.72E−15 1.20E−05*** 3.51E−12

0.5x2
3

1.10E−03*** 5.73E−13 1.10E−03*** 1.65E−10

0.5
(
y2 − y1

)2 − 1.25E−07*** 4.59E−17 1.75E−07*** 1.66E−14

0.5
(
y3 + y1

)2 − 1.09E−07*** 1.73E−16 3.91E−07*** 7.59E−14

x1x2 3.12E−06*** 6.04E−16 2.64E−07*** 2.52E−13
x1x3 1.86E−06*** 4.13E−15 1.86E−06*** 1.71E−12
x2x3 7.46E−05*** 6.15E−14 7.47E−05*** 2.31E−11

x1
(
y2 − y1

)
− 1.14E−07*** 4.78E−17 − 1.15E−07*** 1.75E−14

x1
(
y3 + y1

)
− 1.22E−07*** 7.27E−17 − 1.22E−07*** 3.13E−14

x2
(
y2 − y1

)
2.60E−08*** 5.85E−16 2.90E−08*** 2.13E−13

x2
(
y3 + y1

)
− 1.80E−06*** 7.16E−16 − 1.80E−06*** 3.26E−13

x3
(
y2 − y1

)
− 6.58E−06*** 3.90E−15 − 6.58E−06*** 1.71E−12

x3
(
y3 + y1

)
− 1.54E−05*** 6.94E−15 − 1.54E−05*** 2.79E−12

(
y2 − y1

)(
y3 + y1

)
1.05E−07*** 7.31E−17 2.05E−07*** 2.94E−14

t − 7.30E+05*** 1.73E−04 − 7.30E+05*** 3.53 E−02

0.5t2 − 3.66E+02*** 8.68E−08 − 3.6656 E+02*** 1.77E−05

x1t − 1.74E−03*** 1.89E−12 − 1.75E−03*** 6.51E−10
x2t 4.63E−02*** 2.10E−11 4.64 E−02*** 7.57E−09
x3t 7.41E−03*** 1.29E−10 7.84E−03*** 4.15E−08(
y2 − y1

)
t 6.74E−03*** 1.92E−12 6.75E−03*** 6.65E−10

(
y3 + y1

)
t 4.06E−04*** 3.03E−12 4.22E−04*** 9.83E−10

�1 7.53E−01*** 4.50E−11 6.9893*** 8.34E−08
�1 1.01*** 7.44E−11 7.6798 9.5622E+03
�2 2.10E−01*** 5.53E−02
�2 2.99 3.73
�4 1.97** 9.28E−01
�4 4.00E+01 4.99E+07
�5 5.68E−02*** 1.32E−02
�5 1.34 1.59
�6 4.52E−01*** 1.74E−03
�6 3.33E+02*** 1.28
�7 1.17*** 2.06E−02
�7 1.18*** 4.06E−01
Log-likelihood − 4.35E+12 − 2.38E+09
# of observations 526 526
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signs, magnitudes, and standard errors. We now exploit the coefficient estimates in 
Tables 2 and 3 to check whether the regularity constraints are convincing or not, and 
the outcomes are shown in Table 4. Obviously, the regularity-constrained models of 
both DODF and ODF outperform the respective unrestricted models, in terms of the 
number of observations that contradict monotonicity and curvature conditions. Feng 
and Serletis (2010, 2014) obtain similar outcomes using a Bayesian approach. With 
regard to DODF, all sample points satisfy the monotonicity condition, except for 10 
and 18 observations of �

⇀

Do∕�x2 and �
⇀

Do∕�x3 , respectively. Eight of the 10 observa-
tions come from four banks that are close to failure, and the remaining two obser-
vations correspond to the first-year data from two newly established banks. The 18 
observations relate to three large commercial banks granting huge amounts of loans, 
along with sizeable NPLs. Those 28 observations may be caused by either bad luck 
or extreme values. Using the parameter estimates in Table 2, we can readily show that 
the curvature conditions of (12) and (13) are proved. Our stochastic approach seems 
successful in the imposition of the regularity properties at each data-point, while it 
tolerates a few exceptional sample points arising from, e.g., outlier and/or bad luck. 
Diewert and Wales (1987) and Feng and Serletis (2015) obtain similar results.

Turning to ODF, Table 4 uncovers that merely four out of the nine restrictions 
have quite small numbers of observations inconsistent with the required restrictions. 
In effect, the total number of such observations is only 11, caused by similar reasons 
to the case of DODF after inspecting the individual sample points. Conversely, 8 
out of the 9 restrictions are violated by the unrestricted ODF with such tremendous 
observations. Although most coefficient estimates of the unrestricted ODF attain sta-
tistical significance, it suffers from the serious problem of inconsistency with theo-
retical regularity conditions. We thus do not recommend it to examine such issues as 
shadow prices of pollutants, economies of scale, efficiency scores, and TFP changes.

4.2  Technical Efficiency

Given that the regularity-constrained models are preferable to the unconstrained 
models, we only compute and present average efficiency scores and TFP change 
indices over the sample period with the parameter estimates from the constrained 
models of DODF and ODF. Table 5 reports the average efficiency scores for both 
DODF and ODF. In the context of DODF, the average efficiency score of all banks 
is equal to 0.797, which is lower than that for ODF at 0.862. Although a direct com-
parison of the estimated efficiency measures between DODF and ODF is invalid, 
because they are evaluated along different directions, i.e., g = (1, − 1) and g(t) = (y(t), 
x(t)), respectively, this result is still in line with expectation due to the omission of 
undesirables by ODF, i.e., NPLs in our case. Undesirables are usually not freely dis-
posable and are subject to regulations. Banks have to hire more resources to “clean 

Table 2  (continued)

*, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.  �j = �uj∕�vj and 
�j =

√
�2

uj
+ �2

vj
 , j = 1, 2, 4,…, 7
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Table 3  Parameter estimates of ODF

Variable Restricted model Un-restricted model

Estimate Standard error Estimate Standard error

Intercept 214.6690 1827.2200 1793.1300 2143.4900
log

(
x1
)

46.5233*** 10.3725 65.0475*** 12.3403

log
(
x2
)

− 5.1635 7.0618 5.0384 7.6752

log
(
x3
)

− 58.7325*** 14.6404 − 92.2874*** 14.3351
log(y2∕y1) 1.9978 4.4754 4.0877 6.2115

0.5
[
log

(
x1
)]2 − 0.4778*** 0.0928 − 0.5491*** 0.0269

0.5
[
log

(
x2
)]2 0.0163 0.0439 0.0656* 0.0367

0.5
[
log

(
x3
)]2 − 0.6695*** 0.1234 − 0.8582*** 0.1120

0.5
[
log(y2∕y1)

]2 0.1871*** 0.0521 0.1853*** 0.0183

log
(
x1
)
log

(
x2
)

0.1354*** 0.0422 0.0570 0.0435

log
(
x1
)
log

(
x3
)

0.5085*** 0.0990 0.7689*** 0.0607

log
(
x2
)
log

(
x3
)

− 0.2180*** 0.0585 − 0.1809*** 0.0512

log
(
x1
)
log(y2∕y1) 0.0704*** 0.0171 0.1167*** 0.0252

log
(
x2
)
log(y2∕y1) − 0.0171* 9.74E−03 − 0.0537*** 0.0201

log
(
x3
)
log(y2∕y1) − 0.0605** 0.0237 − 0.0589* 0.0354

t 0.2785 1.8364 1.8851 2.1480
t2 1.85E−04 9.23E−04 9.91E−04 1.08E−03

log
(
x1
)
t 0.02384*** 5.09E−03 0.0331*** 6.18E−03

log
(
x2
)
t − 2.42E−03 3.60E−03 2.41E−03 3.84E−03

log
(
x3
)
t − 0.0288*** 7.11E−03 − 0.0457*** 7.20E−03

log(y2∕y1)t 9.79E−04 2.26E−03 2.05E−03 3.12E−03
�1 1.1356 1.2183 0.1900*** 6.84E−03
�1 1.1087 2.1530 2.8422*** 0.3184
�2 0.8893 8.5168
�2 2.0203 45.4962
�4 1.9255 66.2167
�4 7.7808 660215.00
�5 0.1782 0.5874
�5 0.9826 19.3614
�6 1.3600 24.6488
�6 126,623.00 315,287.00
�7 0.6198 1.6987
�7 2.2400 35.8449
�8 0.6744*** 0.1793
�8 1.0433 95.2595
�9 0.6821 0.7162
�9 0.2741 16.1188
�10 3.7953 95.5812
�10 3.8592 102.0010
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up” NPLs, which tend to pull down banks’ managerial abilities. These figures imply 
that the ratios of the actual level of output to the potential level of output are 79.7% 
and 86.2%, respectively. To achieve the production frontier the sample banks have to 
increase their output quantities by 20.3% and 13.8%, respectively.

*, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.  �j = �uj∕�vj and 
�j =

√
�2

uj
+ �2

vj
 , j = 1, 2, 4,…, 11

Table 3  (continued)

Variable Restricted model Un-restricted model

Estimate Standard error Estimate Standard error

�11 0.2327 0.4680
�11 0.1897 5.3894
Log-likelihood − 49,909.90 3.5568
# of observations 526 526

Table 4  Number of observations contradicts with monotonicity and curvature

𝜕�⃗Do

𝜕y1
≤ 0

𝜕�⃗Do

𝜕y2
≤ 0

𝜕�⃗Do

𝜕y3
≥ 0

𝜕�⃗Do

𝜕x1
≥ 0

𝜕�⃗Do

𝜕x2
≥ 0

𝜕�⃗Do

𝜕x3
≥ 0

DODF
 Restricted model 0 0 0 0 10 18
 Un-restricted model 0 205 0 508 358 240

� lnDo

� ln y1
≥ 0

� lnDo

� ln y2
≥ 0

� lnDo

� ln x1
≤ 0

� lnDo

� ln x2
≤ 0

� lnDo

� ln x3
≤ 0

ODF
 Restricted model 6 0 0 0 0
 Un-restricted model 96 0 1 389 399

F312 F313 F323 F
 Restricted model 1 1 0 3
 Un-restricted model 145 526 291 416

Table 5  Average efficiency 
scores for DODF and ODF 
across bank groups

Mean SD Minimum Maximum

DODF
 All Banks 0.7967 0.1491 0.4982 1.0000
 Non-FHB 0.7332 0.1493 0.4982 1.0000
 FHB 0.8853 0.1016 0.5834 1.0000
 FORB 0.8659 0.0665 0.6500 0.9650

ODF
 All Banks 0.8619 0.0776 0.5895 0.9539
 Non-FHB 0.8879 0.0634 0.6258 0.9539
 FHB 0.8153 0.0828 0.5895 0.9369
 FORB 0.8894 0.0253 0.8423 0.9274
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Under the framework of DODF, FHBs lead the remaining two forms of banks, 
followed by FORBs and then Non-FHBs. The difference between FHBs and Non-
FHBs and the difference between FORBs and Non-FHBs are significant at the 1% 
level, but the difference between FHBs and FORBs is insignificant. Conversely, the 
ODF results reveal that FORBs and Non-FHBs outperform FHBs, and the differ-
ences attain the 1% level of significance, while the difference between FORBs and 
Non-FHBs is insignificant.

An interesting issue worth studying is whether the efficiency measure from ODF, 
which is unable to consider the bad output, NPLs, leads to suspicious outcomes 
about technical efficiency. If ODF produces valid efficiency scores for situations 
where undesirables exist, then the rankings should be roughly in line with those 
from the DODF for individual banks.

To formally inspect whether the efficiency scores measured against DODF and 
ODF generate similar rankings, we calculate the Spearman rank correlation coef-
ficient ( � ) between the constrained DODF and ODF for each sample year, as sug-
gested by Feng and Serletis (2010, 2014). The formula is:

where Ranki1 is the rank of bank i (= 1,…, n) based on DODF, and Ranki2 is the rank 
of the same bank based on ODF. A value of ρ = − 1 (+ 1) indicates a perfect negative 
(positive) correlation, while a value of ρ = 0 implies no correlation. We also calcu-
late 95% confidence intervals for � using SAS software.

Column 1 of Table  6 presents the results. The values of � across the sample 
period range between − 0.55 and − 0.85, indicating that the ranking of the efficiency 
measures yielded from DODF is negatively correlated with that from ODF. The 95% 
confidence intervals in the table reveal that such a highly negative correlation is sig-
nificantly different from zero at the 5% level. This result verifies that those two dis-
tance functions tend to give contradictory efficiency rankings, and that the preclu-
sion of bad outputs is apt to invert the ranking of individual banks. Thus, the radial 
ODF is not appropriate for conditions where undesirables are present.

The U.S. subprime mortgage crisis, occurring between 2007 and 2010, has heav-
ily impacted the economic activities of the U.S., Europe, and other economies, 
including Taiwan, for years. We thus split the sample period into two sub-periods: 
Pre-2007 (2002–2007) and Post-2007 (2008–2015). Table  7 presents the average 
technical efficiency measures in the two sub-periods across two types of banks, i.e., 
FHBs and Non-FHBs.10 The results from DODF prove that the performance of both 
types of banks in the second sub-period surpasses the performance in the first sub-
period. The last column of Table 7 shows the p values of testing for the null hypoth-
esis that the mean efficiencies of the Pre- and Post-2007 sub-periods are equal. All 
tests are decisively rejected at the 1% level of significance, which may be ascribable 

(23)� = 1 −
6
∑n

i=1

�
Ranki1 − Ranki2

�2
n(n2 − 1)

,

10 Four out of the five foreign banks started their businesses in Taiwan after 2007. Hence, there are no 
observations for the four banks prior to 2007.
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to the fact that, facing such severe impacts, the sample banks devoted efforts to 
enhance production efficiency and reduce NPLs in order to weather the crisis.

The finding that the technical efficiency score of the banks in Taiwan improves 
with time is consistent with Hsiao et al. (2010), who apply DEA to evaluate 40 com-
mercial banks in Taiwan over the period 2000–2005. On the contrary, ODF tells a 
reverse story. The sample banks’ efficiency worsens after the crisis due potentially to 
the preclusion of undesirables from the model.

4.3  TFP Change Indices

We calculate the individual components of TFP change indices, based on (18)–(23), 
with respect to DODF and ODF for the sample banks, with the results in Table 8. 
On the basis of DODF, element TC dominates TFP change indices, since its average 
value (2.32% per annum) exceeds that of EC (− 0.39% per annum). More specifi-
cally, item TC is found to be the main driver of productivity gains for Non-FHBs 
and FHBs, while FORBs experience technological regress, along with the great-
est efficiency improvements among the three forms of banks. This implies that 
even when the undesirable is taken into account, innovation acts as a crucial role in 
stimulating productivity growth in Non-FHBs and FHBs. The failure of undertak-
ing new innovations by FORBs may be justified by the fact that four out of the five 
FORBs are newly established, such that the benefit of learning-by-doing does not 
have enough time to be accumulated. We find a downward trend in the growth rate 
of TFP, governed by TC, since the absolute average values of  PGL,  TCL, and  ECL in 
the Pre-2007 period (4.95%, 6.61%, − 1.66%) exceed those in the Post-2007 period 
(− 1.05%, − 1.92%, 0.86%).

Our findings are congruent with Feng and Serletis (2010) and Feng and Zhang 
(2012). The former estimate ODF subject to theoretical regularity under a Bayesian 
framework in an attempt to examine the TFP change of large U.S. banks spanning 
2000–2005, while the latter estimate a true random effects stochastic ODF model 
also under a Bayesian framework and compare the productivity and efficiency of 
large banks and community banks in the U.S. over the period 1997–2006. Both 
papers verify a clear descending trend of TFP change for the sample banks, and the 
technical change component dominates this trend. Feng and Serletis (2014) take 
undesirables into account and estimate DODF and ODF, using aggregate data on 
15 OECD countries over the period 1981–2000. Both papers support that technical 
change is the driving force of TFP change. Using DEA, Chang et al. (2012) probe 
the sources of productivity growth for 19 Chinese commercial banks over the period 
2002–2009. Based on the measure of the Luenberger productivity index derived 
from a directional distance function, they conclude that technological gains out-
weigh the efficiency regressions and constitute the driving force of TFP growth. The 
forgoing statements lead us to infer that the component of technical change is apt to 
be the primary source of productivity gains.

Although our ODF suggests that the element EC is the dominant determinant of 
TFP indices, it deteriorates over time, resulting in productivity losses for the three 
types of banks, even though technological advance prevails. FHBs in Taiwan are 
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specifically undergoing quite fast rates of efficiency regression (− 9.99% per annum) 
and productivity reduction (− 7.90% per annum). The dominance of efficiency 
improvement denotes that when good outputs alone are incorporated, a retreat in 
efficiency, instead of a technological advance, plays a pivotal role in the determina-
tion of TFP indices. This finding differs from that of our DODF and is also incon-
sistent with, e.g., Feng and Serletis (2010, 2014) and Feng and Zhang (2012). We 
find a declining trend in the growth rate of TFP, since the average values of  PGS, 
 TCS, and  ECS in the Pre-2007 period (− 2.85%, 1.07%, − 3.64%) exceed those in 
the Post-2007 period (− 3.22%, 1.10%, − 4.32%). However, the driving force comes 
from EC, instead of TC, thus conflicting with the outcomes of DODF.

To examine whether the Divisia–Luenberger productivity index produces an anal-
ogous ranking to the conventional Feng and Serletis (2010) productivity index, we 
compute the Spearman rank correlation coefficient between the two indices for each 
of the sample years, as suggested by Feng and Serletis (2010, 2014). The formula 
is the same as (23), and the results are shown in Table 6, columns 2–4. According 
to the 95% confidence intervals, the vast majority of the correlation coefficients are 
insignificantly different from zero, implying that there is little correlation between 
the two rankings in these years. We assert that the exclusion of bad outputs is likely 
to substantially alter the ranking of individual banks, and thus the conventional Feng 

Table 7  Average efficiency 
scores before and after the 2007 
financial crisis

a Testing for the hypothesis that the mean values of the Pre-2007 
(2002–2007) and Post-2007 (2008–2015) sub-periods are equal

Mean SD Minimum Maximum p  valuea

DODF
 All Banks
  Pre-2007 0.7495 0.1421 0.4982 1.0000 5.49E−13
  Post-2007 0.8391 0.1426 0.5220 1.0000

 Non-FHB
  Pre-2007 0.6988 0.1352 0.4982 1.0000 9.16E−06
  Post-2007 0.7740 0.1554 0.5220 1.0000

 FHB
  Pre-2007 0.8523 0.0976 0.6230 1.0000 1.00E−04
  Post-2007 0.9084 0.0983 0.5834 1.0000

ODF
 All Banks
  Pre-2007 0.8786 0.0631 0.6587 0.9539 1.22E−06
  Post-2007 0.8469 0.0860 0.5895 0.9482

 Non-FHB
  Pre-2007 0.8891 0.0646 0.6587 0.9539 7.17E−01
  Post-2007 0.8865 0.0622 0.6258 0.9482

 FHB
  Pre-2007 0.8552 0.0564 0.7353 0.9369 7.39E−11
  Post-2007 0.7873 0.0870 0.5895 0.9216
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and Serletis (2010) productivity index is invalid for conditions where undesirables 
exist.

5  Conclusion

Almost all past works that consider regularity conditions count on the use of a 
Bayesian approach. This article proposes a stochastic approach that is capable of 
imposing the regularity conditions on DODF and ODF under the framework of a 
system regression model, where each constituent equation contains composed error 
terms. The existence of the one-sided error in the composed errors allows one to 
transform the inequality constraints, required by either monotonicity or curvature 
conditions, into equalities such that those equalities can be treated as regression 
equations with error components, after attaching statistical noises to those equali-
ties. In the context of our stochastic approach, we estimate a quadratic DODF and 
a translog radial ODF. Our stochastic approach appears to be successful, because 
the resulting coefficient estimates satisfy the regularity constraints for most sample 
points. The quite small number of observations failing to meet the regularity con-
straints can be classified as either outliers or extreme values.

The unrestricted DODF and ODF are found to be inferior to the restricted coun-
terparts due to the fact that their parameter estimates result in a large number of 
observations being inconsistent with the production theory. Moreover, the con-
strained DODF tends to outperform the constrained ODF due to the exclusion of 
undesirables from the latter. Although traditional Divisia-type productivity indices 
have drawn much attention from academic researchers, they overlook bad outputs. 
The Spearman rank correlation coefficients of the efficiency scores and productivity 
change indices obtained from the above two functions are found to be either nega-
tively correlated or insignificantly correlated, supporting the superiority of the con-
strained DODF. Following Feng and Serletis (2014), this paper applies the so-called 
Divisia–Luenberger productivity index to examine the TFP changes of Taiwan’s 

Table 8  Average TFP change indices for both DODF and ODF

Numbers in parentheses are standard deviations

DODF TCL ECL PGL

All Banks 0.0231 (0.0967) − 0.0039 (0.2854) 0.0193 (0.3211)
Non-FHB 0.0194 (0.0769) 0.0006 (0.2153) 0.0200 (0.2414)
FHB 0.0376 (0.1269) − 0.0156 (0.3920) 0.0219 (0.4439)
FORB − 0.0178 (0.0486) 0.0169 (0.1407) − 0.0010 (0.1247)

ODF TCS ECS PGS

All Banks 0.0108 (0.0585) − 0.0399 (0.2535) − 0.0290 (0.2229)
Non-FHB 0.0051 (0.0276) − 0.0068 (0.2285) − 0.0017 (0.2143)
FHB 0.0209 (0.0918) − 0.0999 (0.2942) − 0.0790 (0.2384)
FORB 0.0086 (0.0035) − 0.0179 (0.1656) − 0.0093 (0.1655)
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commercial banks. Our empirical results verify that by precluding bad outputs, the 
conventional productivity index yielded from ODF not only results in misleading 
conclusions regarding productivity growth and technological change, but also results 
in wrong conclusions concerning efficiency change.

Based on DODF, the average efficiency score of FHBs exceeds the remaining two 
forms of banks, implying that public policies encourages, e.g., merger and acquisi-
tions among banks and/or that the formation of a large financial conglomerate may 
improve managerial abilities for the financial sector. Moreover, a larger bank is able 
to undertake new innovations that help stimulate its technology. Since element TC is 
found to dominate TFP change indices, it is worthwhile for banks to adopt innova-
tions swiftly in an attempt to speed up productivity growth

Feng and Serletis (2014) point out three potential problems about the use of 
DODF in the last section. The first two include that there are alternative choices for 
the directional vector, other than g = (1, − 1), and that other translation variables, 
than � = −y1 in (2), can be equivalently selected. The third problem they propose 
relates to the endogeneity inherent in Shephard input/output distance functions and 
DODF, due to the presence of 

(
y1, y2, y3

)′ on the right-hand side of (1). Here, we 
further claim that the input variables in (1) may also be subject to the endogeneity 
problem in distance and production functions, arising from the correlation between 
unobserved productivity and input demands, as emphasized by Olley and Pakes 
(1996).

Finally, according to Amsler et al. (2014), our setting of u1 in (1) may be prefer-
able to those who assume it is time invariant, or it has “the scaling property” of 
Wang and Ho (2010), except for overlooking the time dependence of u1 . To address 
this problem, Amsler et  al. (2014) suggest the use of copula methods. Recall that 
the main theme of the current paper is to develop a stochastic approach to impose 
monotonicity and curvature on DODF and ODF. The resolution of the foregoing 
debatable issues, particularly the last two, is non-trivial and out of this paper’s 
scope. Those problems are worth a thorough investigation by future research works.

Appendix

Imposition of Monotonicity and Curvature on an ODF

We re-define the vector of y as y =
(
y1, y2

)�
∈ R2

+
 , because undesirables are 

excluded from ODF. The vector x is intact. We define the output set S(x) as:

The output distance function Do(y, x, t) can be written as:

S(x) = {y|y can be produced by x}.

(24)Do(y, x, t) = min{𝛿|0 < 𝛿 ≤ 1, y∕𝛿 ∈ S(x)}.
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A value of Do(y, x, t) equaling unity means that the bank is already producing 
on the efficient frontier, while a value of Do(y, x, t) less than unity reveals that the 
bank is technically inefficient due to managerial inability. Following Orea (2002), 
O’Donnell and Coelli (2005), and Feng and Serletis (2010, 2014), we specify the 
translog functional form for ODF:

After imposing the homogeneity and symmetrical properties and appending a sta-
tistical noise term, we transform ODF into a regression equation:

where U1 = − lnDo(y, x, t) ∼
|||N

(
0, �2

U1

)||| is a one-sided error signifying technical 
inefficiency, V1 ∼ N

(
0, �2

V1

)
 is the random disturbance, and U1 and V1 are assumed to 

be statistically independent.

Monotonicity and Curvature Constraints

Monotonicity requires that Do(y, x, t) be non-decreasing in outputs and non-increas-
ing in inputs—that is:

or, equivalently:

since Do∕y2 and Do∕xn are positive. The property �Do∕�y2 ≥ 0 implies that a bank’s 
technical efficiency does not diminish when it can produce more of an output, say 
y2 , after employing a given input mix. The property �Do∕�xn ≤ 0 implies that a 
bank’s technical efficiency does not rise when it hires more of an input, say xn , to 
produce the same output levels.

We re-write (28) for output y2 as:

(25)

lnDo(y, x, t) = a0 +

2∑
i=1

ai ln yi +
1

2

2∑
i=1

2∑
k=1

aik ln yi ln yk+

3∑
n=1

bn ln xn +
1

2

3∑
n=1

3∑
j=1

bnj ln xn ln xj

+ �� t +
1

2
��� t

2 +

3∑
n=1

2∑
i=1

gni ln xn ln yi +

2∑
i=1

��it ln yi +

3∑
n=1

��nt ln xn

(26)

− ln y1 = a0 + a2 ln

(
y2

y1

)
+

1

2
a22

[
ln

(
y2

y1

)]2
+ b1 ln x1 + b2 ln x2 + b3 ln x3 +

1

2
b11

(
ln x1

)2

+
1

2
b22

(
ln x2

)2
+

1

2
b33

(
ln x3

)2
+ b12 ln x1 ln x2 + b13 ln x1 ln x3 + b23 ln x2 ln x3

+ �� t +
1

2
��� t

2 + g12 ln x1 ln

(
y2

y1

)
+ g22 ln x2 ln

(
y2

y1

)
+ g32 ln x3 ln

(
y2

y1

)

+ ��2t ln

(
y2

y1

)
+ ��1t ln x1 + ��2t ln x2 + ��3t ln x3+V1+U1

(27)
�Do

�y2
=

� lnDo

� ln y2

Do

y2
≥ 0 and

�Do

�xn
=

� lnDo

� ln xn

Do

xn
≤ 0, n = 1, 2, 3,

(28)
� lnDo

� ln y2
≥ 0 and

� lnDo

� ln xn
≤ 0, n = 1, 2, 3,
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Since the ODF must be homogeneous in y1 and y2 , we have:

Translating the above inequalities into equalities, we obtain:

Similarly, the monotonicity conditions for the three inputs can be expressed as:

Here, Un ∼
|||N

(
0, �2

Un

)||| and Vn ∼ N
(
0, �2

Vn

)
 , n = 2,…, 6, are respectively one-sided 

and two-sided errors and are statistically independent. The presence of Vn in (29)–(33) 
makes the individual equations be regression equations and captures random shocks.

Curvature requires that ODF be convex in outputs and quasi-convex in inputs. See, 
for example, Färe and Grosskopf (1994) and O’Donnell and Coelli (2005). For ODF to 
be convex in outputs it is sufficient that all the principal minors of the Hessian matrix 
are non-negative. In our two-output case this requires that:

or, equivalently:

since Do∕y
2
2
≥ 0 . The necessary condition of (34) is a22 ≥ 0 , because:

� lnDo

� ln y2
= a2 + a22 ln

(
y2

y1

)
+ g12 ln x1 + g22 ln x2 + g32 ln x3 + ��2t ≥ 0.

� lnDo

� ln y1
= 1 −

� lnDo

� ln y2
≥ 0 and

� lnDo

� ln y2
≤ 1.

(29)a2 + a22 ln

(
y2

y1

)
+ g12 ln x1 + g22 ln x2 + g32 ln x3 + ��2t = V2 + U2

(30)a2 − 1 + a22 ln

(
y2

y1

)
+ g12 ln x1 + g22 ln x2 + g32 ln x3 + ��2t = V3 − U3.

(31)b1 + b11 ln x1 + b12 ln x2 + b13 ln x3 + g12 ln

(
y2

y1

)
+ ��1t = V4 − U4,

(32)b2 + b22 ln x2 + b12 ln x1 + b23 ln x3 + g22 ln

(
y2

y1

)
+ ��2t = V5 − U5,

(33)b3 + b33 ln x3 + b13 ln x1 + b23 ln x2 + g32 ln

(
y2

y1

)
+ ��3t = V6 − U6.

�2Do

�y2
2

=
�2 lnDo

�
(
ln y2

)2
1

y2

Do

y2
+

(
� lnDo

� ln y2

)2
Do

y2
2

−
� lnDo

� ln y2

Do

y2
2

≥ 0,

(34)a22 +
� lnDo

� ln y2

(
� lnDo

� ln y2
− 1

)
≥ 0,
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Equation (28) can be transformed into an equality:

Quasi-convexity in inputs will be achieved if and only if all the principal minors 
of the following bordered Hessian matrix are non-positive:

where fn = �Do∕�xn =
(
Do∕xn

)
� lnDo∕� ln xn , n = 1, 2, 3; fmn = �2Do∕�xm�xn , 

m, n = 1, 2, 3. There are seven principal minors in total to be considered. Among 
them, the following three conditions obviously hold for certainty and hence can be 
ignored, i.e.:

However, the remaining four conditions must be considered:

� lnDo

� ln y2

(
� lnDo

� ln y2
− 1

)
≤ 0.

(35)a22 +
� lnDo

� ln y2

(
� lnDo

� ln y2
− 1

)
= U7 + V7.

F =

⎛
⎜⎜⎜⎝

0 f1 f2 f3
f1 f11 f12 f13
f2 f12 f22 f23
f3 f13 f23 f33

⎞
⎟⎟⎟⎠
,

F11 =
|||||

(
0 f1
f1 f11

)|||||
= −

(
f1
)2

≤ 0,

F22 =
|||||

(
0 f2
f2 f22

)|||||
= −

(
f2
)2

≤ 0,

F33 =
|||||

(
0 f3
f3 f33

)|||||
= −

(
f3
)2

≤ 0.

F312 =

�������

⎛⎜⎜⎝

0 f1 f2
f1 f11 f12
f2 f12 f22

⎞⎟⎟⎠

�������
= 2f1f12f2 −

�
f2
�2
f11 −

�
f1
�2
f22 ≤ 0,

F313 =

�������

⎛⎜⎜⎝

0 f1 f3
f1 f11 f13
f3 f13 f33

⎞⎟⎟⎠

�������
= 2f1f13f3 −

�
f3
�2
f11 −

�
f1
�2
f33 ≤ 0,

F323 =

�������

⎛⎜⎜⎝

0 f2 f3
f2 f22 f23
f3 f23 f33

⎞⎟⎟⎠

�������
= 2f2f23f3 −

�
f3
�2
f22 −

�
f2
�2
f33 ≤ 0,
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Let Sn = � lnDo∕� ln xn , n = 1, 2, 3. We simplify and re-formulate the foregoing four 
inequalities into equalities:

Here, h11 = S2
1
+ b11 − S1 , h22 = S2

2
+ b22 − S2 , h33 = S2

3
+ b33 − S3 , 

h12 = S1S2 + b12,h13 = S1S3 + b13 , and h23 = S2S3 + b23.
As for the error components in (35)–(39) we assume that Un ∼

|||N
(
0, �2

Un

)||| and 
Vn ∼ N

(
0, �2

Vn

)
 , n = 7,…, 11, are respectively one-sided and two-sided errors and are 

statistically independent. The presence of Vn in the five equations makes the individual 
equations be regression equations and captures statistical noise.

Estimation Procedure

Equations (26), (29)–(33), and (35)–(39) form a system of regression equations with 
composed errors. Since (29) and (30) are linearly dependent we arbitrarily delete (30) 
from the system of equations and suggest estimating the remaining ten equations simul-
taneously by ML. In this manner, we can similarly impose monotonicity and curvature 
on the ODF of (26) to the usage of a Bayesian approach. It is noteworthy that here we 
impose five more curvature restrictions on ODF compared to DODF, whose curvature 
conditions involve merely unknown parameters.

Following the case of DODF, we assume that all of the eleven composed errors, 
either v + u or v − u, in those equations are statistically independent. Their individual 
pdf’s are similar to (14) in the text and the corresponding likelihood function can be 
readily derived. We therefore omit their derivation. After getting the coefficient esti-
mates, we apply the following formula, proposed by Battese and Coelli (1988), to 
directly calculate the measure of technical efficiency:

F =

��������

⎛⎜⎜⎜⎝

0 f1 f2 f3
f1 f11 f12 f13
f2 f12 f22 f23
f3 f13 f23 f33

⎞
⎟⎟⎟⎠

��������
= −f1

������

f1 f12 f13
f2 f22 f23
f3 f23 f33

������
+ f2

������

f1 f11 f13
f2 f12 f23
f3 f13 f33

������
− f3

������

f1 f11 f12
f2 f12 f22
f3 f13 f23

������
≤ 0.

(36)2S1S2h12 − S2
2
h11 − S2

1
h22 = V8 − U8,

(37)2S1S3h13 − S2
3
h11 − S2

1
h33 = V9 − U9,

(38)2S2S3h23 − S2
3
h22 − S2

2
h33 = V10 − U10,

(39)

− S2
1
h22h33 − 2h12h23S1S3 − 2S1S2h13h23 + 2h13h22S1S3 + 2h12h33S1S2 + h2

23
S2
1

+ 2h11h23S2S3 + h2
13
S2
2
− 2h12h13S2S3 − h11h33S

2
2
− h11h22S

2
3
+ h2

12
S2
3
= V11 − U11.
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where �1 = V1 + U1 , �2
1
= �2

U1
+ �2

V1
 , �∗1 = −�1�

2
U1
∕�2

1
 , and �2

∗1
= �2

U1
�2
V1
∕�2

1
 . 

Term TEo must lie between 0 and 1.
An analogous caveat to the case of DODF is worth citing, i.e., the resulting set of 

slope coefficient estimates may not be able to ensure that all monotonicity and cur-
vature conditions are satisfied for all data points. This is attributed to the addition of 
the disturbances Vj’s, j = 2,…, 11, to Eqs. (29)–(33) and (35)–(39) and appears to be 
an advantage over the Bayesian approach. The number of violating observations is 
expected to be relatively small. We shall discuss this in the empirical study section 
below.
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