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KEY FINDINGS

n We investigate model risk in risk analysis for No-Negative-Equity-Guarantees.

n Our numerical analyses reveal that the housing price risk, interest-rate risk, and longevity 
risk can affect the VaR and CTE of NNEGs, with the impact being as significant as that 
for housing risk.

ABSTRACT

Understanding the risk for No-Negative-Equity-Guarantees (NNEGs) requires the proper 
modeling of the housing return, interest rate, and mortality rate dynamics. This article 
investigates the model risk for the risk measures of NNEGs by calculating the Value-at-
Risk (VaR) and Conditional-Tail-Expectation (CTE) from the provider perspective, with an 
emphasis on the housing price return model. Therefore, we propose a jump ARMA-GARCH 
model, according to nationwide house price return data in the UK. Interest rate and mortality 
rate dynamics are assumed to follow the CIR model (Cox et al. 1985) and the CBD model 
(Cairns et al. 2006) respectively. Our numerical analyses reveal that the housing price risk, 
interest-rate risk, and longevity risk can affect the VaR and CTE of NNEGs, with the impact 
being as significant as that for housing risk. The VaR and CTE of NNEGs will be greater for 
female borrowers than for male borrowers, essentially because females have a longer life 
expectancy. The proposed framework can help financial institutions manage the major three 
risk factors for NNEGs and assist in meeting the regulator’s concerns.

TOPICS

Quantitative methods, real estate, VAR and use of alternative risk measures of trading 
risk*

The continuing increase in life expectancy around the world demands urgent 
consideration of the ways in which the retirement incomes of the elderly can 
be increased in order to ensure the maintenance of an acceptable standard of 

living. Although pension systems have long been the primary financial resource for 
elderly people, aging populations and increases in longevity on a global scale have 
put pension and annuity providers in untenable positions, such that the response by 
many providers has been unavoidable reductions in pension benefits (Antolin 2007). 
About 75 percent of the elderly populations internationally are now considered to 
have inadequate income upon their retirement; thus, governments are faced with the 
growing challenge of financing such aging populations (Chen et al. 2010). Clearly, the 
development within the private markets of innovative financial products capable of 
increasing retirement income would be of significant benefit. 
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Many elderly people are considered to be “cash poor and equity rich” (McCarthy 
et al. 2002; Rowlingson 2006; Shan 2011; Haurin et al. 2016; Pu et al. 2014; Alai 
et al. 2014; Davidoff 2015; Nakajima and Telyukova 2017). For example, nearly 10 
million households with heads being age 65 or older had annual household incomes 
below $25,000 in 2009 (US Census Bureau 2012). However, the release equity 
owned by people over the age of 65 years was found to be £1,100 billion in the UK 
and the median value of mortgage-free homes in the early 2000s was found to be US 
$127,959, with more than 12.5 million elderly people having absolutely no mortgage 
debt (American Housing Survey 2005). On the other hand, Keenan (2010) and Bayer 
and Harper (2000) have pointed out the 78 percent to 92 percent of homeowners 
age 65 and older say that they would like to stay in their current residence “as long 
as possible.”

Reverse mortgage loans (RMLs) offer a potential alternative financial resource 
capable of meeting current shortfalls in retirement income due to longevity risk 
(Tunaru 2007). Indeed, RMLs are designed exactly for this purpose, with homeowners 
receiving a lump-sum and/or annuity in exchange for the transfer of some, or all of 
the value of their house to a financial institution upon their death. The loan value is 
ultimately determined by the age of the borrower, the interest rate, and the value of 
the property. Such RMLs are available in several developed countries, including the 
US, the UK, France, Australia, Canada, Japan, and Korea, with the major advantage 
for homeowners being that they can receive cash without having to leave the property. 

Due to the trend in population aging, a number of studies have focused on esti-
mating the potential demand for RMLs. For example, Alai et al. (2014) show that RMLs 
dominate most equity release markets and Hanewald et al. (2016) also point out 
that RMLs have higher utility gains for homeowners and features that allow for higher 
lump-sum payouts and also provide downside protection for house prices. Nakajima 
and Telyukova (2017) find that households with lower incomes, better health, higher 
medical expenses, and those that do not have bequest motives are theoretically 
more likely to select RMLs.

There has been a growing literature addressing risk factors and capital adequacy 
of RMLs in recent years, including but not limited to Boehm and Ehrhardt (1994); 
Chinloy and Megbolugbe (1994); Szymanoski (1994); Rodda et al. (2004); Ma et al. 
(2007); Wang et al. (2008); Chen et al. (2010); Li et al. (2010); Sherris and Sun 
(2010); and Alai et al. (2014). However, little research has been done on risk analysis 
for RMLs from the provider’s perspective, addressing the model risk. Hosty et al. 
(2008) and Ji et al. (2012) show that the most obvious risk of RMLs is the negative 
equity that such institutions may have to assume if the proceeds from the sale of the 
house prove to be less than the loan value paid out (No-Negative-Equity-Guarantees; 
NNEGs). RMLs differ from traditional mortgages, since the loans and accrued interest 
must be repaid when the borrower dies or leaves the house. The main risk factors 
involved in such products are the underlying value of the property, the interest rate, 
and the longevity of the homeowners (Kogure et al. 2014; Hanewald et al. 2016 and 
Tunaru 2017). The Prudential Regulation Authority (PRA) expressed concerns about 
understating the risk of NNEGs by issuing a supervisory statement 3/17 (SS3/17) 
in 2017. The PRA has four overriding principles in assessing the risk of NNEGs and 
the overall valuation of the RMLs: (1) securitizations where firms hold all tranches 
do not result in a reduction of risk to the firm; (2) the economic value of RML cash 
flows cannot be greater than either the value of an equivalent loan without a NNEG, 
or the present value of deferred possession of the property providing collateral; (3) 
the present value of deferred possession of property should be less than the value of 
immediate possession; and (4) the compensation for the risks retained by a firm as a 
result of the NNEGs must comprise more than the best estimate cost of the NNEGs. 
Therefore, the risk management has become a crucial element for RML providers in 
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the continuing development of the equity releasing market. Thus, the purpose of this 
research is to study the Value-at-Risk (VaR) and Conditional-Tail-Expectation (CTE) of 
NNEGs from the provider’s perspective, considering the major risk factors of RMLs.

In the continuing development of the modeling for RMLs, the primary concern thus 
far has been house price risk (Kau et al. 1995). The uncertainty in the house price is 
the primary risk we need to consider. If the house price remains stagnant or grows at 
a lower rate than anticipated, the outstanding loan balance at maturity may exceed 
the sale proceed of the property. Lenders or their insurers may suffer from losses in 
this scenario (Alai et al. 2014). Traditionally, NNEGs models using the Black-Scholes 
(1973) approach have been introduced in several studies, based on the assumption 
that the house price process follows Geometric Brownian Motion (GBM) (Cunningham 
and Hendershott (1986); Kau et al. (1992); Ambrose and Buttimer (2000); Bardhan 
et al. (2006); Liao et al. (2008); and Huang et al. (2011)). However, the GBM assump-
tion cannot accommodate many stylized facts; for example, the log-return of house 
prices is found to be autocorrelated, and there also may be volatility clustering (Li 
et al. 2010; Chen et al. 2010; and Kim and Li 2017), and jump diffusion (Kau and 
Keenan 1996; Kou 2002; Chen et al. 2010; Chang et al. 2011). We therefore examine 
the extant literature by taking these factors into consideration. In specific terms, we 
study the jump dynamics in house price returns based on an ARMA-GARCH specifica-
tion that allows for both constant and dynamic jumps proposed by Chan and Maheu 
(2002) and Maheu and McMcurdy (2004) to model the housing model.

Interest-rate risk is another important risk factor in the analysis of NNEGs, since 
interest rates are a fundamental economic variable within any economy and cannot be 
treated as constant, particularly when relating to economic policies with long horizons, 
Thus, the incorporation of the feature of stochastic interest rates in the valuation of 
contingent claims has been proposed in numerous studies within the extant financial 
literature. Most RMLs feature adjustable interest rates, and the variation of interest 
rates imposes additional uncertainty on NNEG providers. We therefore employ the 
well-known CIR term structure model (Cox et al. 1985) to capture the interest rate 
dynamics in the VaR and CTE of NNEGs.

The longevity risk factor also needs to be considered in VaR and CTE of NNEGs, 
in case the borrower lives longer than expected. Given the uncertainty over improve-
ment trends in long-term mortality, longevity risk has become a serious threat to 
RML providers, since it increases the payout period and the risks involved in issuing 
RMLs. In order to reflect this longevity risk, we consider a stochastic mortality model, 
employing the well-known CBD model (Carins et al. 2006) for VaR and CTE of NNEGs.

Our empirical analyses, we find that the jump ARMA-GARCH model with dynamic 
jump specifications provides the best fit, according to log-likelihood, Akaike informa-
tion criteria (AIC), and Bayesian information criteria (BIC). The dynamic jump ARMA-
GARCH model shows significant persistence in the conditional jump, which is indicated 
when computing the VaR and CTE of NNEGs. Thus, if we ignore the housing risk, 
interest rate risk, and longevity risk, we would underestimate the VaR and CTE in 
measuring the risk of NNEGs, which is as significant as that for housing risk.

In turn, we provide a general model in this study that allows for three stochas-
tic components for VaR and CTE of NNEGs based on housing price return, interest 
rate, and mortality rate, contributing to the extant literature on RMLs in the following 
significant ways. First, our general model framework considers not only house price 
return dynamics, but also interest rate and mortality rate dynamics. Second, we also 
quantify risk measures such as VaR and CTE to illustrate the risk for NNEGs. Finally, 
the numerical results show that the housing risk for VaR and CTE of NNEGs may have 
a significant effect, a finding that has not been established previously.

The remainder of this article is organized as follows: We construct housing, inter-
est rate, and morality models in the next section. We then outline the payoff of the 
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NNEGs and define the risk measures of VaR and CTE for analyzing the risk of the 
NNEGs. A numerical investigation of the effects of housing, interest rate, and longevity 
risks is subsequently carried out on the VaR and CTE of NNEGs and the conclusions 
drawn from this study are presented in the final section.

MODELING HOUSING, INTEREST RATE, AND LONGEVITY RISK

To investigate housing, interest rate, and longevity risk and to outline the payoff 
structure of NNEGs, we need to specify the housing price, interest rate, and mortality 
dynamics.

House Price Dynamics: Jump ARMA(s,m)-GARCH(p,q) Model

Li et al. (2010) and Chen et al. (2010) turned to the use of ARMA-EGARCH and 
ARMA-GARCH models in their approach to capturing autocorrelated and volatility 
clustering of house price dynamics in the UK equity release market and the US HECM 
program, respectively. The Producer UK House Price Index from Q4 1952 to Q2 2019 
is illustrated in Exhibit 1, with these details being obtained from the Nationwide 
House Price Index (HPI). 

Exhibit 2 shows the historical quarterly returns and reveals significant jump risk 
in the HPI. For example, the data shows that those quarterly housing price returns, 
change more than two standard deviations 17 times over the period. Further, we 
discover that those quarterly housing price returns change more than three standard 
deviations three times in the same time span. In particular, the greatest change of 
quarterly housing price returns is 12.21% in Q3 1972, while the lowest change is 
-5.5% in Q3 2008. The most significant downward jump occurred in 2008, follow-
ing the outbreak of the subprime mortgage crisis. Given that the effects of such a 
downward jump are both systematic and non-diversifiable, Alai et al. (2014) have 

EXHIBIT 1
The Producer UK Nationwide House Price Index
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pointed out the home price depreciation risk is only partially diversifiable. Pooling 
RMLs nationally only reduces the risk of a downturn in the regional housing market, 
but it cannot diversify the risk of a national economic recession. Nakajima and 
Telyukova (2017) also show that the great recession is likely to affect the RMLs 
market in both the short run and the long run. Therefore, in order to capture the 
autocorrelation, volatility clustering, and jump diffusion effects in the house price 
dynamics process, we consider the jump effect with house price return dynamics 
based upon an empirical investigation; our analysis involves the construction of a 
house price return model capable of capturing the properties of volatility clustering 
and both jump and autocorrelation effects under the Maheu and McCurdy (2004) 
framework.

We begin by investigating the house price returns data based on time-series 
analysis, and then develop the jump ARMA-GARCH model. Let P t t

T( ; ; ;( ) )0Ω Φ Φ =  be a 
complete probability space, where P is the data-generating probability measure, with 
specifications for the conditional mean and conditional variance. Let Ht denote the 
UK house price index and Yt represent the house price return at time t. Yt is defined 
as H

H
t

t
ln

1( )−
 and the proposed jump ARMA-GARCH model governing the return process 

is then expressed as:

 Y
H

Ht
t

t
t tln ,

1

=






= µ + ε
−

  (1)

The mean return follows an ARMA process as

 u c Yt i
i

s

t i j
j

m

t j ,
1 1

∑ ∑= + ϑ + ζ ε
=

−
=

−  (2)

EXHIBIT 2
Historical Quarterly Returns of the UK Nationwide House Price Index
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where s is the order of the autocorrelation terms, m is the order of the moving average 
terms, Ji is the ith-order autocorrelation coefficient, zj is the jth-order moving average 
coefficient, and et is the total returns innovation observable at time t, which is 

 t t t1, 2,ε = ε + ε  (3)

Extending from Maheu and McCurdy (2004),1 we set two stochastic innovations 
in which the first component (e1,t) captures smoothly evolving changes in the condi-
tional variance of returns and the second component (e2,t) causes infrequent large 
moves in returns, which are denoted as jumps. e1,t is set as a mean-zero innovation 
E t t( [ | ] 0)1, 1ε Φ =− , with a normal stochastic forcing process as

 h z z NIDt t t t, (0,1),1,ε = ∼  (4)

and ht denotes the conditional variance of the innovations, given an information set 
of Ft-1,

 h w ht i t i
i

q

j t j
j

p

,2

1 1
∑ ∑= + α ε + β−

=
−

=

 (5)

where p is the order of the GARCH terms, q is the order of the ARCH term, ai is the 
ith-order ARCH coefficient, and bj is the jth-order GARCH coefficient. e1,t is contempo-
raneously independent of e2,t. e2,t is a jump innovation that is also conditionally mean 
zero E t t( [ | ] 0)2, 1ε Φ =−  and we describe e2,t in next subsection.

The Setting of Jump Dynamics

To capture the jump risk, the second component of innovation is employed to 
reflect the large change in price and is modeled as

 V NID kVt t t k

t

t k

k

N

~ ( , ) for 1,2,2, ,
2

,

1

∑ε = − φλ φ θ =
=

 (6)

where Vt,k denotes the jump size for the kth jump with the jump size following the 
normal distribution with parameters (f,q2) and Nt is the jump frequency from time 
t - 1 to t, distributed as a Poisson process with a time-varying conditional intensity 
parameter (lt); that is:

 P N j
j

jt t
t t

j

( | )
exp( )

!
, 0,1,2....1= Φ =

−λ λ
=− , (7)

where the parameter lt represents the mean and variance for the Poisson random 
variable, it is also referred to as the conditional jump intensity. 

To facilitate our investigation of the jump effect on house price returns, we extend 
the work of Chan and Maheu (2002), Maheu and McCurdy (2004), and Daal et al. 
(2007) to specify lt as an ARMA form, which is 

 t t t0 1 1λ = λ + ρλ + ςψ− − , (8)

1 Maheu and McCurdy (2004) consider the jump setting under a constant conditional mean of the 
GARCH model. We deal with a jump ARMA-GARCH model and the likelihood function for parameter 
estimation is reconstructed.
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where r measures jumps persistence. Since the V variable measures the sensitivity of 
the jump frequency (lt) to past shocks (yt-1), with yt-1 representing the unpredictable 
component affecting our inference on the conditional mean of the counting process, 
Nt-1, then this suggests corresponding changes. We also investigate the constant 
jump effect, which represents a special case of Equation (8) with the restriction of 
constant jump intensity (lt = l0); this is imposed by setting r = 0 and V = 0. More 
details regarding the ARMA jump intensity can be found in Maheu and McCurdy (2004) 
and for the parameter estimation, see Appendix A.

Interest Rate Dynamic: CIR Model

To model interest rate risk, we employ the well-known CIR interest rate model 
(Cox et al. 1985), which results in the introduction of a ‘square-root’ term in the dif-
fusion coefficient of the interest rate dynamics proposed by Vasicek (1977). The CIR 
model has been a benchmark in modeling interest rates for many years, essentially 
because of its analytical tractability, as well as the fact that, contrary to the Vasicek 
(1977) model, the interest rate is always positive. Under the CIR model, we assume 
that the time-t short rate, rt, for a P t t

T( ; ; ;( ) )0Ω Φ Φ =  is a complete probability space, 
governed by the following equation:

 dr r dt r dWt r r t t r r t( ) ,= α µ − + σ  (9)

where {Wr,t,t ≥ 0} is a standard Brownian Motion with parameters qr ≡ (ar,mr,sr). The 
drift function ar(mr - rt) is linear with a mean reversion property; that is, the interest 
rate, rt, moves in the direction of its mean, mr, at speed ar. The diffusion function, rt 

r
2σ , is proportional to the interest rate, rt, which ensures that the process remains 

within a positive domain. Furthermore, if ar, mr, and sr are all positive, and if r r r2 2α µ ≥ σ  
holds, then we can also assume that rt will remain positive. 

Mortality Dynamics: CBD Model

To model mortality dynamics, as opposed to using the static mortality rate, we 
consider the longevity risk in NNEGs and employ the CBD model (Cairns et al. 2006) 
to project future mortality rates. The CBD model is attractive because it uses only a 
few parameters to obtain a good fit for the mortality probabilities of the elderly; thus, 
this model has been widely adopted as a way to deal with longevity risk for the elderly 
(Wang et al. 2010, Yang 2011). Since the reverse mortgage products are issued for 
the elderly, we also adopt the CBD model. Under the CBD model, the mortality rate for 
a person aged x dying before x + 1 valued in year t, denoted as q(t,x), is projected by:

 q t x x xt tlogit ( , ) ( ),(1) (2)= κ + κ −  (10)

where the parameter t
(1)κ  represents the marginal effect of time on mortality rates, 

parameter t
(2)κ  refers to the old age effect on mortality rates, and x  is the mean age.2 

With the estimated values of t t( , )(1) (2)κ κ , we can forecast the future mortality rates. In 
this study, we adopt Cairns et al.’s (2006) approach for estimating the parameters 
by using the least square method to fit the actual mortality curve and then project 
the t t( , )(1) (2)κ κ  based upon a two-dimensional random walk with drift:

2  We use the UK mortality data from 1950–2006 according to the human morality database (HMD) 
and the data ages cover ages 60 to 100. Therefore, the mean age is 80 in our model calibration.
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 CZt t t1 1κ = κ + µ ++ +  (11)

where t t t,(1) (2)κ = κ κ 
′  and m is a constant 2 × 1 vector; C is a constant 2 × 2 upper 

triangular matrix and Zt is a two-dimensional standard Gaussian process.
Equation (11) describes the dynamics of the random walk process kt under the real 

world probability measure, P, for projecting the mortality rate shown in Equation (10). 
Let p(t,x) denote the projected one-year survival rate in year t based upon the CBD 
model, then the projected probability in year t that a borrower aged x will survive to 
age x + s is calculated by

 p t x p t x p t x p t s x s
s

( , ) ( , ) ( 1, 1) ( , 1)= + + + + − . (12)

OUTLINE AND MEASURING THE RISK OF NNEGS

The Structure of NNEGs

It has been accepted market practice within the UK for all RML products to include 
the provision of a NNEG. NNEGs protect borrowers by capping the redemption amount 
of the mortgage at the lesser of the face amount of the loan or the sale proceeds 
of the property. 

Let’s consider a ‘roll-up’ mortgage as an example.3 We denote Kt as the outstand-
ing balance of the loan and Ht represent the value of the mortgaged property. The 
amount repayable (outstanding balance) at time T is the sum of the principal, K, plus 
the interest accrued at a roll-up rate,4 ηt; that is, 

 K KeT
tt

t T

0

1

= ∑ ν
=

= −

, (13)

At the time that the loan becomes repayable, time T, if Ht < Kt, then the borrower 
pays Ht, and if Ht > Kt, then the borrower pays Kt. Once the loan is repaid, the provider 
receives an amount, Kt, plus the payoff of NNEGs (see Kogure et al. 2014), which is:

 V Max K Ht t t[ ,0],= − −  (14)

and 

 H H et

Yss

t

0
1

4

= ∑ =  (15)

where H0 is the current housing price and YS is the quarterly log return of housing 
prices at time s. Equation (14) can be viewed as the future claim loss at time t for a 
NNEG. The total claim loss for a NNEG at issuance can be measured by calculating 
the present value of the future expected claim loss (PVECL), or 

 PVECL r dt p q Vt

s

t s s t t
t

s

exp
0

0

1

0 0

0

∫∑ ( )= − × ×+
=

ω− −

, (16)

3 Hosty et al. (2008) and Cho et al. (2015) have addressed the most common types of payment 
options for equity-release products are lump sum (roll-up), terms, lines of credit, modified terms (com-
bining lines of credit and term payments), tenure, and modified tenure (combining lines of credit and 
tenure). Thus, they show that the roll-up mortgage has become the most popular payment option. 
Therefore, our ongoing analysis focuses on roll-up RMLs. 

4 The roll-up rate can be either fixed or floating. In addition, the initial principal is normally deter-
mined according to the housing value.
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where w is the final age, pt s0
 represents the t-year survival probability that an s0-aged 

person will survive to age s0 + t, qs t0 +  is the probability that a borrower aged s0 at 
inception will die during the time interval t to t + 1, and rt is stochastic interest rate. 
Thus, we can quantify the PVECL to measure the risk for NNEGs, which will be shown 
in next subsection.

VaR and CTE of the NNEGs

Pricing and risk analysis for a NNEG have clearly become two extremely important 
issues. The earlier studies have dealt with the risk-neutral valuation (market consis-
tent approach) for pricing a NNEG using the conditional Esscher transform (see Li et al. 
2010 and Chen et al. 2010, for example). In addition, Kogure et al. (2014) employ a 
Bayesian multivariate pricing framework. However, risk management is increasingly 
important for financial institutions, and quantifying risk under the real-world proba-
bility measure is a central task for managing it. Taking a different approach from the 
existing literature,5 we propose that a risk analysis framework for a NNEG should 
consider the major three stochastic components. In addition, the VaR and CTE risk 
measures, also known as the tail VaR or expected shortfall, can both quantify risk 
in finance and insurance applications. The VaR generally focuses on the downside 
of the return distribution. According to Jorion (2000), the VaR is typically defined as 
the maximum expected loss of a portfolio over a specific holding period at a given 
significance level. It is a relatively recapitulative measure, in that it summarizes the 
potential change in the market value of a portfolio that stems from several sources 
of risk in a single number. Thus, the VaR methodology offers a comprehensive, 
compact advantage in terms of measuring market risk exposure. As an extension of 
the VaR concept, CTE includes a measure of the expected risk in the tail of the loss 
distribution; it is a coherent risk measure, in the sense of Artzner et al. (1999). To 
investigate the risk of NNEGs, we calculate the present value of total claim losses, as 
shown in Equation (16), and measure the VaR and CTE, using the following definitions 
of VaR and CTE in the PVECL.

First, let VaRa denote the 100a% quantile of the present value of the future 
expected claim loss distribution, or 100a% VaR, which is 

 VaR l F lPVECLinf : (0,1){ }( )= ∈ ≥ α α ∈α , (17)

where FPVECL is the distribution function of the present value of claim loss. Second, 
to calculate the CTE, we use

 CTE E PVECL PVECL VP ( )= >α α , (18)

where EP denotes the expectation under the physical measure P.

EMPIRICAL AND NUMERICAL ANALYSIS

Model Fitting

We examine the performance of the jump ARMA-GARCH model using time-series 
data from the Nationwide HPI, placing particular focus on an investigation into whether 
the conditional jump intensity is time-varying or constant. Our quarterly data period 
runs from Q4 1952 to Q2 2019, with a total of 267 quarterly observations. As a 

5 See Alai et al. 2014; Cho et al. 2015; Shao et al. 2015.
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robustness check, we also examine the results for 
different data periods (from Q4 1962 to Q2 2019 and 
Q4 1972 to Q2 2019).

The summary statistics on the levels and squares 
of the log-return series are reported in Exhibit 3. The 
modified LB statistics (West and Cho 1995) show 
strong serial correlation in both the levels and the 
squares of the return series, a result that is consistent 
with that reported by Li et al. (2010). 

We investigate the jump dynamics for both 
dynamic and constant jump models, using ARMA(1,1)-
GARCH(1,1) models, with the parameters of these 
two jump ARMA-GARCH models being estimated by 
maximizing the conditional log-likelihood functions in 
Exhibit 4. The selection of the ARMA(1,1)-GARCH(1,1) 

models in the present study is based upon the Box-Jenkins approach.6 
We evaluate the performance of the jump dynamics using log-likelihood, AIC, and 

BIC.7 The log-likelihood, AIC, and BIC results indicate that the dynamic jump ARMA-
GARCH model provides a better fit, with the persistence parameter (r) in this model 
being found to be 0.7495, with statistical significance. This finding suggests that a 
high probability of many (few) jumps will also tend to be followed by a similarly high 
probability of many (few) jumps. 

In order to facilitate a thorough investigation in the present study of the impor-
tance of the jump effect in the modeling of house price returns, the existing models 
proposed in Chen et al. (2010) and Li et al. (2010)—which include the GBM, ARMA-
GARCH, and ARMA-EGARCH models—are also fitted to exactly the same series of 
Nationwide HPI returns. We further compare the performance of the jump ARMA-
GARCH model with other jump diffusion models, such as the Merton (1976) and Kou 
(2002) models, both of which allow for jump effects, but do not consider the effects 
of autocorrelation and volatility persistence. 

The fitting results are presented for each of the different models in Exhibit 5.8 
Our empirical results indicate the superiority of the jump ARMA-GARCH model over 
the existing house price return models, with the dynamic jump ARMA-GARCH model 
demonstrating further improvements on each of the other models based upon the 
log-likelihood, AIC, and BIC values. 

Although the jump effect is taken into consideration in the jump diffusion mod-
els, such as those proposed by Merton (1976) and Kou (2002), the performance of 
their models is nevertheless found to be inferior to that of the time-series models 
within which the effects of autocorrelation and volatility clustering are also taken 
into consideration; it therefore seems clear that a house price return model capable 
of simultaneously taking into consideration all three properties would represent an 
important contribution to this particular field of research.

As a check for the robustness of our results, we also investigate the model fit 
by considering different periods of the Nationwide HPI data in Exhibit 6. For both 
sub-periods, the dynamic jump ARMA-GARCH model is still found to outperform each 
of the other models. 

The results reported in Exhibit 5 and Exhibit 6 confirm that the addition of jump 
dynamics improves the specification of the conditional distribution, as compared with 

6 Although not reported here, the parameter estimates of the models are available upon request.
7 AIC = -2/obs. ln(likelihood) + 2/obs. × (No. of parameters) (Akaike 1973); BIC = -2/ obs. ln(like-

lihood) + ([No. of parameters] × ln[obs.])/obs.; obs. is the sample size.
8 The stochastic processes of these models are available upon request.

EXHIBIT 3
Summary Statistics, Q4 1952–Q2 2019

NOTES: aThe skewness and excess kurtosis statistics include 
a test of the null hypotheses that each is zero (the population 
values if the series is i.i.d. Normal.). bThe LB Q (32) statistics 
refer to the null hypothesis of no serial correlation with 32 lags. 
c***indicates significance at the 1%.

Variables

Yt

Y 2
t

Mean

0.0178

0.0009

S.D.

0.0243

0.0016

Skewnessa,c

0.5860***

4.2176***

Excess
Kurtosisa,c

2.2574***

23.4078***

LB Q(32)b

Stats

374.70***

262.42***
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the GBM, Merton jump, double exponential jump diffusion, ARMA-GARCH, ARMA- 
EGARCH, and constant jump ARMA-GARCH models. In addition, the persistence 
parameter (r) governing the jump dynamic is statistically significant. It clearly indi-
cates that jump risk in housing returns is significant and critical for risk measures 
of NNEGs.9

Risk Analysis of NNEGs

In this section, we study the impacts of different risk factors on the VaR and CTE 
of NNEGs. The risk analysis of NNEGs depends upon the dynamics of house price 
returns, the interest rate, and mortality rates and we conduct 100,000 Monte Carlo 
simulations. 

Regarding the NNEGs, we consider a floating roll-up mortgage, which is the most 
popular RMLs in the UK and the floating interest rate (nt) is set as being equal to the 

9 The persistence parameter (r) governing the jump model is estimated to be around 0.7495, with 
statistical significance. We didn’t report the entire parameter estimates here, but they are available 
upon request.

EXHIBIT 4
Parameter Estimates and Model Fit of Constant and Dynamic Jump Models, Q4 1952–Q2 2019

NOTE: *indicates significance at the 10% level and ***indicates significance at the 1% level.

Parameters

ARMA(1,1)-GARCH(1,1) Models*

Constant Jump Dynamic Jump

Coeff.

4.73e-03***
0.6445***

–0.0979
8.76e-06
0.2161***
0.7153***
0.5042*

–
–

0.0140
0.0205*

S.E.

1.65e-03
0.0707
0.0901
8.91e-06
0.0657
0.0625
0.1589

–
–

0.0112
0.0244

Coeff.

5.59e-03***
0.6088***

–0.1002
7.83e-06
0.1805***
0.7556***
0.1254*
0.7495***
0.4440
0.0141*
0.0221*

S.E.

1.43e-03
0.0705
0.0874
6.22e-06
0.0522
0.0485
0.0227
0.1782
0.3368
7.27e-03
0.0126

Constant
ϑ1

ζ1

ω
α
β
λ0
ρ
ς
φ
θ

AIC
BIC
Log-likelihood

–5.3902
–5.1688

689.9478

–5.4071
–5.1952

692.1150

EXHIBIT 5
Model Selection, Q4 1952–Q2 2019

Model

Geometric Brownian Motion
ARMA-GARCH
ARMA-EGARCH
Merton Jump
Double Exponential Jump Diffusion
Constant Jump ARMA-GARCH
Dynamic Jump ARMA-GARCH

Log-Likelihood

610.8391
683.5855
665.6008
629.6252
631.3421
689.9478
692.1150

AIC

–4.5777
–5.3405
–5.2000
–4.6964
–4.7123
–5.3902
–5.4071

BIC

–4.5507
–5.1105
–5.0483
–4.6290
–4.6974
–5.1688
–5.1952
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risk-free interest rate (rt) plus a constant spread (nr), that is, nt = rt + nr.
10 For com-

parison purposes, we follow Li et al. (2010) to set up the relevant assumptions for 
the NNEGs and list the information in Exhibit 7. In addition, the parameter estimates 
for the housing price return for the jump ARMA-GARCH model can refer to Exhibit 4 
and for the interest rate and mortality rate models are in Exhibit 8 and Exhibit 9.11

To analyze the risk of NNEGs, we examine the tail risk by calculating the VaR and 
CTE of the NNEGs. The VaR and CTE at 95% and 99% significance levels are presented 
in Exhibit 10. As the borrower’s age increases, the VaR and CTE decrease for different 
housing models and the VaR and CTE of NNEGs will be greater for female borrowers 
than male borrowers due to the fact that females have a longer life expectancy. Thus, 
in Exhibit 11 and Exhibit 12, we further examine the NNEGs when considering the tail 
risk. Comparing Exhibit 10 with Exhibit 12, we note some important findings. First, 
the NNEGs in terms of VaR and CTE differ significantly under the GBM, ARMA-GARCH, 

10 A fixed roll-up mortgage was considered in Lee et al. (2012).
11 To be consistent, we employ the three-month T-bill interest rates from the period of Q4 1952 to 

Q2 2019 to estimate the parameters in CIR model.

EXHIBIT 6
Robustness Check of Model Selection

506.5634
559.2074
546.3101
519.3667
527.1209
565.3306
566.3860

417.1806
449.2933
436.6772
418.7175
420.5129
452.5170
452.6695

Log-Likelihood

–4.4651
–5.1778
–5.0584
–4.5519
–4.8753
–5.2345
–5.2443

–4.4443
–5.1056
–4.9622
–4.4485
–4.4569
–5.1422
–5.1439

AIC

–4.4348
–4.9705
–4.8842
–4.4762
–4.5612
–5.0105
–5.0285

–4.4296
–4.8208
–4.7566
–4.3618
–4.3891
–4.8778
–4.9293

BICModel

Geometric Brownian Motion
Panel A: Q41962–Q22019

ARMA-GARCH
ARMA-EGARCH
Merton Jump
Double Exponential Jump Diffusion
Constant Jump ARMA-GARCH
Dynamic Jump ARMA-GARCH

Panel B: Q41972–Q22019
Geometric Brownian Motion
ARMA-GARCH
ARMA-EGARCH
Merton Jump
Double Exponential Jump Diffusion
Constant Jump ARMA-GARCH
Dynamic Jump ARMA-GARCH

EXHIBIT 7
Base Assumption of Parameter Values for the Value-at-Risk and Conditional Tail Expectations

Initial Risk-free interest rate (%)
Roll-up rate (%)
Amount of loan advanced at inception
Final age
Initial property value for different ages, x, of borrowers (H0)
x = 60 Years
x = 70 Years
x = 80 Years
x = 90 Years

Parameters

r
ν
Κ
ω

Notation

1.878
2.000
30,000

100

176,500
111,000
81,000
60,000

Value
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ARMA-EGARCH, Merton Jump, Double Exponential 
Jump Diffusion, and Constant Jump ARMA-GARCH 
housing model. Therefore, we cannot ignore the hous-
ing risk when measuring NNEGs risk. Second, the GBM 
assumption yields the lowest for VaR and CTE, which 
indicates that we would underestimate the risk of the 
NNEGs if we ignored the importance of the autocor-
relation, volatility clustering, and jump diffusion in the 

housing return. In agreement with Bianchi (2015), the VaR and CTE strictly depend on 
the distribution assumptions of the model, and disregarding these stylized facts can 
result in underestimating the tail risk. Third, using the stochastic mortality rate and 
interest rate captures more extreme risk than a constant mortality rate and interest 
rate as shown in Exhibit 11 and Exhibit 12, respectively. Therefore, the constant 
mortality rate and constant interest rate assumption will lead to lower for VaR and 
CTE of NNEGs. Finally, as GBM is the benchmark model, the housing risk reveals 
the most significant effect on the VaR and CTE, compared with interest rate risk and 
longevity risk according to Exhibit 10 and Exhibit 12. 

SENSITIVITY ANALYSIS ON THE RISK MEASURES FOR NNEGS

Sensitivity of the Interest Rate Model

To model the interest rate risk, we employ the well-known CIR interest rate model 
in this study. However, in the aftermath of the subprime crisis in several European 
countries, negative rates were observed e.g., in Sweden, Switzerland, and Denmark. 
Under such circumstances, we can use the Vasicek (1977) model instead of the 

EXHIBIT 8
CIR Model Estimation Results, Q4 1952–Q2 2019

αr

0.0067

µr

0.0019

σr

0.0367

Log-Likelihood

3.9635

EXHIBIT 9A
Estimated Kappa Values for Male Samples

–1.8

–2.0

–2.2

–2.4

–2.6

–2.8

–3.0
1950 1960

Panel A: Estimate Kappa1  for Male Samples Panel B: Estimate Kappa2  for Male Samples

1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010

0.110

0.105

0.100
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CIR model in capturing the interest rate dynamics. To demonstrate the feasibility of 
using a different model in the risk analysis framework, we further provide the numer-
ical results based on the Vasicek model in Exhibit 13. Comparing Exhibit 12 with 
Exhibit 13, we find that there is not much difference for the VaR and CTE of NNEGs 
compared with using the CIR or Vasicek models. However, it shows that it is important 
to use the stochastic interest rate model to measure the risk of NNEGs, instead of 
using a constant interest rate assumption. 

Sensitivity of the Type of Borrowers

To investigate the effect based on the type of borrowers, we further analyze the 
results for the joint borrowers, such as couples. We can adjust the PVECL from a 
single borrower to a joint borrower as follows. 

 PVECL r dt q Vt

s

t s s t
t

s

exp
0 1

0

1

0 1

0

∫∑ ( )= − ×
=

ω− −

, (19)

where qt s s1 0 1
 is the probability that the last survivor dies within the (t + 1)th year given 

survival up to the tth year for a male at age s0 and female at age s1. Traditionally, the 
mortality between husbands and wives is usually assumed to be independent. For 
example, Chia and Tsui (2004) adopt the Lee-Carter model to forecast cohort survival 
probability at each postretirement age for the household using the abridged life tables 
for Singapore, but they assume that the spouses’ mortality is independent. Ji et al. 
(2012) compare the value of the NNEGs for joint borrowers under the independence 
assumption and the semi-Markov assumption. They show that the difference is insig-
nificant. We also extend the independent assumption to calculate the joint survival 
function in this study, which is described in Appendix B. 

We observe the VaR and CTE of NNEGs for the joint borrower in Exhibit 14. Com-
paring Exhibit 14 with Exhibit 10, it is very clear that the VaR and CTE of NNEGs are 
higher than those for the single borrower (male and female). Therefore, the type of 
borrower can affect the risk of NNEGs and our risk analysis incorporates the type of 
borrower for analyzing the RML risk.

EXHIBIT 9B
Estimated Kappa Values for Female Samples

–2.0

–2.2

–2.4

–2.6

–2.8

–3.2

–3.0

1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010

0.1200

0.1175
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0.1075
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EXHIBIT 10
Value-at-Risk and Conditional Tail Expectations for Different Housing Models

VaR95

VaR99

CTE95

CTE99

VaR95

VaR99

CTE95

CTE99

VaR95

VaR99

CTE95

CTE99

VaR95

VaR99

CTE95

CTE99

VaR95

VaR99

CTE95

CTE99

VaR95

VaR99

CTE95

CTE99

VaR95

VaR99

CTE95

CTE99

VaR95

VaR99

CTE95

CTE99

VaR95

VaR99

CTE95

CTE99

Model

Panel A: Male
Model 1: Geometric Brownian Motion

Model 2: ARMA-GARCH

Model 3: ARMA-EGARCH

Model 4: Merton Jump

Model 5: Double Exponential Jump Diffusion

Model 6: Constant Jump ARMA-GARCH

Model 7: Dynamic Jump ARMA-GARCH

Model 1: Geometric Brownian Motion

Model 2: ARMA-GARCH

Panel B: Female

60

2544.43
2745.25
2638.32
2810.49

5254.76
5589.76
5551.03
7009.09

4956.53
5215.22
5323.49
6490.44

3798.93
3985.89
3921.45
4147.85

3427.98
3537.46
3670.08
4058.16

6087.92
6649.41
8508.87
9516.92

7057.15
7671.89
9820.95

10982.75

3912.58
4221.39
4056.95
4321.71

6681.84
7107.82
7058.57
8912.61

70

1471.60
1636.23
1570.27
2062.51

3793.24
4144.49
4346.79
4694.17

3322.54
3938.45
3970.23
4295.30

2422.71
2670.97
2860.84
3201.76

2006.40
2476.94
2591.66
2701.52

4803.68
5245.30
5120.00
5326.69

5132.66
5486.08
5436.88
5767.82

2426.84
2698.35
2589.57
3401.33

5349.94
5845.35
6130.67
6620.61

80

696.33
714.50
733.13
894.82

2535.74
2863.38
2731.27
3159.25

2291.16
2567.02
2501.02
2899.58

1385.81
1757.94
1694.16
1903.51

1028.63
1223.17
1223.85
1378.29

2839.88
3204.35
3430.09
3700.21

3162.82
3511.77
3842.65
4093.37

1124.84
1154.20
1184.29
1445.47

3044.70
3438.11
3279.48
3793.37

90

337.28
405.45
420.99
426.62

1249.47
1274.21
1281.21
1299.05

1123.05
1147.12
1142.00
1164.88

726.56
739.09
739.21
747.38

586.83
601.30
600.06
615.22

1393.54
1423.05
1422.33
1476.43

1435.95
1489.65
1488.04
1536.01

689.23
828.52
860.29
871.78

2003.46
2043.13
2054.35
2082.96

(continued)
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CONCLUSIONS

In conjunction with the rapid growth in the RMLs market, there is growing demand 
for the development of effective risk management tools for these products. In the UK, 
RMLs are commonly sold with NNEGs protection, which caps the redemption amount 
at the lesser of the face amount of the loan, or the sale proceeds. Thus, it is crucial 
for the providers to have a strong understanding of the risk factors involved; house 
price, interest rate, and longevity risks can affect NNEGs in differing degrees. We 
extend the current literature by considering three risk factors in the risk management 
of NNEGs and by analyzing the corresponding effects. 

Bianchi (2015) has pointed out the VaR and CTE strictly depend on the distribution 
assumption of the model. Thus, historical house price returns within the UK real estate 
market have autocorrelation, volatility clustering, and jump effects. It is extremely 
important for such providers to take these effects in house price returns into account 
when conducting a risk analysis of NNEGs. Despite this obvious requirement, this 
issue has not been dealt with in the prior literature, but it is examined in the present 
study using a jump ARMA-GARCH model. Furthermore, both interest rate and longevity 
risks can increase the probability of the home sale proceeds being less than the loan 
value paid out; hence, we also consider the CIR interest rate model and CBD mortality 
model to capture the respective interest rate and longevity risks in the VaR and CTE 
of NNEGs. Based upon our numerical analyses, we find that these three factors can 
affect the VaR and CTE of NNEGs, with the housing risk having the greatest impact, as 
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EXHIBIT 10 (continued)
Value-at-Risk and Conditional Tail Expectations for Different Housing Models
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EXHIBIT 11
Effect of Mortality on Value-at-Risk and Conditional Tail Expectations
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EXHIBIT 12
Effect of Interest Rate Risk on Value-at-Risk And Conditional Tail Expectations
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compared to interest rate risk and longevity risks. When analyzing the risk of NNEGs, 
it is crucial for issuers to identify the house price, interest rate, and longevity risks. 

Because RMLs continue to increase in popularity and importance for aging soci-
eties globally, financial institutions and governments issuing such products must 
understand the impact of risk factors on NNEGs. The introduction of the house price, 
interest rate, and longevity risks and the corresponding risk analysis framework can 
help these providers assess the risks of NNEGs. Finally, in light of our analysis, from 
the perspective of risk management, the risk of NNEGs can be diversified under a 
portfolio of RMLs due to the dependence of the RMLs. However, although pooling 
RMLs in a nation can minimize the risk caused by a city economic recession, it cannot 

EXHIBIT 13
Value-at-Risk and Conditional Tail Expectations under the Vasicek Model
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EXHIBIT 14
Value-at-Risk and Conditional Tail Expectations under Joint Life
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diversify the risk under a national economic recession (Miao and Wang 2007; Zimmer 
2015; Cummins and Trainar 2009; Pu et al. 2014). Therefore, understanding the 
dependence structure of house price returns is important in dealing with the portfolio 
of RMLs. It would be worthwhile to extend the VaR and CTE to measure the NNEG 
risk of the RML portfolio. 

APPENDIX A

The parameters of the jump ARMA-GARCH model can be estimated using the maxi-
mum likelihood estimation (MLE) method. The construction of the likelihood function is 
described as follows. Let Fn(Q) denote the log-likelihood function and Q is the parameter 
set governing the jump ARMA-GARCH model, which implies Q = (c,Js,zm,w,aq,bp,l0,r,V,f,q) 
We aim to find the optimal parameters (Q*) to maximize the log-likelihood function. The 
log-likelihood function can be expressed as

 ( ) : log ( | , )1
1

∑Θ = Φ Θ−
=

F f Yn t t
t

N

 (A1)

The conditional on j jumps occurring the conditional density of returns is Gaussian,
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In Equation (A1), the conditional density of return at time t (f(Yt|Ft-1,Q)) for calculating 
log-likelihood function can be obtained by integrating out the number of jumps as
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where the conditional density of Nt  ( ( | , ))1= Φ Θ−P N jt t  is shown in Equation (7). Since we 
assume the time-varying conditional intensity parameter lt follow an ARMA form as shown 
in Equation (8), we need to work out the past shock t( )1ψ −  that affects the inference on 
the conditional mean of the counting process first. t 1ψ −  is defined as

 ∑

ψ = Φ Θ − λ
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This expression could be estimated if P N jt t( | , )1 1= Φ Θ− −  are known. Following Maheu 
and McCurdy (2004), the ex post probability of the occurrence of j jumps at time t - 1 
can be inferred using Bayes’ formula as follows.
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The details of Bayes’ inference on calculating E Nt t[ | , ]1 1Φ Θ− −  is presented in Maheu 
and McCurdy (2004) Thus, by iterating on (8), (A3), and (A5), we can construct the log-like-
lihood function and obtain the maximum likelihood estimators. In addition, Equations 
(A3), (A4), and (A5) involve an infinite summation depending on the jumps.12 We find that 
truncation of the infinite sum in the likelihood at 10 captures all the tail probabilities and 
gleans sufficient precision in the estimation procedure.

APPENDIX B

Suppose that the heads (s0) and (s1), belonging respectively to the gender m (males) and 
f (females), have remaining lifetime T m(s0) and T f(s1). Then the marginal survival functions 
are denoted by Ss

m

0
 and Ss

f

1
, respectively, so that, for all t ≥ 0, p S t P T s tt s

m
s
m m( ) [ ( ) ]00 0

= = >  
and p S t P T s tt s

f
s
f f( ) [ ( ) ]11 1

= = > . Therefore, its joint survival function, which both males at 
age s0 and females at age s1 are survival exceeding t years can be written as

 p S t t T s t T s t S t S tt s s s s
m f

s
m

s
f( , ) Pr[ ( ) and ( ) ] ( ) ( )0 10 1 0 1 0 1

= = > > =  (B1)

The probability of survival of the last spouse, which males at age s0 and females at 
age s1 is survival exceeding t years can be written as 
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f

t s
m

t s
f1

0 1 0 1 0 1 0 1
= − = + − ⋅  (B2)

The probability that the last survivor dies within the (t + 1)th year given survival up 
to the tth year for males at age s0 and females at age s1 can be computed as follows
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Finally, we can recall the PVECL expressed as 

 PVECL r dt q Vt
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