考 試 科 目微積分(一) 系 所

系所 別應用數學系 二年紀

考試時間7月8日(三)第二節

1. (20%) Use the definition of the limit to show that

A.
$$(10\%) \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2.$$

B. (10%)
$$\lim_{x \to \infty} \frac{3}{x^2 - 1} = 0$$
.

- 2. (15%) Find all local maximal, local minimal, and the saddle points of the function $f(x,y) = 6x^2 2x^3 + 3y^2 + 6xy$.
- 3. (15%) Prove that if f is differentiable on $(-\infty, \infty)$ and f'(x) < 1 for all real numbers, then f has at most one fixed point. (A fixed point of a function f is the number c such that f(c) = c.)
- 4. (15%) Show that $\frac{d}{dx}e^x = e^x$.
- 5. (15%) Show that if the limit exists, then it is unique.
- 6. (10%) Show that if f'(x) > 0 on an interval, then f is increasing on that interval.
- 7. (10%) Show that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$.

考 試 科 目微積分(二)

系 所 別 應用數學系

系二种级

考試時間7月分日(三)第四節

- 1. (10%) Let $f(x) = \int_{x^2}^{x^3 + 2x^2} e^{t^2} dt$. Find $\frac{d}{dx} f(x)$.
- 2. (15%) Compute the area of the hemisphere of radius t > 0 and centered at the origin given by $S = \{(x, y, z) \in \mathbb{R}^3: x^2 + y^2 + z^2 = t^2, z \ge 0\}$.
- 3. (10%) Evaluate the limit $\lim_{n\to\infty} \sum_{n=1}^{\infty} \frac{1}{n} \sqrt[3]{\frac{1}{n}}$.
- 4. (10%) Find the total length of the curve $r = 2(1 + \cos\theta)$.
- 5. (15%) Suppose that $f: [0,1] \to R$ satisfies 1 f(x) = f(1-x). Compute $\int_0^1 f(x) dx$.
- 6. (15%) Given the series $\sum_{n=0}^{\infty} nx^n$.
 - A. (5%) Find the radius of convergence.
 - B. (5%) Find the interval of convergence.
 - C. (5%) Find the sum.
- 7. (15%) Evaluate the integral $\iint_R \frac{y}{x^2+y^2} dA$, where R is trapezoid bounded by y = x, y = 2x, x = 1, and x = 2.
- 8. (10%) Evaluate the integral $\int_{-\infty}^{\infty} e^{\frac{1}{2}x^2} dx$.

二、試題請隨卷繳交。

註

考 試 科 目微積分

系 所 別應用數學系

考試時間7月分日(三) 第二節

- 1. (10%) Discuss the continuity of the function $f(x,y) = \begin{cases} \frac{\sin(x^2 y^2)}{x^2 y^2}, x^2 \neq y^2 \\ 1, x^2 = y^2 \end{cases}$.
- 2. (10%) Use $\varepsilon \delta$ definition to prove that $\lim_{x \to 2} (x^2 2x) = 0$.
- 3. (10%) Find the positive value of **p** for which the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ converges.
- 4. (20%) Let n be a non-negative integer and $a_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$.
 - A. (10%) Compute $na_n a_{n-1}$.
 - B. (10%) Prove that $\{a_n\}$ is a decreasing sequence.
- 5. (10%) Show that if f''(x) > 0 on an interval, then f is concave upward on that interval.
- 6. (10%) Find the length of the curve $y = (\frac{x}{2})^{\frac{2}{3}}$ from x = 0 to x = 2.
- 7. (15%) Prove the Mean Value Theorem.
- 8. (15%) Prove that $\lim_{x\to 0} \sin\frac{1}{x}$ does not exist at x=0.

國立政治大學 109 學年度 轉學生招生考試試題

第1頁/共1頁

考試科目 線性代數 系別 應用數學系三年級 考試時間 7月8日(三)第四節

注意事項:

- 本試題共有6個問題,總計100分。
- 不得任意更改題目符號,否則依情節輕重扣分。

Please show all your work.

1. Given a 4×4 triangular Pascal matrix

$$A = \left[\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1 \end{array} \right]$$

- (a) (10 points) Find the inverse A^{-1} of A and show that A is similar to A^{-1} .
- (b) (10 points) Find all the eigenvalue(s) of A, the corresponding eigenvector(s) and algebraic and geometric multiplicities.
- 2. (10 points) Find the Jordan canonical form for the matrix

$$A = \begin{bmatrix} 1 & -1 & -2 & 3 \\ 0 & 0 & -2 & 3 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

- 3. Let A be an $m \times n$ matrix and B an $n \times r$ matrix with AB = 0.
 - (a) (10 points) Show that the null space of A contains the column space of B.
 - (b) (10 points) Show that $rank(A) + rank(B) \le n$.
- 4. Suppose A and B are square matrices such that AB = I, where I is the identity matrix.
 - (a) (10 points) Show that $rank(AB) \le rank(A)$.
 - (b) (10 points) Show that A is invertible with inverse $A^{-1} = B$.
- 5. (10 points) Suppose $\{v_1, \dots, v_n\}$ is a basis for \mathbb{R}^n and the $n \times n$ matrix A is invertible. Show that $\{Av_1, \dots, Av_n\}$ is also a basis for \mathbb{R}^n .
- 6. Let U be the subspace of \mathbb{R}^5 generated by

$$\{(1,3,-2,2,3),(1,4,-3,4,2),(2,3,-1,-2,9)\}$$

and let W be the subspace generated by

$$\{(1,3,0,2,1),(1,5,-6,6,3),(2,5,3,2,1)\}$$

Find a basis and the dimension for each of the following subspaces of \mathbb{R}^5 .

- (a) (10 points) U + W.
- (b) (10 points) $U \cap W$.