國立政治大學 108 學年度 轉學生 招生考試試題

第1頁,共1頁

7月10日(三)第四節

1. (40 %) Evaluate the integrals.

考試科目

(a)
$$(8\%)$$
 $\int_{1}^{2} \frac{(\ln x)^{2}}{x^{3}} dx$

(b)
$$(8\%)$$
 $\int_0^2 \int_{y/2}^1 y \cos(x^3 - 1) dx dy$

微積分(二)

(c) (8 %)
$$\iiint x dV$$
, where E is bounded by the paraboloid $x = 4y^2 + 4z^2$ and the plane $x = 4$

(d) (8 %)
$$\int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_{\sqrt{x^2+y^2}}^{2} xzdzdxdy$$

(e) (8 %)
$$\int_C (y+z)dx + (x+z)dy + (x+y)dz$$
, where C consists of line segments from (0,0,0) to (1,0,1) and from (1,0,1) to (0,1,2).

2. (16%) Determine whether each integral is convergent or divergent. Evaluate those that are convergent.

(a)
$$(8\%) \int_0^1 r \ln r dr$$

(b) (8 %)
$$\int_{0}^{\infty} e^{-\sqrt{y}} dy$$

(a) (6 %) Find the length of the curve

$$y = \frac{x^4}{16} + \frac{1}{2x^2} \qquad 1 \le x \le 2$$

- (b) (8 %) Find the area of the surface obtained by rotating the curve in part (a) about the y-axis.
- 4. (10%) Determine whether the series $\sum_{n=1}^{\infty} (-1)^n \sin(\frac{1}{\sqrt{n}}) \ln(1 + \frac{1}{\sqrt{n}})$ is divergent, conditionally convergent, or absolutely convergent.
- 5. (10%) Find the values of p for which the series $\sum_{n=1}^{\infty} \frac{n}{(1+n^3)^p}$ is convergent.
- 6. (10%) Let E be the tetrahedron bounded by planes -x+y+z=0, x-y+z=0, x+y-z=0, and -x+5y+7z=6. Find the volume of E.

二、試題隨卷繳交

備

國立政治大學 108 學年度 轉學生 招生考試試題

第1頁,共1頁

考試科目 微積分(一) 系所別 應用數學系 考試時間 7月10日(三)第二節

1. (10 %) If the function f is defined by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational} \end{cases}$$

prove that $\lim_{x\to 0} f(x)$ does not exist.

- 2. (24%) Find the limit if it exists, or show that the limit does not exist.
 - (a) $(8\%) \lim_{x\to 0^+} (\tan 2x)^x$

(b) (8 %)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$$

(c)
$$(8\%) \lim_{x\to 1} \left(\frac{1}{\ln x} - \frac{1}{x-1}\right)$$

3. (10%) Discuss the continuity of the function

$$f(x,y) = \begin{cases} \frac{\sin xy}{xy} & \text{if } xy \neq 0\\ 1 & \text{if } xy = 0 \end{cases}$$

4. (18%) Find the indicated derivatives.

(a) (10 %)
$$P = \sqrt{u^2 + v^2 + w^2}$$
, $u = xe^y$, $v = ye^x$, $w = e^{xy}$. Evaluate $\frac{\partial P}{\partial x}$ and $\frac{\partial P}{\partial y}$ when $x = 0$, $y = 2$.

(b) (8 %)
$$x^y = y^x + y$$
. Find $\frac{dy}{dx}$ at $(x, y) = (2, 1)$.

- 5. (10%) Find the extreme values of the function f(x, y, z) = 3x y 3z subject to both constraints: x + y z = 0, $x^2 + 2z^2 = 1$.
- 6. (12%) Let f(x) be a twice differentiable one-to-one function. Suppose that f(2) = 1, f'(2) = 3, f''(2) = e.
 - (a) (6 %) Find $\frac{d}{dx}f^{-1}(1)$.
 - (b) (6 %) Find $\frac{d^2}{dx^2}f^{-1}(1)$.
- 7. (16%) From the equation $\sqrt{1+y} \int_0^{x^2-1} \frac{dt}{1+t^2} + \tan(xy) = 1$, a differentiable y = y(x) can be determined around (x,y) = (1,0).
 - (a) (8 %) Evaluate y' at (x, y) = (1, 0).

二、試題隨卷繳交

(b) (8 %) Determine the concavity of y = y(x) around (x, y) = (1, 0).

考試科目 微積分 系別 應用數學系三年級 考試時間 7月10日(三)第二節

注意事項:

- 本試題共有 6 個問題,總計 100 分。
- 不得任意更改題目符號, 否則依情節輕重扣分。
- 1. Determine whether each of the following functions is differentiable at x = 0:
 - (a) (8 points) $f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$
 - (b) (8 points) $f(x) = \begin{cases} x^2 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$
- 2. Evaluate each of the following integrals:

(a) (9 points)
$$\int \cos(x^{\frac{1}{3}}) dx$$

(b) (9 points)
$$\int \frac{dx}{1 + \sqrt[4]{x - 1}}$$

(c) (9 points)
$$\int_{1}^{5} \frac{dx}{\sqrt[3]{x-2}}$$

(d) (9 points)
$$\int \frac{x+4}{x^3+6x^2+9x} dx$$

- 3. (8 points) Show that a differentiable function f(x) is continuous.
- 4. Consider the function

$$f(x) = \frac{1}{x^2 + x + 1}$$

- (a) (8 points) Find the Maclaurin seies for f(x).
- (b) (8 points) Find the 36th order derivative $f^{(36)}(0)$.
- 5. Evaluate each of the following integrals:
 - (a) (8 points) $\iint_R e^{x^3} dA$, where R is the region bounded by $y = x^2$, x = 3, and y = 0
 - (b) (8 points) $\int_{\frac{\sqrt{2}}{2}}^{1} \int_{\sqrt{1-x^2}}^{x} \frac{1}{\sqrt{x^2+y^2}} dy dx$
- 6. (8 points) Approximate $\int_0^1 \frac{\sin x}{x} dx$ correctly to six decimal places.

國立政治大學 108 學年度 轉學生招生考試試題

第1頁/共1頁

考試科目 線性代數 系別 應用數學系三年級 考試時間 7月10日(三)第四節

注意事項:

- 本試題共有 5 個問題,總計 100 分。
- 不得任意更改題目符號,否則依情節輕重扣分。
- 1. Let U and W be subspaces of a vector space V. Show that:
 - (i) (10 points) U and W are contained in U + W.
 - (ii) (10 points) U + W is the smallest subspace of V containing U and W.
- 2. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear mapping defined by

$$T(x, y, z) = (x + 2y - z, y + z, x + y - 2z)$$

Find a basis and the dimension of the

- (i) (10 points) image U of T
- (ii) (10 points) kernel W of T
- 3. Let T be the linear operator on \mathbb{R}^3 defined by

$$T(x, y, z) = (2y + z, x - 4y, 3x).$$

- (i) (12 points) Find the matrix of T in the basis $f = \{f_1 = (1, 1, 1), f_2 = (1, 1, 0), f_3 = (1, 0, 0)\}$.
- (ii) (8 points) Verify that $[T]_f[v]_f = [T(v)]_f$ for any vector $v \in \mathbb{R}^3$.
- 4. Consider the matrix

$$A = \left[\begin{array}{rrr} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{array} \right]$$

- (i) (15 points) Find all eigenvalues and a basis of each eigenspace for A.
- (ii) (5 points) Find an invertible matrix P such that $P^{-1}AP$ is diagonal.
- 5. Let $T: V \to V$ be a linear operator. Let $U = \ker T^i$ and $W = \ker T^{i+1}$. Show that:
 - (i) (10 points) $U \subseteq W$
 - (ii) (10 points) $T(W) \subseteq U$