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Abstract—Most current research on autonomous UAV 

control are conducted in virtual environment and often focus on 

specific technical domains, such as communication protocol and 

visual computing, etc. These research are rarely integrated as 

one, making it less applicable and effective. However, 

application platforms solving practical problems require system 

integration in real-world environments. In this paper, we 

propose a UAV task-oriented flight control system integrated 

with real-time sensing based on Robot Operating System. The 

flight control system also incorporates behavior tree as a 

decision control mechanism. We apply our system in a building 

inspection task, whereas the UAV takes-off near the riverbank, 

flies forward following the road across a bridge, and arrives at 

a designated building to perform a zig-zag image scan. The 

system is implemented and field tested on a ready-to-fly 

quadrotor. Captured images are transmitted through Wi-Fi to 

a laptop for real-time visual sensing, and flight directions are 

then calculated and provided to the UAV for navigation. Our 

experiment shows promising results - the UAV can successfully 

complete the task within 25 minutes. Some suggestions and 

solutions are provided for future improvements. 
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I. INTRODUCTION  

The use of unmanned aerial vehicles (UAV) in civilian 
applications has increased in recent years. Recent examples 
such as Amazon’s Prime Air Delivery Service aim to deliver 
packages to customers within 30 minutes using UAV [1]. 
Classical applications, such as search and rescue operations 
[2], have also long been considered using UAV as a more 
effective searching tool. However, most current UAV 
research focused on individual technical components, such as 
remote sensing, image post-processing for vegetated areas [3] 
and landslides [4], object detection using UAV imagery 
[5][6], and coverage path planning for different goals [7][8]. 
Furthermore, most UAV research is conducted in simulated 
environment [9] [10], which often underestimates the 
potential risk and uncertainty of real-world environment. For 
UAV to solve problems in real-world applications, it needs 
rigorous verification in real environments with specific 
objectives. Hence, our technical goal is to develop a task-
oriented UAV-based flight control system with actual 
implementation in real-world environments. 

In this paper, our experiment takes place along the bank 
of Jingmei river at sub-urban Taipei. Our UAV’s task in this 

scenario is to inspect a cylinder-like building located on the 
other side of the river. The UAV will take-off on one side of 
the river, follow the road alongside the river, fly pass over the 
bridge to the other side of the river, and arrive at the 
designated target building to perform a task-oriented path 
image scan, which is a zig-zag pattern scan. UAV-based 
building inspection [11] has been considered as a safe 
alternative with a lower risk of inspection personnel. Such 
application can be widely used in many fields, such as 
construction area and detonation site, etc. 

Previous works only focus on learning simple behaviors 
to build corresponding trees, which is generated and verified 
in game or lab environments. Hence, they may not deal with 
such complex and long-duration flight executions.  In real-
world tasks with insufficient image data for training, it is 
required to incorporate traditional vision algorithms and 
integrate with convolutional neural network models. Our 
proposed approach aims to design flexible and reusable 
modules with expert experience, and each module represents 
a general and basis behavior tree that can be adapted to other 
specific vision tasks with little modification. 

Our system uses behavior trees [15] as a decision control 
mechanism to manage context changes and flight behaviors. 
To complete the described inspection task, we developed 
three visual sensing functions with captured images by 
UAV’s front camera. The first function is for road detection, 
which allows the UAV to fly following the road. It uses a 
convolutional neural network to produce image segmentation, 
which is further processed to produce flight directions for 
UAV. The second function is for landmark recognition. It is 
used to identify a specific landmark with a pre-captured 
image to verify a flight waypoint. The third function is a task-
oriented path planning function. It uses an image histogram 
to compare the current UAV’s captured image with a pre-
captured image. As a result, the relative position of the UAV 
to the target can be calculated, hence allowing the UAV to 
inspect the target in a zig-zag manner. 

In most UAV system, GPS is considered as a basis of 
navigation control. However, the instability of GPS accuracy 
may often lead to deviation of the flight path, sometimes 
causing hazards to the UAV itself and the surrounding 
environments. Instead of relying on GPS as the main 
navigation input, we use visual sensing as the primary source 
of contextual information. Instead, GPS is used as supportive 
information only for waypoint verification. In other words, 
we use landmark recognition from visual sensing as the 
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primary input and GPS information as the secondary input for 
waypoint verification. This double-checking has increased 
the robustness of flight navigation. 

In summary, our system adopts three types of visual 
sensing to provide specific contextual information of the 
environment and the task target, while using GPS only as 
supportive waypoint information. For task-oriented control, 
we use behavior tree to integrate perception with UAV 
navigation. For safety precautions, our operator uses a ground 
control station to supervise the whole process and can 
interrupt the UAV operation with manual commands in case 
of emergency. 

II. TECHNICAL COMPONENTS 

A. Robot Operating System as system foundation 

The Robot Operating System (ROS) [12] is an open-
source robotic platform that provides hardware abstraction, 
low-level device control, implementation of commonly-used 
functionality, and message-passing between processes. ROS 
uses graph architecture. Each process is a node in the 
computational graph model, whereas a node uses topics to 
send and receive messages in an asynchronous manner. 

Our system consists of five nodes, including the Roscore 
that handles overall ROS environment and graph model, the 
ROS Driver that handles communication with the UAV, the 
RosBridge_Suite that handles message-passing with ground 
control station interface through HTTP, the visual sensing 
node that processes captured images into meaningful 
information, and the flight task control node that hosts 
behavior tree as well as navigation control and other sensors’ 
input. The last two nodes are self-developed for our system. 

B. Behavior Tree as Flight Task Control 

Behavior tree is a mathematical model of plan execution 
used in computer science, robotics and control systems. It 
describes switching between a finite set of tasks in a 
hierarchical manner. There are four types of nodes in 
behavior tree, the sequential and fallback nodes are control 
flow nodes, labeled as an arrow and a question mark, the 
condition and action nodes are execution nodes, which are 
often used as leaf nodes. 

Take figure 10 as an example, the Take Off  node with a 
question mark below is a fallback node. A fallback node will 
only execute until a child node returns a value of true. Hence, 
it will only execute the Take off action node when the h>=xm 
condition node returns false. This fallback node illustrates 
that if the UAV does not meet certain height, it assumes the 
UAV is on land, and hence take-off action is executed. 
Sequential node, such as the Road following node with an 
arrow, will execute all nodes from left to right until false is 
returned. Hence, the UAV will only stop the road detection 
and following action node if it is in state 2 or 3, and according 
to our diagram, it will only switch to state 2 or 3 if the UAV 
is closing on a given waypoint. 

C. Road Detection using DeepLab in MobileNetv2 

Image segmentation is the task of partitioning an image 
into multiple segments, where each segment is represented by 

a layer of color. This makes the image easier to be analyzed. 
DeepLabv3+ [13], leveraged by the trade-off between speed 
and accuracy, is a deep learning neural network for semantic 
segmentation, whose goal is to assign semantic labels (e.g., 
person, dog, cat and so on) to every pixel in the input image. 
We tested DeepLabV3+ with Xception and MobileNetV2 as 
backbone in our specified environment, and obtained a score 
of 0.6 in 4 frames per second as shown in Figure 1. 

Xception is a network structure intended for server-side 
deployment, whereas MobileNetV2 is a faster network 
structure designed for mobile devices. The network takes a 
captured image of 856x480 pixels from UAV as input, and 
outputs semantic segmentation of classes as defined in the 
Cityscapes dataset for further processing. We then extract 
only the largest segmentation of road, which is used to 
calculate the central line of the road to identify where the 
UAV should direct its course of the flight. 

 

Figure 1. 4 FPS of DeepLabV3+ in MobileNetV2 

D. Landmark recognition using SURF 

We prepared an image of a selected landmark, then uses 

a Speeded Up-Robust Features (SURF) provided by OpenCV 

to produce keypoints and their descriptors. Due to insufficient 

image data for training and the feasibility of real-world 

practice, we address this problem through feature matching 

instead of the NN-based method. Using the keypoints and 

descriptors produced as a baseline, we compared it with the 

currently captured image by UAV’s front camera using K-

nearest neighbors search and produced a list of feature points. 

We then filtered the list to remove unsuitable points by 

calculating its distance difference using David Lowe’s ratio 

test. The final list of keypoints will be used for UAV’s 

position calibration and waypoint verification. 

E. Building relative position detection using histogram 

An image of the designated target is provided and 
processed into a histogram with OpenCV. We apply 
histogram-based approach to extract target features because 
it is hard for CNN model to extract arbitrary object contour 
due to poor generalization to unseen data. The captured 
image of the task target is split into left side and right side, 
each a 428x480 image. Both images are further sliced into 
3x3 blocks. A score is given to each block by comparing its 
histogram with the histogram of the provided image. Hence, 
we can compare the left and right images with blocks of 
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scores to acquire the relative position of the UAV to the target. 
If the blocks of scores that exceed a certain constant are less 
in the left image compare to the right image, it means the 
UAV position is on the left edge of the designated target.  

F. Navigation control using ROS topic 

We use ROS topic cmd_vel to instruct UAV’s moving 
direction and orientation. During the road detection phase, 
the calibration point is used to guide the UAV to fly towards 
the middle of the road, while the vanishing point is used to 
adjust the orientation of the UAV to face it. However, due to 
the asynchronous characteristic of computing speed and 
UAV flight speed, a timer is set to prevent visual sensing 
from using older frames as inputs to produce outdated results. 
In summary, the UAV flight movement during road detection 
and following is composed of a sequence of three actions: 
move, orientation adjustment, and waiting. 

During the zig-zag scanning phase, the flight task control 
node takes in a relative position. The histogram function then 
determines whether the UAV is on the left edge, middle, or 
right edge of the building. If the UAV is at the edge, it will 
start to lower its height, then move towards the edge of the 
other side. 

G. Ground control station 

The ground control station (Figure 2) is a simple interface 
built by Unity for monitoring UAV behavior. It uses ROS# 
provided by Siemens to communicate with ROS through 
RosBridge_Suite to enable message-passing. Other than 
information display, the GCS also implemented additional 
functions, such as manual control using a keyboard or mouse, 
sending commands to UAV to perform a series of actions, or 
simply halting its current operation. 

 

Figure 2. Ground control station screenshots in manual mode (left) and 

road detection following with crosshair (right) 

III. SYSTEM ARCHITECTURE 

Our current UAV system has three main modules. The 
cognition module, performed by the flight task control node, 
handles decision making and flight control. The perception 
module, implemented as the visual sensing node, processes 
sensory inputs into informative outputs for the cognition 
module. The ground control station, which is part of the 
interface module, serves as an interface between the UAV 
and a human operator. 

   

Figure 3. System Architecture 

As shown in Figure 3, the task is initiated by the operator 

through our ground control station. The UAV starts to take-

off once the configuration is set and initiates road following 

mode at the beginning. The visual sensing node then takes in 

camera images from the relative ROS Driver, processes 

through the DeepLabV3+ with MobileNetV2 to produce a 

segmentation mask. This mask is further processed into 

calibration point and vanishing point. 

A. Road detection and following 

We apply approximation to the largest contour in the 

semantic segmentation image making drone less shaking, 

then produce a central line of the contour, which is smoothed 

to further reduce jagged. The central line is composed of 

many points. Hence, we store all the points in an array, 

arranged in sequence of bottom to top. We first select the 31st 

point as a starting point, then calculate the previous 30 points 

and the next 30 points relative to it to produce a relative linear 

slope equation for both 30 points. We then find the slope 

difference between these two equations. The slope difference 

is stored in a list and proceed with the 32nd point, and so on. 

This operation continues to proceed until the last 31st point. 

A constant point is selected as the center of the UAV 

vision. It is used to compare the list of slope differences. The 

point with the largest slope difference to the center of UAV 

vision is selected as the calibration point. The last point in the 

list is selected as the vanishing point. Both points are then 

passed to the flight task control node as shown in Figure 4. 
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Figure 4. Calibration point and vanishing point calculated from the central 

line 

As mentioned earlier, our flight task control node will use 

both points to perform road detection and following 

navigation. Upon approaching a given waypoint, the system 

will perform waypoint verification and switch its task context 

accordingly. 

B. Landmark recognition 

Upon reaching a certain parameter of waypoint 2, the 

UAV will initiate the landmark recognition function using a 

pre-captured image to compare with the currently captured 

image. The UAV will adjust its position and close in on the 

landmark. Upon arriving at waypoint 2, the UAV will turn 

and face waypoint 3 according to GPS calculation. 

 

 

Figure 5. The landmark near waypoint 2 is specified by a pre-captured 

image to compare with the current image stream 

C. Building inspection 

Once arriving at the designated building, the system will 

adjust the UAV’s orientation to face the building using GPS. 

The UAV system is then switched to target select and scan 

node, and starts to rise to a certain height previously specified 

by the operator. A region of interest (ROI) is selected in real-

time by the operator as input. The visual sensing node then 

takes in the currently captured image and the image selected 

to produce a building relative position based on histogram for 

the UAV to maneuver. Upon reaching a constant height, the 

UAV will remain hover and wait for further instruction. 

  
Figure 6. The left image shows the UAV is on the left edge as histogram 

detects the target on right part, the right image shows the UAV is on the 

right edge determined by the score left larger than right in purple color 

IV. FIELD TEST AND RESULT 

  We selected a ready-to-fly UAV, the Parrot Bebop 2 

developed by Parrot Inc. as our UAV for field-tests. It is a 

quadrotor equipped with built-in orientation and altitude 

sensors, fisheye lens front camera, and Wi-Fi module. We use 

ROS Driver for Parrot Bebop Drone [14] developed by 

Autonomy Lab as an interface to ROS. A laptop with 

GTX1070ti is served as the computing device for the system, 

which communicates with the UAV through Wi-Fi. Hence, 

our ground control station, ROS, related drivers, libraries, 

and codes are all computationally processed on the laptop. 

 

Figure 7. Waypoint and the inspection target with zig-zag pattern 

We divided our inspection task into three waypoints. First, 

the UAV will be placed on waypoint 1 by the operator. It will 

take-off and fly forward by following the road until it passes 

a bridge and reaches waypoint 2. The UAV will then adjust 

its orientation to align with the road and fly towards waypoint 

3, where the designed target is located. The target is an 
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elevator (Figure 7 right) connected to a higher ground 

infrastructure with a height of 30 meters. 
 

 

Figure 8. The UAV is passing the bridge before reaching waypoint 2 

Upon arrival at waypoint 2, the UAV will turn and face 

waypoint 3 based on GPS. The path to waypoint 3 is a 

straightforward paved road along the riverbank. After 

reaching waypoint 3, the UAV will turn to face the designated 

target based on GPS again. The UAV rises to a height of 25 

meters. The operator then selects an image as input for the 

histogram. The UAV starts to perform zig-zag scanning 

according to its relative position to the building. It is set to 

lower by 2 meters once it reaches the edge of building and 

moves towards the other side of the target. Once the UAV’s 

flight height is reduced to 5 meters, its task is completed. It 

will remain hovering, waiting for the operator to provide 

landing instruction. 

 

Figure 9. Image taken from another UAV to record the scanning UAV (red 

circle), the lower right image shows the processed histogram 

Over fifty experiments, there were thirty-five successful 

autonomous flights, eight successful flights with operator 

support and seven failed flights. A video recording of one of 

the successful experiments of autonomous task-oriented 

flight is provided [16]. Wind interference is sometimes 

significant around the area, however, no failure was caused 

by the wind. Due to battery capacity, the UAV has a flight 

time constraint of 25 minutes. But the overall results show 

our system capable of task completion within the time 

limitation. Although most of our field tests ran successfully, 

some issues required the operator to react immediately. 

A. Camera image freeze 

There is a slight chance that the camera image stream may 

freeze and require a reset to recover. As mentioned earlier, 

we used a ready-to-fly commercial UAV, and due to its 

closed system, we were unable to identify the source of the 

problem because everything else was working normal, except 

the camera stream always passed the same image to our node. 

This issue can be solved by comparing each keyframe with 

the previous one to launch an aerial reset to the system. 

B. Using landmark recognition for GPS problem 

As mentioned, we use landmark recognition with SURF 

when closing in range of waypoint 2. Due to the GPS unstable 

signal in that particular area, the bridge area will direct the 

UAV towards the left side riverbank of the bridge, which is 

about 10 meters far from waypoint 2. Hence, our alternative 

method was to identify a landmark so the UAV can reach 

waypoint 2. 

C. Environment light source problem 

We define path A as waypoint 1 to waypoint 2 and path 

B as waypoint 2 to waypoint 3. We tested our system at 

different times and found out that there were significant 

differences in test results. In the morning, the light source at 

path A is strong, which resulted in a problem where the 

contour may not be identified as a road. However, after 

switching to path B, the UAV can fly smoothly. For evening 

when the sun is in another direction, the light source in path 

B became strong, resulting in a reverse behavior as compared 

to morning. As our experiment took place near the river bank, 

the strong light may also cause the model to recognize the 

river as the road, which may result in the UAV flying towards 

the river. To counter this issue, we are developing a model 

that enhances detection for degraded images.  

V. CONCLUSION 

This paper describes the application of a real-time 

autonomous task-oriented flight control system for building 

inspection. The image stream is processed through a neural 

network and is calculated to enable the quadrotor to fly 

towards the designated target by following the road. While 

arriving at the designated target, it uses edge-triggered 

movement patterns to perform coverage scanning. The 

designed system architecture and the overall task 

performance have been successfully verified in real-world 

environments. We also provide the following observations. 
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A. Behavior tree excels at UAV task management 

With the initial success of the building inspection task, we 

are in the process of designing new behaviors for more 

complex inspection tasks. Although there are other technical 

issues in adding multiple sensors and functions, the process 

of adding more sub-trees does not complicate our system. We 

conclude that behavior tree is effective in building an 

autonomous UAV task management system in real-world 

environment. 

B. Path planning for performing 2D/3D inspection 

To provide better structure inspection, we are developing 

a motion module to produce a series of waypoints as flight 

paths. This will enable the UAV to surround a building to 

perform inspection based on given information such as 3D 

model or building height and area, which greatly improves 

the range of application tasks. Since most buildings have 

accurate measurements and blueprints, this can be considered 

a general way to perform building inspection. With the 

addition of a path planning module, the autonomous task 

control architecture can also be applied to the inspection of 

larger areas, such as farms and factories. 
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Figure 10. Building inspection task is composed of 3 main sequential nodes: road following, landmark recognition, target select and scan. 
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