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ABSTRACT Quality and loss of products are crucial factors in competitive companies, and firms widely
adopt a loss function to measure the loss caused by a deviation in the quality variable from the target
value. From Taguchi’s view point, it is important to monitor any deviation from the process target value.
While most existing studies assume the quality variable follows a normal distribution, the distribution can
in fact be skewed or deviate from normal in practice. This paper thus proposes loss-based control charts
for monitoring the quality loss location or equivalently the deviation of the quality variable from the target
value under a skew-normal distribution. We consider the exponentially weighted moving average (EWMA)
average loss control chart, which illustrates the best performance in detecting an out-of-control loss location
for a process with a left-skewed distribution. Numerical analysis demonstrates that the proposed EWMA
average loss chart always performs better than the existing median loss chart for both left-skewed and right-
skewed distributions. A numerical example illustrates the application of the proposed EWMA average loss
control chart.

INDEX TERMS Control chart, loss function, process control, run length, skew-normal distribution.

I. INTRODUCTION
Control charts are commonly-used tools in process signal
detection to improve the quality of manufacturing and service
processes, yet in the past few years, increasing attention
has been paid to the application of control charts to service
industries. See, for example, Tsung et al. [1], Ning et al. [2],
and Yang and Wu [3]. While a normal distribution has
been widely employed in practice to fit data, some data
of real examples in psychology, reliability, telecommunica-
tions, environment, climatology, sciences services, education,
finance, and health insurance often exhibit moderate to strong
asymmetry as well as light or heavy tails (for example, see
Bono Cabré [4]). In most situations, quality data from the
service sector do not follow a normal distribution. Clearly,
fitting a normal distribution to such data is not appropriate,
and the commonly-used Shewhart variables control charts
that depend on a normality assumption are not suitable. A list
of statistical process control research for dealing with non-
normal data includes Amin et al. [5], Chakraborti et al. [6],
Altukife [7], Bakir [8], Li et al. [9], Zou and Tsung [10],
Graham et al. [11], Yang and Wu [3], Abbas et al. [12].

The associate editor coordinating the review of this manuscript and

approving it for publication was Roberto Pietrantuono .

The quality loss function is a popular method for measur-
ing the loss of quality caused by variations in a product or
service. Sullivan [13] emphasized the importance of monitor-
ing deviations from the target value. Taguchi [14] proposed
the quadratic loss function of quality variable from the target
value. Changes in the process mean and/or dispersion lead
to a variation of the loss. A few loss control charts have
been proposed to monitor process loss. For example, Wu
and Tian [15] and Wu et al. [16] suggested the weighted
loss function chart and adaptive loss-function- based control
charts, but they assumed that the in-control process mean
equals the target, and that the quality variable follows a
normal distribution. Yang [17] and Lu [18] examined loss-
based control charts, assuming that the in-control process
mean may not equal the target under the normality and non-
normalty distributions when simultaneously monitoring the
process mean and dispersion.

A major drawback of loss-based control charts is that
most of them assume the quality variable follows a nor-
mal distribution. Hence, this paper focuses on discussing
loss-based control charts under a skew-normal distribution.
Yang et al. [19] proposed using the median loss instead of the
average loss to simultaneouslymonitor changes in the process
location and/or dispersion when the distribution of a process
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is not symmetric, but rather left-skewed or right-skewed.
Their median loss (ML) chart illustrated the best out-of-
control detection performance for the left-skewed distributed
process. Even under a normal distribution, they showed that
the resulting out-of-control detection performance of the
ML chart performs better than the average loss (AL) chart
in Yang [17] except for very small shifts in process mean.
Yang and Lu [20] proposed the median loss control chart
with an unbiased average run length in order to monitor
the process loss center. The exponentially weighted moving
average (EWMA) is an effective alternative to the Shewhart-
type control chart, andmay be used when small shifts occur in
the process parameter (for example, see Montgomery [21]).
However, the properties of the average loss control chart have
not been discussed for the skew-normal distributed process.
We are interested in knowing whether the EWMA-ALSN
control charts have better out-of-control detection perfor-
mance than that of theML chart for a skew-normal distributed
process. Our paper thus considers fixing the sample size and
sampling time interval.

The rest of the paper runs as follows. Section II derives
the sampling distribution of the average loss for a process
with a skew-normal distribution. Section III designs the
EWMA-ALSN charts and lists their control limits for var-
ious sample sizes and shape parameter of a skew-normal
distribution under a predetermined in-control average run
length (ARL0). Hence, their out-of-control detection per-
formance for small to moderate shifts in the difference of
process location and target and/or dispersion can be evaluated
using out-of–control average run length (ARL1) under the
specified process shifts. Section III also compares out-of-
control detection performance among the EWMA-ALSN and
existing ML charts in Yang et al. [19]. Section IV illustrates
the application of the proposed charts using the Roberts IQ
score. Section V summarizes the findings and provides a
recommendation.

II. THE DERIVATION OF AVERAGE LOSS DISTRIBUTION
The skew normal (SN) distribution is an extension of the
normal distribution, allowing for the presence of skewness.
Helguero [22] was the pioneer of the skew normal (SN) dis-
tribution and formulated the genesis of non-normal distribu-
tions via a selection mechanism, leading to a departure from
normality. Many researchers, for example, Azzalini [23],
Azzalini and Valle [24], Azzalini [25], Azzalini [26], and
Azzalini and Capitanio [27] contributed to the development
of the theory of SN distributions.

Assume the random variable X follows an in-control skew-
normal distribution with location parameter ξ0 ∈ (−∞,∞),
scale parameter a0 ∈ (0,∞), and shape parameter b ∈
(−∞,∞). In other words, X ∼ SN (ξ0, a0, b). From Azzalini
[26], the probability density function (pdf) of X is

fX (x) =
2
a0
φ

(
x − ξ0
a0

)
8

(
b
x − ξ0
a0

)
, x ∈ (−∞,∞),

(1)

where φ(·) and 8(·) are respectively the pdf and cumulated
distribution function (cdf) of the standard normal distribution.
If b = 0, then the skew-normal distribution reduces to the
traditional normal distribution with mean ξ0 and standard
deviation a0. The distribution is right-skewed for b > 0 and
left-skewed for b < 0.
The cdf of the skew-normal random variable X is

FX (x) = 8
(
x − ξ0
a0

)

−
1
π

∫ b

0

exp
{
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2
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)2 (
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dy,

x ∈ (−∞,∞). (2)

The expectation and variance of X are

µo = ξ0 + a0
b

√
1+ b2

√
2
π

and

σ 2
0 = a20

[
1−

2b2

π
(
1+ b2

)] ,
respectively.

Hence, if we know µ0, σ 2
0 , and shape b, then we obtain:

ξ0 = µ0 −

√
2bσ0√(

1− b2
)
π − 2b2

,

a0 =
σ0√

1− 2b2/
((
1+ b2

)
π
) . (3)

We also consider that the in-control process mean may not
be the target, and let δ3 denote the dispersion parameter that
satisfies µ0 − T = δ3σ0, where δ3 ∈ R.
Suppose that X∗ is the quality characteristic from the out-

of-control process, and X∗ ∼ SN (ξ∗, a∗, b)with mean µ1 =

µ0 + δ1σ0. Here, δ1 is the mean shift scale, δ1 6= 0, and
standard deviation σ1 = δ2σ0δ2, where δ2 is the standard
deviation shift scale, for δ2 > 1.
We thus have:

ξ∗ = µ0 + δ1σ0 −

√
2bδ2σ0√(

1+ b2
)
π − 2b2

,

a∗ = δ2σ0/

√
1−

2b2

π
(
1+ b2

) . (4)

We define the Taguchi loss function as L = k(X − T )2.
Without loss of generality, we set k = 1. Let Xi, i =
1, 2, . . . , n, be a random sample from the incontrol distribu-
tion of SN (ξ, a, b). We further define the sample erage loss
(AL) as

AL =
1
n

n∑
(Xi − T )2 =

(n− 1)
n

S2x + (X̄ − T )2. (5)

Edgeworth [28] derived the Edgeworth expansion, which
relates the cdf of a random variable having expectation zero
and variance 1 to the cumulative density function (cdf) of the
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TABLE 1. The hermite polynomial.

standard normal distribution using the Chebyshev-Hermite
polynomials.

We obtain the r th moments of Li = (Xi − T )2 by

Mr =
2
a0

∫
∞

0
(x − T )2rφ

(
x − ξ0
a0

)
8

(
b ·

x − ξ0
a0

)
dx,

r = 1, 2, . . . , (6)

where φ(·) and 8(·) denote the probability density function
and cdf of the standard normal distribution, respectively. The
expectation and the standard deviation of L (µL and σL) can
be obtained by the moments of L, that is µL = M1 and σL =√
M2 −M2

1 .
Define Zn =

√
n (AL − µL) /σL . Thus we approximate the

cdf of Zn by the Edgeworth expansion, which is expressed as:

Fzn (z) ≈ 8(z)−
1
√
n

(
1
6
λ38

(3)(z)
)

+
1
n

(
1
24
λ48

(4)(z)+
1
72
λ238

(6)(z)
)
, (7)

where φ(·) and 8(·) denote the probability density function
and cdf of the standard normal distribution, respectively.

Note that8(r)(z) = (−1)r−1Her−1(z)φ(z), where Her−1(z)
is the Chebyshev-Hermite polynomial. One can obtain
Her−1(·)by

Her−1(z) = −
1
φ(z)

{
d
dz

[Her−2(z)φ(z)]
}
. (8)

Table 1 lists the Hermite polynomials obtained from (8).
To obtain λr , one can use the relation λr = κr/σ rL , where

κr is the r th cumulant of L. From Hall [29], the cumulants
of L can be obtained from the moments of L as shown in
Table 2.

The first step to construct the ALSN chart is to
find the distribution of AL when X follows a skew-
normal distribution. However, the exact distribution of
AL is not available. Our study uses Edgeworth expan-
sion (for example, see Hall [29]) to approximate the AL
distribution.

The approximate pdf of Zn can be obtained by differentiat-
ing (7) as:

fZn (z) ≈ φ(z)−
1
√
n

(
1
6
λ38

(4)(z)
)

+
1
n

(
1
24
λ48

(5)(z)+
1
72
λ238

(7)(z)
)
. (9)

TABLE 2. The cumulants of L = (X − T )2.

The cdf and pdf of AL can therefore be obtained by the
following.

FAL(t) = P(AL ≤ t) = P
(
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as well as:
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√
n
σL
φ

(√
n (t − µL)
σL

)
−

1
σL

(
1
6
λ38

(4)
(√

n (t − µL)
σL

))
+

1
√
nσL

(
1
24
λ48

(5)
(√

n (t − µL)
σL

)
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(√
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. (11)

Let µAL and σAL be the expectation and standard deviation
of AL, respectively. Thus, we arrive at:

µAL = E(AL) =
∫
∞

0
tfAL(t)dt, (12)

and

σAL =

√
E(AL − µAL)2. (13)

The accuracy of this approximation is examined by Pear-
son’s χ2 goodness-of-fit test. We consider sample sizes
n = 5, 11, δ3 = 1, µ0 = 0, σ0 = 1, and b =
−500, 0, 500 and simulate m(= 1000, 2000) samples from
SN (ξ0, a0, b) with each n, so as to calculate the m ran-
dom samples of AL and then fit them with the approxi-
mated cdf given in (10). Table 3 lists the p-values of the
χ2 test. We see the test reveals that the approximated cdf
has no significant difference from the cdf using Monte
Carlo simulation. Fig. 1 illustrates that their colf curves
are very close for n = 11, m = 2000, and b =
−500. Moreover, the accuracy improves for larger sample
sizes.
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TABLE 3. P-value of the Pearson χ2 goodness-of-fit Test for Edgeworth
expansion.

FIGURE 1. The cdf curves of AL by Edgeworth expansion and Monte Carlo
simulation.

As noted before, X∗ is the quality characteristic from the
out-of-control process, while X∗ ∼ SN (ξ∗, a∗, b) with mean
µ1 = µ0 + δ1σ0 and standard deviation σ1 = δ2σ0. That is,

ξ∗ = µ1 −

√
2bσ1√(

1+ b2
)
π − 2b2

and a∗ =
σ1√

1− 2b2
π(1+b2)

.

We denote the out-of-control average loss as AL∗ =∑n
i=1

(
X∗i − T

)2
/n· Following the proving procedure of the

cdf of AL ( eq. (10)), we can derive the cdf of AL∗.

III. DERIVATION OF THE EXPONENTIAL WEIGHTED
MOVING AVERAGE ALSN CONTROL CHART
To better detect small and moderate shifts in the process
average loss, we propose an EWMA average loss (EWMA-
ALSN) control chart with monitoring statistic EWMAAL,t at
time t , as follows.

Define EWMAAL,t as the monitoring statistic of the
EWMA-ALSN chart at time t , which is in the form of

EWMAAL,t = λ · ALt + (1− λ)EWMAAL,t−1, (14)

where λ ∈ (0, 1) is the smoothing parameter. When λ = 1,
the EWMA-ALSN chart reduces to the average loss (ALSN)
chart.

The in-control mean of EWMAAL,t isµAL , and its standard
deviation is σAL as time, t , approaches infinity.

A. THE CONTROL LIMITS OF THE EWMA-ALSN
CUNA-ALLSN CHART
Based on the mean and variance of the monitoring statistic,
EWMAAL,t , we can construct the EWMA-ALSN chart. The
design parameters of the proposed chart are sample size n
sampling time interval h, and coefficients (k1, k2) of the upper
and lower control limits. We consider the n to be fixed, and
h is one time unit. Given the derived µAL in ( 12) and σAL
in (13), and fixing the predetermined in-control average run

TABLE 4. The control limits of the EWMA-ALSN chart with ARL0 = 370.4.

length (ARL0 = `), we may determine the upper and lower
control limits (UCL, LCL) of the proposed EWMA-ALSN
control chart as follows.

UCL = µAL + k2σAL

√
λ

2− λ
,

LCL = µAL − k1σAL

√
λ

2− λ
, (15)

where k1 and k2 are determined by the Monte Carlo sim-
ulation such that ARL0 = `. If the monitoring statistic,
EWMAAL,t , falls outside of UCL or LCL then the process
is deemed to be out-of-control.

The Monte Carlo simulation method is applied to deter-
mine the chart parameters k1 and k2 so as to meet the prede-
termined in-control average run length, namely ARL0 = `

with λ.
Table 4 lists the coefficients (k1, k2) of LCL and UCL as

well as the corresponding LCL and UCL of the EWMA-
ALSN chart by setting b = −500,−2, 0, 2, 500, µ0 = 0 and
σ0 = 1, δ3 = 1, λ = 0.05, 0.2, 0.4, 1.0, n = 5 and ARL0 =

370.4. We find that the control limits are more symmetric
when λ is small, for example, λ = 0.05. Furthermore, the
width of the chart increases when λ or b increases.

B. PERFORMANCE COMPARISON AMONG THE
EWMA-AL, ALSN AND ML CHARTS
Using the resulting control limits in Table 4, we adopt
ARL1 to measure the out-of-control detection performance
of the proposed EWMA-ALSN chart. In order to measure
the spread of the run length distribution, we consider the
standard deviation of run length (SDRL). Using Monte Carlo
simulation, we calculate ARL1s and SDRLs. Here, we assume
the process shifts (δ1 and δ2) are known or specified. When
δ1 and δ2 are unknown or unable to specified, the expected
ARL (EARL) can be employed as a performance metric (for
example, see Teoh et al. [30]).

Montgomery [21] recommended to adopt λ = 0.05, λ =
0.1 or λ = 0.2 to detect smaller shifts. Here, we adopt
λ = 0.05 and 0.2 for detecting small and moderate shifts and
comparing detection performance with existing loss control
charts for a process with a skew-normal distribution.
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TABLE 5. The ARL1 of the EWMA-ALSN, ALSN and ML charts with
ARL0 = 370.4.

TABLE 5. (Continued.) The ARL1 of the EWMA-ALSN, ALSN and ML charts
with ARL0 = 370.4.

In Table 5, the ‘‘Type’’ columns (1), (2) and (3) respectively
illustrate ARL1 (first row) and SDRL (second row) of the
EWMA-ALSN chart with λ = 0.05, EWMA-ALSN chart
with λ = 0.2, and ALSN chart (or EWMA-ALSN chart
with λ = 1.0); (4) shows ARL1 of the existing ML chart in
Yang et al. [19] for δ1 = 1.0, 2.0, 3.0, δ2 = 1, 1.5, 2.0, 3.0,
b = −500,−2, 0, 2, 500, ARL0 = 370.4, n = 5, δ3 = 1,
µ0 = 0, and σ0 = 1. In ‘‘Type’’ columns (1), (2) and (3), we
can see that, under b = −500,−2, 0, 2, 500, respectively,
ARL1 decreases when δ1 and/or δ2 increases. These results
look reasonable. When b increases, ARL1 increases. On the
other hand, the EWMA-ALSN and ALSN charts perform
better when b < 0 rather than when b ≥ 0. This indicates
that EWMA-ALSN with λ = 0.05 or 0.2 and ALSN charts
perform the best for the left-skew distribution compared to
right-skew or symmetric distribution. We further compare
ARL1s among the proposed EWMA-ALSN, ALSN and ML
charts. We see that the EWMA-ALSN chart with λ = 0.2
performs the best when the process has small changes in
location or any dispersion, like δ1 < 2 or δ2 ≤ 3.0. On the
other hand, the detection performance between the EWMA-
ALSN and ALSN charts has no significant difference for
moderate to large changes in location and/or dispersion, like
δ1 ≥ 2 and/or δ2 ≥ 2.0. We further see that the EWMA-
ALSN chart always performs much better than the ML chart
for small changes in location and small to large changes in
dispersion, like δ1 < 2 and δ2 > 1. On the other hand,
the detection performance between the EWMA-ALSN and
ML charts has no significant difference for moderate to large
changes in location and dispersion, like δ1 ≥ 2 and δ2 ≥ 1.0.
Based on the results in Table 5, we conclude that the

EWMA-ALSN chart performs the best among the three con-
trol charts when the process follows a skew-normal distribu-
tion. On the other hand, the EWMA-ALSN chart performs
better than the ALSN chart for small changes in process loca-
tion and dispersion, and the EWMA-ALSN chart performs
better than the ML chart for small changes in location and
small to large changes in dispersion. Hence, we recommend
using the proposed EWMA-ALSN chart to monitor the loss
location or the process location and/or dispersion by replac-
ing the proposed ALSN chart or the existing ML chart when
the process follows a skew-normal distribution.
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TABLE 6. Seventeen subgroups of IQ scores for white males hired.

IV. ILLUSTRATIVE EXAMPLE
This section demonstrates an application of our proposed
control charts using a real data set collected from the Roberts
IQ score [31]. The IQ score data give the Otis IQ scores
for 87 white males and 52 non-white males hired by a large
insurance company in 1971. Brown [32] showed that the IQ
data of the 87 white males follow a skew-normal distribution
with estimated location ξ̂0 = 105.78, scale â0 = 11.94
and shape b̂ = 1.14. In other words, the mean is 118.39
and standard deviation is 9.53. However, the IQ data of the
52 non-white males follow a skew normal distribution with
estimated ξ̂0 = 106.62, â0 = 8.266, and b̂ = 0. Hence, it
follows a normal distribution.

We take 85 IQ data from all IQ data of 87 white males hired
and regard them as the in-control data with population mean
118.39 and standard deviation 9.53. The in-control 85 IQ data
are grouped into 17 subgroups with sample of size 5 (Table 6).
Furthermore, we take 50 IQ data grouped into 10 subgroups
with sample of size 5 (Table 7). We set the target of IQ score
(T ) to be 109.39, and so the scale of the deviation from target
value is δ3 = 1. We define the loss as the deviation of the Q
score from the target value, L = (X − T )2. Hence, using the
proposed loss locationmonitoring approach in Section III, we
determine UCL = 3.367 and LCL = 1.143 of the EWMA-
ALSN chart with λ = 0.2 and ARL0 = 370.4. The in-control
subgroup statistics, EWMAAL,t , of the seventeen subgroups
are listed in Table 6 and plotted in Fig. 2. Although the
subgroup numbers 10,11, and 13 of the in-control samples fall
belowLCL (very close to LCL), they are in-control subgroups
or false alarms. Furthermore, we calculate the out-of-control
subgroup statistics, EWMAAL∗,t , of the ten subgroups of IQ
score data for the non-white males. The subgroup statistics,
EWMAAL∗,t , are listed in Table 7 and plotted in Fig. 3. We
find nine out of ten fall outside the LCL. This indicates that
deviation of the IQ score from the target or loss location of the
IQ score data of the non-white males is significantly different
from that of white males hired.

In this example, the IQ score data of white males hired
follow a skew-normal distribution with b > 0, but not for
the IQ score data of non-white males hired. The result of the

TABLE 7. Ten subgroups of IQ scores for non-white males hired.

FIGURE 2. Plotting points for subgroups of white males.

FIGURE 3. Plotting points for subgroups of non-white males.

example shows that the proposed EWMAALSN chart may
effectively detect the out-of-control loss location or equiva-
lently the deviation of the IQ score from the target for the
non-white male IQ scores with a normal (or skew-normal
distribution with b = 0) distribution. The EWMA-ALSN
chart is thus recommended to monitor the out-of-control loss
location or the deviation of quality variable from the target
for a process with a skewed distribution.

V. CONCLUSIONS
This study has proposed ALSN and EWMA-ALSN charts,
based on the derived approximate distributions of an average
loss statistic, in order to monitor the process loss location,
or equivalently, the deviation of the quality variable from the
target when the process exhibits a skew-normal distribution.
Compared to the ALSN chart, we find that the out-of-control
detection performance of the EWMA-ALSN chart performs
better for small changes in process location and/or dispersion.
Furthermore, compared to the existing loss control chart -
such as the median loss (ML) chart - when the process has
a skew-normal distribution, the newly proposed ALSN and
EWMA-ALSN charts always perform better for detecting the
out-of-control process.
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In a real example of detecting out-of-control IQ scores
with a skew-normal distribution for non-white males hired
in a large insurance company, we demonstrate that the pro-
posed EWMA-ALSN control chart performs well. We thus
recommend using this new EWMA-ALSN chart to efficiently
monitor shifts in process location and/or dispersion when the
process variable follows a skew-normal distribution.
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