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We examine the relation between jump variations and risk-neutral moments in volatility
forecasting. We propose a method that involves no extrapolation in computing the risk-
neutral moments of Bakshi et al. (2003) and document that risk-neutral skewness and
kurtosis subsume the information content of historical jumps. While historical jumps have
significant explanatory power for future volatility and such power is actually not weak-
ened by the inclusion of risk-neutral volatility in models, their predictability does disap-
pear when risk-neutral skewness and kurtosis are included.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Since the 2007e2009 financial crisis, price jumps have become more and more common and material, in particular, to
volatility forecasting. They result in return distributions exhibiting a skewed and fat-tailed shape. In this study, we posit that if
implied skewness and kurtosis are measured appropriately, then they could perform better than implied volatility in sub-
suming information on historical jumps for volatility forecasting. In order to effectively address this issue, we propose a
method without involving any extrapolation in computing the risk-neutral moments of Bakshi et al. (2003) on the grounds
that extrapolation may potentially distort tail distributions. We propose two hypotheses. The first is that the method which
does not involve any extrapolation produces better measures of risk-neutral skewness and kurtosis than the methods that do.
The second hypothesis is that risk-neutral skewness and kurtosis perform better than risk-neutral volatility in terms of
subsuming information on historical jumps for volatility forecasting.
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Jiang and Tian (2005, 2007) develop twomethods that use observed option prices for the computation of their model-free
volatility. Given that only limited-range strike prices are traded in the market, a flat extrapolation scheme is adopted in Jiang
and Tian (2005). However, in Jiang and Tian (2007), they criticize their earlier method and argue that the flat extrapolation
scheme has drawbacks. In this paper, we argue that methods involving extrapolationmay distort tail distributions, potentially
distorting the information content of implied skewness and kurtosis.

There is evidence in the literature that higher volatility is associated more with negative returns than positive returns.4

However, the associated jumps are difficult to measure. Thanks to Barndorff-Nielsen and Shephard (2004, 2006) and
Andersen et al. (2007), the total variance component attributable to the jump process in prices can now be extracted using
high-frequency returns data.

Becker et al. (2009) find that the VIX not only subsumes information on historical jump activity, but also reflects the
incremental information pertaining to future jump activity. Busch et al. (2011) discover that implied volatility contains in-
cremental information on future volatility components, relative to past continuous and jump components. Byun and Kim
(2013) detect whether risk-neutral skewness and kurtosis have incremental explanatory power on future volatility.

The primary purpose of this paper is to evaluate the performance of the volatility forecasting methods and to improve the
accuracy of the forecasts of future volatility. Overall, we find that risk-neutral skewness and kurtosis measures without
involving extrapolation subsume the information content of historical jump variations in the heterogeneous autoregressive
realized volatility (HAR-RV) model.5

Our paper is closely related to Byun and Kim (2013). However, several major differences exist. First, Byun and Kim
investigate whether risk-neutral skewness has incremental explanatory power for future volatility in the S&P 500 Index,
while we examine the issue on employing extrapolation for computation of risk-neutral moments and investigate the relation
between realized jumps and risk-neutral moments using data on the Taiwan Stock Exchange Capitalization Weighted Stock
Index (TAIEX).6 Second, Byun and Kim only find that risk-neutral skewness contains information for future volatility. In
contrast, we find that both risk-neutral skewness and kurtosis subsume the information of historical jump variations and
contain incremental information. Third, we also find that jumps have statistically significant forecasting ability; however, the
predictive power of historical jumps is sharply weakened by both risk-neutral skewness and kurtosis.

The rest of the paper proceeds as follows. In Section 2, we discuss volatility components and risk-neutral moments. Section
3 presents our empirical design and data. Section 4 presents the results and the final section concludes the paper.
2. Volatility components and risk-neutral moments

2.1. Volatility components

It is well known that realized volatility is obtained by:

RVt�1;t ¼
XM
i¼1

r2t;i; (1)

where rt,i is the ith intraday return on day t; M ¼ 1/D indicates the number of intraday returns in a day; and D is the time
interval. We follow Bollerslev et al. (2009) and Andersen et al. (2011) to use the 5-min returns of the TAIEX to obtain the
realized volatility and the continuous and jump variation estimators; thus,M¼ 54. We compute the realized volatility for our
assessment of the performance of the various models for daily, weekly, and monthly forecasting horizons, which is expressed
as:

RVt�h;t ¼
�
RVt�h;t�hþ1 þRVt�hþ1;t�hþ2 þ/þRVt�1;t

� �
h;

where h ¼ 1, 5 and 22. All of the volatility measures are annualized.
Andersen et al. (2003) show that RVt e 1, t converges in probability to the quadratic variation as the time interval between

the observations becomes smaller; therefore, RVt e 1, t captures both the continuous and discontinuous (“jump”) components
of volatility. We adopt three definitions for our measurement of the jump component in total variance. The first was defined
by Andersen et al. (2007) and denoted as Jt-1,t, the second by Andersen et al. (2012) and denoted as MJt-1,t, and the third by
4 Examples include Bollerslev et al. (1994), Bollerslev et al. (2006), and Andersen et al. (2006). Patton and Sheppard (2015) use a new estimator, realized
semi-variance, proposed by Barndorff-Nielsen et al. (2010), as the means of decomposing the usual realized variance into two components, one (the other)
relating to positive (negative) high-frequency returns.

5 We are grateful to an anonymous referee for drawing our attention to accounting for the autoregressive structure of volatility. The HAR-RV model was
proposed by Corsi (2009). The main motivation for using this model is that investors with different time horizons perceive, react to, and cause different
types of volatility components. Corsi identified three primary volatility components: (1) short-term traders with daily or higher trading frequency (i.e., past
daily realized volatility); (2) medium-term investors who typically rebalance their positions weekly (i.e., past weekly realized volatility); and (3) long-term
agents with a characteristic time of one month or more (i.e., past monthly realized volatility).

6 Note that the TAIEX, unlike the S&P 500, is characterized by the high individual participation.
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Patton and Sheppard (2015) and denoted as SJt-1,t. Their continuous components of volatility are denoted as Ct-1,t, MCt-1,t, and
BVt-1,t, respectively. The definitions of these volatility components can be found in the papers mentioned above.7

2.2. Risk-neutral moments

The Britten-Jones and Neuberger (2000) estimator is often used as a proxy for implied volatility. However, Du and Kapadia
(2013) conduct an extensive simulation exercise to assess the impact of jumps on implied volatility and recommend the
Bakshi et al. (2003) estimator as a jump-robust estimator. In addition, Bakshi et al. also develop estimators of skewness and
kurtosis. Interested readers can refer to Bakshi et al. (2003) for the definitions of risk-neutral volatility, skewness, and
kurtosis.

The risk-neutral moments are defined as an integral of the option prices over an infinite range of strike prices; however,
only a limited range and sparse set of discrete strike prices are listed for trading in the marketplace, which may lead to
inaccuracies in the calculation of the risk-neutral volatility. Jiang and Tian (2005, 2007) argue that truncation errors arise if
only the limited range of strike prices is used in the calculation, and therefore propose the use of an extrapolation scheme.
However, the use of extrapolation may potentially distort tail distributions and thus the information content of risk-neutral
skewness and kurtosis. In this study, we refer to our method without involving any extrapolation as the “naïve” method. As
for methods developed by Jiang and Tian (2005, 2007), we refer those as the JT05 and JT07 method, respectively.8

In order to compute the risk-neutral moments, we first need to fit the Black-Scholes (1973) implied volatility curve. To
back-solve the Black-Scholes implied volatilities, we apply put-call parity to create the “implied TAIEX” (referred to as the ex-
dividend TAIEX) so as to avoid any estimation errors in the dividend rate. We adopt the TAIEX based upon 1-min intervals to
define moneyness, and retain the final trade prices of the out-of-the-money options with trading times prior to 1:30 p.m.
(UTCþ8).We then apply cubic splines to connect discrete points for the fitting of a smoothing implied volatility curve. In order
to eliminate the effects of the differences in time to maturity, we need two smooth implied volatility curves with different
time-to-maturity periods, which are referred to as t1 and t2; we can then apply linear interpolation to construct a 30-cal-
endar-day implied volatility curve.

3. Empirical design and data

3.1. Empirical design

We use the HAR-RV model as the base model, which is expressed as:

RVt;tþh ¼b0 þ bDRVt�1; t þ bWRVt�5; t þ bMRVt�22; t þ εt;tþh: (2)
We follow Andersen et al. (2007) and employ a model that is capable of detecting which estimator of the jump component
has predictive power on total realized volatility; the model is expressed as:

RVt;tþh ¼b0 þ bCCt�1; t þ bJ Jt�1; t þ bWRVt�5; t þ bMRVt�22; t þ εt;tþh; (3)

where C and J, respectively, denote the continuous and jump components of the total variance.
Once we have confirmed the predictive power of the jump components, the risk-neutral moments are then added into the

model to examine whether the predictive power of the jump variation is changed. The model is expressed as:

RVt;tþh ¼ b0 þ bCCt�1; t þ bJ Jt�1; t þ bWRVt�5; t þ bMRVt�22; t þ bVVar t þ bSSkew t þ bKKurt t þ εt;tþh: (4)
In order to assess the role of each risk-neutral moment in capturing the predictive power of jump variations, we
sequentially introduce risk-neutral volatility (Var t), skewness (Skew t), and kurtosis (Kurt t) into the model.

Because the risk-neutral skewness and kurtosis computed by the naïve method do not only subsume the historical jump
information, but also reflect the incremental information on future volatility, we propose the following model for volatility
forecasting:
7 To facilitate a comparison with the jump estimators proposed by Andersen et al. (2007) and Andersen et al. (2012), as opposed to the average of the
skip-0 to skip-4 estimators developed by Patton and Sheppard (2015), we use the following bipower variation estimator for our empirical analysis:

BVt�1;t ¼ m�2
1 (M/(M-2))

PM�2

i¼1

��rt;i����rt;iþ2
��, where m1 ¼ ffiffiffiffiffiffiffiffiffi

2=p
p

.

8 Let Kl (Ku) denote the minimum (maximum) strike price in the marketplace. The interval [Kmin, Kmax] defines the range of strike prices that are used to
compute the risk-neutral moments. Jiang and Tian (2005) demonstrate that if the left and right truncation points, Kmin, Kmax, are three multiples of standard
deviations from the initial underlying asset price, then the truncation error will be negligible. They employ a flat extrapolation scheme when Kmin < Kl or
Kmax > Ku, assuming that the implied volatility function is flat beyond the listed strike prices. Jiang and Tian (2007) adjust the slope of the extrapolation
segment on both sides in order to match the corresponding slope of the interior segment at Kl or Ku. We use the daily average implied Black-Scholes
volatility to be the estimator of standard deviation for TAIEX’s returns when computing the risk-neutral moments by the JT05 and JT07 methods.
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Table 1
Summary statistics on daily realized volatility including the continuous and discontinuous components
This table reports the summary statistics of daily realized volatility in the TAIEX, including its continuous and discontinuous parts, for a sample period
running from January 3, 2005 to December 31, 2019, which provides a total of 3707 daily observations. RV denotes daily realized volatility; C(MC) and J(MJ)
are the respective continuous and discontinuous components, as defined by Andersen et al. (2007, 2012); BV refers to the daily bipower variation. SJ is the
daily signed jump variation; JP (JN) indicates the positive (negative) jumps, where all are as defined by Patton and Sheppard (2015). The LB6 column provides
the Ljung-Box test statistic for up to sixth-order serial correlation.

Variables Mean Median S.D. Skewness Kurtosis Min. Max. LB6

RVt e 1, t 0.0305 0.0135 0.0642 7.98 87.50 0.0017 1.149 3166
Ct e 1, t 0.0174 0.0092 0.0249 4.45 28.56 0.0006 0.288 8128
Jt e 1, t 0.0132 0.0000 0.0521 10.25 140.95 0.0000 1.123 549
MCt e 1, t 0.0301 0.0130 0.0643 7.98 87.44 0.0014 1.149 3117
MJt e 1, t 0.0004 0.0000 0.0024 11.05 169.54 0.0000 0.055 1.88
BVt e 1, t 0.0154 0.0081 0.0222 4.73 33.41 0.0006 0.286 8712
SJt e 1, t �0.0008 0.0008 0.0580 �3.47 111.94 �1.1063 0.841 51
JPt e 1, t 0.0086 0.0008 0.0337 13.69 256.93 0.0000 0.841 165
JNt e 1, t �0.0094 0.0000 0.0455 �12.51 208.48 �1.1063 0.000 317
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RVt;tþh ¼ b0 þ bDCt�1; t þ bWCt�5; t þ bMCt�22; t þ bVVar t þ bSSkew t þ bKKurt t þ εt;tþh: (5)
3.2. Data

We employ two data sets: intraday data on the TAIEX and intraday data on TAIEX options. The sample period is January 3,
2005 to December 31, 2019.9 The risk-free interest rate is proxied by the simple average of the one-month time deposit
interest rates of the five major banks in Taiwan, whilst the data on the one-month time deposit rates are obtained from the
website of the Central Bank of the Republic of China.10

The data on TAIEX options, obtained from the Taiwan Economic Journal (TEJ), includes the expiration month, strike price,
trading volume, transaction price, trading date, and trading time, with all of the transactions being time-stamped to the
second. TAIEX options are European-style options, with the TAIEX as the underlying index, and expiration dates of three near-
term months followed by two additional months from the March quarterly cycle (March, June, September, and December).

In order to avoid microstructure-related bias, options with maturities of less than oneweek are excluded from the sample,
which means that we selected the two near-month options with at least eight days until maturity for the computation of the
risk-neutral moments. The operating hours in the Taiwan Futures Exchange (TAIFEX) are 8:45 a.m. to 1:45 p.m. (UTCþ8).
Although the TAIFEX launched an after-hours trading system on May 15, 2016, we exclude all transaction data during the
after-hours trading period.
3.3. Summary statistics

Table 1 shows that realized variance (RVt e 1, t) has right-skewed and fat-tailed distribution, with a mean of 0.0305, while
the standard Ljung-Box statistic, for up to sixth-order serial correlation (LB6), is 3,166, whichmeans that the realized volatility
exhibits a high degree of inherent serial correlation.Whenwe decompose the realized volatility into a continuous component
and a jump component, based upon the definition of Andersen et al. (2007) and denoted as Ct e 1, t and Jt e 1, t, they have
respective LB6 statistics of 8128 and 549.11 Themean of the Jt e 1, t series accounts for 43% of themean of RVt e 1, t, implying that
jumps are important. The continuous and jump components of Andersen et al. (2012) are denoted asMCt e 1, t andMJt e 1, t.12

The jumps here are the least important, with the mean of the MJt e 1, t series accounting for just 1% of the mean of RVt e 1, t. If
the jump component is measured using the Patton and Sheppard (2015) approach, denoted here as SJt e 1, t, we find that the
9 The choice of this sample period is essentially due to the intraday data on the TAIEX offered on the website of the Taiwan Stock Exchange (TWSE)
becoming available from October 15, 2004 onwards. The data were initially published every minute until January 16, 2011 when the frequency was changed
to every 15 s; this was changed to every 10 s on February 23, 2014, and to every 5 s on December 29, 2014, where it currently remains. The operating hours
of the TWSE run from 9:00 a.m. to 1:30 p.m. (UTCþ8).
10 The website of the Central Bank of the Republic of China is available at: http://www.cbc.gov.tw.
11 Compared to the dynamic dependence in the continuous sample path price movements, there is significantly less inherent dynamic dependence in the
proportion of the overall quadratic variation originating from the discontinuous sample path price process.
12 The LB6 statistics for MCt e 1, t and MJt e 1, t are 3117 and 1.88, respectively, which are markedly lower than those of Ct e 1, t and Jt e 1, t. It is worthwhile to
note that the Ljung-Box statistic of MJt e 1, t, at 1.88, indicates that the null hypothesis of no serial correlation cannot be rejected.
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Table 2
Summary statistics on risk-neutral moments
This table reports the summary statistics on risk-neutral volatility, skewness and kurtosis in TAIEX options for a sample period running from January 3, 2005
to December 31, 2019, which provides a total of 3707 daily observations. The risk-neutral volatility, skewness and kurtosis in TAIEX options are as developed
by Bakshi et al. (2003) and are implemented using the naïve, JT05, and JT07 methods. No extrapolation is used in the naïve method, a flat extrapolation
scheme is used in the JT05 method and a liner extrapolation scheme is used in the JT07 method.

Variables Mean Median S.D. Skewness Kurtosis Min. Max.

Panel A: Risk-neutral volatility
Naïve 0.043 0.027 0.043 3.038 12.973 0.0073 0.403
JT05 0.046 0.027 0.054 3.705 19.596 0.0074 0.584
JT07 0.049 0.027 0.139 45.944 2524.265 0.0074 7.725

Panel B: Risk-neutral Skewness
Naïve �0.717 �0.698 0.534 1.096 10.218 �5.0083 4.865
JT05 �0.793 �0.716 0.404 �0.665 0.260 �2.5639 0.215
JT07 �0.807 �0.741 0.412 �0.069 4.281 �2.3433 3.665

Panel C: Risk-neutral Kurtosis
Naïve 5.062 4.530 2.362 1.457 3.357 1.3295 24.611
JT05 5.436 4.773 2.143 1.634 3.011 2.2422 18.844
JT07 5.594 4.949 2.209 2.300 11.916 0.9637 34.268
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distribution is left-skewed and fat-tailed, with a mean of �0.0008, thereby revealing that negative jumps dominate positive
jumps.13 Although the Ljung-Box statistic for SJt e 1, t is significant at conventional levels, it is markedly lower than that for RVt

e 1, t and BVt e 1, t. This again confirms that the jump variation is much less persistent than the continuous variation.14

Table 2 presents the summary statistics on the risk-neutral moments using the naïve, JT05, and JT07methods. For the risk-
neutral volatility, all of the methods produce mean (median) values that are higher than those for realized volatility, with the
naïve method having the lowest mean value at 0.043, essentially because this method does not include the use of extrap-
olation, and thus, the deep-out-of-the-moneyness options have assumed zero values. The JT07 method produces the most
right-skewed distribution (45.944) with extremely high excess kurtosis (2524.265), which is extraordinarily different from
the distribution produced by the JT05 method, where the corresponding values are 3.705 and 19.596. Because a volatility
smile or skew is commonly observed, the JT07 method has the highest risk-neutral volatility, and thus, produces more up-
wardly biased forecasting of realized volatility. However, Fig. 1 shows that the three frequency distributions look almost the
same in terms of risk-neutral volatility.15

The means (medians) of risk-neutral skewness are all negative, indicating that the risk-neutral distribution of TAIEX’s
return is left-skewed. When examining the shape of the distributions for risk-neutral skewness, we find that the naïve
method has right-skewed distribution, at 1.096; however, the JT05 and JT07 methods exhibit left-skewed distributions, at
�0.665 and �0.069, respectively. Although all of the methods have fat-tailed distributions, their excess kurtosis values
actually differmarkedly.16 Fig. 2 shows that the frequency distribution of the naïvemethod is really different from those of the
JT05 and JT07 methods.

The means (medians) of risk-neutral kurtosis are all greater than 3, indicating that the risk-neutral distributions of TAIEX’s
return are leptokurtic. For the shape of the distributions for risk-neutral kurtosis, all of the methods have right-skewed and
fat-tailed distributions.17 Fig. 3 shows that the naïve distribution is really different from those of JT05 and JT07 methods.

Table 3 presents the Pearson correlation coefficients among the risk-neutral moments.18 Risk-neutral volatility is signif-
icantly positively related to risk-neutral skewness for all methods at the 0.01 level, but negatively related to risk-neutral
kurtosis. The correlations between risk-neutral skewness and kurtosis are all negative. Out of the three methods, risk-
neutral volatility and skewness (kurtosis) are most related to each other with a correlation of 0.298 (�0.451) under the
naïve method. Collectively, the distribution shapes of and relations among risk-neutral moments vary with the extrapolation
methods used.
13 The Ljung-Box statistics for BVt e 1, t and SJt e 1, t are 8712 and 51, respectively, with the serial correlation on BVt e 1, t being markedly higher than that of
the correlations on RVt e 1, t, Ct e 1, t and MCt e 1, t.
14 The signed jump variation is further decomposed into positive and negative jump variations, denoted as JPt e 1, t and JNt e 1, t respectively. Their Ljung-Box
statistics are 165 and 317, respectively, which are higher than that for SJt e 1, t and thereby indicate that the negative jump variation has higher serial
correlation than the positive jump variation.
15 In order to meaningfully depict and compare all three distributions within a figure, we remove some outliers. This approach also applies to Figs. 2 and 3.
16 The naïve method has the highest excess kurtosis, at 10.218, while the JT05 method has the lowest excess kurtosis, at 0.26.
17 The naïve method has the least right-skewed (1.457) and fat-tailed (3.357) distribution, while the JT05 (JT07) method has a right-skewness value of 1.
634 (2.300) and a fat-tailed distribution of 3.011 (11.916).
18 We are grateful to an anonymous referee for drawing our attention to the issue on correlations among risk-neutral moments.
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Fig. 1. The risk-neutral volatility
This figure displays the distributions of the risk-neutral volatility computed by the naïve, JT05, and JT07 methods. In order to meaningfully depict and compare all
three distributions within a figure, we remove some outliers. The remaining observations account for 95.55%, 94.71%, and 94.2% of a total of 3707 daily ob-
servations for the naïve, JT05, and JT07 methods, respectively.

Fig. 2. The risk-neutral skewness
This figure displays the distributions of the risk-neutral skewness computed by the naïve, JT05, and JT07 methods. In order to meaningfully depict and compare
all the three distributions within a figure, we remove some outliers. The remaining observations account for 99.19%, 99.97%, and 99.89% of a total of 3707 daily
observations for the naïve, JT05, and JT07 methods, respectively.

Fig. 3. The risk-neutral kurtosis
This figure displays the distributions of the risk-neutral kurtosis computed by the naïve, JT05, and JT07 methods. In order to meaningfully depict and compare all
the three distributions within a figure, we remove some outliers. The remaining observations account for 99.76%, 99.24%, and 99.03% of a total of 3707 daily
observations for the naïve, JT05, and JT07 methods, respectively.
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Table 3
The Pearson correlation coefficient matrix of the risk-neutral moments
This table reports the correlations among risk-neutral moments for a sample period running from January 3, 2005 to December 31, 2019, which provides a
total of 3707 daily observations. The risk-neutral volatility, skewness and kurtosis in TAIEX options are as developed by Bakshi et al. (2003) and are
implemented using the naïve, JT05 and JT07 methods. No extrapolation is used in the naïve method, a flat extrapolation scheme is used in the JT05 method
and a liner extrapolation scheme is used in the JT07 method. The correlations reported in this table are all statistically significant at the 0.01 level.

Method Naïve JT05 JT07

Risk-neutral Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis
Volatility 0.298 �0.451 0.176 �0.384 0.016 �0.154
Skewness e �0.679 e �0.778 e �0.632

Table 4
The contemporaneous relation between jump variations and risk-neutral moments
This table reports the contemporaneous regression results on the assessment of whether risk-neutral moments can effectively capture information similar to
daily jump variations for a sample period running from January 3, 2005 to December 31, 2019. The t-statistics are based upon standard errors computed
using Newey and West (1987) correction for serial correlation of order 5.

Variables Vart Skewt Kurtt Adj. R2 (%)

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

Panel A: Naïve Method
Jt e 1, t 0.395 7.43 0.284 4.01 0.324 4.76 14.4
MJt e 1, t 0.037 1.65 �0.004 �0.28 �0.003 �0.21 0.1
SJt e 1, t �0.126 �2.47 �0.373 �4.57 �0.279 �3.57 8.2
JPt e 1, t 0.297 4.74 �0.056 �1.51 0.065 1.35 6.6
JNt e 1, t �0.311 �6.53 �0.404 �4.42 �0.361 �4.20 14.6

Panel B: JT05 Method
Jt e 1, t 0.377 6.93 0.073 2.39 0.116 3.21 11.4
MJt e 1, t 0.031 1.43 0.006 0.25 �0.003 �0.13 0.0
SJt e 1, t �0.125 �2.29 �0.053 �1.66 �0.043 �1.16 1.4
JPt e 1, t 0.283 5.76 0.036 1.12 0.086 2.16 6.3
JNt e 1, t �0.302 �5.32 �0.082 �2.68 �0.097 �2.76 7.5

Panel C: JT07 Method
Jt e 1, t 0.377 6.98 �0.008 �0.40 0.064 2.92 12.4
MJt e 1, t 0.026 1.36 0.009 0.61 �0.011 �0.86 0.1
SJt e 1, t �0.136 �2.40 0.006 0.35 �0.005 �0.29 1.7
JPt e 1, t 0.274 6.11 0.004 0.15 0.062 2.31 6.3
JNt e 1, t �0.309 �5.11 0.005 0.35 �0.040 �2.45 8.5

Table 5
The predictive power of the risk-neutral moments on future jump forecasting computed by the naïve method
This table reports the regression results on the assessment of whether daily jumps are predictable using the three lag terms of the jumps or the previous-day
risk-neutral volatility, skewness, and kurtosis, computed by the naïvemethod, for a sample period running from January 3, 2005 to December 31, 2019. Panel
A shows the results based upon the use of the three jump lag terms as explanatory variables along with corresponding adjusted R2 values, where Y is the
dependent variable (i.e., the various types of jumps). Panel B shows the results based upon the use of the previous-day risk-neutral volatility, skewness, and
kurtosis as explanatory variables along with their corresponding adjusted R2 values. The t-statistics are based upon standard errors computed using Newey
and West (1987) correction for serial correlation of order 5.

Variables Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Adj. R2 (%)

Panel A: Lag1(Y) Lag2(Y) Lag3(Y)
Jt e 1, t 0.187 3.16 0.159 3.42 0.031 1.06 7.9
MJt e 1, t �0.009 �1.35 0.013 0.82 0.002 0.16 �0.1
SJt e 1, t 0.071 1.29 0.037 0.87 �0.025 �1.11 0.6
JPt e 1, t 0.157 1.78 0.079 2.31 0.014 0.47 3.6
JNt e 1, t 0.117 2.03 0.106 2.29 0.028 1.74 3.0

Panel B: Vart-1 Skewt-1 Kurtt-1
Jt e 1, t 0.365 7.16 0.291 3.22 0.312 3.40 13.1
MJt e 1, t 0.037 1.60 �0.004 �0.21 �0.007 �0.48 0.1
SJt e 1, t �0.082 �1.40 �0.172 �1.24 �0.162 �1.11 1.8
JPt e 1, t 0.306 6.15 0.135 2.12 0.155 2.60 8.0
JNt e 1, t �0.264 �4.54 �0.274 �1.96 �0.274 �1.85 8.2
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Table 6
The predictive power of risk-neutral moments on future jump forecasting computed by the JT05 and JT07 methods
This table reports the regression results on the assessment of whether daily jumps are predictable using the previous-day risk-neutral volatility, skewness
and kurtosis, computed by the JT05 and JT07 method, for a sample period running from January 3, 2005 to December 31, 2019. Panel A (Panel B) shows the
results based upon the use of the JT05 (JT07) method, followed by their corresponding adjusted R2 values. The t-statistics are based upon standard errors
computed using Newey and West (1987) correction for serial correlation of order 5.

Variables Vart-1 Skewt-1 Kurtt-1 Adj. R2 (%)

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

Panel A: JT05 Method
Jt e 1, t 0.338 6.56 0.052 1.68 0.081 2.40 9.5
MJt e 1, t 0.033 1.43 �0.001 �0.03 �0.008 �0.36 0.1
SJt e 1, t �0.062 �1.28 �0.018 �0.62 �0.023 �0.73 0.2
JPt e 1, t 0.302 6.45 0.049 1.77 0.068 2.22 7.8
JNt e 1, t �0.239 �4.70 �0.048 �1.57 �0.064 �1.94 4.7

Panel B: JT07 Method
Jt e 1, t 0.340 6.64 0.019 0.80 0.056 2.31 10.2
MJt e 1, t 0.034 1.55 0.006 0.33 �0.004 �0.25 0.1
SJt e 1, t �0.070 �1.44 �0.005 �0.24 �0.016 �0.82 0.3
JPt e 1, t 0.294 6.81 0.023 0.87 0.043 1.85 7.7
JNt e 1, t �0.243 �4.72 �0.018 �0.94 �0.042 �1.96 5.1

Table 7
Information on future volatility provided by jumps
This table reports the significance of previous-day jumps on future volatility, RVt, tþ h (where h¼ 1, 5, 22), for a sample period running from January 3, 2005 to
December 31, 2019. The t-statistics are based upon standard errors computed using Newey and West (1987) correction for serial correlation of order 5, 10,
and 44, for respective forecasting horizons of 1, 5, and 22 days. Standard adjusted R2 values are reported for each regression, with the second adjusted R2

value, Adj. R2 (2), reporting the values for the regressions without jump variance.

Variables Horizons

1 Day 5 Days 22 Days

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

Panel A: Historical daily, weekly and monthly RV
RVt e 1, t 0.070 3.17 0.130 7.37 0.135 8.07
RVt e 5, t 0.332 9.80 0.314 7.96 0.257 6.30
RVt e 22, t 0.338 11.51 0.408 10.11 0.449 8.54
Adj.R2 (%) 49.6 64.7 62.7

Panel B: RVt e 1, t replaced by Ct e 1, t and Jt e 1, t

Ct e 1, t 0.231 11.08 0.249 10.07 0.241 7.55
Jt e 1, t 0.016 0.94 0.015 1.37 0.017 0.86
RVt e5, t 0.244 8.33 0.262 6.90 0.211 5.27
RVt e 22, t 0.289 10.35 0.358 8.80 0.402 7.36
Adj.R2 (%) 51.4 66.3 64.2
Adj.R2 (2)(%) 51.4 66.3 64.2

Panel C: RVt e 1, t replaced by MCt e 1, t and MJt e 1, t

MCt e 1, t 0.076 3.45 0.132 7.51 0.131 8.15
MJt e 1, t 0.018 1.78 0.010 0.88 0.018 1.37
RVt e5, t 0.328 9.73 0.313 7.90 0.260 6.38
RVt e 22, t 0.337 11.51 0.408 10.10 0.449 8.54
Adj.R2 (%) 49.7 64.7 62.7
Adj.R2 (2)(%) 49.6 64.7 62.7

Panel D: RVt e 1, t replaced by BVt e 1, t and SJt e 1, t

BVt e 1, t 0.249 11.21 0.272 10.20 0.264 7.12
SJt e 1, t �0.046 �2.84 �0.042 �3.65 �0.029 �2.84
RVt e5, t 0.227 7.75 0.241 6.42 0.194 4.44
RVt e 22, t 0.288 10.66 0.357 8.96 0.400 7.47
Adj.R2 (%) 51.9 66.8 64.6
Adj.R2 (2)(%) 51.7 66.6 64.5

Panel E: RVt e 1, t replaced by BVt e 1, t, JPt e 1, t and JNt e 1, t

BVt e 1, t 0.248 11.18 0.271 10.17 0.264 7.18
JPt e 1, t �0.035 �1.28 �0.031 �1.91 �0.016 �1.07
JNt e 1, t �0.031 �2.15 �0.029 �2.63 �0.024 �1.55
RVt e5, t 0.234 8.00 0.247 6.49 0.195 4.73
RVt e 22, t 0.287 10.58 0.356 8.91 0.400 7.44
Adj.R2 (%) 51.9 66.8 64.6
Adj.R2 (2)(%) 51.7 66.6 64.5
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Table 8
The effects of risk-neutral moments on the information of the signed jumps for future volatility
This table reports the effects of risk-neutral moments on the information of the signed jump for future volatility, RVt, tþ h (where h ¼ 1, 5, 22), for a sample
period running from January 3, 2005 to December 31, 2019. The respective results on the risk-neutral moments computed by the naïve, JT05, and JT07
methods are presented in Panels A, B, and C, with Adjusted R2 values being reported for each regression. The t-statistics are based upon standard errors
computed using Newey and West (1987) correction for serial correlation of order 5, 10, and 44, for respective forecasting horizons of 1, 5 and 22 days.

Variables Horizons

1 Day 5 Days 22 Days

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

Panel A: Naïve Method
BVt e 1, t 0.167 7.72 0.175 7.41 0.163 5.06
SJt e 1, t �0.020 �1.23 �0.011 �0.93 0.006 0.47
RVt e 5, t 0.165 5.57 0.166 4.35 0.114 2.95
RVt e 22, t 0.040 1.28 0.046 0.99 0.071 0.95
Vart 0.384 11.54 0.485 10.02 0.521 6.75
Skewt 0.145 8.47 0.168 7.66 0.191 5.16
Kurtt 0.074 3.58 0.104 4.28 0.137 2.83
Adj.R2 (%) 54.2 70.3 68.6

Panel B: JT05 Method
BVt e 1, t 0.167 7.30 0.170 6.95 0.148 4.65
SJt e 1, t �0.036 �2.46 �0.030 �2.97 �0.016 �1.71
RVt e 5, t 0.170 5.89 0.175 4.54 0.129 3.13
RVt e 22, t 0.023 0.74 0.044 0.94 0.083 1.14
Vatt 0.402 11.55 0.498 9.97 0.537 6.75
Skewt 0.062 3.25 0.114 4.24 0.188 3.79
Kurtt 0.012 0.59 0.075 2.50 0.157 2.40
Adj.R2 (%) 54.1 70.1 68.6

Panel C: JT07 Method
BVt e 1, t 0.171 7.52 0.180 7.23 0.165 4.91
SJt e1, t �0.030 �2.26 �0.024 �2.35 �0.011 �1.11
RVt e 5, t 0.171 5.92 0.177 4.59 0.131 3.09
RVt e 22, t 0.023 0.73 0.048 1.02 0.085 1.17
Vart 0.398 11.79 0.474 9.64 0.499 6.42
Skewt 0.039 2.25 0.062 2.27 0.098 2.28
Kurtt �0.009 �0.50 0.021 0.66 0.063 1.10
Adj.R2 (%) 54.1 69.8 68.0
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4. Results

4.1. Relations between jump variations and risk-neutral moments

4.1.1. Contemporaneous relationships
Table 4 reveals that the risk-neutral moments computed using the naïve method are capable of explaining a higher

proportion of jump variations than either the JT05 or JT07 method in terms of their adjusted R2 values. Given that the risk-
neutral moments are computed using the naïve method, the effects of risk-neutral skewness and kurtosis on Jt e 1, t, SJt e 1, t,
and JNt e 1, t are all statistically significant, while their corresponding coefficients are also higher than that of risk-neutral
volatility except Jt e 1, t. These findings indicate that both risk-neutral skewness and kurtosis have higher explanatory
power than risk-neutral volatility on jump variations. However, this is not necessarily the casewhen the JT05 or JT07methods
are used.

4.1.2. Is jump variation predictable?
The regression results of the assessment of the predictability of daily jumps using the three lag terms are reported in Panel

A of Table 5, with Panel B reporting the alternative results using the previous-day risk-neutral moments, computed by the
naïve method. In terms of their adjusted R2 values, Table 5 shows that historical jumps have only weak predictive power on
future jumps; however, if the historical jumps are replaced by the risk-neutral moments computed using the naïve method,
there is an approximate two-fold increase in predictive power. The results based upon the use of the JT05 and JT07 methods
are presented in Table 6. The results show that while both methods have higher predictive power than that of historical
jumps, the predictive power of the naïve method is superior to both the JT05 and JT07 methods.
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Table 9
The effects of risk-neutral moments on the information of the positive and negative jumps for future volatility
This table reports the effects of risk-neutral moments on the information of the positive and negative jumps for future volatility, RVt, tþ h (where h¼ 1, 5, 22),
for a sample period running from January 3, 2005 to December 31, 2019. The respective results on the risk-neutral moments computed by the naïve, JT05 and
JT07 methods are presented in Panels A, B and C, with Adjusted R2 values being reported for each regression. The t-statistics are based upon standard errors
computed using Newey and West (1987) correction for serial correlation of order 5, 10 and 44, for respective forecasting horizons of 1, 5 and 22 days.

Variables Horizons

1 Day 5 Days 22 Days

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

Panel A: Naïve Method
BVt e 1, t 0.167 7.72 0.175 7.41 0.163 5.07
JPt e 1, t �0.017 �0.59 �0.010 �0.60 0.004 0.30
JNt e 1, t �0.012 �1.02 �0.006 �0.56 0.004 0.28
RVt e 5, t 0.169 5.85 0.169 4.35 0.113 2.99
RVt e 22, t 0.040 1.29 0.046 1.00 0.071 0.96
Vart 0.384 11.50 0.485 10.01 0.521 6.75
Skewt 0.146 8.33 0.169 7.61 0.191 5.18
Kurtt 0.076 3.92 0.105 4.33 0.136 2.81
Adj.R2 (%) 54.2 70.3 68.5

Panel B: JT05 Method
BVt e 1, t 0.166 7.29 0.170 6.93 0.148 4.67
JPt e 1, t �0.026 �1.07 �0.022 �1.76 �0.009 �0.75
JNt e 1, t �0.025 �1.92 �0.020 �1.97 �0.013 �0.97
RVt e 5, t 0.176 5.99 0.180 4.56 0.130 3.26
RVt e 22, t 0.023 0.73 0.044 0.93 0.083 1.14
Vart 0.402 11.52 0.498 9.95 0.537 6.75
Skewt 0.063 3.29 0.114 4.25 0.188 3.79
Kurtt 0.014 0.66 0.076 2.52 0.157 2.40
Adj.R2 (%) 54.1 70.1 68.6

Panel C: JT07 Method
BVt e 1, t 0.170 7.48 0.180 7.18 0.165 4.92
JPt e 1, t �0.027 �1.08 �0.022 �1.68 �0.009 �0.70
JNt e 1, t �0.018 �1.63 �0.013 �1.20 �0.007 �0.55
RVt e 5, t 0.178 6.07 0.184 4.64 0.133 3.24
RVt e 22, t 0.022 0.70 0.047 1.00 0.085 1.16
Vart 0.399 11.85 0.475 9.66 0.499 6.42
Skewt 0.039 2.23 0.062 2.26 0.098 2.28
Kurtt �0.008 �0.43 0.022 0.70 0.063 1.11
Adj.R2 (%) 54.1 69.8 68.0
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4.2. Selection of jump variations

Panel A of Table 7 shows that the historical daily, weekly, and monthly realized volatilities have significantly positive
effects on future variance for all forecasting horizons at conventional levels.19 As shown in Panels B and C, all of the continuous
components are positive and significant, but the jump components developed by Andersen et al. (2007) and Andersen et al.
(2012) are all insignificant. Panel D reveals that the signed jump variation has significantly negative effects on future variance,
indicating an increase in future variance when negative jumps occur, as compared to a reduction when positive jumps occur.
This is again confirmed when the signed jump is decomposed into positive and negative jumps, as reported in Panel E.

Although the signed jumps have statistically significant effects on future variance, their adjusted R2 values are only slightly
higher than those of the jumps developed by Andersen et al. (2007). A potential reason is that the predictive power of
historical jumps is very small in volatility forecasting. To explore this, we remove the daily jump components from the re-
gressions and provide a second set of adjusted R2 values (adjusted R2 (2)). These values remain virtually unchanged. Because
the jump components developed by Andersen et al. (2007) and Andersen et al. (2012) have no predictive power on future
variance, we employ the jump components developed by Patton and Sheppard (2015) in our subsequent analysis.
4.3. Is extrapolation necessary?

We next investigate whether the risk-neutral moments subsume the information on the contribution made by historical
jump variations to total variance. As shown in Table 8, the significantly negative effect of SJt-1,t on future variance disappears
when the risk-neutral moments are computed using the naïve method, whereas the effects of SJt-1,t are still significantly
19 Their adjusted R2 values for the daily, weekly, and monthly forecasting horizons are 49.6%, 64.7%, and 62.7%, respectively.
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Table 10
The effects of risk-neutral skewness and kurtosis on the information in the signed jumps for future volatility
This table reports the effects of risk-neutral skewness and kurtosis computed using the naïve method on the information of the signed jump for future
volatility, RVt, tþ h (where h ¼ 1, 5, 22), for a sample period running from January 3, 2005 to December 31, 2019. The t-statistics are based on standard errors
computed using Newey and West (1987) correction for serial correlation of order 5, 10 and 44 for respective forecasting horizons of 1, 5, and 22 days.

Variables RVt;tþh RVt;tþh RVt;tþh RVt;tþh

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

Panel A: 1-Day Horizon
BVt e 1, t 0.249 11.21 0.198 8.78 0.168 7.48 0.167 7.72
SJt e 1, t �0.046 �2.84 �0.046 �2.72 �0.028 �1.78 �0.020 �1.23
RVt e 5, t 0.227 7.75 0.190 6.48 0.169 5.63 0.165 5.57
RVt e 22, t 0.288 10.66 0.070 2.14 0.059 1.87 0.040 1.28
Vart e e 0.314 10.00 0.334 10.70 0.384 11.54
Skew t e e e e 0.101 6.18 0.145 8.47
Kurt t e e e e e e 0.074 3.58
Adj. R2 (%) 51.9 53.3 54.0 54.2

Panel B: 5-Day Horizon
BVt e 1, t 0.272 10.20 0.208 7.93 0.176 6.89 0.175 7.41
SJt e 1, t �0.042 �3.65 �0.042 �3.44 �0.024 �2.01 �0.011 �0.93
RVt e 5, t 0.241 6.42 0.195 5.04 0.172 4.46 0.166 4.35
RVt e 22, t 0.357 8.96 0.085 1.74 0.073 1.55 0.046 0.99
Vart e e 0.393 8.51 0.413 9.03 0.485 10.02
Skew t e e e e 0.106 5.17 0.168 7.66
Kurt t e e e e e e 0.104 4.28
Adj. R2 (%) 66.8 69.0 69.9 70.3

Panel C: 22-Day Horizon
BVt e 1, t 0.264 7.12 0.197 5.57 0.165 4.58 0.163 5.06
SJt e 1, t �0.029 �2.84 �0.030 �2.60 �0.011 �0.95 0.006 0.47
RVt e 5, t 0.194 4.44 0.146 3.21 0.123 2.97 0.114 2.95
RVt e 22, t 0.400 7.47 0.119 1.49 0.107 1.41 0.071 0.95
Vart e e 0.406 5.34 0.427 5.56 0.521 6.75
Skew t e e e e 0.109 3.09 0.191 5.16
Kurt t e e e e e e 0.137 2.83
Adj. R2 (%) 64.6 67.0 67.9 68.6
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negative for daily and weekly forecasting horizons when the risk-neutral moments are computed using the JT05 and JT07
methods.

Similar results are also obtained for JPt-1,t and JNt-1,t in Table 9, indicating that the risk-neutral moments computed by the
naïve method subsume the information of historical jump variations. Increases are also found in the size of the adjusted R2

values, to 54.2%, 70.3%, and 68.6% for the daily, weekly, and monthly forecasting horizons, respectively, which indicate that
relative to historical realized volatility and its components, the risk-neutral moments contain incremental information on
volatility forecasting.

Note that the addition of the risk-neutral moments leads to a reduction in the impacts of historical realized volatilities,
daily continuous components, and jump variations, and also leads to a particularly sharp reduction in historical monthly
realized volatilities, with almost all of their coefficients changing from significant to insignificant. These findings imply that
the risk-neutral moments subsume the information content of historical monthly realized volatility.

4.4. The roles of risk-neutral skewness and kurtosis

Table 10 shows the size of the coefficient on SJt-1,t is almost unchanged when risk-neutral volatility is included, while it is
reduced sharply when risk-neutral skewness and kurtosis are sequentially included. It suggests that it is risk-neutral
skewness and kurtosis, rather than risk-neutral volatility, taking on the roles of subsuming the information content of his-
torical jumps. Table 11 shows that the size of the coefficient on JNt-1,t is slightly increased when risk-neutral volatility is
included, but the size is reduced sharply when risk-neutral skewness and kurtosis are sequentially included. The finding
drawn from Table 10 is confirmed in Table 11.

4.5. Forecasting performance

4.5.1. In-sample forecasting performance
As shown in Table 12, if RVt-5,t is replaced by BVt-5,t, then there are increases in the adjusted R2 values, to 54.9%, 70.6%, and

69.3% for the daily, weekly, and monthly forecasting horizons, respectively. However, if RVt-22,t is sequentially replaced by BVt-

22,t, then the adjusted R2 values remain virtually unchanged. As noted in the above discussion, RVt-22,t is not found to have any
significant predictive power when the risk-neutral moments are included in the HAR-RV model, and indeed, Table 12 shows
11



Table 11
The effects of risk-neutral skewness and kurtosis on the information in the positive and negative jumps for future volatility
This table reports the effects of risk-neutral skewness and kurtosis computed using the naïve method on the information of the positive and negative jumps
for future volatility, RVt, tþ h (where h ¼ 1, 5, 22), for a sample period running from January 3, 2005 to December 31, 2019. The t-statistics are based on
standard errors computed using Newey andWest (1987) correction for serial correlation of order 5, 10 and 44 for respective forecasting horizons of 1, 5 and
22 days.

Variables RVt;tþh RVt;tþh RVt;tþh RVt;tþh

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

Panel A: 1-Day Horizon
BVt e 1, t 0.248 11.18 0.198 8.79 0.168 7.48 0.167 7.72
JPt e 1, t �0.035 �1.28 �0.026 �0.98 �0.015 �0.51 �0.017 �0.59
JNt e 1, t �0.031 �2.15 �0.037 �2.39 �0.024 �1.84 �0.012 �1.02
RVt e 5, t 0.234 8.00 0.193 6.64 0.170 5.92 0.169 5.85
RVt e 22, t 0.287 10.58 0.071 2.16 0.059 1.88 0.040 1.29
Vart e e 0.313 9.99 0.333 10.84 0.384 11.50
Skew t e e e e 0.101 6.30 0.146 8.33
Kurt t e e e e e e 0.076 3.92
Adj. R2 (%) 51.9 53.3 54.0 54.2

Panel B: 5-Day Horizon
BVt e 1, t 0.271 10.17 0.208 7.94 0.176 6.90 0.175 7.41
JPt e 1, t �0.031 �1.91 �0.020 �1.28 �0.008 �0.43 �0.010 �0.60
JNt e 1, t �0.029 �2.63 �0.036 �3.00 �0.023 �2.19 �0.006 �0.56
RVt e 5, t 0.247 6.49 0.195 4.95 0.170 4.35 0.169 4.35
RVt e 22, t 0.356 8.91 0.085 1.74 0.072 1.54 0.046 1.00
Vart e e 0.393 8.47 0.414 9.04 0.485 10.01
Skew t e e e e 0.106 5.23 0.169 7.61
Kurt t e e e e e e 0.105 4.33
Adj.R2 (%) 66.8 69.0 69.9 70.3

Panel C: 22-Day Horizon
BVt e 1, t 0.264 7.18 0.198 5.62 0.165 4.63 0.163 5.07
JPt e 1, t �0.016 �1.07 �0.005 �0.37 0.008 0.50 0.004 0.30
JNt e 1, t �0.024 �1.55 �0.032 �2.15 �0.017 �1.41 0.004 0.28
RVt e 5, t 0.195 4.73 0.140 3.29 0.115 2.92 0.113 2.99
RVt e 22, t 0.400 7.44 0.118 1.49 0.106 1.40 0.071 0.96
Vart e e 0.408 5.41 0.429 5.62 0.521 6.75
Skew t e e e e 0.110 3.13 0.191 5.18
Kurt t e e e e e e 0.136 2.81
Adj. R2 (%) 64.6 67.0 67.9 68.5
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that when the risk-neutral moments are included, the decomposition of RVt-22,t into its continuous and jump components
does not lead to any enhancement of its predictive power.

4.5.2. Out-of-sample forecasting performance
We consider six models for our out-of-sample forecasting, four of which include both RVt-5,t and RVt-22,t, but differ in terms

of the previous-day information used in themodels. The first model, denoted RV and described in equation (2), is the standard
HAR-RV model containing RVt-1,t, RVt-5,t, and RVt-22,t, with the remaining models considering the information in jump vari-
ations. SJ is a specification that includes BVt-1,t and SJt-1,t, as described in equation (3); JN is a specification that decomposes SJt-
1,t into its positive and negative components; and BV is a model that excludes jump information and includes only recent
bipower variations, BVt-1,t. The fifth model, denoted BV3, is the HAR-BV model, which excludes all jump information and thus
replaces RVt-1,t, RVt-5,t, and RVt-22,t with BVt-1,t, BVt-5,t, and BVt-22,t. The sixth model, denoted RNM, is a specification that in-
cludes risk-neutral moments in the HAR-BV model.

All of the forecasts are generated using rolling ordinary least squares (OLS) regressions based upon 1000 observations,
with the parameter estimates being updated daily. Forecast performance is evaluated using the Diebold and Mariano (1995)
test, with negative Gaussian quasi-likelihood (QLIKE) as the loss function:

L
�
RVtþh;t ;

cRV tþh;t

�
¼ RVtþh;tcRV tþh;t

� ln

 
RVtþh;tcRV tþh;t

!
� 1;

where cRV tþh;t is the RVtþh; t forecast. The definition of QLIKE is normalized to yield a distance of zero when RVtþh;t ¼ cRV tþh;t ,
with this loss function having been shown by Patton and Sheppard (2009) to have good power properties, and by Patton
(2011) to be robust to noise as a proxy for volatility.
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Table 12
The effects of excluding jump components on volatility forecastingThis
table reports the effects of the exclusion of jump components on volatility forecasting when the risk-neutral moments are computed using the naïvemethod
for a sample period running from January 3, 2005 to December 31, 2019. The t-statistics are based upon standard errors computed using Newey and West
(1987) correction for serial correlation of order 5, 10 and 44, for respective forecasting horizons of 1, 5, and 22 days.

Variables Horizons

1 Day 5 Days 22 Days

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

Panel A:
BVt e 1, t 0.167 7.75 0.175 7.43 0.162 5.08
RVt e 5, t 0.165 5.59 0.166 4.34 0.114 2.95
RVt e 22, t 0.037 1.18 0.044 0.95 0.072 0.97
Vart 0.389 11.69 0.488 10.12 0.520 6.80
Skewt 0.153 8.60 0.173 8.14 0.189 5.26
Kurtt 0.080 4.12 0.107 4.62 0.135 2.86
Adj.R2 (%) 54.2 70.3 68.6

Panel B:
BVt e 1, t 0.078 3.11 0.109 5.47 0.074 4.29
BVt e 5, t 0.318 8.76 0.264 5.52 0.283 4.99
RVt e 22, t 0.017 0.56 0.042 0.91 0.038 0.50
Vart 0.351 10.15 0.461 9.03 0.480 6.10
Skewt 0.133 6.63 0.158 6.77 0.169 4.53
Kurtt 0.085 3.99 0.112 4.67 0.138 2.89
Adj.R2 (%) 54.9 70.6 69.3

Panel C:
BVt e 1, t 0.077 3.06 0.107 5.31 0.076 4.12
BVt e 5, t 0.328 8.66 0.266 5.12 0.240 4.61
BVt e 22, t �0.009 �0.22 0.026 0.47 0.112 1.48
Vart 0.367 10.72 0.478 9.53 0.452 5.99
Skewt 0.134 6.59 0.159 6.65 0.163 4.24
Kurtt 0.086 4.10 0.116 4.85 0.140 2.98
Adj.R2 (%) 54.9 70.6 69.4

Table 13
Out-of-sample forecast comparison of volatility forecasting models
This table reports the test results of the predictive accuracy of volatility forecasting models. The values shown are the difference in the QLIKE between a pair
of models, whilst the Diebold-Mariano test statistics (DM. stat.) are based on standard errors computed using Newey and West (1987) correction for serial
correlation of order 2, where a negative difference indicates that the model on the row outperforms the model on the column.

Models Models

SJ JN BV BV3 RNM

Diff. DM. stat. Diff. DM. stat. Diff. DM. stat. Diff. DM. stat. Diff. DM. stat.

Panel A: 1-Day Horizon
RV �0.026 �0.59 �0.061 �2.34 �0.068 �4.55 �0.102 �3.98 �0.153 �5.54
SJ �0.035 �0.97 �0.042 �1.02 �0.076 �1.58 �0.127 �2.82
JN �0.007 �0.41 �0.041 �1.36 �0.092 �4.16
BV �0.034 �1.59 �0.085 �4.18
BV3 �0.051 �2.52

Panel B: 5-Day Horizon
RV �0.033 �1.15 �0.045 �2.71 �0.054 �5.10 �0.064 �2.14 �0.146 �5.85
SJ �0.012 �0.70 �0.021 �0.78 �0.032 �0.84 �0.113 �3.25
JN �0.009 �0.74 �0.020 �0.68 �0.101 �4.06
BV �0.010 �0.43 �0.092 �4.40
BV3 �0.082 �4.24

Panel C: 22-Day Horizon
RV �0.039 �4.31 �0.037 �3.85 �0.038 �4.61 �0.065 �2.55 �0.127 �5.67
SJ 0.002 0.69 0.000 0.16 �0.027 �1.27 �0.088 �4.82
JN �0.001 �0.36 �0.028 �1.36 �0.090 �4.86
BV �0.027 �1.30 �0.089 �4.79
BV3 �0.062 �4.11
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Table 14
Out-of-sample R2 for the alternative models used in the forecast evaluation
The out-of-sample R2 (%) is computed as 1 minus the ratio of the out-of-sample model-based MSE to the out-of-sample MSE from a forecast that includes
only a constant. The largest value in each row is shown in bold text.

Horizons (days) Models

RV SJ JN BV BV3 RNM

1 39.3 41.5 41.7 41.6 43.0 44.9
5 54.2 56.5 56.5 56.5 56.9 60.9
22 52.2 54.1 54.0 54.1 55.5 58.3

G.-G. Pan, Y.-M. Shiu and T.-C. Wu Journal of Financial Markets xxx (xxxx) xxx
The results of our comparisons between pairs of forecasting models for the various forecasting horizons are reported in
Table 13. We find that the JN model is significantly superior to the RV model at conventional levels, indicating that the
decomposition of the signed jump variation into positive and negative components does enhance forecasting performance.20

The BV model, which excludes historical daily jump variations, is significantly superior to the RV models, suggesting that the
recent jump information distorts the information content of RVt-1,t, thereby resulting in inferior performance of the standard
HAR-RVmodel. The BV3model significantly outperforms the RVmodels, whichmeans that not only is the previous-day jump
information detrimental to volatility forecasting, but that this is also the case for both the previous-week and previous-month
jump information. Finally, the RNM model, that is the HAR-BV model with risk-neutral moments, is significantly superior to
all the other models, thereby confirming the excellent role of option-implied information in volatility forecasting.

Following Patton and Sheppard (2015), we compute the out-of-sample R2 values for the six forecasting models in Table 13.
The results are presented in Table 14. First, the SJ, JN, and BV models all provide similar performance; relative to the standard
HAR-RV model, these models have out-of-sample R2 value gains of 2.13%, 2.15%, and 2.16% for the daily, weekly, and monthly
forecasting horizons, respectively. Relative to the BV model, the BV3 model (i.e., the HAR-BV model) has out-of-sample R2

value gains of 1.39%, 0.36%, and 1.42% for the daily, weekly, and monthly forecasting horizons, respectively. Furthermore,
relative to the BV3 model, the RNM model (i.e., the HAR-BV model with risk-neutral moments) has out-of-sample R2 value
gains of 1.85%, 4.01%, and 2.82% for the respective forecasting horizons. Taken together, the statistically significant gains
reported in Table 13 translate to the economically meaningful improvements shown in Table 14.

5. Conclusion

Using TAIEX and TAIEX option prices, we investigate the relation between jump variations and risk-neutral moments in
volatility forecasting. We obtain several interesting results. In the in-sample analysis, our method that does not involve any
extrapolation produces better measures of risk-neutral skewness and kurtosis than the other methods that do. Risk-neutral
skewness and kurtosis perform better than risk-neutral volatility in subsuming information on historical jumps for volatility
forecasting. In the out-of-the sample analysis, the model specification that includes risk-neutral skewness and kurtosis in the
HAR-BV model outperforms the other models we examined.

We also find that the predictive power of historical jumps on future jumps is weaker than that of the risk-neutral mo-
ments. The statistically significant predictive power of jumps on future volatility disappears when risk-neutral moments are
included in the HAR-RV model. The predictive power of historical jumps almost remains unchanged when risk-neutral
volatility is added into the HAR-RV model; however, it decreases sharply with the sequential inclusion of risk-neutral
skewness and kurtosis.

Wemake a contribution to the literature by introducing a novel estimator, which does not involve the use of extrapolation,
for computing the risk-neutral moments of Bakshi et al. (2003). The benefit of no extrapolation is that it allows the data to tell
the story, and avoids any distortion of the tail distribution. To the best of our knowledge, our study is the first to explore the
relation between risk-neutral moments and realized jumps in volatility forecasting, from which we find that risk-neutral
skewness and kurtosis subsume the information content of historical jump variations. Our findings have an implication
for academics and practitioners. The HAR-BV model with risk-neutral moments can be used for volatility forecasting. In the
meantime, no extrapolation should be implemented when computing the risk-neutral moments in order to avoid any
distortion of the tail information.
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