
User-Managed Access Delegation for Blockchain-
driven IoT Services

Chun-An Lin
Dept. of Computer Science

National Chengchi University
Taipei, Taiwan

107753020@nccu.edu.tw

Chun-Feng Liao
Dept. of Computer Science

National Chengchi University
Taipei, Taiwan

cfliao@nccu.edu.tw

Abstract—With the advancements in network bandwidth and
hardware capability, the Internet of Things (IoT) has now become
more and more prevalent. Nevertheless, due to the increment of the
data value, incidents of malicious attacks are also spreading. Therefore,
the robust access control mechanism plays an important role when
designing an IoT system. Regrettably, most of the IoT devices have the
limitation of the power and computation capacity. To tackle this issue,
it is general for the IoT system to delegate the access control service to
the third party. However, centralized access control services may bring
about some significant disadvantages such as lack of transparency and
reliability. Moreover, it is difficult for users to track authorization
history and manage authorization policies. Fortunately, blockchain is
regarded as a promising technology that can cover the shortage of the
centralized system and improve the security of IoT. This paper
proposes a Blockchain-assisted User-Managed Access (B-UMA)
schema base on the IoT scenario. To prove the feasibility of the
proposed schema, we also build a prototype system adopting the
“Smart Factory” use case. Finally, the qualitative comparison among
B-UMA and related access control frameworks are also presented.

Keywords—Blockchain; Internet-of-Things; Access Control;
User-Managed Access

I. INTRODUCTION
Recently, IoT (Internet of things) services quickly become

popular. Cisco [1] reported that there are already 50 billion smart
things interconnected over the network. Generally, an IoT
service consists of some devices with limited computing and
networking capabilities [2]. The IoT service can be exposed to
the Internet and thus the devices within the service can be easily
accessed and controlled by various commodity user devices.
However, without proper access control mechanisms (a.k.a.
authentication and authorization), the IoT service usually suffers
from a lot of security and privacy issues. For instance, the
devices can be tampered by a malicious party.

 To reduce the cost of building in-house authentication and
authorization solutions for IoT services, a common way is to use
a trusted third-party authentication service following an open
standard such as OAuth [3]. Because most of the existing third-
party authentication service lacks transparency, one open issue
of this approach is whether these third-party services are
trustable. For example, these thirty-party services may make
profits by selling or utilizing the sensitive data of IoT services.
A profile of OAuth called the User-Managed Access (UMA) [4]

is proposed to deal with the problem mentioned above. For
example, after a user is authenticated with UMA, the user is also
empowered to manage the corresponding policy (rule of
authorization) of the protected resources [5]. Also, the user can
delegate the access right to the authorization server to address
the access requests asynchronously.

However, several issues appear when designing the access
control mechanisms for IoT services based on UMA: The first
issue is the Availability of the access control service. UMA relies
on a centralized authorization server. Thus, it suffers from the
risk of a single point of failure; The second issue is
Transparency and Traceability. In a typical third-party access
control service, most of the history of the authorization process
cannot be traced or inquire easily; The final issue is the
Maintainability access control service. Once the centralized
system has been deployed, it takes considerable time and cost to
update a new version of the service.

Based on these observations, this paper proposes a
decentralized approach based on the blockchain. Blockchain is
recognized as one of the most promising technologies that
complement the IoT [6]. The underlying technology of the
blockchain is a distributed ledger, which is transparent, reliable,
immutable and traceable, and a distributed consensus
mechanism that ensures the consistency of the distributed ledger.
The recent development of the blockchain platform (i.e.,
Ethereum), has brought about a new idea called Smart contract,
namely a piece of executable programming logic that allows the
performance of credible transactions, where the results of the
transactions are verified by peers. Many research papers focus
on exploring the ways of combining blockchain and IoT (also
known as the Blockchain-driven IoT services, B-IoT) recently.
This paper aims to investigate how to realize UMA on top of B-
IoT. The benefits of such a combination are listed below:

 Decentralization. Traditionally, UMA is supported by a
dedicated and centralized Authorization Server (AS).
However, based on Blockchain technology, the AS and
the overall UMA protocol be realized in a decentralized
way [7].

 High maintainability. To implement UMA on a
blockchain network, UMA entities (see Table 1) are
realized as Smart Contracts on the blockchain network.

462

2020 International Computer Symposium (ICS)

978-1-7281-9255-0/20/$31.00 ©2020 IEEE
DOI 10.1109/ICS51289.2020.00097

20
20

 In
te

rn
at

io
na

l C
om

pu
te

r S
ym

po
si

um
 (I

C
S)

 |
97

8-
1-

72
81

-9
25

5-
0/

20
/$

31
.0

0
©

20
20

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
S5

12
89

.2
02

0.
00

09
7

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 01,2021 at 07:20:16 UTC from IEEE Xplore. Restrictions apply.

In this way, the UMA entities can be designed and
maintained in a uniform way. Thus, the maintainability
is higher than the traditional approach.

 Reusable security infrastructure. Most of the blockchain
platforms (e.g., Ethereum) provides a public-key-
cryptography-based account system. Participants in the
blockchain are allowed to prove their identity by
providing the account managed by the blockchain
platform. Furthermore, the blockchain provided a secure
billing layer so that it is straightforward to build a
protected resource sharing marketplace among the peers
in the blockchain network.

 To sum up, the objective of this paper is to propose a
decentralized UMA access control management mechanism for
B-IoT based on blockchain. The rest of the paper is organized
as follows. In Section II, we present backgrounds of UMA,
Blockchain, and IoT. After that, the design issues about B-UMA
are presented. Then, the detailed descriptions of B-UMA are
presented in both static and dynamic ways. In order the ensure
the security of the proposed framework, the security analysis is
performed in section IV. Lastly, the conclusion and future work
are discussed in section V.

II. RELATED WORK

A. User-Managed Access (UMA)
Among the widely recognized authorization frameworks,

OAuth2 is the most popular. However, the scenario of the party-
to-party access right delegation does not cover in OAuth2. For
instance, Alice can authorize the resource from application A to
B that control by herself. However, she can’t give access
permission to Bob. Unfortunately, this problem will become
more prominent in IoT applications. Take car rental for example.
It is apparent that the resource (car) must be rented from the third
party. UMA, developed by Kantara Initiative [8], has been
proposed specifically to fill the gap of access right delegation.
The UMA specification draft has been submitted to IETF [9].
TABLE I shows the main entities defined in the UMA
specification.

TABLE I. COMPONENTS IN SMART FACTORY

UMA entities Description

Requesting Party (RqP) The third-party attempt to access protected
resources.

Resource Owner (RO) The owner of protected resources takes
charge of defining the authorization policy.

Client An application or server on behalf of RqP to
request protected resources owned by RO.

Resource Server (RS)
A server keeps protected resources and
provides Application Programming Interfaces
(API) for RqP to access.

Authorization Server (AS)
A server which is delegating by RO to realize
the RS protection and issue the access request
in an asynchronous way.

UMA proposed a list of key requirements that enable party-
to-party access control. These requirements are: (1) User-driven
policies. RO can customize the authorization policy for
protected resources. Anyone can request authorization from the
AS through these policies; (2) Support for claims-based access

control. In the authorization process, AS may require RqP to
provide more claims (i.e., the statement of values of identity
attributes) to verify the identity of the RqP; (3) User
management of access control. RO doesn’t need to involved in
the authorization process directly but defines the authorization
policy in the AS. On the other hand, RO can also modify the
policy and terminate the access control service at any time.

B. Blockchian and Internet of Things
Blockchain is regarded as the core underlying technology of

Bitcoin [10]. The decentralization feature of blockchain is
regarded as a promising solution to problems (e.g., single point
of failure, lack of transparency) of the centralized system.
Besides, the recent development of blockchain technology, such
as Ethereum [11], is supported to run some Turing-complete
programming languages, known as “Smart Contract.” Thus, the
developer is enabled to run the “Decentralized application
(DApp)” in the blockchain through smart contracts.

There are two general transmission methods in the
blockchain system, namely on-chain and off-chain. The on-
chain method implies dispatching and transmitting data using
the blockchain. In Ethereum blockchain, a logging mechanism,
called Event, is provided to retrieve and filter the state change of
smart contracts. Furthermore, Event plays an important role in
communication between blockchain platforms and programs (by
emitting event to programs once the state change happens in the
smart contract); On the other side, off-chain represents all the
method dispatching and transmitting data without blockchain.

To join the blockchain network, the component has to arm
with a blockchain endpoint. (e.g., Go-ethereum [12] or Parity)
When running a fully-functional blockchain endpoint, known as
Full node, considerable computation and storage loads are
burdened. Unfortunately, most of the IoT devices own low-
capacity. To allow devices with capacity limitations directly
participate in blockchain to maintain high-security assurance,
some blockchain platforms also provide lightweight blockchain
endpoint, called Light client. Hence, the IoT device serves as the
light client is possible to join the blockchain network directly
with delegating the works of mining (or called block validating)
and the block data synchronization to the full node.

III. BLOCKCHAIN-ASSISTED USER-MANAGED ACCESS
This section describes the design issues that must be

addressed when designing UMA mechanisms for B-IoT. Then,
we present a schema called Blockchain-assisted User-Managed
Access (B-UMA) and how B-UMA deals with the issues.

A. Design Issues
Due to the distinguished features of the blockchain

(transparency and immutability), when designing UMA in an
IoT environment with blockchain, there are several issues to be
considered:

 The cost, scalability, and security could be considerably
affected when considering different transmission
methods. The on-chain transmission method
(dispatching and transmitting the data using the
blockchain) can take full use of the feature of blockchain.

463

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 01,2021 at 07:20:16 UTC from IEEE Xplore. Restrictions apply.

On the contrary, the off-chain transmission method
(dispatching and transmitting the data without
blockchain) could have better performance on the cost
and scalability.

 The data transmitted using the on-chain transmission
method may be exposed owing to the transparency
feature of the blockchain. Therefore, the confidentiality
of the data should be considered when transmitting
authorize or private data. (e.g., claim, access token) In
practice, a privacy way of on-chain data transmission
should be introduced.

 The programming logic of the smart contract can’t be
modified once being deployed to the blockchain owing
to the immutability feature of the blockchain. If the
policies implemented in the smart contract change, a new
smart contract should be deployed again. The reason
mentioned above makes the B-UMA system inflexible.
Hence, the developer should consider manageability
when designing smart contracts.

 The transmission protocol of the blockchain platform is
incompatible with the typical protocol of UMA. In
practice, when the transmission is considering utilizing
the on-chain method, the specific format of the typical
UMA should be transferred to the compatible one.

B. System Architecture
The overview of the B-UMA system is shown in Fig. 1. The

components and their responsibilities are designed according to
the UMA specification. The difference is that some components
are now realized using the smart contract mechanism supported
by the underlying blockchain. In B-UMA, every participant
owns at least one blockchain account (a public/secret key-pair)
which is used to represent the unique ownership of a given
protected resource. In this way, the components (smart contracts)
can identify RqP or RO by verifying their blockchain accounts.
As mentioned, to take advantage of the decentralized feature of
the blockchain, the functionalities originally provided by AS in
UMA is realized using smart contracts. Each component is
supported by one blockchain endpoint. The RS, namely, the IoT
device in the B-IoT, is serving a “lightweight endpoint (light
client)” because of the limitation of capacity. A light client is a
blockchain lightweight endpoint without mining capability (i.e.,
the capability of creating new blocks), which must depend on a
normal endpoint. As shown in Fig.1, all components except the
Iot device (resource server) run full node (the normal fully
functional blockchain endpoint). As a result, all the components
can participate in the blockchain network directly to avoid data
be tempered by or exposed to the malicious third party sniffing
the off-chain network link. However, as can be observed from
Fig.1, the connections from RqP and RO to the components are
off-chain, which are not protected by the blockchain security
mechanism. To ensure the security of the off-chain method, the
use of the point-to-point transportation layer secure mechanism
such as HTTPS is needed.

In UMA, there are two main tasks for AS: managing the
resource set as well as authorizing the access request base on the
policy defined by RO. Because these tasks are realized by the
smart contract in B-UMA, the flexibility and cost of

modification of deployed smart contracts should be considered.
Since the programming logic of the smart contract can’t be
modified once it has been deployed, the design pattern of
decoupling of static data and programming logic into separate
smart contracts will be a great solution[13]. In B-UMA, we
design two smart contracts, called the Resource Management
Contract (RMC) and the Authorization Contract (AC),
segregating the storage of resource set from authorization logic.
In this way, the considerable cost of migrating the resource
information already stored in the original smart contract to the
new version can be reduced whenever the policy of B-UMA has
been changed. In practice, RO can not only register and manage
the resource in RMC but define and modify the policy in AC.
Generally speaking, RO pays the role of the owner of both RMC
and AC.

Fig. 1. Overview of B-UMA

C. Execution Flow
As described in the UMA specification, the access control

process has been divided into three phases (“Protecting a
Resources”, “Getting Authorization” and “Accessing a
Resource”). This section presents the flows of each phase work
in the B-UMA. The detailed flow (see Fig. 2) of the first phase
(Protecting a Resources) is listed and explained below.

(1) RO deploys the RMC and AC: The RO should be the creator
of the RMC and AC. When developing the smart contract, RO
has to set himself/herself as the administrator that has permission
to invoke all the function of the smart contract. Moreover, from
the UMA point of view, RS has to be verified by AS by
providing a Protection API Token (PAT). In the B-UMA, the
PAT is replaced by a unique blockchain account. Therefore, RO
has to allow the RS’s blockchain account to invoke specific
functions (e.g., registerResource) by setting the permission in
RMC in advance. On the other hand, AC needs to check the
information about protected-resource in RMC. Hence, RO has
to set the deployed RMC’s reference (i.e., contract address)
when deploying AC.

464

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 01,2021 at 07:20:16 UTC from IEEE Xplore. Restrictions apply.

(2) RO registers the protected resource to the RMC though RS:
In the B-UMA, RO is in charge of registering and managing the
protected resource’s information in RMC through RS. When
sending a transaction to invoke the function (registerResource)
of RMC, the resource name (name of the protected resource)
and scope (the scope of the protected resource that allowed to
access) should be included as the parameter.

(3) RO sets the policy corresponding to the specific protected
resource to the AC: After registering the protected resource to
the RMC, RO can set the corresponding policy to AC.
According to the UMA specification, the RqP should provide
the claim to satisfy the policy defined by RO. In our proposed
schema, the policy including claim and hint. In practice, RO has
to set the claim which expects the RqP to provide while
requesting the authorization. Meanwhile, the hint to prompt the
RqP which information has to provide should be accompanied.

Fig. 2. Flow of Resource Protection

 After finishing the first phase, RqP can start to request to
access the resource of the RS through the client server. Before
the request allowed, RqP needs to obtain the access token from
the AC. The detailed flows (see Fig. 3 and Fig. 4) of the second
phase (Getting Authorization) is listed and explained below.

(1) Client Server Attempts to Access Protected Resource: In B-
UMA, when attempting to access the protected resource (e.g.,
when the RqP clicks the button of web service provided by the
client server to request for the resource), the client server has to
get authorized from AC in advance. First, once receiving a
request without accompanied with the access token, RS registers
request permission with the AC. Then, AC has to check whether
the related resource has been registered in RMC or not. Besides,
AC should verify the blockchain account of RS to avoid the
malicious attack. Finally, AC would return unique request
identifier, permission ticket and hint which has been defined in
the first phase. Lastly, RS responds to the permission ticket, hint
and AC’s address through HTTPS protocol. (The response
format corresponding to the UMA specification is recommended)

(2) Client Server Seeks Authorization for Access: After receiving
the response from AC, the client server will ask the RqP to
provide claims (e.g., phone number) related to the hint. Then,
the client server will start to request the access token from
sending a transaction to AC accompany the parameters
including claim and permission ticket. It is worth mentioning
that the plaintext of the parameters is passed to the local

blockchain endpoint and be hashing in the smart contract.
Therefore, the plaintext of the parameters won’t be exposed to
the third party. When the transaction has been sent to the
blockchain, AC will start to verify the claim and permission
ticket. If the verification succeeded, a unique access token will
be generated. By the way, each access token should have its own
expiration date. Meanwhile, the access token will be mapping to
the request identifier and RqP’s account through the data
structure (mapping) of the smart contract. On the other hand, if
the verification failed (e.g., invalid permission ticket), AC would
stop and rollback the transaction.

Fig. 3. Follow of Client Attempts to Access Protected Resource

Fig. 4. Flow of Client Server Seeks Authorization for Access

Finally, when the client received an access token, RqP can
start to access the protected resource. The detailed flow (see Fig.
5) of the third phase (Accessing a Resource) is listed as follows.

(1) Client Server Sends a Resource Request: To access the
resource, the client server can send and token-accompanied
resource request to the RS by means of the HTTPS protocol. To
check whether the token provided is valid, according to UMA
specification, the token introspect flow has been defined.
However, in B-UMA, considering the transparent feature of
blockchain, the access token generated by the smart contract is
possible to be exposed to the third party. (The third party may
use the access token to access protected resource) Therefore, we
introduce a signature recover mechanism (i.e., ecrecover [14])
provided by the smart contract to ensure that the access token is
sent by the authorized user (by verifying the blockchain account)
as follow. First, before sending a resource request, the client
should sign the access token by the blockchain private key
owned by RqP. Then the client sends the resource request
accompanied both signature and access token to RS. When
receiving the request, RS invoke the introspect function
provided by AC to validate the access token and the blockchain
account which signed the token.

(2) RS Responses for the Resource Request: If the validation
succeeds, RS would return the requested resource to the client
server by means of the HTTPS protocol. On the contrary, if the

465

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 01,2021 at 07:20:16 UTC from IEEE Xplore. Restrictions apply.

validation failed, the failure message (e.g., invalid_token) would
be returned to the client server by RS.

Fig. 5. Flow of Client Server Requests Resource with access token

IV. EVALUATION

A. Feasibility
 To verify the feasibility of the proposed B-UMA mechanism,
we adopt the use case of the “Smart factory” and implement the
prototype system accordingly. Fig. 6 shows the structure of the
prototype system. The supplier (RO) of the smart device (RS)
authorizes the factory member (RqP) to access the service (e.g.,
temperature and humidity data) from smart devices. Besides, to
implement the authorization process and manage the smart
devices, the supplier has to realize through the cloud server. On
the other side, to access the service, the factory member has to
send a request thought the edge server (client server) in the
factory.

 In the prototype system, we use Ethereum as the underlying
blockchain platform. The JavaScript-based Koa2 [15]
framework is used to implement the backend process providing
RESTful API. TABLE II. shows the components of the
prototype system. To construct the private chain network, every
component is armed with a blockchain endpoint (i.e., Go-
ethereum). Due to the limitation of the low-capacity
environment, the smart device is serving as a light client that
needs to synchronize the block data with the full node on the
edge server. Besides, we employ web3.js (an JavaScript module)
to connect the backend process with the blockchain endpoint and
adopt Solidity [16] to support as the smart contract language.

 The supplier can deploy the RMC and AC to the blockchain
through the web page (see Fig. 7-A) provided by the cloud server.
Then the supplier can register the resource information (i.e.,
name, scope) of the smart device to the RMC. After registration,
the identifier of the resource responded by the RMC can be
checked on the web page. Lastly, the supplier can set the policy
of the corresponding resource. On the other side, the factory
member can synchronize registered resources and further send
an access request to the smart device through the web page (see
Fig. 7-B) provided by the edge server. During the authorization
process (the Getting Authorization phase), the web page will
alert the factory member to provide the member ID (i.e., claim).
After getting authorized, the factory member can continuously
access the resource of the smart device until the access token
expired.

Fig. 6. Structure of the Prototype System

TABLE II. COMPONENTS IN SMART FACTORY

Component OS Blockchain
client mode

Role in use
case

Raspberry Pi B3+ Raspbian
GNU/Linux 9.4 light client Smart device

PC1 Ubuntu 18.04 full node Edge server

PC2 macOS 10.15 full node Cloud server

Fig. 7. The prototype system. (A) Resource owner view; (B) Request Party view

B. Cost
 To measure the cost when invoking the function of the smart
contract (i.e., RMC, AC), the consumption of gas (transaction
fee of Ethereum) of each phase is provided. Developers can
evaluate whether they should spend real money to build the B-
UMA system underlaying the public chain or not. Generally
speaking, the advantage of using services on the public chain is
that the cost of the equipment and maintenance of constructing
the private chain can be saved. Moreover, in February 2020,
there are about 7,000 Ethereum nodes distributed around the
world [17]. Compared to constructing a private chain within the
organization, it can better achieve the ideal decentralized
mechanism. However, the TPS (transaction per second) of the
public chain could be slower than the private chain (TPS of the
private chain can be lower by modifying the difficulty of the
consensus). According to [18] , in February 2020, the standard
speed to perform a transaction of the Ethereum public chain is
about 23-second. (The gas price is about 5 gwei which means
that it cost about $0.02 each 21,000 gas is consumed).

466

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 01,2021 at 07:20:16 UTC from IEEE Xplore. Restrictions apply.

 TABLE III. illustrates the cost in each B-UMA phase.
Apparently, most of the gas is consumed in the “resource protect”
phase because of the operation of smart contract deployment.
However, all the operation has only need to be done once. On
the other hand, the operations in the “request authorization”
phase are cheap. Most of the gas is consumed due to the
generation of authorization data and emission of the event.
However, the more time the access requests are issued, the more
gas is spent. Lastly, in “resource access” phase, no GAS should
be spent since the invocation of smart contract cause no state
change (query without sending any transaction).

TABLE III. GAS CONSUME FOR EACH PHASE

Phase Gas consume Price in USD Percentage
resource protectionx
(deploy RMC and AC) 1813053 $1.97 82.6%

resource protection
(registerResourceSet and
setPolicy)

227384 $0.25 10.4%

request authorization 154528 $0.17 7.0%

 Price in USD = 5(gwei) * Gas consume * 0.00000021;
Percentage = Gas consume/Total Gas consume

C. Discussion
To compare the qualitative performance of B-UMA with

other related access control frameworks discussed previously,
we present an evaluation metric (see TABLE IV), which
compares the performance between 4 types of access control
frameworks. Decentralization indicates both the transparency
of the system and whether the problem of a single point of
failure can be solved; Maintainability means the flexibility of
system once the authorization policy or hardware needs to be
updated; Complexity explains the difficulty and the time
consumption to design or build a system; Economy implies the
cost (e.g., electronic, computation, money) when running the
system.

TABLE IV. A SUMMARY OF B-UMA

Features/Mechanism Basic OAuth2 UMA B-UMA
Decentralization + ++ +++ ++++
Maintainability + ++ +++ ++++
Complexity ++++ +++ ++ +
Economy ++++ +++ ++ +

Performance: ++++= best, +++= well, ++= normal, += worst

V. CONCLUSION
Currently, it is still common to rely on third-party services to

realize the access control mechanism in the IoT system.
However, a centralized system may face challenges such as low
reliability, transparency, and maintainability. Fortunately, the
blockchain is regarded as a technology to solve the related
problem of a centralized system. This paper, in a nutshell,
proposed a “Blockchain-assisted User-Managed Access”
schema in the IoT field base on the UMA specification. The
proposed schema alleviated the reliance on centralized
authorization server. Moreover, the transparency and
traceability of the authorization process were improved since all
the components in the proposed schema can interact with the

smart contract by joining the blockchain directly. To increase the
maintainability of UMA, the resource owner can not only own
the smart contracts but manage the authorization policy
he/herself. Last, the cost of operating the smart contract is
provided, the developer can evaluate to construct the system
underlying the public or private blockchain. On the other hand,
since the blockchain technology is in the development stage,
there are still several issues to employ blockchain to the IoT
system, such as scalability and stability. Furthermore,
developers should consider the limitation of complexity and
economy when designing the B-UMA system. In the future, we
expect more feasible blockchain consensuses for IoT will be
proposed and will try to consider implementing proposed
schema in different blockchain platforms.

ACKNOWLEDGMENT
This work is partially supported by Ministry of Science and

Technology, Taiwan, under grant 109-2221-E-004 -004 -.

REFERENCES
[1] D. Evans, "The internet of things: How the next evolution of the internet

is changing everything," CISCO white paper, vol. 1, no. 2011, pp. 1-11,
2011.

[2] L. Atzori, A. Iera, and G. Morabito, "The internet of things: A survey,"
Computer networks, vol. 54, no. 15, pp. 2787-2805, 2010.

[3] R. Almadhoun, M. Kadadha, M. Alhemeiri, M. Alshehhi, and K. Salah,
"A user authentication scheme of iot devices using blockchain-enabled
fog nodes," in 2018 IEEE/ACS 15th International Conference on
Computer Systems and Applications (AICCSA), 2018: IEEE, pp. 1-8.

[4] Kantara Initiative. "User-Managed Access (UMA) Core Protocol draft-
hardjono-oauth-umacore-00." https://tools.ietf.org/html/draft-maler-
oauth-umagrant-00 (accessed August 8, 2020).

[5] M. P. Machulak, E. L. Maler, D. Catalano, and A. Van Moorsel, "User-
managed access to web resources," in Proceedings of the 6th ACM
workshop on Digital identity management, 2010: ACM, pp. 35-44.

[6] K. Christidis and M. Devetsikiotis, "Blockchains and smart contracts for
the internet of things," Ieee Access, vol. 4, pp. 2292-2303, 2016.

[7] A. Z. Ourad, B. Belgacem, and K. Salah, "IOT Access control and
Authentication Management via blockchain."

[8] Kantara Initiative, "Kantara Initiative." [Online]. Available:
https://kantarainitiative.org/.

[9] Kantara Initiative. "User-Managed Access (UMA) Core Protocol draft-
hardjono-oauth-umacore-00." https://tools.ietf.org/html/draft-maler-
oauth-umagrant-00 (accessed February 4, 2020).

[10] S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system," 2008.
[11] V.Buterin. "A Next-Generation Smart Contract and Decentralized

Application Platform." https://github.com/ethereum/wiki/wiki/White-
Paper (accessed February 4, 2020).

[12] F. L. Viktor Trón. "Go-ethereum." https://github.com/ethereum/go-
ethereum (accessed February 4, 2020).

[13] M. Wöhrer and U. Zdun, "Design patterns for smart contracts in the
ethereum ecosystem," in 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), 2018: IEEE, pp. 1513-1520.

[14] "Security Considerations in Solidity."
https://solidity.readthedocs.io/en/v0.5.11/security-
considerations.html#abstraction-and-false-positives (accessed August 8,
2020).

[15] "Koa.js." https://github.com/koajs (accessed August 8, 2020).
[16] "Solidity." https://solidity.readthedocs.io/en/v0.5.13/ (accessed August 8,

2020).
[17] "Etherscan." https://etherscan.io/ (accessed February 4, 2020).
[18] "Eth Gas Station." https://ethgasstation.info/ (accessed February 4, 2020).

467

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 01,2021 at 07:20:16 UTC from IEEE Xplore. Restrictions apply.

