第 1頁,共 1頁

考試科目 微積分 系所別 應用數學系 考試時間 2月19日(星期日)第一節

1. Evaluate the limits.

(a) (6%)
$$\lim_{\theta \to 0} \frac{\tan(2\theta)(1-\cos\theta^2)}{\theta^2 \sin^3(3\theta)}$$
. (b) (6%) $\lim_{x \to \infty} \left(x - x^2 \ln\left(\frac{1+x}{x}\right)\right)$.

106

2. Evaluate the integrals.

(a) (8%)
$$\int \cos(\ln x) dx$$
.
(b) (8%) $\int \frac{1}{x^2 - 2x} dx$.
(c) (8%) $\int_2^\infty \frac{\sqrt{x^2 - 4}}{x^3} dx$.
(d) (8%) $\int_0^{\frac{\pi}{2}} \frac{1}{1 + \sin^2 x} dx$.

3. Determine if each series converges or diverges.

(a) (8%)
$$\sum_{n=1}^{\infty} \frac{(n+1)3^n}{2^{2n+1}}$$
. (b) (8%) $\sum_{n=1}^{\infty} \ln(\frac{n}{3n+1})$.

4. (8%) Find the values of α such that the following integral is convergent.

$$\int_0^\infty \frac{\sin x}{x^\alpha} \, dx.$$

5. (8%) Find the arc length of the curve $r = 1 + \sin \theta$ where $\theta \in [0, 2\pi]$.

6. (8%) Let $p_k \in [0, 1]$, k = 1, 2, ..., 10 with $\sum_{k=1}^{10} p_k = 1$. Find the maximum of $\sum_{k=1}^{10} (2p_k - 3p_k^2)$.

7. (8%) Find the double integral $\int \int_R \frac{x-2y}{3x-y} dA$ where R is the parallelogram enclosed by the lines $x-2y=0, \ x-2y=4, \ 3x-y=1$ and 3x-y=8.

8. (8%) Find the line integral $\int_{\mathcal{C}} \tan y \, dx + x \sec^2 y \, dy$ where $\mathcal{C}: (t^2, \frac{\pi t}{4})$ from t = 0 to t = 1.

一、作答於試題上者,不予計分。

二、試題請隨卷繳交。

第 1 頁,共 / 頁

考試科目 紅井 比 是又 系所别 應 同 異學 考試時間 2月19日(日)第二節

Please show all your work.

1. (15%) Let $A = [a_{i,j}]$ be a symmetric tridiagonal matrix (i.e. A is symmetric and $a_{i,j} = 0$ whenever 1 < |i-j|). Let $M_{i,j}$ denote the matrix obtained from A by deleting the row and column containing $a_{i,j}$ and let B be the matrix obtained from A by deleting the first two rows and columns. Show that

$$\det(A) = a_{1,1} \det(M_{1,1}) - a_{1,2}^2 \det(B).$$

- 2. (15%) Let $P_2(R)$ denote the space of all polynomials with coefficients in R having degree less than or equal to 2. Let $T: P_2(R) \to P_2(R)$ be defined by T(f(x)) = f(x) + f'(x) + f''(x), where f'(x) and f''(x) denote the first and second derivatives of f(x). Either show that T is not invertible or find its inverse.
- 3. (15%) A matrix A is said to be idempotent if $A = A^2$. Show that I + A is nonsingular if A is idempotent.
- 4. (15%) Let $S = \{(1,0,1),(0,1,1),(1,3,3)\}$ be a subset of the inner product space R^3 over the field R. Apple the Gram-Schmidt process to obtain an orthonormal basis β for span(S).
- 5. (20%) Let x, y be nonzero column vectors in \mathbb{R}^n with $n \ge 2$ and let $A = xy^T$. Show that (a) $\lambda = 0$ is an eigenvalue of A with n-1 linearly independent eigenvectors and (b) A is diagonalizable if $x^T y \ne 0$.
- 6. (20%) Let T be a linear operator on a vector space V, and suppose that V is a T-cyclic subspace of itself. Prove that if U is a linear operator on V, then UT = TU if and only if U = g(T) for some polynomial g(t).

一、作答於試題上者,不予計分。

二、試題請隨卷繳交。

第 1 頁, 共 1 頁

考試科目 微積分 系所別 應用數學系 考試時間 2月19日(星期日)第一節

1. Evaluate the limits.

(a) (6%)
$$\lim_{\theta \to 0} \frac{\tan(2\theta)(1-\cos\theta^2)}{\theta^2 \sin^3(3\theta)}$$
. (b) (6%) $\lim_{x \to \infty} \left(x-x^2 \ln\left(\frac{1+x}{x}\right)\right)$.

2. Evaluate the integrals.

(a) (8%)
$$\int \cos(\ln x) dx$$
.
(b) (8%) $\int \frac{1}{x^2 - 2x} dx$.
(c) (8%) $\int_2^\infty \frac{\sqrt{x^2 - 4}}{x^3} dx$.
(d) (8%) $\int_0^{\frac{\pi}{2}} \frac{1}{1 + \sin^2 x} dx$.

3. Determine if each series converges or diverges.

(a) (8%)
$$\sum_{n=1}^{\infty} \frac{(n+1)3^n}{2^{2n+1}}$$
. (b) (8%) $\sum_{n=1}^{\infty} \ln(\frac{n}{3n+1})$.

4. (8%) Find the values of α such that the following integral is convergent.

$$\int_0^\infty \frac{\sin x}{x^\alpha} \, dx.$$

5. (8%) Find the arc length of the curve $r = 1 + \sin \theta$ where $\theta \in [0, 2\pi]$.

6. (8%) Let $p_k \in [0,1]$, k = 1, 2, ..., 10 with $\sum_{k=1}^{10} p_k = 1$. Find the maximum of $\sum_{k=1}^{10} (2p_k - 3p_k^2)$.

7. (8%) Find the double integral $\int \int_R \frac{x-2y}{3x-y} dA$ where R is the parallelogram enclosed by the lines x-2y=0, x-2y=4, 3x-y=1 and 3x-y=8.

8. (8%) Find the line integral $\int_{\mathcal{C}} \tan y \, dx + x \sec^2 y \, dy$ where $\mathcal{C}: (t^2, \frac{\pi t}{4})$ from t = 0 to t = 1.

一、作答於試題上者,不予計分。

二、試題請隨卷繳交。

註

第 / 頁,共/頁

考試科目然外性代量又系所別應用最勞多考試時間2月19日(日)第二節

Please show all your work.

1. (15%) Let $A = [a_{i,j}]$ be a symmetric tridiagonal matrix (i.e. A is symmetric and $a_{i,j} = 0$ whenever 1 < |i-j|). Let $M_{i,j}$ denote the matrix obtained from A by deleting the row and column containing $a_{i,j}$ and let B be the matrix obtained from A by deleting the first two rows and columns. Show that

$$\det(A) = a_{1,1} \det(M_{1,1}) - a_{1,2}^2 \det(B).$$

- 2. (15%) Let $P_2(R)$ denote the space of all polynomials with coefficients in R having degree less than or equal to 2. Let $T: P_2(R) \to P_2(R)$ be defined by T(f(x)) = f(x) + f'(x) + f''(x), where f'(x) and f''(x) denote the first and second derivatives of f(x). Either show that T is not invertible or find its inverse.
- 3. (15%) A matrix A is said to be idempotent if $A = A^2$. Show that I + A is nonsingular if A is idempotent.
- 4. (15%) Let $S = \{(1,0,1),(0,1,1),(1,3,3)\}$ be a subset of the inner product space R^3 over the field R. Apple the Gram-Schmidt process to obtain an orthonormal basis β for span(S).
- 5. (20%) Let x, y be nonzero column vectors in \mathbb{R}^n with $n \ge 2$ and let $A = xy^T$. Show that (a) $\lambda_1 = 0$ is an eigenvalue of A with n-1 linearly independent eigenvectors and (b) A is diagonalizable if $x^T y \ne 0$.
- 6. (20%) Let T be a linear operator on a vector space V, and suppose that V is a T-cyclic subspace of itself. Prove that if U is a linear operator on V, then UT = TU if and only if U = g(T) for some polynomial g(t).

一、作答於試題上者,不予計分。

二、試題請隨卷繳交。