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中文

仿造人腦的功能性，深層神經網路被建立用於萃取高階訊息。從數學的

觀點來看，神經網路可以視為在適當定義遇上近似任意函數的近似器。

為了展示深層神經網路的威力，我們在本論文的第一部分考慮神經網路

的兩種不同形式的應用。第一種應用是源於衍生性金融商品的定價模型，

而另一種應用則是將基於仿射空間的流形重建演算法改寫為一殘差神經網

路的學習過程，而這樣的改寫提供了深層神經網路在幾何演算法上的潛在

應用。

本論文的第二個部分，我們聚焦在 HodgeRank，一個基於組合霍奇理

論的逐對排名演算法。我們首先會回顧組合貨奇理論的背景知識，接著，

我們考慮 HodgeRank 在線上同儕互評上之應用。最後，將 HodgeRank 視

為 Moore-Penrose廣義逆算子與矩陣-向量乘法的合成函數，我們可以探討

HodgeRank的連續性。最後，我們從圖的角度證明了關於 HodgeRank的一

個連續性定理。

關鍵字：深層神經網路、深度殘差網路、移動邊界問題、流形重建、霍

奇排名、組合霍奇理論、拉普拉斯矩陣、同儕互評
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Abstract

Deep neural networks are modeled to extract higher-level information in a way

that is like the function of the human brain. From amathematical perspective, neural

networks are function approximators, which can approximate any function on a

suitable domain.

In the first part of this dissertation, we consider two different tasks to

demonstrate the power of deep neural networks. One task is derived from a option

pricing model of financial derivatives while another task is to rewrite an affine

subspaces based manifold reconstruction algorithm to a learning process of a deep

residual network. Such reformulation offers a possibility for potential application

of deep neural networks to various geometrical related algorithms.

In the second part, we focus on the HodgeRank, a pairwise ranking method

based on the combinatorial Hodge theory. We first quick review the background of

combinatorial Hodge theory, then a real world application of HodgeRank to online

peer assessment is provided. Finally, by considering HodgeRank as a composition

of Moore-Penrose generalized inverse and matrix-vector product, we can study

the continuity of HodgeRank. In terms of graph, a theorem of continuity of the

HodgeRank is provided in the end.

Keywords: deep neural network, deep residual network, moving boundary

problem, manifold reconstruction, HodgeRank, combinatorial Hodge theory, graph

Laplacian, peer assessment
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Chapter 1

Introduction

1.1 Deep Learning

In recent years, artificial intelligence (AI) has been utilized in many applications such

as machine translation [1, 89], speech recognition [21, 39], autonomous driving [74], image

recognition [28, 54], and game playing [70]. In many cases, developing AI applications start

with training deep neural networks [3].

Deep neural network is a class of model of machine learning in AI, which allows the

computer to learn features of data with multiple levels of abstraction [38, 55]. Among most

used deep neural network architecture, feed-forward neural network, convolutional neural

network [56] and recurrent neural network (RNN) [15, 36, 45]. Since the training of a deep

neural network is time-consuming and prone to overfitting due to the presence of noise from

data, an alternative structure of neural network, called the deep residual network (ResNet) [43],

was considered to solve these issues. ResNet contains a structure, called skip-connection, which

skips one or more layers. Hence, information is allowed to pass to deeper layers so that the

vanishing gradient problem can be prevented [76]. Motivated by differential equations, the

structure of skip-connection can be seen as an Euler discretization of a continuous transformation

of a time evolving ordinary differential equations [41, 65, 79]. This perspective turns a deep

neural network model into a family of a continuous-depth models, which allows end-to-end

training of ordinary differential equations [13].

Recently, Transformer [89] plays an important role in the development of natural language

processing (NLP), which outperforms most RNN-based NLP models. Several Transformer-

1
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based models such as GPT-3 [8], BERT [25], ELMo [75], and ULMFiT [48] are widely used in

multiple NLP tasks. However, the Transformer family is beyond the scope of this dissertation.

For a comprehensive survey of Transformer, please refer [86].

Theoretically, the well-known universal approximation theorem [20] of neural networks

establish a mathematical foundation that neural network with single hidden layer can be applied

to approximate any continuous function in any precision. However, the approximation theorem

offers no information about the width of certain single hidden layer. Other than above depth-

bounded universal approximation theorem, the width-bounded version [66] provides a more

interesting result for deep neural networks. The universal approximation theorem for ResNet

proposed in [58] which provides a magnificent result for the capability of ResNet.

To demonstrate the power of depth-bounded universal approximation theorem, a neural

network approach is applied to solve a moving boundary problem arising in pricing formula

in chapter 3.

1.2 Manifold Reconstruction

In many science and engineering fields, high-dimensional data are assumed to be sampled

from a manifold of lower dimension embedded in a Euclidean space. This leads to the problem

of manifold learning, which aims approximate the underlying manifold of dataset of interest [6].

The goal of manifold learning is to extract the intrinsic information from high-dimensional data

using the structure of manifold. In other words, high-dimensional data can be explained by

latent variables of lower dimension

A practical technique is to fit data points with a line or a lower dimensional affine space [18,

33, 97]. However, one issue is that data points may not sampled from flat object but from a

nonlinear class such as curve or a smooth manifold. The presence of noise is another issue

which leads to unexpected results.

The former issue was initially addressed in [14] with a triangulation-based algorithm.

In [73], a method based on simplicial complexes was proposed under the presence of

noise, which solves both issues. In [4, 5], iterative methods were considered to reduce the

computational cost of triangulation of the dataset. Later in a series of works [29, 30, 31],

manifold was reconstructed by gluing by affine subspaces, which rely on the computation of

2
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affine projections. A parameterization-free projection method was proposed in [61] to avoid

the computation of local plane. In [84], a moving least-squares method [57] was applied for

manifold reconstruction given the intrinsic dimension of the underlying manifold.

1.3 Pairwise Ranking and Combinatorial Hodge Theory

According to [68], most people are unable rank more than 10 items at the same time. Also,

bias occurs when the number of ranked items is large. To prevent such situation, pairwise

comparison offers a solution to reduce bias and also provides a way to fill missing values.

Pairwise comparison is a ranking process that compares candidates in pairs to determine

which candidate is preferred. In other words, if candidates are assumed with some unknown

underlying ranking, one may want to recover such ranking from pair comparisons [27].

In ranking algorithm, each candidate is assigned a score according to their preference, or

importance. New candidates can also be sorted quickly once the certain ranking process is

built [64].

By measuring candidates in pairs for their relative preference or importance, pairwise

comparisons are represented using a pairwise comparison matrix. Under different scale

of measurements, comparison matrix could be represented either on the additive scale or

on the multiplicative scale [80]. To find a global ranking of all candidates from pairwise

comparison matrix, a score vector for candidates is generated to approximate the observed

pairwise comparison matrix. Score vector can be generated by various methods under different

assumption and conditions. Among all ranking methods, HodgeRank [51] and PerronRank [80]

are two of the most applied in real world applications. The connection between these ranking

algorithms is being discussed in [87].

HodgeRank has been widely applied in many fields [60, 83]. HodgeRank can be

obtained simply by computing the row geometric mean of the comparison matrix [19] on the

multiplicative scale. However, on the additive scale, HodgeRank can be viewed as a consistent

part of a flow on a finite graph, which is explained by combinatorial Hodge theory [51]. Thus,

nice properties of HodgeRank are guaranteed thanks to combinatorial Hodge theory.

Combinatorial Hodge theory is an algebraic topology based theory which decomposes a

edge flow on a graph into the direct sum of gradient, harmonic and curl flows. Accordingly, by

3
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treating a pairwise ranking as an edge flow on a graph, one can be recover the global ranking

from the gradient flow while ranking error can be quantified by other two flows.

1.4 Organization of this Dissertation

The dissertation is organized as follows.

In Part I, we focus on the deep neural networks. In the second part. We will focus on

the HodgeRank, a ranking method based on the combinatorial Hodge theory. In the end of

this dissertation, we present our conclusions and possibilities for future research including few

unsolved problems in this dissertation.

In Part I, the mathematical definition of a neural network is introduced in chapter 2.

Next, we recall the well-known universal approximation theorems for feed-forward neural

network and some similar results. Then, residual neural network, a neural net that consists

of residual blocks, is introduced Also, a “dual” version of universal approximation theorems for

residual neural network is stated here. Finally, graph neural network is introduced along with

various versions of attention mechanism. In chapter 3, we propose a neural network approach

to construct an approximate solution of a moving boundary problem arising from pricing of

American volatility options. In chapter 4, a manifold reconstruction algorithm proposed by [30]

is considered. Also, combined with manifold interpolation algorithm and the structure of the

residual network, we propose a neural network based manifold interpolation algorithm.

In Part II, we will recall some basic knowledge about the combinatorial Hodge theory

in chapter 5. In chapter 6, to study the continuity of HodgeRank, we recall the definition of

a generalized inverse of a matrix. By analyzing the continuity of the pseudoinverse operator

† on graph Laplacian matrices, one condition about the continuity of HodgeRank is proved.

In chapter 7, an real world application of HodgeRank to online peer assessment is presented.

In the end, the conclusion of this dissertation is presented chapter 8. Also, two unsolved

problems which relate to our research are stated.

4
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Part I

Deep Neural Network and Manifold

Reconstruction

5
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Chapter 2

Deep Learning

In recent year, deep learning has been widely developed and applied in various fields

to handle real-world problems such as recommendation system, computer vision, autonomous

driving, game playing, etc.

Deep learning is derived from the field ofmachine learning. However, unlikemost shallow-

structured algorithms in machine learning algorithm, deep-structured models are considered

in deep learning. This difference resulting from the fact that data can be easily accessed and

collected nowadays.

A central component of deep learning is the neural network. Neural network is a parametric

model originally inspired by neurobiology, which imitates the computing power and flexibility

of the brain. Parameters can be optimized through the learning process.

In this section, we first briefly introduce the model of neural network. Then we state and

prove the well-known universal approximation theorem for shallow networks. Note that there

are various universal approximation theorems under different conditions for different purposes.

We will cover some well-known versions of universal approximation theorem here.

2.1 Standard Structure of Neural Network

We first state the definition of a feed-forward neural network between Euclidean spaces.

This is a modified definition from the one given in the book [38].

Definition 2.1.1. A feed-forward neural network (or a neural network simply) of depth d is a

parametric function fθ : Rn → Rm defined by a series of alternative compositions of affine and

6
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nonlinear functions with a set of parameters θ = {(Wi, bi) | 0 ≤ i ≤ d} ∈ Θ =
d⊔

i=0

(
Rhi+1×hi ×

Rhi+1
)
, where

⊔
is the disjoint union. That is, fθ of the form:

fθ = Ld ◦ σd−1 ◦ Ld−1 ◦ · · · σ0 ◦ L0,

where Li : Rhi → Rhi+1 is an affine transformation defined by Li(x) = Wix + bi and σi :

Rhi+1 → Rhi+1 , called activation function of hidden layer i, is a nonlinear function that operates

on vectors component-wisely . That is, σi(x) =
(
σi(x1), σi(x2), · · · , σi(xk)

)T for column vector

x = (x1, · · · , xk)T ∈ Rk.

The map σ0 ◦ L0 is called the input layer and ◦Ld is called the output layer, and σi ◦ Li is

called the i-th hidden layer for i = 1, 2, · · · , d − 1. Each layer σi ◦ Li : Rhi → Rhi+1 can be

written of the form

σi(Wix+ bi) =
[
σi(Wix+ bi)j

]
1≤j≤hi+1

=
[
σi(Wijx+ bij)

]
1≤j≤hi+1

whereWij is the j-th row of the hi+1×hi matrixWi and bij is the j-th component of bi ∈ Rhi+1 .

Hence, to compute σi◦Li(x), it suffices to compute σ(Wijx+bij) for all 1 ≤ j ≤ hi+1. Note

that x 7→ y = σ(Wx + b), whereW ∈ R1×h and b ∈ R is a function from Rh to R, which can

be represented as a diagram shown in Figure 2.1 below. This is called the mathematical model

of a single neuron. Here, x is called the input vector, and y = σ(Wx + b) is called the output

vector defined by computing the inner product of x and a weight vectorW = [wi]1≤i≤n ∈ R1×h

plus the bias b ∈ R under σ.

x1

x2

...

xn

b

σ y

w1

w2

wn

Figure 2.1: Mathematical model for a neuron: y = σ
( n∑
i=1

wixi + b
)

7
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The following terms can be used to design and characterize a neural network:

d: depth of fθ

σi: activation function of layer i

hi: width of the hidden layer i of fθ for 1 ≤ i ≤ d

h0 = n: dimension of the input layer

hd+1 = m: dimension of the output layer
For a fixed design of neural network, the corresponding parametric model is the collection

of all neural networks with the same design

HΘ = {fθ : Rn → Rm | θ ∈ Θ}

which has an one-to-one correspondence to parameters θ ∈ Θ. SinceΘ =
d⊔

i=0

(
Rhi+1×hi×Rhi+1

)
is isomorphic to RK , where K =

d∑
i=0

[
(1 + hi)hi+1

]
. That is, each fθ is fully determined by its

design and K parameters.

We can classify a neural network fθ by its depth d and all its width of each layers {hi}d+1
i=0 .

Definition 2.1.2. For N ∈ N, fθ is called a

1. shallow neural network if d ≤ 2. i.e., fθ contains at most two hidden layer.

2. deep neural network for d ≥ 3. i.e., fθ contains at least three layers.

3. width-N network if hi ≤ N for all 1 ≤ i ≤ d.

In some literatures [2, 10, 49, 92], a neural network with one hidden layer (that is, d = 1)

is called a single hidden layer feed-forward neural network (SLFN) instead of a shallow neural

network. However, we will use the term shallow nets for the rest of this section. Sometimes,

we say fθ is a narrow net if it is width-N network without indicating its width bound N .

In Table 2.1, some popular types of activation functions used in deep learning out of which

commonly used are listed.

8
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Table 2.1: Common choices of activation function

Name Formula Derivative

Sigmoid σ(x) = 1
1+e−x σ′(x) = σ(x)(1− σ(x))

Hyperbolic tangent σ(x) = ex−e−x

ex+e−x σ′(x) = 1− σ2(x)

Rectified linear unit
(ReLU) σ(x) = max{x, 0} σ′(x) =

 1 if x ≥ 0

0 if x < 0

Leaky ReLU [67] σ(x) =

 x if x ≥ 0

αx if x < 0
σ′(x) =

 1 if x ≥ 0

α if x < 0

2.1.1 Learning Process

Let D = {(xi)}Ni=1 be data points in Rn. We often aim to extract information on D. Thus,

we propose one or multiple mathematical models to work on this dataset.

In supervised learning, we associate each data xi ∈ Rn with a label yi ∈ Rm. One common

application of neural network in a supervise manner is to interpolate all points inDwith a sutable

designed neural network fθ. i.e., find a fθ so that

fθ(xi) = yi for all 1 ≤ i ≤ N (2.1.1)

For a fixed design Θ of neural network, our goal is to find an optimal fθ∗ ∈ HΘ = {fθ :

Rn → Rm | θ ∈ Θ} (if exists) so that (2.1.1) holds.

For fθ ∈ HΘ, we can evaluate how fθ far from (2.1.1) by a cost function or a loss function.

To measure this gap, we first consider a nonnegative function L : Rm × Rm → [0,∞) so that

L(fθ(xi), yi) = 0 ⇐⇒ fθ(xi) = yi for all 1 ≤ i ≤ N

Such L is called a loss function or a cost function of fθ at a point (xi, yi), L(fθ(xi), yi) is

called a loss of fθ at (xi, yi) under criterion L. Further, the loss functionL : Θ → [0,∞) assigns

each θ a non-negative number by computing the mean of L(fθ(·), ·) on all data points ofD, that

is:

L(θ) = 1

N

N∑
i=1

L(fθ(xi), yi)

Therefore, finding a optimal θ∗ satisfying (2.1.1) is equivalent to solve the following

9
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minimization problem

min
θ∈Θ

L(θ) = L(W0, b0,W1, b1, · · · ,Wd, bd) (2.1.2)

If L is chosen with nice properties such as convexity or Lipschitz continuity [72, 94]. Then

there are several standard optimization techniques can be applied to deal with (2.1.2). The

process to find the optimal θ∗ using loss functionL is called the learning process under criterion

L.

Some common used loss functions are listed in Table 2.2

Table 2.2: Common choices of loss function

Name Formula of L(x, y)

Binary loss 1{x ̸=y}

Mean square error 1
2
∥x− y∥22 = 1

2

n∑
i=1

(xi − yi)
2

Mean absolute error ∥x− y∥1 =
n∑

i=1

|xi − yi|

Negative log likelihood −
n∑

i=1

[yi log(xi) + (1− yi) log(1− xi)]

If the loss function L is chosen to be differentiable, then a common procedure of learning

process is to apply gradient descent method from elementary calculus. There are several

different flavors of stochastic gradient descent, which can be all seen throughout the literature.

There are various learning algorithm based on the gradient method such as Adam [52] or

Nesterov momentum [71].

In unsupervised learning, data points are untagged, that is, each xi associates with no label

yi, that is, D is the only set we have. Based on the result we intended to achieve, various

algorithms would be considered to deal with D. In some case, loss functions could be not

analytic or even differentiable. However, in some case, we can reformulate an unsupervised

learning problem into a supervised one. For instance, an Autoencoder is to reconstruct a data

by learning the identity function. That is, the label of each data xi is xi itself. This makes the

selection of loss function being reduced into supervised case.

10
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2.1.2 Universal Approximation Theorem for Shallow Net

A famous result for neural networks is that that any continuous function on a compact set of

Rn can be approximated by a neural network in any precision. Computationally, any continuous

function can be replaced by a neural network without losing precision. To state this theorem,

we need the following notations.

Let In = [0, 1]n be n-dimensional unit cube in Rn. Denote the set of all signed Radon

measures defined on In byM(In). The set of all continuous functions defined on In is denoted

by C(In). Each f ∈ C(In) associates with a supremum norm

∥f∥∞ = sup
x∈In

|f(x)|

Definition 2.1.3 ([20]). We say that σ is discriminatory on In if µ ∈M(In) on In so that

∫
In

σ(Wx+ b)dµ(x) = 0

for anyW ∈ R1×n, b ∈ R, then µ = 0

We need the following geometric form of the Hahn-Banach Extension Theorem and the

Riesz Representation Theorem.

Theorem 2.1.4 (Hahn-Banach Extension Theorem [7, Corollary 1.8]). Let F ⊆ E be a linear

subspace with F ̸= E. Then there exists a nonzero linear functional L on E such that

L|F ≡ 0

Theorem 2.1.5 (Riesz Representation Theorem [34, Theorem 7.17]). Let X be a locally

compact Hausdorff space. For µ ∈ M(X) and f ∈ C0(X), define Lµ(f) =
∫
X
fdµ. Then

µ 7→ Lµ is an isometric isomorphism fromM(X) to C0(X)∗.

Note that the domain we talk about here is In = [0, 1]n, hence, the set of continuous

functions vanish at infinity C0(In) coincides with C(In).

The shallow net fθ we consider below contains one hidden layer of width h, and is of the

form

fθ(x) = Sσ(Wx+ b) =
h∑

i=1

siσ(Wix+ bi) (2.1.3)

11
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whereWi is the i-th row ofW .

Denote Nσ be the set of all shallow net fθ of the form (2.1.3) of any width h ∈ N with a

fixed activation function σ. Then we have the following theorem.

Theorem2.1.6 (Universal Approximation Theorem [20]). Ifσ is continuous and discriminatory,

then Nσ is dense in C(In) with respect to the uniform norm ∥·∥∞.

Proof. Suppose not, then the closure of Nσ is not dense in C(In). That is, Nσ, is a proper

closed subspace of C(In). By Hahn-Banach Extension Theorem, there exists a nonzero linear

functional L ∈ C(In)
∗ so that

L|Nσ ≡ 0 (2.1.4)

By Riesz Representation Theorem, there exists µ ∈ M(In) so that the linear functional L

is of the form

L(f) =

∫
In

f(x)dµ(x)

for any f ∈ C(In).

By (2.1.3), we have

0 = L(fθ) =

∫
In

Sσ(Wx+ b)dµ(x) =
h∑

i=1

si

∫
In

σ(Wix+ bi)dµ(x)

for any fθ = Sσ(Wx+ b) ∈ Nσ ⊆ C(In)

By choosing suitable si, since σ is discriminatory, we can conclude that µ = 0. This implies

that L ≡ 0 is a trivial linear functional, which leads us to a contradiction. Hence, Nσ is dense

in C(In).

Another proof of Theorem 2.1.6 is to apply the Stone-Weierstrass theorem by considering

Nσ as the linear span of {σ(Wx + b) | w ∈ Rn, b ∈ R}. However, both are existence proofs,

which provide no additional information about how to design width h.

In fact, combined with Lusin’s theorem [34, p. 64], one can prove that any finite Borel

measurable function on In can be well-approximated with a shallow net on a subset of In by

removing a subset of In with small measure.

The universal approximation theorem we state above is called a depth-bounded type. An

alternative type of the universal approximation theorem is width-bounded. That is, if we restrict

the width of each layer to be bounded, does the universal approximation property holds as the

12
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depth goes to infinity? There are various width-bounded universal approximation theorems for

deep neural network showing the denseness of particular deep narrow networks.

In [42], it has been shown that deep narrow networks with the ReLU activation function are

dense inC(K,Rm) for any compact setK ⊆ Rn, and require only width n+m. A similar result

have proved in [66] that deep narrow networks with the ReLU activation function are dense in

L1(Rn), the set of all Lebesgue integrable functions on Rn, with width n + 4. Later in 2.2.2,

we will see an impressive universal approximation theorem for residual network, which will be

introduced soon.

2.2 Residual Network

In this section, we introduce a variant of neural network, called the residual network, which

is proposed in [43].

The major difference of residual network from standard feed-forward neural network is the

design of skip connection. To illustrate this structure, we introduce the residual block below.

2.2.1 Residual Network

Definition 2.2.1. An residual block (ResBlock) is a function FW,θ : Rn → Rm defined by

FW,θ(x) = Wx+ fθ(x) (2.2.1)

where W ∈ Rm×n and fθ : Rn → Rm is a parametric function. This structure is sometimes

called an additive skip-connection.

If fθ is narrow, then we call FW,θ a narrow ResBlock.

x

W

$$
// fθ(x) // FW,θ(x)

Figure 2.2: Functions of a ResBlcok

Intuitively speaking, FW,θ not only extract information from x through fθ, but also

preserves some information Wx from x. This makes important information behind x being

left for the next layer.

13
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Remark 2.2.2. 1. For the casem = n, we can fixW = In as the identity matrix and ignore

it from the subscript of FW,θ. Otherwise, W will be considered as a trainable weight

during training process.

2. Initially, the parametric function fθ is chosen as a shallow convolutional neural network

in [43]. Later in [99], authors consider fθ as a sum of k shallow nets fθi : Rn → Rn with

different design. That is, F{θi}ki=1
(x) = x+

k∑
i=1

fθi(x)

Definition 2.2.3. A residual network (ResNet) is a parametric function containing at least one

ResBlock.

The origin structure of ResNet proposed in [43] consists of ResBlocks only. Two

consecutive ResBlocks are connected by multiplying a weight on the output of the former

ResBlock, this makes each ResBlocks could handle vectors of different dimensions.

One advantage of ResNet is that we could construct a very deep neural network without

gradient vanishing during training process. An interpretation is that a ResNet could be seen

as a collection of many paths of various length due to the existence of skip-connections. In

other words, a ResNet could be viewed as an ensemble of relative smaller feedforward neural

networks which are easier to train. For more detail about the discussion, please refer [90].

There is also an universal approximation theorem for ResNet if we allow its depth goes

to infinity with width-bounded ResBlocks. We slightly modify notation and terminology

from [58].

2.2.2 Universal Approximation Theorem for Narrow ResNet

Lin and Jegelka [58] have shown that ResNet with ReLU activation and only one neuron is

a universal approximator of functions inL1(Rn). To state such universal approximation theorem

for ResNet, we first consider the following type of ResNet.

Definition 2.2.4. 1. The function F : Rn → Rn is called a k-neuron shallow ResBlock with

activation σ if F is of the following form:

F (x) = x+ Sσ(Wx+ b)

14
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whereW ∈ Rk×n, b ∈ Rk and S ∈ Rn×k. In other words, F is a ResBlock by choosing

W = In and fθ(x) = Sσ(Wx+ b) in (2.2.1).

2. The set of all k-neuron shallow ResBlocks on Rn with activation σ is denoted by N (1)
n,k,σ.

3. Denote the set of all composition of d functions in N (1)
n,k,σ by N (d)

n,k,σ.

That is, for any f ∈ N (d)
n,k,σ, f is of the form

f = Fd ◦ Fd−1 ◦ · · · ◦ F1

where F1, F2, · · · , Fd ∈ N (1)
n,k,σ.

Then, we have the following universal approximation theorem for narrow ResNet using

only ReLU as activation function.

Theorem 2.2.5 (Universal Approximation Theorem for Narrow ResNet [58]). L
∞∪
d=1

N (d)
n,1,ReLU

is dense in L1(Rn) under the L1-norm, where LX = {L ◦ f | L : Rn → R is linear , f ∈ X}

Proof. See [58, Theorem 3.1] for the proof.

In fact, we can relax k = 1 into arbitrary width.

Corollary 2.2.6. L
∞∪
d=1

N (d)
n,k,ReLU is dense in L1(Rn) under the L1-norm for any k ∈ N.

The central part of the proof of Theorem 2.2.5 is to approximate step function first, then

apply the denseness property of step functions in L1(Rn). One trick is that shifting is considered

to make sure the supports of all ResBlocks are non-overlapping.

However, the proof of Theorem 2.2.5 is given by combining a constructive proof and an

existence proof, which provides merely benefits of constructing and training a deep narrow

ResNet.

The key advantage of the ResNet is that it contains different paths to pass some of its

ResBlocks. Hence, we can consider the local behavior of ResNet other than global. Later

in chapter 4, we will see how this property can be applied to solve a manifold interpolation

problem.

15
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2.3 Graph Neural Network

In various fields, the connection between different objects are recorded and represented as

a graph, which consists of nodes and edges to indicate each object and the relationship between

them. To extend the capacity of neural network from Euclidean data into non-Euclidean one,

graph neural network was proposed in [82] which extends classical neural network models.

Here, we briefly introduce what is the graph neural network and how a graph can be viewed

as an input of a graph neural network.

2.3.1 Graph

In this subsection, we recall some basic definitions from graph theory. Some of definitions

below will be used in chapter 5. Through this subsection, V will denote a nonempty finite set.

The notation
(
n
k

)
denotes by the set of k-elements of subsets of V , and V k denotes the set of

k-tuples of elements of V .

Definition 2.3.1. A (simple) graph is an ordered pair G = (V,E), where V is called the vertex

set and E ⊆
(
n
2

)
, {(i, j) ∈ V 2 | i ̸= j} is called the edge set.

• If element in E is not ordered, then we say G is an undirected graph. Otherwise, G is

called a directed graph.

• If V is a finite set, then G is called a finite graph on n vertices. In this case, we write

V = {1, 2, · · · , n} , [n].

• A finite undirected graph G of vertex n, denoted by G = Kn, is called a complete graph

if E =
(
n
2

)
.

Let G be a graph. Sometimes we use V (G) and E(G) to represent the vertex and the edge

set of graph G. These notations are useful when we discuss more than one graph. Now, we see

how a graph is associated with a matrix.

Definition 2.3.2. Let G be a finite graph on n vertices, and i ∈ V (G).

16
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1. Let A = AG be an n× n matrix defined by matrix of G, which is defined by

Aij =


1 if (i, j) ∈ E

0 if (i, j) /∈ E

AG is called the adjacent of the graph G.

2. The set of all neighborhoods of vertex i is denoted by

Ni = {j ∈ V | (i, j) ∈ E}.

3. The degree of vertex i, denoted by deg(i), is defined by deg(i) = |Ni|.

Remark 2.3.3. Let G be a finite graph on n vertices, and i ∈ V (G).

1. If G is undirected, then its adjacent matrix A is symmetric.

2. Aij = 1 for all j ∈ Ni.

3. The degree of i can be computed by deg(i) =
n∑

j=1

Aij =
∑
j∈Ni

Aij.

Figure 2.3 shows an example of a finite undirected graph G = (V,E) of 5 vertices, where

V = {1, 2, 3, 4, 5}, E = {(1, 2), (2, 1), (2, 3), (3, 2), (2, 4), (4, 2), (4, 5), (5, 4)} and

A =



0 1 0 0 0

1 0 1 1 0

0 1 1 0 0

0 1 0 0 1

0 0 0 1 0



Figure 2.4 shows an example of a finite directed graph G = (V,E) of 5 vertices, where

17



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202100296

'&%$ !"#1
'&%$ !"#2 '&%$ !"#4
'&%$ !"#3 '&%$ !"#5

Figure 2.3: Example of an undirected graph

V = {1, 2, 3, 4, 5}, E = {(1, 2), (2, 3), (4, 2), (4, 5), (5, 4)}and

A =



0 1 0 0 0

0 0 1 1 0

0 0 0 0 0

0 1 0 0 1

0 0 0 1 0



'&%$ !"#1
��'&%$ !"#2
��

'&%$ !"#4
��

oo

'&%$ !"#3 '&%$ !"#5
OO

Figure 2.4: Example of a directed graph

Definition 2.3.4. Let G = (V,E) be a graph with adjacent matrix AG. If each vertex i ∈ V

is associated with a vector hi ∈ RF . Then we called ({hi}i∈[n], AG) a graph-structured data

based on the graph G.

Later, we can see how a graph-structured data be viewed and manipulated as a input data

of a neural network.

A natural way to construct a graph-structured data from a graph G is to assign each vertex

i ∈ V with the i-th row (or column) of the adjacent matrix A. Hence, even for a graph with no

extrinsic information about each vertex, we can still find a graph-structured data tautologically.

18
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2.3.2 Graph Attention Network

Here, we only introduce one type of graph neural network. We first define the traditional

attention mechanism in deep learning.

Definition 2.3.5 (Softmax). The function softmax : Rn → Rn is defined by

softmax(x1, x2, · · · , xn) = (y1, y2, · · · , yn)

where

yi = softmax(x1, x2, · · · , xn)i =
exi

n∑
k=1

exk

for 1 ≤ i ≤ n. is called the softmax function.

Note that yi ∈ [0, 1] and
n∑

i=1

yi = 1. In other words, softmax transforms a vector in Rn into

a probability vector in Rn.

Definition 2.3.6 (Attention mechanism). Let X = {xi}ni=1 and Y = {yj}mj=1 be two sets in RN

andRM , respectively. The attention mechanism is to apply to update each xi to x′i by considering

the importance of each yj to xi. Usually, x′i is given by
m∑
j=1

αijyj , a linear combination of {yj},

where coefficient αij is called the attention score of i from j, is defined by two steps below.

For fixed i, to compute αij , we need to consider all importance between xi and all yj .

1. An alignment model {Aij} onX and Y is a function that assigns each xi ∈ X and yj ∈ Y

a scalar Aij ∈ R for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Sometimes, Aij is called the attention

coefficient of xi and yj .

2. Based on an alignment model {Aij}, an attention score aij from xj to xi is defined by

αij = softmax(Ai1, Ai2, · · · , Aim)j =
eAij

M∑
k=1

eAik

(2.3.1)

for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

3. With αij , we can update each xi by

x′i =
m∑
j=1

αijyj

19
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for 1 ≤ i ≤ n.

Note that the alignment model Aij between xi and yj can be implemented in various way.

Let ({hi}i∈[n], AG) be a graph-structured data, our goal is to identify a pattern of each vertex

i by studying their feature vector under the structure of graph. This pattern consists of not only

hidden information from vertex i, but also from some or all neighborhoods Ni of vertex i.

In a feed-forward neural network, we compute the linear combination of vectors from the

output of one hidden layer as an input of next hidden layer. In a graph neural network, we

transform each hi with a similar computation process to get another feature vector h′i of vertex

i. However, we consider their convex combination instead, and the coefficients are attention

scores defined below. This is called the graph attention mechanism, which is slightly different

from the traditional one.

Definition 2.3.7 (Graph attention mechanism). Let ({hi}i∈[n], AG) be a graph-structured data.

Denote E(G) = E(G) ∪ {(i, i) | i ∈ V (G)} and Ni = Ni ∪ {i} for i ∈ V (G).

1. An alignment model {Aij} between i and hj is defined only if (i, j) ∈ E(G) or i = j.

2. Based on an alignment model {Aij}(i,j)∈E(G), an attention score aij from hj to hi is defined

by

αij =
eAij∑

(i,k)∈E(G)

eAik
=

eAij∑
k∈Ni

eAik

for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

3. With αij , we can update each xi by

x′i =
∑

(i,j)∈E(G)

αijyj

for 1 ≤ i ≤ n.

To compute the attention score, one need to have an alignment model beforehand. There

are various ways to define such alignment model. We introduce two famous examples below.

In [89], a different data structure is considered. Assume that the dataset is of the form

{Q,K, V }, where Q,K ∈ Rn×dk and V ∈ Rn×dn , then each data xi = (qi, ki, vi) is a 3-tuple of

i-th row of Q,K and V , respectively.

20
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For such data format, the scaled dot-product attention A = [Aij]n×n is defined

Aij = [QTK]ij

where 1 ≤ i, j ≤ n. In this case, the attention score αij is defined by (2.3.1). Then the attention

mechanism is this case is to update vi by

n∑
j=1

αijvj

for 1 ≤ i ≤ n.

In [91], the alignment model of a shared attentional mechanism is defined by a shallow

neural network fθ : Rn → Rn using Leaky ReLU so that

Aij = fθ(hi, hj) = Leaky(aT [Whi∥Whj]) (2.3.2)

whereW ∈ RF ′×′ is a shared weight, a ∈ R2F ′ is a weight vector and [Whi∥Whj] ∈ R2F ′ be

the concatenation operation between two vectorsWhi andWhj of RF ′ .

Hence, the process of graph attention network between two attention layers can be divided

into serval steps:

1. Update all feature vector {hi} in RF by multiplying by a common weight matrix W of

shape F ′ × F . In other words, we have {Whi} in RF ′ .

2. Compute the alignment or attention coefficient Aij between i and j. One can consider A

as a shallow net defined as in (2.3.2).

3. Compute the attention coefficient αij between i and j by normalizing Aij across all

choices of j using softmax function:

αij =
eAij∑

k∈Ni

eAik
(2.3.3)

Then αij ∈ [0, 1] and
∑
j∈Ni

αij = 1 for each i.

4. UpdateWhi to h′i by consider a convex combination of all its neighborhoods and hi itself

21
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with coefficients αij for all j ∈ Ni ∪ {i}. That is,

h′i = σ

( ∑
j∈Ni∪{i}

αijWhj

)
= σ

( n∑
j=1

αij(In + A)ijWhj

)
(2.3.4)

where σ is an activation function. Note that this step is to updateWhi by average of all

its neighborhoods.

With {h1, · · · , hn} as input, a graph attention network geneates {h′1, · · · , h′n} by weight

matrixW and the graph structure of G in each graph attention layer.

Therefore, a graph neural network generates a series of feature vectors for each vertex i.

See Figure 2.5 for an example.

h1 h′1 y1

h2 h4

GAT
$$
h′2 h′4

GAT
""
· · ·

GAT
""
y2 y4

h3 h5 h′3 h′5 y3 y5

Figure 2.5: Diagram of graph attention neural network

We give an example that illustrates how an attention layer of a graph attention network

works in Figure 2.6.

h1 Wh1 Wh1

α11

��

α21

��

h′1

h2 h4
W //Wh2 Wh4

attention
score

// Wh2α22

66
α12

OO

α32

��

α42 //
Wh4

α44

��

α24

oo

α45

��

// h′2 h′4

h3 h5 Wh3 Wh5 Wh3

α33

GG

α23

OO

Wh5

α55

G G

α54

OO

h′4 h′5

Figure 2.6: Mechanism of graph attention

There are various datasets which could be identified with a graph structure. For example,

a citation graph is a directed graph in which each vertex represents a scientific paper and each

22



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202100296

edge represents a citation from a peer to another. The feature vector of each vertex is formed by

a bag-of-words representation of certain paper. For more detail and survey about graph neural

networks, please refer [100, 98].

Later in chapter 7, we will see a natural dataset which consist of graph Laplacian matrices

of all edge-weighted connected graphs.
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Chapter 3

Neural Network Approach for Pricing

American Volatility Options

In this chapter, we will see how a pricing formula of American power volatility option

is derived by solving a moving boundary problem. However, such pricing formula contains

a moving boundary term which can only be solved by solving a nonlinear algebraic equation.

Therefore, a neural network approach is considered in the end of this chapter. The comparison

results demonstrates that the neural network provides an accurate approach to approximate

solution for the free boundary problem.

This chapter is partially based on the joint work [63] with my advisors.

3.1 Introduction

In this chapter, we study the properties of the parabolic free-boundary problem arising

from pricing of American volatility options in mean-reverting volatility processes. When the

volatility index follows the mean-reverting square root process (MRSRP), a closed-form pricing

formula for the perpetual American power volatility option can be derived. Moreover, a neural

network approach is extended to find an approximate solution of the free boundary problem

arising from pricing the perpetual American option.

24
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3.2 Problem Definition

3.2.1 The Probability Density Function and Expectation

In the case of mean-reverting square root process (MRSRP), the index process under the

Martingale measure Q is presented as

dxt = β(m− xt)dt+ σ
√
xtdwt

with β,m and σ representing the speed of mean-reversion, the long-run mean, and the volatility

of the volatility index, respectively [23, 40].

Here, x denotes the index of volatility, t denotes the time-to-maturity and dwt denotes an

increment in the Wiener process under the Martingale probability measure Q. The probability

density function of x at the future time T under the current time t is given as (see Cox et al. [17])

p(xT , xt|β,m, σ) = ce−u−v(
v

u
)
q
2 Iq(2

√
uv), (3.2.1)

where c = 2β
σ2(1−e−β(T−t))

, u = cxte
−β(T−t), v = cxT , q = 2βm

σ2 − 1 and Iq is the modified Bessel

function of the first kind of order q.

In the case of mean-reverting 3/2 volatility process, the index process under the Martingale

measure Q is given as follows:

dxt = (αxt − βx2t )dt+ kx
3
2
t dwt, (3.2.2)

where α > 0, β > 0 and k ̸= 0 are constants. This model has a nonlinear drift so that it exhibits

substantial nonlinear mean-reverting behavior when the volatility is above its long-run mean.

Hence, after a large volatility spike, the volatility can potentially quickly decrease, while after

a low volatility period it can be slow to increase. Applying change of variables yt = 1/xt , y

follows the following MRSRP

dyt = ((k2 + β)− αyt)dt− k
√
ytdwt.
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Based on (3.2.1), the probability density function of y is then presented as follows:

p(yT , yt|α,
k2 + β

α
,−k) = ce−u−z(

z

u
)
q
2 Iq(2

√
uz), (3.2.3)

where c = 2α
k2(1−e−α(T−t))

, u = cyte
−α(T−t), z = cyT and q = 1+ 2β

k2
(see Goard and Mazur [37]).

Since the probability density function of the MRSRP and the mean-reverting 3/2 processes

are given in (3.2.1) and (3.2.3), respectively, the value of a European option can be obtained as

V (x, t) = e−r(T−t)EQ[ψ(xT )|xt = x],

where ψ(x) is the payoff function of the European volatility option and EQ denotes the

expectation under the martingale measure Q.

3.2.2 The Solution of Partial Differential Equations

Except considering the probability density function to find the expectation for the price,

the pricing formula of the European volatility option is also the solution of partial differential

equations. When the volatility index follows the MRSRP, the pricing equation of the volatility

option V (x, t) is presented as

(LM
0 − ∂

∂t
)V = 0, 0 ≤ x <∞, 0 < t <∞, (3.2.4)

where LM
0 is defined as

LM
0 ≡ 1

2
σ2x

∂2

∂x2
+ β(m− x)

∂

∂x
− r.

The fundamental solution of (3.2.4) is given by Feller [32]. When the volatility index follows

the mean-reverting 3/2 volatility model, the value V (x, t) of the volatility option can also be

obtained by solving the following parabolic equation

(LQ
0 − ∂

∂t
)V = 0, 0 ≤ x <∞, 0 < t <∞,
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where the operator L0 is given in the form

LQ
0 ≡ 1

2
k2x3

∂2

∂x2
+ (αx− βx2)

∂

∂x
− r. (3.2.5)

The coefficients are all continuously differentiable and 1
2
k2x3 > 0, for 0 < x < ∞, k ̸= 0 and

r > 0. By setting x = 1/y, LQ
0 V (x) can be changed to LM

0 V (y).

The closed-form expression for the value of a European volatility call option was proposed

by Grunbichler and Longstaff [40], who found that the price of a volatility call option can be

below its intrinsic value and that the traditional put-call parity relation does not hold for these

options. This is because the volatility is not the price of a traded asset. However, the value of the

American style volatility call option, unlike the European option, is bounded below by its early

exercise payoff. Evidently, the lower bound is a consequence of the possibility of immediate

exercise. Moreover, the European option still has value as the volatility decreases to zero in

the MRSRP case. Detemple and Osakwe [23] said that the reason for this difference is the

multiplicative impact of the uncertainty of future volatility. They also showed that the price

of the American style volatility call (ψ(x) = max{x − K, 0}) is an increasing function of the

time-to-maturity.

3.2.3 The Free Boundary Problem for Pricing an American Volatility

Option

For the American-style option, an entirely satisfactory analytic solution has not been

found for the MRSRP model and the mean-reverting 3/2-volatility model, even though several

researchers have concentrated on finding the properties of the value as well as the early exercise

boundary for American options. Liu [62] proposed the properties of the price and the early

exercise boundary for the American volatility put option (ψ(x) = max{K − x, 0}) when the

volatility index satisfies the mean-reverting 3/2 volatility process.

In this chapter, we consider the pricing problem for the American volatility call with the

27
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payoff function ψ(x) = max{xn −K, 0}, n ∈ Z. Apply LM
0 to ψ(x) yields that

LM
0 ψ(x) =


−(βn+ r)xn + (1

2
σ2(n− 1) + βm)nxn−1 + rK, if xn > K,

0, if xn < K.

Since rK > 0 and LM
0 ψ(ξ) → −∞ as ξ → ∞ if βn+r > 0. This implies that there exists

d > 0 such that

LM
0 ψ(x)


> 0 for 0 < x < d,

< 0 for d < x <∞,

(3.2.6)

Precisely, this chapter examines the following one-dimensional free boundary problem

for linear parabolic equations arising from the problem of valuing an American-style volatility

option in the models of MRSRP. Define L = LM
0 − ∂

∂t
.

Let u(x, t) and s(t) be the price and the early exercise price of the American volatility

power call. For the case of n > 0, we consider the following free boundary problem.

Problem (P )

Lu = 0, 0 < x < s(t), 0 < t <∞, (3.2.7)

u(x, t) > xn −K, 0 < x < s(t), 0 < t <∞, , (3.2.8)

u(x, 0) = xn −K, 0 ≤ x ≤ s(0), (3.2.9)

u(s(t), t) = sn(t)−K, 0 ≤ t <∞, (3.2.10)
∂u

∂x
(s(t), t) = ψ′(s(t)), 0 ≤ t <∞, (3.2.11)

Since u(x, t) denotes the price of an American volatility power call, the condition u(0, t) <

∞ is added in the model. These additional condition will be used in finding the pricing formula

of the corresponding perpetual American option.

For the case of n < 0, we have xn > K if x < 1
n√K

. Hence, the value of the American

volatility option satisfies the following free boundary problem.
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Problem (Q)

Lu = 0, s(t) < x <∞, 0 < t <∞, (3.2.12)

u(x, t) > xn −K, s(t) < x <∞, 0 < t <∞, , (3.2.13)

u(x, 0) = xn −K, s(0) ≤ x ≤ ∞, (3.2.14)

u(s(t), t) = sn(t)−K, 0 ≤ t <∞, (3.2.15)
∂u

∂x
(s(t), t) = ψ′(s(t)), 0 ≤ t <∞, (3.2.16)

In the mean reverting 3/2 volatility process, the pricing problem for the American volatility

option can be considered by changing the variable x = 1/y. It would be interesting to consider

the properties of the value as well as the early exercise boundary of American volatility power

options while the properties have not been mentioned in the case of the MRSRP and the mean-

reverting 3/2 volatility process.

In the cases of the MRSRP and the mean-reverting 3/2 volatility process, we derive a

closed-pricing formula for the perpetual American volatility power option, where the early

exercise price can be obtained iteratively. Moreover, we consider neural network (NN) approach

to the solution of the free boundary differential equation arising from pricing a perpetual

American volatility option under the MRSRP. The numerical results show that the ANN

approach is an accurate approach for pricing the American volatility option in the case of

MRSRP. This NN approach can also be applied to approximate the pricing formula of the

perpetual American option under the different process. In future studies, our results can be

applied to consider the properties of other American-style derivatives with the payoff function

satisfying (3.2.6) in the cases of the MRSRP and the mean-reverting 3/2 volatility process.

3.3 Properties of the Solution

Let T denote the set of all stopping time τ for the process. The value of an American-style

option is obtained by evaluating the following optimization problem

û(x, t) = sup
τ∈T

EQ[ψ(xτ )|x(t) = x]. (3.3.1)
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Kotlow [53] showed that the solution (s, u) to Problem (P) resolves the optimization

problem (3.3.1) by setting

û(x, t) =


u(x, t) if (x, t) ∈ C,

ψ(x) if (x, t) ∈ Q̄− C,

where Q̄ = (0,∞)× (0,∞) and C = {(x, t)|0 < x < s(t), 0 < t <∞}.

Let {s, u} be the solution to Problem (P) and denote C, namely the continuation region, as

C = {(x, t)|0 < x < s(t), 0 < t <∞}. (3.3.2)

Applying results of Kotlow [53] directly to (P), we obtained the following theorems.

Theorem 3.3.1. Let {s, u} be a solution of (P). They have the following properties:

(a) ut > 0 in C.

(b) s(0) = d and s(t) > d for 0 < t <∞.

(c) s(t) is a non-decreasing function.

(d) There exists a s∞ ∈ (d,∞) such that s(t) → s∞ uniformly as t → ∞ if

lim sup
ξ→∞

[LM
0 ψ(ξ)] < 0 and βn+ r > 0.

In the case of the American put option, Liu [62] provided the properties for the price as

well as the early exercise boundary under the mean-reverting 3/2 volatility model. When the

payoff function satisfies (3.2.6), we obtained the following theorem by modifying the proof of

Theorem 2.3 in [62]. The following theorem includes the call option and the power call option

in the MRSRP or the mean-reverting 3/2 volatility models.

Theorem 3.3.2. Let {s, u} be a solution of (P). Then

(a) s(t) is a strictly increasing function.

(b) ux(x, t) > 0 for (x, t) ∈ C.

(c) When β > 0, ux(x, t) < ψ′(x) for (x, t) ∈ Cd, where Cd = {(x, t) ∈ C|x > d)}.
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According to Theorem 3.3.1 and Theorem 3.3.2, we propose properties for the value and the

early exercise boundary of an American volatility power option in the MRSRP (Theorem 3.3.3)

and the mean-reverting 3/2 volatility process (Theorem 3.3.5). The similar results for the

American volatility call can also be founded in Detemple and Kitapbayev [22].

Theorem 3.3.3. Let u(x, t) and s(t) be the value and the early exercise boundary of an American

volatility power option in the MRSRP. When βn+ r > 0, we have the following properties.

(a) The value u(x, t) increases with an increase in both the time-to-maturity.

(b) The value u(x, t) increases (decreases, respectively) with an increase in the volatility

index x for n > 0 (for n < 0, respectively).

(c) The early exercise boundary s(t) strictly increases (decreases, respectively) with an

increase in the time-to-maturity for n > 0 (for n < 0, respectively).

(d) The early exercise boundary s(t) is bounded by d and s∞, where s∞ is the exercise

boundary of its corresponding perpetual American option.

(e) The early exercise boundary starts at d, that is s(0) = d.

Proof. The coefficients of (3.2.4) are all continuously differentiable and 1
2
σ2x > 0 for 0 < x <

∞ and r > 0. To show that the value and the early exercise boundary of an American volatility

power option satisfy Theorem 3.3.1 and Theorem 3.3.2, it suffices to show that there exists a d

in R such that LM
0 ψ(x) satisfies

LM
0 ψ(x)


> 0 for 0 < x < d,

< 0 for d < x <∞,

for some d > 0.

Applying LM
0 to ψ(x) = max{xn −K, 0} for a volatility power option yields that

LM
0 ψ(x) =


−(βn+ r)xn + (1

2
σ2(n− 1) + βm)nxn−1 + rK, if xn > K,

0, if xn < K.
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Let f(x) = −(βn + r)xn + (1
2
σ2(n − 1) + βm)nxn−1 + rK. We have f(0) = rK > 0 and

limx→∞ f(x) = −∞ since −(βn + r) < 0. Since f is a continuous function on R, f has at

least one positive root. Moreover, we have f ′(x) = xn−2
[
− n(βn + r)x + (1

2
σ2(n − 1) +

βm)n(n − 1)
]
. This implies that f(x) increases as x < ( 1

2
σ2(n−1)+βm)(n−1))

βn+r
and decreases as

x >
( 1
2
σ2(n−1)+βm)(n−1))

βn+r
. By the continuity of f , we obtained that f has exactly one positive

root, say d′. Then we can define d = max{K1/n, d′} for n > 0 and d = min{K1/n, d′} for

n < 0.

Remark 3.3.4. For the American volatility call option with ψ(x) = max{x −K, d}, we have

d = max{K, r
r+β

K} = K in the case of the MRSRP. This is because β > 0 and LM
0 ψ(x) =

−(β + r)x+ rK for x > K.

Now, we consider properties of an American volatility power option in the mean-reverting

3/2 volatility process.

Theorem 3.3.5. When 1
2
k2(n − 1) < β and u > 0, the value u(x, t) and the early

exercise boundary s(t) of an American power option have the same properties of (a) to (d)

in Theorem 3.3.3 with the volatility following the mean-reverting 3/2 volatility process.

Proof. Applying LQ
0 to ψ(x) = max{xn −K, 0} for a volatility power option yields that

LQ
0 ψ(x) =


(1
2
k2n(n− 1)− βn)xn+1 + (αn− r)nxn + rK, if x > K,

0, if x < K.

Let f(x) = nAxn+1 + (αn − r)nxn + rK, where A = 1
2
k2(n − 1) − β. Then f ′(x) =

nxn[(n + 1)Ax + (αn− r)] and f(0) = rK > 0. Since A < 0, we have limx→∞ f(x) = −∞

and f ′(x) > 0 if x < r−αn
(n+1)A

and f ′(x) < 0 if x > r−αn
(n+1)A

. Hence f(x) increases with x < r−αn
(n+1)A

and deceases with x > r−αn
(n+1)A

. Therefore, we obtained that f(x) has exactly one positive root,

say d′. Then we can define d = max{K1/n, d′} for n > 0 and d = min{K1/n, d′} for n < 0.

Remark 3.3.6. According to Theorem 3.3.5, the value of s(0) = d for the American call option

with ψ(x) = max{x−K, 0} is obtained as d = max{K, d′}, where d′ = (α−r)+
√

(α−r)2+4rKβ

2β
>

0.
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3.4 Asymptotic Behavior of Exercise Boundary Infinitely Far

from Expiry

Since s(t) is a strictly increasing function of the time-to-maturity for theAmerican volatility

power option, the lower boundary for the optimal exercise boundary s(t) for t > 0 is obtained

by limt→0+ s(t) = d in the MRSRP and the mean-reverting 3/2 volatility process. It would be

interesting to explore whether s(t) is bounded or not as t → ∞. At the same time, the pricing

formula for the perpetual American volatility power option is obtained in the MRSRP and the

mean-reverting 3/2 volatility process.

Before solving the ordinary differential equation arising from pricing the perpetual

American volatility option, we first introduce the confluent hypergeometric functions of which

the integral representations are given as

Φ(a, b, x) =
Γ(b)

Γ(b− a)Γ(a)

∫ 1

0

extta−1(1− t)b−a−1dt.

In the following theorem, we will provide a pricing formula for the perpetual American

volatility power option.

Theorem 3.4.1. Let (v, s) be the value and the early exercise boundary of a perpetual American

volatility power option inMRSRP. Assume 2βm
σ2 > 1 for the Feller condition. If n > 0, then (v, s)

solves the following free boundary problem

LM
0 v(x) = 0, 0 < x < s,

v(s) = sn −K, v′(s) = nsn−1,

(3.4.1)

where LM
0 is defined in (3.2.4). The solution is obtained in the form.

v(x) = C1Φ(
r

β
,
2βm

σ2
;
2β

σ2
x), 0 < x < s, (3.4.2)

where C1 =
sn−K

Φ( r
β
, 2βm

σ2 ; 2β
σ2 s)

and s is a root of the following equation

Φ( r
β
, 2βm

σ2 ; 2β
σ2 s)

σ2r
2β2m

Φ( r
β
+ 1, 2βm

σ2 + 1; 2β
σ2 s)

=
sn −K

nsn−1
. (3.4.3)
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which can be solved iteratively for s.

If n < 0, then (v, s) solves the following free boundary problem

LM
0 v(x) = 0, s < x <∞,

v(s) = sn −K, v′(s) = nsn−1, limx→∞ v(x) = 0,

(3.4.4)

where LM
0 is defined in (3.2.4). The solution is obtained in the form.

v(x) = (sn −K)(
x

s
)1−

2βm

σ2
Φ( r

β
+ 1− 2βm

σ2 , 2− 2βm
σ2 ; 2β

σ2x)

Φ( r
β
+ 1− 2βm

σ2 , 2− 2βm
σ2 ; 2β

σ2 s)
, s < x <∞. (3.4.5)

Here s is a root of the following equation

s1−
2βm

σ2 Φ( r
β
+ 1− 2βm

σ2 , 2− 2βm
σ2 ; 2β

σ2 s)

d
dx

[
x1−

2βm

σ2 Φ( r
β
+ 1− 2βm

σ2 , 2− 2βm
σ2 ; 2β

σ2x)
]
|x=s

=
sn −K

nsn−1
. (3.4.6)

which can be solved iteratively for s.

Proof. By letting y = 2β
σ2x, LM

0 v(x) = 0 is changed to

y
d2v

dy2
+ (

2βm

σ2
− y)

dv

dy
− r

β
v = 0, 0 < y <

2β

σ2
s, (3.4.7)

which is regarded as a Kummer’s equation.

The solutions ofKummer’s equation (3.4.7) are expressed through the confluent hypergeometric

function Φ(α, ν, x). Precisely, the general solutions are written in the form

v(y) = C1Φ(
r

β
,
2βm

σ2
; y) + C2y

1− 2βm

σ2 Φ(
r

β
+ 1− 2βm

σ2
, 2− 2βm

σ2
; y)

where C1 and C2 are arbitrary constants.

Displaying the solution in terms of x, the equation is rewritten in the form

v(x) = C1Φ(
r

β
,
2βm

σ2
;
2β

σ2
x) + C2(

2β

σ2
x)1−

2βm

σ2 Φ(
r

β
+ 1− 2βm

σ2
, 2− 2βm

σ2
;
2β

σ2
x).

We first consider the case of n > 0. The value v(x) of an American volatility power option

is finite in [0, s], that is v(s) < ∞ for all x ∈ [0, s]. Since βm > 1
2
σ2 and Φ(α, β;x) ̸= 0
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as x → 0, we have (2β
σ2x)

1− 2βm

σ2 → ∞ as x → 0 and C2 = 0. Consequently, the value of the

perpetual American volatility option equals to

v(x) = C1Φ(
r

β
,
2βm

σ2
;
2β

σ2
x). (3.4.8)

To determine the free boundary s and the coefficient C2, we substitute v(s) = sn −K and

v′(s) = nsn−1 into (3.4.8) and obtain that

C1Φ(
r

β
,
2βm

σ2
;
2β

σ2
s) = sn −K

and

C1
d

dx

[
Φ(
r

β
,
2βm

σ2
;
2β

σ2
x)

]
|x=s = nsn−1.

Moreover, we have d
dx

[
Φ( r

β
, 2βm

σ2 ; 2β
σ2x)

]
|x=s =

σ2r
2β2m

Φ( r
β
+ 1, 2βm

σ2 + 1; 2β
σ2 s).

Hence, we find that the free boundary satisfies the following nonlinear algebraic equation

Φ( r
β
, 2βm

σ2 ; 2β
σ2 s)

σ2r
2β2m

Φ( r
β
+ 1, 2βm

σ2 + 1; 2β
σ2 s)

=
sn −K

nsn−1
.

When the free boundary s is obtained by the solving the above equation numerically, the

coefficient C1 is expressed as

C1 =
sn −K

Φ( r
β
, 2βm

σ2 ; 2β
σ2 s)

.

We then consider the case of n < 0. Since limx→∞ v(x) = 0, we have 2β
σ2x

1− 2βm

σ2 → 0 as

x→ ∞ and

C1Φ(
r

β
,
2βm

σ2
; 0) → 0 as x→ ∞

which means C1 = 0. Consequently, we have

v(x) = C2(
2β

σ2
x)1−

2βm

σ2 Φ(
r

β
+ 1− 2βm

σ2
, 2− 2βm

σ2
;
2β

σ2
x). (3.4.9)

To determine the free boundary s and the coefficient C2, we substitute v(s) = sn −K and
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v′(s) = nsn−1 into (3.4.9) and obtain that

C2(
2β

σ2
s)1−

2βm

σ2 Φ(
r

β
+ 1− 2βm

σ2
, 2− 2βm

σ2
;
2β

σ2
s) = sn −K

and

C2
d

dx

[
(
2β

σ2
x)1−

2βm

σ2 Φ(
r

β
+ 1− 2βm

σ2
, 2− 2βm

σ2
;
2β

σ2
x)

]
|x=s = nsn−1.

Hence, we find that the free boundary satisfies the following nonlinear algebra equation

(2β
σ2 s)

1− 2βm

σ2 Φ( r
β
+ 1− 2βm

σ2 , 2− 2βm
σ2 ; 2β

σ2 s)

d
dx

[
(2β
σ2x)

1− 2βm

σ2 Φ( r
β
+ 1− 2βm

σ2 , 2− 2βm
σ2 ; 2β

σ2x)
]
|x=s

=
sn −K

nsn−1
.

When the free boundary s is obtained by the solving the above equation numerically, the

coefficient C2 is expressed as

C2 =
sn −K

(2β
σ2 s)1−βmΦ( r

β
+ 1− 2βm

σ2 , 2− 2βm
σ2 ; 2β

σ2 s)
.

Remark 3.4.2. When (v, s) are the value and the early exercise boundary of a perpetual

American volatility option in mean reverting 3/2 volatility process, (v, s) is the solution of the

following free boundary problem

LQ
0 v(x) = 0, 0 < x < s,

v(s) = s−K, v′(s) = nsn−1, v(0) = 0

(3.4.10)

whereLQ
0 is defined in (3.2.5). When taking x = 1/y, this problem becomes to price a perpetual

American volatility option in the MRSRP with ψ(x) = (1/x − K, 0)+. Hence, the price of a

perpetual American option becomes to satisfy the following free boundary problem

LM
0 u(y) = 0, 1/s < y <∞,

u(s) = 1/s−K, u′(s) = −1/s2, u(y) → 0 as y → ∞.
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The solution of this equation can be obtained by changing it to a Kummer’s equation. In the

mean-reverting 3/2 volatility process, a closed pricing formula for the perpetual American

volatility put option is proposed by Liu [62].

This chapter provides a formula for the perpetual American volatility power call in the

MRSRP model. Liu [62] provided a formula for the perpetual American volatility put in the

mean-reverting 3/2 volatility model. These two papers considered distinct options (call and put)

in the different processes (the MRSRP and the mean-reverting 3/2 volatility process). Using

the change of variables, the differential equations in both two papers are changed to the same

Kummer’s differential equation with the different boundary conditions. The general solution is

expresses by the combination of the confluent hypergeometric function of the first and second

kinds.

For the volatility call, we have a finite initial condition and an upper free boundary; For

the volatility put, we have a lower free boundary and assume that the put value tends to zero as

the volatility tends to infinite. The different conditions for both put and call induces different

pricing formulas. For the volatility call, we eliminate the second independent solution by the

finite initial condition. For the volatility put, we eliminate the first independent solution since

the put value tends to zero as the volatility tends to infinite. Moreover, the advantage of this

chapter is that we add a power to the payoff function, ψ(x) = max{xn −K, 0}. When setting

the volatility x to 1/y (i.e., choosing n = −1), the MRSRP model can be changed to the mean-

reverting 3/2 volatility model. In this case, the boundary conditions are changed to a lower free

boundary and zero value at the infinite.

3.5 Neural Network Approach

In this section, we consider neural network (NN) approach to the solution of the free

boundary differential equation arising from pricing a perpetual American volatility option under

the MRSRP.

Alternatively, this NN approach can also be applied to approximate the pricing formula of

the perpetual American option under the different process. The definition of a neural network

can be recall from Definition 2.1.1.

Now, we go back to the NN approach to our MRSRP problem. Suppose that 2βm
σ2 > 1.
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Let {u, s} be a solution the free boundary problem (3.4.4). Transferring y = x
s
and defining

w(y) = u(x), the free boundary problem can be reformulated as the following boundary value

problem
1

2
σ2yw′′ + β(m− sy)w′ − rsw = 0, 0 < y < 1, (3.5.1)

with w(1) = sn −K and w′(1) = nsn−1. Substituting s = (w(1)−K)
1
n into (3.5.1) yields

1

2
σ2yw′′ + β(m− (w(1) +K)

1
ny)w′ − r(w(1) +K)

1
nw = 0, 0 < y < 1,

with w′(1) = n(w(1) +K)
n−1
n . We consider the following the trial solution

wA(y) = fθ(y),

where fθ : R2 → R is a shallow net defined by θ. Then, we obtain s = (fθ(y) + K)
1
n and

w′
A(1) = n(fθ(1) +K)

n−1
n . Therefore, we turn into solve the following equation

1

2
σ2yw′′

A(y) + β(m− (fθ(1) + 1 +K)
1
ny)w′

A(y)− r(fθ(1) + 1 +K)
1
nwA(y) = 0

with w′
A(1) = n(fθ(1) +K)

n−1
n .

To find an optimal fθ to solve the above equations, we consider the following minimization

problem.

min
θ
L(θ),

where

L(θ) =

∫ 1

0

[
1

2
σ2yw′′

A(y) + β(m− sy)w′
A(y)− rswA(y)

]2
+

[
w′

A(1)− nsn−1

]2
dy

is the L2-loss between neural network fθ and the solution of equation and the boundary

condition, and s = (fθ(1) +K)
1
n .

In addition, consider a neural network of the form:

fθ(y) =

hd∑
k=1

w
(d)
k,iσ(Sd,k).
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Here, the output neuron i in layer j sj,i is defined by

s1,i = w
(0)
1,i y + b

(1)
i ,

sj,i =

hj−1∑
k=1

w
(j−1)
k,i σ(sj−1,k) + b

(j)
i , j = 1, 2, · · · , d,

wherew(j)
k,i is the weight from neuron k in layer j−1 to neuron i in layer j for the network fθ(y),

and hj is the number of neurons in layer j and b(j)i is the bias of neuron i in layer j.

3.5.1 Comparisons

From Theorem 3.4.1, an analytical solution of the free boundary problem (P ), where s =

s(t) can be only solved numerically. In previous section, we developed a new numerical method

to approximate the differential equation with moving boundary by extending the neural network

approach. In this section, we will demonstrate the comparison results between the analytical

solution and the numerical solution using the neural network approach.

Goard andMazur [37] used the data of the VIX index value between years of 1990 and 2009

to estimate the parameters the continuous-time model. In the empirical results, the parameters

are estimated as β = 3.1637 and βm = 0.6154 (see Table 5.1 in [37]) for the MRSRP model.

Moreover, the risk-free interest rate and strike are given as r = 0.05 andK = 0.5, respectively.

To satisfy 2βm
σ2 > 1, we assume σ2 = 1.

To compare the analytical solution and the numerical solution, programs are coded by

Python [88] on Google Colab environment. The s of solution {u, s} is solved by using the

“fsolve” instruction, where the starting estimate for the roots is given asK +1. The network fθ
is constructed by 1 input layer, 1 output layer and 1 hidden layer with 10 neurons in the hidden

layer. That is,

fθ(y) =
10∑
k=1

w
(1)
i σ(

10∑
i=1

w
(0)
i y + bi)

The structure of such neural network is shown in Figure 3.1, note that bias bi are ignored from

the figure.
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y fθ(y)

Hidden
layer

Input
layer

Output
layer

Figure 3.1: Structure of neural network for finding a solution of (3.5.1)

For the neural network approach, the deep learning algorithm, Adam [?], is used to

minimize the unconstrained optimization problem.

The L2-losses between the neural network solution and the solution of equation and the

boundary condition are 2.31× 10−4, 5.19× 10−5 and 2.34× 10−5 for 10,000 iterations, 20,000

iterations and 30000 iterations. The L2-losses for 20,000 iterations and 30,000 iterations are

same as e − 5 and do not reduce so much from 20,000 iterations to 30,000 iterations. The

comparison results between the analytical solution and the numerical soltion (20,000 iterations)

are demonstrated in Figure 3.2 and Figure 3.3 for 10,000 iterations and 20,000 iterations,

respectively.
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Figure 3.2: Comparison results between analytic solution and the numerical solution (10,000
iterations)

Figure 3.3: The comparison results between analytic solution and the numerical solution (20,000
iterations)
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Chapter 4

Reconstruction and Interpolation of

Manifolds

In this chapter, an algorithmic method of interpolation and reconstruction of Riemannian

manifold in Euclidean space will be introduced. These methods are based on a series of works

in [29, 30, 31].

4.1 Introduction

High-dimensional data is increasingly available in various fields. To deal with the

curse of dimensionality, one approach is to use dimensionality reduction [18, 33, 97] while

another approach is to consider the manifold learning in high-dimensional space. When

applying methods of dimensionality reduction, some meaningful information might lose since

the structure of raw data is largely changed in terms of vector. Another issue is that assumptions

of dimensionality reduction are given without considering the geometry of the data. Please

refer [50, 59, 78] for comprehensive surveys of manifold learning.

In [30], two methods were proposed to deal with manifold reconstruction problem. The

first one is to interpolate a data cloudX inRn by a Riemannian submanifoldM inRn so thatX

is closed toM in some sense. Second, based on the Whitney embedding theorem [96], a metric

space can be “almost” embedded as a Riemannian submanifold of some Euclidean space with

minimum distance distortion. Under the existence of noisy data, methods in [30] are guaranteed

to generate a similar manifold with high probability.
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In section 4.2, we will briefly introduce the Hausdorff Distance, which provides a

measurement of distance between subsets of a metric space. Two theorems about reconstruction

and interpolation of manifolds proved in [30] are stated in section 4.3. Some basic knowledge

on Riemannian geometry will also be stated in this section. In section 4.4, we will summarize

algorithms needed to implement above theorems in practice.

4.2 Hausdorff Distance and δ-closeness

We first introduce the following notations.

Definition 4.2.1. Let (X, d) be a metric space and A,B ⊆ X and r > 0.

1. The r-neighborhood of A is defined by

Ur(A) = {x ∈ X | d(x, a) < r for some a ∈ A} =
∪
a∈A

BX(a, r)

where BX(a, r) is the open ball of radius r and center a in X .

2. A is called a r-net in X if Ur(A) = X .

3. A is called a maximal r-separated subset of X if A is a r-net of X and

dX(x, y) ≥ r for all x ̸= y ∈ A.

Definition 4.2.2. Let (X, d) be a metric space and A,B ⊆ X The Hausdorff distance between

sets A and B of X is defined by

dH(A,B) = inf{r > 0 | A ⊆ Ur(B) and B ⊆ Ur(A)}

= max
(
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
)

Note that Hausdorff distance dH is only a pseudo-metric since dH(A,B) = 0 does not

imply A = B in general. For instance, consider A = [0, 1] and B = (0, 1) in R1. But this does

not affect how dH measure the difference between different sets.

The concept of Hausdorff distance can be extended to measure the difference between sets

from different metric spaces by first putting them isometrically into one common metric space.
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Definition 4.2.3. The Gromov-Hausdorff distance between metric spaces X and Y is defined

by

dGH(X,Y ) = inf{dH(f(X), g(Y )) | f : X → Z,g : Y → Z

are isometries for some metric space Z}

where dH is the Hausdorff distance induced by metric space Z.

Definition 4.2.4. Let r, δ > 0 and n ∈ N.

1. Let X be a metric space. For r > δ > 0, we say that X is δ-close to Rn at scale r if

dGH(BX(x, r), Bn(r)) < δ

2. Let X be a subset of a Hilbert space E. We say that X is δ-close to n-flats at scale r if

for any x ∈ X , there exists an n-dimensional affine space Ax ⊆ E through x such that

dH(X ∩BE(x, r), Ax ∩BE(x, r)) ≤ δ.

For the following definitions, we assume that X,Y are metric spaces unless specified.

Definition 4.2.5. Let δ > 0, and {xi}Ni=1 be a finite sequence of X .

1. {xi}Ni=1 is a δ-chain if d(xi, xi+1) < δ for all 1 ≤ i ≤ N − 1.

2. {xi}Ni=1 is δ-straight if d(xi, xj) + d(xj, xk) < d(xi, xk) + δ for all 1 ≤ i < j < k ≤ N .

3. X is δ-intrinsic if for x, y ∈ X , there is a δ-straight δ-chain {xi}Ni=1 with x1 = x and

xN = y.

Intuitively speaking, a δ-intrinsic spaceX means any two points inX can be connected by

an “almost” straight polygon with length of each side smaller than δ.

Definition 4.2.6. For λ ≥ 1 and ε > 0. A map f : X → Y is said to be a (λ, ε)-quasi-isometry

if f(X) is an ε-net in Y and

1

λ
dX(x, y)− ε ≤ dY (f(x), f(y)) ≤ λdX(x, y) + ε
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for all x, y ∈ X . In particular, a (1, 0)-quasi-isometry is an isometry.

Remark 4.2.7. Note that if a map f : X → Y is (λ, ε)-quasi-isometry, then there exists a

(λ, 3λε)-quasi-isometry map g : Y → X . We say that two metric spaces X and Y are (λ, ε)-

quasi-isometric if there are (λ, ε)-quasi-isometries in both directions.

Definition 4.2.8. Let X,Y be metric spaces and f : X → Y be a map. The distortion of f ,

denoted by dis f , is defined by

dis f = sup
x,y∈X

|dY (f(x), f(y))− dX(x, y)|

For ε > 0, we say that f is ε-isometry if dis f < ε and f(X) is a ε-net in Y .

Two metric spaces with small Gromov-Hausdorff distance are ε-isometry, moreover, this

is true conversely.

Theorem 4.2.9. Let X,Y be metric spaces.

1. If dGH(X,Y ) < ε, then there exists a 2ε-isometry from X to Y .

2. Conversely, if there is an ε-isometry from X to Y , then dGH(X,Y ) < ε. Moreover,

dGH(X, f(X)) ≤ 1

2
dis f

If, in addition, f(X) is a ε-net, then

dGH(X,Y ) ≤ 1

2
dis f + ε (4.2.1)

Proof. See [9, Theorem 7.3.25 and Corollary 7.3.28] for proofs of these facts.

Corollary 4.2.10. If f : X → Y is a (λ, ε)-quasi-isometry, then we have

dGH(X,Y ) ≤ 1

2
(λ− 1) diam(X) +

3

2
ε.

Proof. Let f : X → Y be a (λ, ε)-quasi-isometry. Then we have f(X) is a ϵ-net of Y , and,

dY (f(x), f(y)) ≤ λdX(x, y) + ε (4.2.2)
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for any x, y ∈ X .

Subtracting dX(x, y) from both sides of (4.2.2), we have

dY (f(x), f(y))− dX(x, y) ≤ (λ− 1)dX(x, y) + ε ≤ (λ− 1) diam(X) + ε

Hence, dis f ≤ (λ− 1) diam(X) + ε. Combined with (4.2.1), the desired resul follows.

4.3 Reconstruction and Interpolation of Manifolds

Below, we borrow some definitions about manifolds from the book [12].

Definition 4.3.1. A differentiable (Ck, smooth, respectively) manifold of dimension n is a set

M and a family of maps xα : Uα ⊆ Rn → M of open sets Uα of Rn into M so that

1. ∪αxα(Uα) = N .

2. for any pair α, β with W = xα(Uα) ∩ xβ(Uβ) ̸= ϕ, the sets x−1
α (W ) and x−1

β (W ) are

open sets in Rn and the map x−1
β ◦ xα are differentiable (Ck, smooth, respectively).

3. The family {(Uα, xα)} is maximal relative to the above two conditions.

Below, we informally state definitions of tangent space and the Riemannian metric.

Definition 4.3.2. Let M be a differentiable manifold.

1. A differentiable function α : (−ε, ε) → M is called a curve in M.

2. Suppose thatα(0) = p ∈ M, and letD be the set of functions onM that are differentiable

at p. The tangent vector to the curve α at t = 0 is a function α′(0) : D → R given by

α′(0)f =
d(f ◦ α)

dt

∣∣∣∣
t=0

, f ∈ D

3. A tangent vector at p is the tangent vector at t = 0 of some curve α : (−ε, ε) → M with

α(0) = p.

4. The set of all tangent vectors toM at p is denoted by TpM, called the tangent space at p.
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5. A Riemannian metric g on M is a family of smoothly varying inner products gp on the

tangent spaces TpM of M.

6. A Riemannian manifold (M, g) is a differentiable manifold M equipped with a

Riemannian metric g.

We first formally state the problems of manifold interpolation and manifold reconstruction

of data cloud.

1. Let (X, d) be a metric space. The goal of manifold reconstruction problem is to find a

Riemannian submanifold (M, g) so thatX andM are quasi-isometry. That is, d(x, y) ≈

g(xM, yM), where xM is the image of x under the quasi-isometry.

2. Let X ⊆ Rm be a data cloud. The goal of the manifold interpolation problem is to find a

n-dimensional submanifoldM so that

dH(X,M) < ε

Two main theorems in [30] provide an initial work about how to construct the desired

manifolds algorithmically with sufficient theoretical guarantees.

Theorem 4.3.3 ([30]). For every n ∈ N, there exists σ1(n), C1(n), C2(n) > 0 so that the

following holds:

Let r > 0 andX be a metric space with diam(X) > r and 0 < δ < σ1r. Suppose thatX is

δ-intrinsic and δ-close toRn at scale r. Then there exists a complete n-dimensional Riemannian

manifold M such that

1. X and M is (1 + C1δr
−1, C1δ)-quasi-isometric. Moreover, if diam(X) < ∞, then we

have

dGH(X,M) ≤ 2C1δr
−1 diam(X)

2. The modulus of sectional curvature of M is bounded by C2δr
−3.

3. The injective radius of M is bounded below by
r

2
, where the injective radius of a

Riemannian manifold (M, g) is the largest R > 0 so that

expp : BTpM(0, R) ⊆ TpM → M
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is a diffeomorphism for all p ∈ M.

Theorem 4.3.4 ([30]). For every n, k ∈ N, there exists σ2(n), C3(n), C4(n), C5(n, k) > 0 so

that the following holds:

Let X be a subset of a separable Hilbert space E, r > 0 and 0 < δ < σ2δ. Suppose that

X is δ-close to n-flats at scale r. Then there exists a closed n-dimensional smooth submanifold

M ⊆ E such that

1. dH(X,M) ≤ 5δ.

2. The second fundamental form of M at every point is bounded by C3δr
−2

3. The reach of M is bounded below by
r

3
, where

Reach(M) = sup{r > 0 | normal projectionPM : Ur(M) → M is well-defined}.

4. The normal projection PM : Ur/3(M) → M is smooth and satisfies for all x ∈ Ur/3(M),

∥dkxPM∥ < C5(n, k)δr
−k, k ≥ 2

and

∥dxPM − PTyM∥ < C5(n, k)δr
−1

where y = PM(x) and PTyM is the orthogonal projection onto TyM

5. If x ∈ X and y = PM(x), then the angle betweenAx and the tangent space TyM satisfies

∠(Ax, TyM) < C4δr
−1

Note that the angle ∠(A,B) between n-dimensional linear subspaces of an inner product

space (E, ⟨·, ·⟩) is defined by

∠(A,B) = max
a∈A

{
min
b∈B

{∠(a, b) | a, b ̸= 0}
}

where ∠(a, b) = arccos
⟨a, b, ⟩

∥a∥ · ∥b∥
and ⟨·, ·⟩.
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In fact, there are serval definitions of the angle between pair of subspaces of a Hilbert space.

These definitions are expressed in terms of the orthogonal projection onto these subspaces. For

more detail about the angle between subspaces of a Hilbert space, please refer [24].

4.4 Algorithms for Manifold Interpolation

In this section, we describe three algorithms to implement the algorithm of manifold

interpolation based on Theorem 4.3.4.

Let X be a finite set of Rm. If X is δ-close to n-flasts at scale 1 (by rescaling factor

1/r). Then we consider the following steps to generate a Riemannian manifoldM according to

theorem :

1. Find a maximal 1
100

-separated subset X0 = {qi}Ni=1 of X .

2. For each qi ∈ X0, find an affine subspace Ai of Rm passing through qi so that

dH(BX(qi, 1), BRm(qi, 1) ∩ Ai) < δ

3. For each qi ∈ X0, define the affine projection Pi : Rm → Ai and

ϕi(x) = µi(x)Pi(x) + (1− µi(x))x

the convex combination of Pi(x) and x, where µi(x) = µ(∥x− qi∥) for a fixed smooth

function µ : (0,∞) → [0, 1] satisfying µ = 1 on [0, 1
3
] and µ = 0 on [1

2
, 1]

4. Define f = ϕN ◦ ϕN−1 ◦ · · · ◦ ϕ1.

5. ComputeM = f(Uδ(X)) by sampling method.

In third step, µi(x) ∈ [0, 1] is used as a coefficient of convex combination of the identity

function and Pi(x) to control how ϕi(x) far from Pi(x) by using the distance between x and qi.

In fact, ϕi(x) → Pi(x) as x → qi. In other words, identity function is homotopic to Pi(x) as

x→ qi.

In [30], authors consider a bump function µ : R → R as follows:

49



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202100296

First, define µ(x) =
e(t−1/3)−1

e(1/2−t)−1 + e(t−1/3)−1 on (1
3
, 1
2
). Then extend µ(x) trivially from

(0, 1
3
) to [0, 1]. One advantage of such µ is that it can be easily implemented as a shallow neural

net. In fact, we can replace µ : (0,∞) → [0, 1] with any function which satisfies µ = 1 on [0, 1
3
]

and µ = 0 on [1
2
, 1].

Informally speaking, some affine subspaces are constructed as tangent spaces of the desired

manifold, and then we glue these tangent space by composing ϕi. Then fN is a map which

projects point around X onto the manifoldM.

The algorithm of the first step is not provided in [30]. Therefore, we propose an intuitive

algorithm to implement as shown in algorithm 1. In the second step, the affine subspace

is constructed by a finding an “almost” orthonormal frame. This algorithm is described

in algorithm 2. The algorithm 3 consists of rest steps to generate the desired submanifoldM.
Algorithm 1: FindMaxSepDet
Input: δ > 0, X ⊆ Rm is a finite set.

Output: the set of indices of a maximal δ-separated set of X

Set I = {1, 2, · · · , |X|}.

Set J = ϕ.

Set i = 1.

foreach 1 ≤ i ≤ |X| do
Set Ii = {j ∈ I | dij < δ}.

end

while I ̸= ϕ do
Set i0 = min I . // Choose the least feasible index

Set qi = xi0 .

Set J = J ∪ {i0}.

Set I = I \ Ii0 . // Remove all points within a distance δ of qi
Set i = i+ 1.

end

return J
Note that the choice of X0 depends on the order of elements of X . This might cause a
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potential issue to generate different manifolds.
Algorithm 2: FindDisc
Input: n ∈ N, x ∈ X

Output: an affine n-space Ax passing through x

Define X1 = X ∩B1(x).

Define Y = X1 − x. // shift all points by x so x is moved to the original

Define y1 = argmin
y∈Y

|1− ∥y∥|.

for 1 ≤ m ≤ n− 1 do
ym+1 = argmin

y∈Y \{y1,··· ,ym}
max{

∣∣1− ∥y∥|, ⟨ y1
∥y1∥ , y⟩, · · · , ⟨

ym
∥ym∥ , y⟩}

end

Define A = span{y1, · · · , yn}.

Set Ax = x+ A return Ax

LetX ⊆ E = Rm be a δ-close to n-flats at scale r. By rescalingX with the factor 1/r, we

can assume that r = 1.
Algorithm 3: SubmanifoldInterpolation
Input: n,m ∈ N, r > 0, δ ∈ (0, 1), X ⊆ Rm is δr-close to n-flats at scale 1.

Output: a n-dimensional submanifoldM of Rm.

Find a maximal 1
100

-separated set X0 = {qi}Ni=1 of X .

foreach qi do
Define Ai =FindDisc(n, qi), the affine n-space of Rm passing through qi.

Define Pi : Rm → Rm, the orthogonal projection onto Ai.

Define µi : Rm → R, a bump function around qi.

Define ϕi(x) = x+ µi(x)(Pi(x)− x).
end

Define f = ϕN ◦ ϕN−1 ◦ · · · ◦ ϕ1, andM = f(Uδ(X)). returnM
In next section, we will see that the algorithm of manifold interpolation can be reformulated

a training process of various independent ResBlocks.

In this chapter, we consider a deep neural network version of the manifold interpolation

problem as introduced in chapter 4.
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4.5 Affine Space and Affine Projection

Recall that, given a data cloud X ⊆ Rm which is δ-close to n-flats at scale 1. The goal of

the manifold interpolation problem is to construct a n-dimensional submanifold M ⊆ Rm so

that

dH(X,M) < Cδ

where C is a known constant.

The procedure of finding suchM can be decomposed into four steps:

1. Find a maximal 1
100

-separated subset X0 = {qi}|X0|
i=1 ⊆ X .

2. For each qi, find an affine n-space Ai at qi and the affine projection Pi on Ai.

3. Gluing each Ai smoothly and denote such gluing map by f .

4. DefineM = f(Uδ(X)) for some δ > 0.

Note that is step 2, an affine projection is constructed on the affine subspace Ax. This

motivates us to the study of affine projection on an affine subspace. We first state some basic

definitions.

Definition 4.5.1. Let (V, ⟨·, ·⟩) be a inner product space, P : V → V is a linear operator on V .

1. P is a projection if P 2 = P . That is, P is idempotent.

2. A projection P is called an orthogonal projection if P is self-adjoint. That is, ⟨Px, y⟩ =

⟨x, Py⟩ for any x, y ∈ V .

3. We say P is a projection onto a subspace W of V if P (V ) = W . Moreover, V can be

represented as an direct sum

V = W
⊕

ker(P )

Theorem 4.5.2. Let (V, ⟨·, ·⟩) be a inner product space andW is a subspace.

1. P is an orthogonal projection ⇐⇒ I − P is an orthogonal projection ontoW⊥, where

W⊥ = {x ∈ V | ⟨x,w⟩ = 0 for all w ∈ W}, is the orthogonal complement ofW in V .

2. If P be an orthogonal projection ontoW , then V = W
⊕

W⊥.
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To study affine projection other than orthogonal projection, we need to know the translation

operation of a set in a vector space.

Definition 4.5.3. Let S be subset of a vector space V and a ∈ S. The translation of S by is

defined by

a+ S = {a+ b | b ∈ S} = S + a

Definition 4.5.4. Let S be subset of a vector space V . We say that S is an affine subspace of V

is S is a translation of a vector subspace of V . That is, there exists a subspaceW ⊆ V so that

S = a+W

for any a ∈ S. We can also define the dimension of S by the vector dimension of W . That is,

for any x ∈ S, we have x− a ∈ W .

Note that for any a, b ∈ V , a +W = b +W ⇐⇒ a − b ∈ W . Hence, the definition of

affine subspace is well-defined.

With the relationship between linear subspace and affine subspace, we can define the affine

projection as follows:

Definition 4.5.5. Let S be an affine subspace of V and S = W + a for some linear subspace

W of V . The affine projection ΠS is a operator ΠS : V → V defined by

ΠS(x) = a+ PW (x− a) = PW (x) + PW⊥(a)

where PW is the orthogonal projection ontoW .

Theorem 4.5.6. Let Π be an affine projection onto an affine subspace S = a+W .

(a) Π2 = Π. That is, Π is idempotent.

(b) For any x ∈ V , Πa+W⊥(x) = a+ (I − Π)(x).

(c) For k ∈ N, (I − Π)k+1 + kPW⊥(a) = I − Π.

(d) For x, y ∈ V , ∥ΠS(x)− ΠS(y)∥ = ∥PW (x)− PW (y)∥, where S = a+W .
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Proof. (a) For any x ∈ V , we have

Π2(x) = Π
(
PW (x) + PW⊥(a)

)
= PW (PW (x) + PW⊥(a)) + PW⊥(a)

= P 2
W (x) + PWPW⊥(a)PW⊥(a)

= PW (x) + PW⊥(a) since P 2
W = PW and PWPW⊥ ≡ 0

= ΠS(x)

(b) For any x ∈ V , we have

(I − Π)(x) = x− PW (x)− PW⊥(a)

= (I − PW )(x− a)

= PW⊥(x− a)

(c) Note that for any scalar k, we have

Π
(
PW⊥(x− a)− kPW⊥(a)

)
= PW

(
PW⊥(x− a)− kPW⊥(a)

)
+ PW⊥(a)

= PW⊥(a)

Also, by (b), we have

(I − Π)2(x) = (I − Π)
(
PW⊥(x− a)

)
= PW⊥(x− a)− PW⊥(a)

= (I − Π)(x)− PW⊥(a)
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By induction, we have

(I − Π)k+1(x) = (I − Π)
(
PW⊥(x− a)− (k − 1)PW⊥(a)

)
= PW⊥(x− a)− (k − 1)PW⊥(a)− Π

(
PW⊥(x− a)− (k − 1)PW⊥(a)

)
= PW⊥(x− a)− (k − 1)PW⊥(a)− PW⊥(a)

= (I − Π)(x)− kPW⊥(a)

The desired result follows.

(d) Follow from the definition of affine projection.

Unlike in the case of orthogonal projections, from Theorem 4.5.6(b) and (c), we can see that

(I − Π) is neither an affine projection, nor idempotent. These results are derived from the fact

that Π is not a linear operator since Π(−x) ̸= −Π(x). For more detail about affine projection,

please refer [77].

Note that Π− I is also not idempotent, however, the square of Π− I is idempotent.

Theorem 4.5.7. Let Π be an affine projection. Then (Π− I)2 is idempotent.

Proof. For any x ∈ V , we have

(Π− I)2(x) = (Π− I)
(
Π(x)− x

)
= (Π− I)

(
a+ P (x− a)− x

)
= Π

(
a+ P (x− a)− x

)
−
(
a+ P (x− a)− x

)
= a+ P

(
a+ P (x− a)− x− a

)
− a− P (x− a) + x

= P 2(x− a)− P (x)− P (x− a) + x

= x− P (x) = P⊥(x)

Hence, (Π− I)2 is idempotent.
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This property would be the central idea to rewrite the algorithm of manifold interpolation

into a deep neural network model.

4.6 Manifold Interpolation as Residual Network

Let X0 = {qi}|X0|
i=1 be a maximal 1

100
-separated subset of X . Write X =

|X0|∪
i=1

Xi, where

Xi = B(qi,
1

100
).

Recall in step 2 of the manifold interpolation, for each qi, we find an affine subspace Ai

passing throung qi, this induces an affine projection Pi on Ai. Then, with µi, we define

ϕi(x) =
(
1− µi(x)

)
x+ µi(x)Pi(x) = x+ µi(x)

(
Pi(x)− x

)
Define Fi(x) = mui(x)(Pi(x)− x), then

ϕi(x) = x+ Fi(x) (4.6.1)

Note that Fi(x) = Pi(x)− x when ∥x− qi∥ ≤ 1
3
, by Theorem 4.5.7, we have

F 4
i (x) = F 2

i (x) (4.6.2)

if ∥x− qi∥ ≤ 1
3
.

On the other hand,

Fi(x) = 0 (4.6.3)

if ∥x− qi∥ > 1
2
.

Compared with (2.2.1), if we replace Fi in (4.6.1) by a neural network fθi , then (4.6.1)

becoms ϕi(x) = x+ fθi(x)

This reformulation turns ϕi into a ResBlock (see (2.2.1)). In particular,

f = ϕN ◦ ϕN−1 ◦ · · · ◦ ϕ1

becomes a ResNet under such replacement.
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Combined with (4.6.2) and (4.6.3), the objective function for fθi is then given by

L(θi) =
1

2Nj

Nj∑
k=1

∥f 4
θi
(xk)− f 2

θi
(xk)∥2 +

1

2Mj

Mj∑
k=1

∥fθi(yj)∥2 (4.6.4)

The remaining part is to show that

Si = f(Uδ(Xi))

is a smooth n-dimensional submanifold for some n ∈ N and δ > 0. However, the choice of δ is

another issue remain to be solved.

One advantage of this formulation is that each θi can be trained independently. The cost of

training process can be largely reduced and potentially it can be parallelized. This is our ongoing

work.

4.6.1 Further Relaxation

Note that the first step of the manifold interpolation is to find a maximal separated subset

{qi} and the rest step relies on the existence of {qi}. In fact, this process can be replaced by

singular value decomposition (SVD) ifX can be decomposed toX =
∪
Xi so that diam(Xi) ≤

1
100

for all i and dRm(Xi, Xj) ≥ 1
100

for any i ̸= j, where Xi =
1

|Xi|
∑
x∈Xi

is the mean position

of Xi.

One simple way is setting zi = Xi and apply SVD toXi−zi to get the best low-dimensional

representation of matrix formed by x − zi for x ∈ Xi. Therefore, we can find a linear n-space

Wi which fits Xi − zi the most. Hence, Ai = zi +Wi fits Xi in the same manner. In this case,

zi lies in Ai but zi may not lie in Xi in general.

We can replace the original zi with the mean ofXi and process the same composition of ϕi

as before to reconstruct manifold. However, we still do not have any theoretical analysis yet.

In this case, we can consider an objective function similar to (4.6.4)

L(θi) =
1

2|Xj|
∑
x∈Xi

∥∥F 2
i (x) + Fi(x)

∥∥2
+

∑
x/∈Xi

∥Fi(x)∥2 (4.6.5)
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4.7 Conclusion

We have already shown that the manifold interpolation algorithm proposed in [30] can be

reformulated as serval ResBlocks. However, before we dig deeper into the theoretical analysis

of this ResNet based interpolation method.

We are now working on some dataset to validate our concept. Part of this work has been

summited into the SIAM Conference on Mathematics of Data Science (MDS20).
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Part II

HodgeRank and its Continuity
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Chapter 5

Pairwise Comparison and Combinatorial

Hodge Theory

In this chapter, we introduce the ranking problem based on the pairwise ranking data and

the combinatorial Hodge theory with its relevance in pairwise ranking problem.

5.1 Introductions

Ranking is an essential part in recommendation system. A recommendation system is a

system which provides a personalized list of items ranked by ranking algorithms.

However, humans are unable to make a precise preference decision on a set, which contains

more than 10 distinct items at the same time [68]. However, people can easily compare two items

For n ∈ N, we denote [n] = {1, 2, · · · , n} be the number of items to be ranked by a voter.

A ranking to these n items may not be given directly. Instead, we may assume that, for any two

alternative items i ̸= j in [n], a voter either

• prefer i to j

• prefer j to i

• is indifferent to i and j.

To quantify preferences between different items, we define a real number aij to indicate

the preference between i and j. Pairwise comparison can be represented either on the additive

scale or on the multiplicative scale.
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Definition 5.1.1. Let E = {(i, j) | i and j are compared}. We say that AE = {aij | (i, j) ∈ E}

is a pairwise comparison of [n] on the

• additive scale if aij ∈ R and aij + aji = 0 for all (i, j) ∈ E.

Also,

aij



> 0 if i is preferred to j

< 0 if j is preferred to i

= 0 if i and j are equally preferred

In this case, aij is the difference of measurement of preference between i and j.

• multiplicative additive scale if aij ∈ (0,∞) and aij · aji = 1 for all (i, j) ∈ E.

Also,

aij



> 1 if i is preferred to j

< 1 if j is preferred to i

= 1 if i and j are equally preferred

That is, aij measures the multiplicative preference of i over j.

Note that aij ∈ AE is defined for (i, j) ∈ E. However, if we treat i and j are indifferent if

they are not compared. Then we can fill AE with undefined aij to form a matrix A.

More precisely, we cane define an n× n matrix A by

Aij =


aij if i and j are compared.

0 if i and j are not compared.

That is, AE induces a skew-symmetric matrix A.

If A is an additive comparison matrix, we can define an n× n matrix A by

Aij =


aij if i and j are compared.

1 if i and j are not compared.
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That is, AE induces a symmetrically reciprocal matrix A.

In either scale, the induced matrix is called a pairwise comparison matrix on the certain

scale. Note that pairwise comparison matrix was initially used in a multi-criteria decision

making method, called analytic hierarchy process. Due to the development of the analytic

hierarchy process, pairwise comparison matrix was proposed and studied deeply on the

multiplicative scale more than on an additive scale. However, latter one provides more insight

from the theory of matrix algebra.

Remark 5.1.2. A multiplicative pairwise comparison matrix has an one-to-one correspondence

to an additive pairwise comparison matrix. This can be easily proved by elementary properties

of logarithmic functions.

Proof. LetB = [bij] be a multiplicative pairwise comparison matrix, define aij = log bij . Then

we have

aij + aji = log bij + log bji = log (bij · bji) = log 1 = 0

and

aij = log bij = − log b−1
ji = log bji = aji

Coversely, letA = [aij] be an additive pairwise comparison matrix, define bij = eaij . Then

we have

bij · bji = eaij · eaji = eaij+aji = e0 = 1

and

bij = eaij = e−aji =
1

eaji
= b−1

ji

The core concept of the pairwise ranking problem is that, given an additive pairwise

comparison matrix A ∈ Rn×n, could we assign each i ∈ [n] a score si ∈ R so that

Aij = si − sj (5.1.1)

for all i, j ∈ [n].

In other words, could we find a function s : [n] → R so that
n∑

i,j=1

|Aij −
(
s(i) − s(j)

)
| =

0. Unfortunately, the equation (5.1.1) does not hold for some pairwise comparison matrix A.
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Consider the following example,

A =


0 1 −1

−1 0 −1

1 1 0


If there exists s : [n] → R such that (5.1.1) hold. Then

1 = A12 = s2 − s1 = (s2 − s3) + (s3 − s1) = A32 + A13 = 0

which leads to a contradiction. That is, (5.1.1) is impossible to be satisfied for any skew-

symmetric matrixX . Therefore, we should consider the least square solution of (5.1.1) instead.

That is,

min
s:[n]→R

n∑
i,j=1

|Aij −
(
s(i)− s(j)

)
|2 (5.1.2)

Remark 5.1.3. Note that the solution of (5.1.2) is unique up to an additive constant. That is,

let s be a function that minimizes
n∑

i,j=1

|Aij −
(
s(i)− s(j)

)
|2. Since s(i)− s(j) =

(
s(i) +C

)
−(

s(j)+C
)
, the shift of s by any C ∈ is also a solution that minimizes

n∑
i,j=1

|Aij−
(
s(i)−s(j)

)
|2.

Hence, we need to consider the minimum norm solution of (5.1.2) instead. Since this

problem is a least-squares problem, the minimum norm solution can be obtained in a standard

way.

Now, we consider another point of view of pairwise comparison.

Let AE be a pairwise comparison on [n], where E is the set of all 2-tuples (i, j) so that i

and j are compared.

If we consider [n] and E as vertex set and edge set, respectively. Then ([n], E) is a finite

directed graph. Moreover, AE induces a weight on E, that is, w(i, j) = |[AE]ij| for (i, j) ∈

E. Therefore, there is an edge-weighted graph ([n], E, w) induced associated with comparison

matrix AE .

Later, we will see how to solve problem (5.1.2) using an algebraic topology based approach

derived from the point of graph ([n], E, w).

63



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202100296

5.2 Combinatorial Hodge Theory and HodgeRank

Continuing from subsection 2.3.1, we introduce some more basic terminologies of graph.

Definition 5.2.1. Let G be a graph. Denote
(
n
3

)
= {(i, j, k) ∈ V 3 | i, j, k are all distinct}.

• A graph H is called a subgraph G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

• A nonempty subgraph Km of a undirected graph G is called am-clique of G.

• The set of all 3-cliques of G = (V,E) is denoted by

T (E) = {(i, j, k) ∈
(
n

3

)
| (i, j), (j, k), (k, i) ∈ E}

For more detail about other types of graph and the graph theory, please refer [95].

Given a pairwise comparison matrix A on [n], we can associate it with a graph. Assume

that A is on the additive scale, let V = [n] and E = {(i, j) ∈
(
V
2

)
| aij ̸= 0}, then G = (V,E)

is a graph, we call it a comparison graph.

Definition 5.2.2 (Edge Flow). LetG be a graph (not necessary undirected). An edge flow onG

is a function X : V × V → R so that
X(i, j) = −X(j, i) if (i, j) ∈ E

0 otherwise

An example of an edge flow on a graph of 5 vertices is shown in Figure 5.1.

1

2

3

4

5

1
5

3

9

1

Figure 5.1: An example of edge flow
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Remark 5.2.3. LetG be a graph on n vertices, and Y be an n×n skew-symmetric matrix. Then

we can define a edge flow X on G by assigning X(i, j) = Yij . Therefore, the set of edge flows

on G has an one-to-one correspondence to the set of n× n skew-symmetric matrices satisfying

{X ∈ Rn×n | XT = −X and Xij = 0 if (i, j) /∈ E(G)}

Note that, the edge flow shown in Figure 5.1 can be induced from the following skew-

symmetric matrix.



0 0 1 0 0

0 0 −5 0 3

−1 5 0 9 0

0 0 −9 0 −1

0 −3 0 1 0


We start from the definition of abstract simplicial complex.

Definition 5.2.4. A collection of K of finite sets is called an (abstract) simplicial complex if

σ ∈ K implies that τ ∈ K for all τ ⊆ σ.

• A element σ ∈ K is called a simplex.

• The dimension of σ ∈ K is defined as |K| − 1. A σ of dimension k is called a k-simplex.

• The dimension of K is the highest dimension among all simplex contained inK.

• The set of all k-simplex is denoted by Σk.

Example 5.2.5. Let G = (V,E) be a finite graph on n vertices.

• V is a 0-simplex if we identify each element i ∈ V with {i}.

• E is a 1-simplex.

• Hence, V ∪ E is a simplicial complex of dimension 1.
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Definition 5.2.6. A function f : V k+1 → R is called a k-dimensional cochain (or a k-cochain)

on K if it satisfies

1. f is alternating on Σk. That is,

f
(
iσ(0), iσ(1), · · · , iσ(k)

)
= sign(σ) · f(i0, i1, · · · , ik)

for all (i0, i1, · · · , ik) ∈ Σk and for all permutation σ ∈ Sym(k+1), the symmetric group.

2. f(i0, i1, · · · , ik) = 0 if (i0, i1, · · · , ik) /∈ Σk

The set of all k-cochains onK is denoted by Ck(K,R) or Ck for simplicity.

Now, we define a map between Ck and Ck+1.

Definition 5.2.7. The k-th coboundary operator δk : Ck → Ck+1 is a linear map that maps a

k-cochin f into a (k + 1)-cochain δkf defined as follows:

(δkf)(i0, i1, · · · , ik+1) =
k+1∑
j=0

(−1)jf(i0, · · · , ij−1, ij+1, · · · , ik+1)

for (i0, i1, · · · , ik+1) ∈ K.

For example, if f ∈ C0 and g ∈ C1, then (δ0f)(i, j) = f(j) − f(i) and (δ1g)(i, j, j) =

g(i, j)− g(j, k) + g(i, j).

For f, g ∈ Ck, we can define an inner product on Ck by summing over all values f(·)g(·)

on Σk. That is,

⟨f, g⟩Ck =
∑

(i0,··· ,ik)∈Σk

f(i0, · · · , ik)g(i0, · · · , ik)

Let ω : Σk → [0,∞) be a weight function on Σk, we can consider the weighted inner

product

⟨f, g⟩Ck,ω =
∑

(i0,··· ,ik)∈Σk

ω(i0, · · · , ik)f(i0, · · · , ik)g(i0, · · · , ik)

Under the existence of weight ω, we need to modify Σk by

Σω
k = {(i0, · · · , ik) ∈ Σk | ω(i0, · · · , ik) ̸= 0}
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and fω(i0, · · · , ik) =


f(i0, · · · , ik) if (i0, · · · , ik) ∈ Σω

k

0 if (i0, · · · , ik) /∈ Σω
k

for any f ∈ Ck.

so that ⟨·, ·⟩Ck,ω is an inner product on Ck,ω = {fω | f ∈ Ck}.

From elementary linear algebra, we can define the adjoint of a linear map between inner

product spaces. Hence, for each δk : Ck → Ck+1, we denote its adjoint map δ∗k : Ck+1 → Ck

by dk. Then dk satisfies

⟨δkf, g⟩Ck+1 = ⟨f, dkg⟩Ck

for any f ∈ Ck and g ∈ Ck+1.

Definition 5.2.8. dk is called the k-th boundary operator from Ck+1 to Ck.

Theorem 5.2.9. dk−1 ◦ dk = 0 and δk+1 ◦ δk = 0.

Proof. This can be proved by direct computation.

Definition 5.2.10. LetK be a simplicial complex. The k-dimensional combinatorial Laplacian

is the operator ∆k : C
k → Ck defined by

∆k = dk ◦ δk + δk−1 ◦ dk−1

Theorem 5.2.11 (Combinatorial Hodge Theorem [51]). Let K be a simplicial complex. Then

the space Ck admits an orthogonal decomposition

Ck(K,R) = im(δk−1)⊕ ker(∆k)⊕ im(dk)

Further, ker(∆k) = ker(δk) ∩ ker(dk−1).

With above notations, we can start to work on the comparison graph G = (V,E) induced

by a pairwise comparison matrix A on [n]. For k = 0, 1, · · · , n, denote the set of all k-cliques

of G by Σk. Then Σk
G = Σ0 ∪Σ1 ∪ · · · ∪Σk is a simplicial complex of dimension k , called the

k-clique complex. Note that Σ0 = V and Σ1 = E and Σ1
G = V ∪ E is a simplicial complex of

dimension 1.

By an abuse of notation, we write Σk
G = (Σ0,Σ1, · · · ,Σk). In particular, G = Σ1

G.

With a graph G, C0 = F(V,R) ∼= Rn, C1 = A = {X ∈ Rn×n | XT = −X} is the set of

all skew-symmetric matrices of order n. Let T (E) = {(i, j, k) ∈
(
V
3

)
| (i, j), (j, k), (k, i) ∈ E}.
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Definition 5.2.12. [51] Let G = (V,E, T (E)) be a 2-dimensional simplicial complex.

1. The combinatorial gradient operator grad : F(V,R) → A is defined by

grad(s)(i, j) = sj − si.

for i, j ∈ V , then grad is a linear map from C0 to C1.

2. The image of F(V,R) under grad is denoted by

MG = {X ∈ A | Xij = si − sj for some s : V → R}

3. The combinatorial curl operator curl : A → C2 is defined by

(curl X)(i, j, k) =


Xij +Xjk +Xki if (i, j, k) ∈ T (E)

0 otherwise

for (i, j, k) ∈ Σ3, then curl is a linear map from A to C2.

4. The set of T -consistent matrices is denoted by

MT = {X ∈ A | Xik +Xjk +Xki = 0 for all (i, j, k) ∈ T}

Then ker(curl) = MT and MG ⊆ MT ⊆ A

Consider the case that K = KG for an undirected graph G = (V,E) and k = 1,

then Theorem 5.2.11 becomes:

Theorem 5.2.13 (Helmholtz Decomposition Theorem [51]). The space C1(KG,R) admits an

orthogonal decomposition

C1(KG,R) = im(grad)⊕ ker(∆1)⊕ im(curl∗)

Further, ker(∆1) = ker(curl) ∩ ker(div).

Back to the story of pairwise ranking problem, if we considerX ∈ MG in equation (5.1.1),

then there exists s : V → R so that (5.1.1) holds.
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Definition 5.2.14. (Consistency) [51] A pairwise ranking matrix X on G = (V,E) is called

1. consistency on (i, j, k) ∈
(
V
3

)
if (i, j, k) ∈ T (E) and X ∈ MT

2. globally consistency if X = grad(s) for some s ∈ F(V,R)

3. locally consistency if curl X ≡ 0.

4. a cyclic ranking if there exists i, j, k, · · · , p, q ∈ V so that

Xij +Xjk + · · ·Xpq +Xqi ̸= 0

Note that if X is globally consistency, then X is consistency on any 3-clique (i, j, k) ∈

T (E). Now, consider the weighted trace induced by w. i.e.,

⟨X,Y ⟩w =
∑

(i,j)∈E

wijXijYij = tr
(
XT (W ⊙ Y )

)
for X,Y ∈ A, where ⊙ represents the Hadamard product or elementwise product.

With respect to a weighted inner product, we obtain two orthogonal complement of A

A = MG ⊕M⊥
G = MT ⊕M⊥

T

whereM⊥
∗ = {X ∈ Rn×n | ⟨X,Y ⟩W = 0 for all Y ∈ M⊥

∗ }, ∗ ∈ {G, T}.

By a simple fact of orthogonal complement, since MG ⊆ MT , we have M⊥
G ⊇ M⊥

T and

we can get further orthogonal direct sum decomposition of A as follows:

A = MG ⊕MH ⊕M⊥
T ,

whereMH = MT ∩M⊥
G.

This decomposition is called the combinatorial Hodge decomposition. For more detail

about the theory of combinatorial Hodge decomposition, please refer [51] for more detail.

With notations above, we can reformulate problem 5.1.2 into

min
Yij∈MG

n∑
i,j=1

wij|Aij − Yij|2 (5.2.1)

69



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202100296

We now state one useful theorem in [51].

Theorem 5.2.15. [51] Let G = (V,E,w) be an edge-weighted graph induced by a pairwise

comparison matrix A. Then

1. The minimum norm solution s of (5.1.2) is the solution of the normal equation:

∆0s = − div(A),

where

∆0(i, j) =



∑
k:(i,k)∈E

wik if i = j

−wij if (i, j) ∈ E

0 otherwise

(5.2.2)

and

div(A)(i) =
∑

j:(i,j)∈E

wijAij

is the combinatorial divergence operator of A.

2. The minimum norm solution s of (5.1.2) is

s∗ = −∆†
0 div(A), (5.2.3)

where ∆†
0 represents the Moore-Penrose pseudo inverse of the matrix ∆0.

The Hodge decomposition indicates the solution of (5.1.2), while Theorem 5.2.15 shows

that such solution can be calculated by solving the normal equation. This solution is called the

HodgeRank on the pairwise comparison graph G = (V,E,w).

Definition 5.2.16. Let G be a pairwise comparison graph. Then the minimum norm solution

(5.2.3) of the minimization problem (5.1.2) is called the HodgeRank of G.

In fact, ∆0 is the (unnormalized) graph Laplacian matrix of the graph induced by the

comparison matrix A.

Note that a pairwise comparison graph corresponds to a skew-symmetric matrix. Hence,

given an n × n skew-symmetric matrix X , HodgeRank returns the minimum norm solution
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s ∈ Rn of the optimization problem (5.1.2). This point of view makes HodgeRank a function

defined from the set of all n × n skew-symmetric matrices to Rn. To study the HodgeRank in

this sense, we need more terminologies about the graph Laplacian and the generalized inverse.

71



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202100296

Chapter 6

On Continuity of the HodgeRank

In previous chapter, we mentioned that HodgeRank can be viewed as a function defined

from the set of all n × n skew-symmetric matrices to Rn. In this chapter, we will see how to

study the continuity of the HodgeRank in this point of view.

We first recall the definition of the graph Laplacian matrix and some of its properties. Also,

we will see the Moore-Penrose pseudo inverse of a matrix and how to compute it by singular

value decomposition.

6.1 Graph Laplacian and Generalized Inverse

Definition 6.1.1. Let G be a simple undirected graph on n vertices with adjacent matrix A.

Denote degi be the degree of vertex i and define the diagonalmatrixD = diag(deg1, deg2, · · · , degn).

Then the (unnormalized) graph Laplacian of G is defined by

L = D − A

Theorem 6.1.2. Let L be the graph Laplacian matrix of a graph G. Then we have:

1. L is symmetric and positive-semidefinite.

2. Every row sum and column sum of L is zero.

3. The vector with all 1 is an eigenvector of L corresponding to eigenvalue 0.
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4. The dimension of the null space of L is the number of connected components of G. In

particular, if G is connected, then rank(L) = n− 1.

5. tr(L) = 2|E|.

Definition 6.1.3. Let A be an n×m matrix. Consider the following four matrix equations:

1. ABA = A

2. BAB = B

3. (AB)∗ = AB

4. (BA)∗ = BA

Am× n matrix A† is called

• a generalized inverse of A if it satisfies first equation.

• a reflexive generalized inverse of A if it satisfies first two equations.

• the Moore-Penrose pseudo inverse of A if it satisfies all four equations.

To see how to compute of the Moore-Penrose pseudo inverse of a matrix, we first consider

simplest case.

First, the Moore-Penrose pseudo inverse of a scalar a (not necessary real) is

a† =


a−1 if a ̸= 0

0 if a = 0

Then, we consider matrix of the form

D = diag(d1, d2, · · · , dn)n×m (6.1.1)

Then, the Moore-Penrose pseudo inverse of D is

D† = diag(d†1, d
†
2, · · · , d†n)m×n
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Now, for general n×m matrix A, we first consider its singular value decomposition

A = UΣV ∗

where Σ is of the form (6.1.1) and U∗ is the Hermitian transpose of U .

The Moore-Penrose pseudo inverse of A can be expressed as

A† = V Σ†U∗

One nice property is that Moore-Penrose pseudo inverse preserves the rank.

Theorem 6.1.4. The matrix rank of A and A† are the same.

Proof. This is a direct consequence from the singular value decomposition.

There is another type of generalized inverse called the Drazin inverse. Drazin inverse

are discussed in the algebraic sense, where fruitful tools from the theory of C∗-algebra are

introduced to study its properties. For more detail about Drazin inverse, please refer [26].

6.2 HodgeRank as a Composition Function

Now, given an additive pairwise comparison dataX on n vertices, we can associate it with

an edge-weighted graph G = (V,E,w). We recall how to construct such graph G below.

Note that X can be extended into an n × n matrix. Set V = [n] = {1, 2, · · · , n}, E =

{(i, j) ∈
(
V
2

)
| Xij ̸= 0}. Define w : E → [0,∞) by wij = |Xij|, then GX = (V,E,w) is an

dege-weighted graph on n vertices.

HodgeRank returns a global ranking s∗ : V → R so that s∗ is the minimizer of the least

square problem

min
s:V→R

∑
(i,j)∈E

|Xij −
(
s(i)− s(j)

)
|2

whose 2-norm is minimized. The property of minimum 2-norm is guaranteed since s∗ is

computed by solving a graph Laplacian problem.

This s∗ is called the HodgeRank of the pairwise comparison dataX . In fact, to get s∗ from

the pairwise comparison data X , we have the following process:
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XT = −X G = (V,E,w)

∆0 = L(G), b = − div(X)

s∗ : V → R ∆0s = b

HodgeRank

Minimum Norm
Solution

Figure 6.1: HodgeRank from Pairwise Comparison Data

Note that − div(X) is linear since div(X) = X · 1, where 1 ∈ Rn is the vector of all ones.

By viewingX 7→ s∗ as a function fromA to F(V,R) ∼= R|V |, we can consider HodgeRank as a

composition function, in fact, from any X with XT = −X , HodgeRank of X can be obtained

as follows:

X LX = ∆0 L†
X −L†

X div(X)

− div(X)

where LX is the graph Laplacian matrix associated with the weighted graph induced byX ,

and † represents the Moore-Penrose pseudoinverse operator of a matrix.

A natural question is whether the function HodgeRank is continuous in the following sense:

LetXk → X be a convergent sequence inA in the sense of maximum norm or Frobenius norm

of Rn×n. Then HodgeRank ofXk converges to the HodgeRank ofX under the maximum norm

of Rn.

As we mentioned above, div is a linear function, hence, it is continuous. The continuity of

(
L†
X ,− div(X)

)
7→ −L†

X div(X)

is obvious since it is a matrix-vector product. The remain questions are whether X 7→ LX and

X 7→ X† are continuous or not. We would wonder, under what conditions, they are continuous

function. We will answer these questions in next two sections.
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6.2.1 Continuity of X 7→ LX

Recall that the graph Laplacian matrix LX induced by a pairwise comparisonX is defined

based on the degree of each vertex as follows:

LX(i, j) =



∑
k:(i,k)∈E

wik if i = j

−wij if (i, j) ∈ E

0 otherwise

Note that wij = sign(|Xij|), hence, the continuity of X 7→ LX is determined by the continuity

of sign function. Note that the only discontinuity point of sign is 0.

Now, let {Xk} be a sequence of comparison matrices in A which converges to X in any

matrix-norm. Denote GXk
be the graph induced by Xk. If there exists N ∈ N so that

E(GXk
) = E(GX) (6.2.1)

for k ≥ N , then sign is a continuous function on each (i, j) entry, therefore, X 7→ LX is

continuous in this sense.

If we write Xk = [X
(k)
ij ], then condition (6.2.1) is equivalent to

sign(X(k)
ij ) = sign(Xij) for all (i, j) (6.2.2)

since E(GXk
) = {(i, j) ∈

(
V
2

)
| X(k)

ij ̸= 0} and X(k)
ij → Xij as k → ∞ for all (i, j).

6.2.2 Continuity of the Pseudoinverse Operator

Let X be an n ×m matrix over R. We can find its Moore-Penrose pseudoinverse X† by

using the singular value decomposition. A natural question arises: is the map X ∈ Rn×m 7→

X† ∈ Rm×n a continuous function? In other words, does

(
lim
k→∞

Xk

)†
=

(
lim
k→∞

X†
k

)
hold when the convergence of Xk → X is in the sense of maximum norm or Frobenius norm?
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In general, this is not true. Consider the following example:

Example 6.2.1. Let Xε =

1 0

0 ε

 and X =

1 0

0 0

 Then Xε → X as ε→ 0.

However, the pseudoinverse of Xε is

X†
ε =

1 0

0 1
ε


In this example, the limit lim

ε→0
X†

ε does not exists. That is, Xk → X does not guarantee the

convergence of X†
k → X†. That is, the pseudoinverse operator is not continuous.

However, a well-known result proved in [85] says that the necessary and sufficient

condition of the continuity of † operator

Theorem 6.2.2 ( [85]). Let {Xk} be a sequence of matrices so thatXk → X under the maximum

norm or Frobenius norm. Then X†
k → X†, if and only if, there exists N ∈ N so that

rank(Xk) = rank(X) for k ≥ N. (6.2.3)

In Example 6.2.1, X†
ε ̸→ (lim

ε→0
Xε)

† since rank(X) = 1 and rank(Xε) = 2 for any ε ̸= 0.

Hence, when discussing the continuity of the pseudoinverse operator † defined on Rn×n,

the set of all n× n matrices, we must restrict the domain as a set of matrices of constant rank.

Based on above discussion, we have the following consequence about sufficient condition

of the continuity of the HodgeRank on A.

Theorem 6.2.3. Let {Xk} be a sequence in A which converges to a matrix X ∈ A. Then

condition (6.2.1) implies the condition (6.2.3).

Proof. Since the underlying graphs of Xk and X have the same edge set for k large enough,

thenXk andX have the same number of connected components. By Theorem 6.1.2, the nullity

of LXk
and LX are the same. By dimension theorem, for n ≥ N , rank(LXk

) = rank(LX).

Corollary 6.2.4. Let {Xk} be a sequence in A which converges to a matrix X ∈ A. If the

condition (6.2.1) holds for {Xk}, then HodgeRank is continuous at X .
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6.3 Class of Graph Laplacian Matrices

Moore-Penrose pseudoinverse of the graph Laplacian matrix is not only necessary in the

computation of the HodgeRank, it also plays an important role in spectral graph theory [16,

46] and machine learning [44, 81]. Hence, we consider a more general condition other than

HodgeRank in this section.

Let Gn = {L ∈ Rn×n | L = L(G) for some graph G of n vertices}. Then the

pseudoinverse operator † : Gn → Rn×n is well-defined.

In fact, we can partition Gn by matrix rank, we have

Gn =
n−1∪
k=0

{L ∈ Gn | rank(L) = k}

To understand the behavior of † on Gn, we must study how † behaves on each {L ∈

Gn | rank(L) = k}. For convenience, we can relax each component into Rn×n. This extends

the graph Laplacain matrix into the case of edge-weighted graph.

For fixed n, denote Gn,k = {L ∈ Rn×n | rank(L) = k} for 0 ≤ k ≤ n − 1.

By Theorem 6.2.2, we have † is continuous on each Gn,k. By Theorem 6.1.4, L and L† are

of the same rank, hence, † is an operator on Gn,k.

A natural question arises, does there exist a graph attention neural network (or a general

graph neural network) so that if we input L into such graph neural network, then it outputs L†?

Moreover, will the i-th column of L be mapped to the i-th column of L† for all L ∈ Gn,k?

6.4 Perspective from Grassmannian Manifold

Now, we consider a more general case to see whether the previous question can be solved

or not.

For each L ∈ Gn,k, there exists k columns of L which are independent. Each L associates

a k-dimensional subspace of Rn.

Therefore, there is an map π : Gn,k → Gr(k, n) by sending L ∈ Gn,k to the k-dimensional

subspace generated by columns of L, where Gr(k, n) is the space of all k-dimensional subspace

of Rn, called the Grassmannian manifold. There are some advantages to treat a graph Laplacian

matrix as a point on a Grassmannian manifold. The first one is one can introduce the theory
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of Riemannian manifold to deal with such problem. Besides, topological properties of Gr(k, n)

are well-studied.

Theorem 6.4.1 ([69, p. 57-59]). Gr(k, n) is a Hausdorff, compact, connected smooth manifold

of dimension k(n− k).

However, one disadvantage is that two matrices of the same rank may generate the same

subspace of Rn. The pseudoinverse operator † may not be well-defined in this case. Even if we

can modify † so that it is well-defined on Gn,k, properties of † on Gr(k, n) may not hold on Gn,k

under π. Therefore, we leave above issues as our future work to extend the HodgeRank as a

function of the graph Laplacian matrix into an operator on a Grassmannian manifold.

6.5 Conclusion

In this chapter, we review some knowledge of the generalized inverse. Also, by

viewing HodgeRank as a function of skew-symmetric matrix, we discuss the continuity of the

HodgeRank. A theorem for the continuity of the HodgeRank is provided. In the end of chapter,

some ongoing works that the notation of generalized inverse † is extended to an operator on

the Grassmannian is introduced. This demonstrates the connection of graph Laplacian and the

graph neural network. In next chapter, we will see an application of the HodgeRank to a real

world problem.
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Chapter 7

Online Peer Assessment Problem

This chapter is based on the publication [60]. In this work, we apply HodgeRank to deal

with an online peer assessment problem to eliminate the bias and heterogeneity.

7.1 Introduction

Bias and heterogeneity in peer assessment can lead to the issue of unfair scoring in the

educational field. To deal with this problem, we propose a reference ranking method for an

online peer assessment system using HodgeRank.

A peer assessment system is used to enhance students’learning process, especially in

higher education. Through such a system, students are given the opportunity to not only learn

knowledge from textbooks and instructors, but also from the process of making judgements on

assignments completed by their peers. This process helps them understand the weaknesses and

strengths in the work of others, and then to review their own.

However, there are some practical issues associated with a peer assignment system. For

example, students tend to give significantly higher grades than senior graders or professionals

(see [35] for more details). Also, students have a tendency to give grades within a range, with

the center of such a range often being based on the first grade they gave. Therefore, bias and

heterogeneity can occur in a peer assessment system.

There are various ranking methods on peer assessment problem, such as PeerRank [93]

and Borda-like aggregation algorithm [11]. PeerRank, a famous method based on a iterative

process to solve the fixed-point equation. PeerRank has many interesting properties from the
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view of linear algebra. Borda-like aggregation algorithm, a random method based on the theory

of random graphs and voting theory, which provides some probabilistic explanation on peer

assessment problem.

We propose another ranking scheme to deal with peer assessment problems that uses

HodgeRank, a statistical preference aggregation problem from pairwise comparison data. The

purpose of HodgeRank is to find a global ranking system based on pairwise comparison data.

HodgeRank can not only generate a ranking order, but also highlight inconsistencies in the

comparisons (see [51] for more detail). We apply HodgeRank to the problems in online

assessment and display ranking results from HodgeRank and PeerRank in turn.

7.2 Problem Definition

Let V represents the set of students to be ranked by their peers.

Denote Λ to be the number of assignments. Then each assignment α ∈ Λ, for students

i, j ∈ V , if their cumulative score at assignment α are Xα
i and Xα

j , respectively. Then, score

different can be defined as Y α
ij = Xα

i −Xα
j . We also define Y α

ij = 0 i and j are not compared

in assignment α. For example, Y α
ij ∈ [−100, 100] on hundred-mark system.

Hence, each α ∈ Λ associates with an edge-weighted graph Gα = (V,Eα, Y
α) of

assignment α, where (i, j) ∈ Eα if students i and j are compared at assignment α .

For each comparison (i, j) ∈ Eα, we consider a weight wα be the number of comparison

between student i and j in assignment α. That is, wα(i, j) = 0 if (i, j) /∈ Eα.

Define E =
∪
α∈Λ

Eα, Y =
∑
α∈Λ

Y α and w =
∑
α∈Λ

wα then we can get a pairwise comparison

graph G = (V,E, Y ).

The goal of the HodgeRank on G is to find a skew-symmetric X ∈ MG which is the

minimizer of the following optimization problem:

min
X∈MG

∑
(i,j)∈E

wij(Xij − Yij)
2 (7.2.1)

The minimizer X∗ of the problem 7.2.1 can be represented as X∗
ij = grad(s∗)(i, j) for

some s∗ : V → R. Such s∗ is the HodgeRank of G, which provides a reference score which is

compatible with the score different with minimum error.
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7.3 Data Description

As previously mentioned, bias and heterogeneity can lead to unfair scoring in online peer

assessments. Students usually grade other students based on the first score they gave, which

causes bias. However, since scores are usually comparedwith others, we can use this comparison

behavior to reconstruct true ranking.

The data we used in this section were collected from an undergraduate calculus course. In

this course, 133 students were asked to upload their GeoGebra [47] assignments. Each student

was then asked to review five randomly chosen assignments completed by their peers to receive

partial credits in return. There are 13 assignments during one semester.

For each assignmentm ∈ Λ = [13], each student k ∈ V is asked to evaluate homework of

at most 5 other students. Let Nm
k be the set of students be graded by k at assignment m. Then(Nα

k
2

)
forms a subset of V × V . For n ∈ [13], define En =

n∪
m=1

(Nα
k
2

)
, then Gn = (V,En) forms

a graph. Set G = G13.

One key point of the HodgeRank is the connectedness of the graphG generated by pairwise

comparison data. Note that En ⊆ En+1 for 1 ≤ n ≤ 12. Hence, If Gn is a connected graph,

then so is Gm for allm ≥ n.

In Table 7.1, we compute the number of connected components of eachGn to see whenGn

is connected. We can easily find that after half the semester passed (that is, n ≥ 7), comparison

data between students forms a connected graph. Hence, we can apply HodgeRank to calculate

the ranking of all the students after assignment n = 7.

Table 7.1: Number of components of Gn for n ∈ [13]

n 1 2 3 4 5 6 7 ∼ 13

# of components in Gn 21 5 4 3 2 2 1

7.4 Numerical Results

The traditional method for finalizing peer assessment consists of either using an average

cumulative score or a truncated average score. Although these approaches might have their own

statistical meaning, they cannot avoid bias and heterogeneity in peer assessment.

We first state some ranking methods below
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Definition 7.4.1. For i ∈ V , α ∈ Λ, letXα
i be the grade of student i obtained in assignment α.

Then the weighted cumulative score of student i is given by

Xi =
∑
α∈Λ

wαXα
i

where wα ≥ 0 is the weight among all assignments so that
∑
α∈Λ

wα = 1.

The weighted cumulative score is irrelevant to the structure of peer assessment. However,

there is another ranking method based on the peer assessment, called the PeerRank. The

PeerRank is to iterate the cumulative score to find a fixed point of the iteration process.

Definition 7.4.2 (PeerRank [93]). For i, j ∈ V , define Aij ∈ [0, 1] be the normalized grade of

i given by j. For α ∈ (0, 1), we consider the following iteration process:

Let X0 ∈ Rn defined by X0
i =

1

n

n∑
j=1

Aij . Then, for k ≥ 0,

Xk+1 = (1− α)X +
α

∥Xk∥1
AXk

The sequence {Xk} converges to X∗ ∈ [0, 1]n as k → ∞, X∗ is called the PeerRank.

Note that PeerRank exists and are the same for any α ∈ (0, 1), so we consider a finite

iteration Xk of the PeerRank instead of X∗

In practice, we can consider Aij =
∑
α∈Λ

wαAα
ij , where Aα

ij is the grade of student i given by

j in assignment α.

Below, we compute the rankings based on the cumulative score, PeerRank under different

α and the HodgeRank. Figure 7.1 displays the cumulative score, PeerRank with α =

{0.25, 0.5, 0.75} and the HodgeRank, respectively. For each α, we compute 15 iterations

instead.

We normalize each ranking to the interval [0, 1] linearly and sorted in ascending order to

compare ranking from different methods. In addition, to reveal the tendency of each ranking

method, a steady line was plotted on the graph. There are some interesting implications that can

be observed from this figure.

First, the cumulative score offers a ranking higher than the steady line. This reflects the

existence of bias and heterogeneity in the cumulative average method. Second, PeerRank can be

viewed as a modification of the average scoring. Third, sorted ranking result from HodgeRank
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Figure 7.1: Final results using different ranking methods

is a normal distributed curve. This result can might be an explanation why HodgeRank can be

solution to eliminate bias and heterogeneity by the normality.

Note that the reason why HodgeRank and PeerRank provides different results is that their

conclusion base are totally different, while formermethod relies on the pairwise comparison data

and latter one is applied on the average score as an initial ranking. Hence, HodgeRank provides

instructors with an objective scoring reference using score difference rather than cumulative or

average score.

In conclusion, this is the first time HodgeRank has been applied in the field of education.

While numerical results were processed using real world data in this study, certain issues, such

as how to aggregate the HodgeRank ranking method into a peer assessment system, remain

unsolved. This task will be attempted as part of our future work.
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Chapter 8

Conclusions and Future Works

8.1 Conclusions

In this dissertation, we review background theory of deep learning and HodgeRank. These

theories can be applied into some real world problems. Below, we review of each chapter which

apply these theories in our work.

In chapter 2, we recall some basic definitions of neural networks including universal

approximation theorems of depth-bounded type and of width-bounded type. To connect the

generalized inverse operator †, we also introduce the graph neural network along with the

attention mechanism.

In chapter 3, we see how neural network models can be applied to solve a moving boundary

problem, by reformulating such problem, we can apply neural network as a numerical solution of

the certain problem. In our numerical test, the analytical solution of the free boundary problem

is well approximated by our neural network solution. This shows the capacity of the neural

network models as numerical solver.

In chapter 4, we review manifold reconstruction algorithms proposed in [30]. With

properties of affine projections, such manifold interpolation algorithm can be modified as a

learning process of a residual network. Hence, we propose our deep learning version manifold

interpolation algorithm by considering properties of affine projections into the objective

function.

If we view HodgeRank which is introduced in chapter 5 as a function by sending a skew-

symmetric matrix into a global ranking, then we can talk about its continuity. This issue is
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studied in chapter 6. Also, a potential linkage between graph and manifold is provided but

without further result yet. To see how HodgeRank can be applied in practice, in chapter 7, we

consider a peer assessment problem we faced in real world. By treating peer assessment as a

pairwise comparison data. ThenHodgeRank provides an alternative reference ranking generated

based on the combinatorial Hodge theory.

In the end of this dissertation, we propose some unsolved problems which are close to our

research above.

8.2 Unsolved Problems and Future works

8.2.1 Dimension of the Reconstructed Manifold

Note that manifold interpolation algorithm is guaranteed theoretically. However, some

criteria should be checked beforehand. These practical issues may cause unexpected issue when

reconstructing the desired manifold.

We first state some issues about assumptions of the manifold interpolation algorithm below.

Let X ⊆ Rm be finite or countable with diam(X) < ∞. For (δ, n, r) ∈ (0, r) × [m − 1] ×

(0, diam(X)), we use the notation X ∈ P (δ, n, r) if X is δ-close to n-flats at scale r.

The following questions are essential to determine the dimension of the reconstructed

manifold.

1. How to check if X ∈ P (δ, n, r)? Also, is the set {(δ, n, r) | X ∈ P (δ, n, r)} non-empty?

2. For each n ∈ [m− 1], how to check if {(δ, r) | X ∈ P (δ, n, r)} ̸= ϕ?

3. Given r > 0, n < m, is {(δ, n) ∈ (0, r)× [m− 1] | X ∈ P (δ, n, r)} non-empty?

4. Given δ > 0, n < m, is {(r, n) ∈ (δ, diam(X))× [m− 1] | X ∈ P (δ, n, r)} non-empty?

5. Given 0 < δ < r, is {n ∈ [m− 1] | X ∈ P (δ, n, r)} non-empty? If so, how to compute

min{n ∈ [m− 1] | X ∈ P (δ, n, r)}?

If we expect to interpolate a data cloud by a manifold using the interpolation algorithm,

then above issues should be concerned before we process the algorithm. In fact, letX be a data
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cloud in Rm and writeX =
N∪
k=1

Xk. If the last question can be answered, then we can associate

for each Xk a dimension nk ∈ [m − 1] so that Xk ∈ P (δ, nk, r). Therefore, the dimension of

the resulting manifoldM is max
1≤k≤N

nk

8.2.2 HodgeRank and Graph Neural Network

There are two questions about HodgeRank. The first one whether HodgeRank is that

whether it can be approximated by a neural network (especially, a graph-type neural network)

or not. If this can be proved, then we can generate a local graph Laplacian solver accordingly.

This can largely reduce the computational cost of the traditional solver for linear systems.

Besides, if one can extend such problem into Grassmannian, then deep learning techniques

can be applied as a tool for Riemannian optimization. This may provide the insight of the deep

learning into the optimization on differential geometry and vice versa.
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