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Abs tr a ct

           We consider a finite-horizon, periodic-review system for a perishable product at a

           retailer that faces stochastic, age-dependent demand and loses excess demand, if any.

      For this system, we build three models that capture two sources of unfilled demand,

          insufficient inventory and inappropriate age, and penalize them at different rates.

           The models are characterized by increasing replenishment flexibility, and the goal of

       each model is to identify when to place an order and the quantity whenever an order

            is placed. In the first model, reorder intervals are equal. In the second model, reorder

            intervals can vary across orders. In the third model, reorder intervals continue to

       remain flexible but the retailer can also partially salvage her inventory whenever she

  has excess inventory. Using the models, we explore the effect of lost-sales penalties

             on the structure of the optimal value function. We find that the inventory-related cost

           in a period may lack convexity if the ratio of penalties for stockout and high age is

       below a threshold, which percolates to the value function as well. We also identify

          properties of the optimal replenishment policy for the three models. Finally, we con-

        duct numerical experiments to identify the marginal value added by the flexibility in

        reorder intervals and the option to partially salvage inventory as a function of model

parameters.

K E Y W O R D S

      age-dependent demand, dynamic programming, inventory control, periodic review

model, perishable products

 1 I N T R O D U C T I O N

          In the United States, around eight million tons of food is

        wasted every year in supermarkets, grocery stores and dis-

        tribution centers, according to an estimate by ReFED, a

       nonprofit focused on reducing food waste (ReFED, 2016).

           The value of the wasted food is estimated to be $18.2 bil-

         lion. Apart from causing a massive hit on the bottomline

         of the retailers, the waste also produces a significant social

        cost in the form of landfills. For brick-and-mortar retailers

     such as Wal-Mart, there is an additional reason to reduce cost

      of wastage: increasingly intense competition from Amazon.

com.

        Indeed, the importance of reducing food waste has not

         gone unnoticed in the retail sector, and the retailers have

         tried a number of solutions such as dynamic pricing, bet-

        ter forecasting and extension of shelf life (Jaszczyk, 2019;

          ReFED, 2018). Out of these, shelf life extension is a par-

      ticularly appealing solution since it alleviates perishability,

           the root cause of the problem. One way in which shelf life

    can be extended is through better packaging technology. For

         example, if beef is vacuum packed in multilayer plastic, its

            shelf life can be increased to 45 days as compared to a life

            of 3 to 7 days when it is packed in polystyrene foam trays

      (Gray, 2018). Another packaging technique is modification

  of the atmosphere. Putting sweet peppers in a bag with mod-

           ified atmosphere can increase its shelf life from 4 to 7 days

     (Flexible Packaging Association, 2014). Smarter packaging,

      however, is not the only way to increase the shelf life. Apeel

 Sciences, a California-based startup, has developed a coating
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         made from organic materials that can be applied on fruits

        and vegetables to extend their shelf life (McGrath, 2018;

         Strom, 2016). The articles report that one of the company’s

          products can more than double the shelf life of cassava, which

 otherwise starts decaying within 1 to 2 days.

        While greater shelf life definitely provides relief to retail-

ers, the relief may be partial at best since an increase in shelf

   life may not be completely translatable to an increase in shelf

           duration, defined as the time between the arrival of a fresh unit

    and its removal from shelf if it remains unsold. There are two

          reasons for it. One, in spite of growing awareness and concern

         among consumers on food wastage, they still want the produce

        to be fresh. Naturally, this constrains retailers from increasing

         the shelf duration to the maximum. More so, since perishables

         and their appearance play an important role in driving store

         traffic (Tsiros & Heilman, 2005). Another reason is that the

        more time food spends in a store, the more it may be moved

 around, which may make it appear worn out.

Indeed, complete exploitation of increased lifetime of bak-

        ery products was cited as one of the reasons when Interstate

         Bakeries Corp., the largest baker in the United States, filed

          for bankruptcy in 2004 (Adamy, 2004). As the lifetime of sev-

      eral bakery products increased due to innovations, Interstate

         sought to take full advantage by maximizing the shelf duration

   of its products. In particular, it increased the number of days

          its famous brands of bread was sold from 3 to 7 days, which

         was the new shelf-life of bread. The company expected several

       benefits such as reduced spoilage and savings in operational

          costs due to greater economies of scale. Yet contrary to the

   company’s expectation, the strategy did not help. The longer

          bread stayed on the shelf, the more frequently it was moved

      by store personnel and customers. This made the bread look

        shelf worn even though it was still consumable. The net result

     was a reduction in the demand of many popular products. In

       contrast, a competitor of Interstate, Flower Foods, utilizing

         the same technology, chose to increase the shelf duration of

       bread from 3 to 4 days instead of full 7 days, yet its sales did

         not decrease. In fact, Flower Foods’ sales increased by 5%

      (Adamy, 2004). These examples clearly illustrate the impor-

         tance of the decision regarding shelf duration and form the

motivation for this study.

  We consider a period-review model over finite horizon for

        a retailer that faces stochastic, age-dependent demand for a

  perishable product. The retailer faces two decisions: when to

         replace old inventory with fresh inventory and the order quan-

         tity for the fresh inventory. Whenever the retailer places an

          order, it salvages any unsold inventory and incurs a fixed cost.

         Since demand is stochastic, it is possible that demand exceeds

  inventory between two orders, in which case, excess demand

          is lost. Demand may also get lost when a customer chooses

          not to purchase the product when he finds the inventory to

    be too old. We model both sources of unfilled demand sepa-

 rately with possibly different penalties associated with them.

     Overall, the trade-offs faced by the retailer are economies of

      scale in order placement, which encourage large order sizes,

     versus deterioration of demand with age, which makes short

shelf duration and small order sizes more attractive.

         An example of a firm that discards old inventory while

   placing an order is Chesapeake Bagels (Ferguson & Koenigs-

         berg, 2007). Per Li, Cheang, and Lim (2012), this practice

        is also commonly deployed in supermarkets in Hong Kong.

        In contrast, Bruegger’s continues to sell older bagels along-

           side new bagels after receiving an order. As Li et al. (2012)

         note, both practices are common and deemed to be alterna-

         tives of each other. One reason retailers choose to discard

      old inventory while restocking shelves is their anxiety about

          store image if they sell both old and new inventory simulta-

 neously. Managers also worry that it may cause customers to

        behave strategically. Yet another reason lies in the practice

       of ordering identical quantities in each replenishment cycle.

       Since replenishment interval is also constant, fresh inven-

  tory is sufficient to satisfy all demand, making old inventory

expedient.

      Given the above context, we develop three models to ana-

        lyze the retailer’s decisions. In the first model, which we refer

     to as the fixed cycle model, the reorder interval is assumed to

           be fixed. This model is simple to deploy and is suitable for

        products whose demand has relatively low volatility. In the

 second model, the reorder interval is flexible, and we refer to

        this model as the flexible replenishment model. This model

         is thus more suitable for products with volatile demand. In

       the third model, we examine a partial salvage strategy in the

    presence of flexible replenishment intervals. We refer to this

  model as the partial salvage model. The model allows for sit-

        uations in which the retailer has an option to partially salvage

inventory whenever she has an excess amount of it.

        Using the three models, we probe several research ques-

tions, which are listed as follows:

      1. Does the inventory-related cost function, which

       includes both types of lost-sales costs, have useful

structural properties such as convexity?

        2. When the replenishment interval is fixed, what should

 be its value and how much quantity should be ordered?

       3. When the replenishment interval is flexible, when

         should an order be placed and what should be the

associated quantity?

        4. When it is possible to partially salvage inventory, how

      does the optimal replenishment policy change com-

pared to when it is not possible to do so?

        5. What are the incremental cost improvements due to

      flexible replenishment intervals and the flexibility to

partially salvage inventory?

        A summary of key insights obtained during the analy-

           sis of the above questions is as follows. We find that the

     inventory-related cost function may not always be convex in

         the amount of initial inventory and derive a sufficient con-

         dition under which it is convex. The condition requires that

           the ratio of penalties for stockout and high age be above a
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     threshold. Although the result is useful in establishing many

       properties of the value functions in the three models, it does

  not imply convexity of the value functions in them. In partic-

        ular, for the fixed cycle model, we find that the convexity of

          the optimal value function requires that the ratio of two penal-

            ties not only be above a threshold but also be less than another

           threshold. When the ratio is within the thresholds as well as in

     another special case, we develop bounds on the optimal order

  quantity. We also develop a heuristic to determine the length

of a cycle.

         The structure of the optimal value function is more complex

       for the flexible replenishment model, and the value function

        appears to lack useful properties such as monotonicity and

          convexity. Still, we are able to show the existence of two

  thresholds such that an order is placed in a period if on-hand

           inventory at the beginning of the period is less than the smaller

         threshold or greater than the larger threshold. We also develop

          bounds on the thresholds as well as the optimal order quan-

          tity. In contrast, in the partial salvage model, there exists a

      single threshold such that an order is placed in a period if and

          only if the on-hand inventory at the beginning of the period

         is less than the threshold. Moreover, the value function for

 the partial salvage model has additional structure in the form

      of monotonicity. Finally, flexible replenishment intervals pro-

       vide significantly more cost reduction (0%–6.4%) than the

flexibility to partially salvage inventory (<0.1%).

           A summary of the rest of the paper is as follows. In

 Sections 3 to 5, we develop and analyze the fixed cycle, flex-

      ible replenishment and partial salvage models, respectively.

       In Section 6, we present results of numerical experiments to

        determine the cost reduction due to the flexible replenish-

         ment and partial salvage strategies as a function of several

      model parameters such as variance of demand. In Section 7,

         we briefly discuss two extensions. In the first extension, we

          develop an approach to model the case in which quality of

         the product may deteriorate randomly over time. In the sec-

   ond extension, we analyze the scenario in which the leadtime

  is equal to one period. We conclude and summarize our find-

           ings in Section 8. We begin by positioning this work in the

existing literature in the following section.

2  L I T E R A T U R E R E V I E W

         We review two streams of literature here. Studies in the first

      stream primarily consider replenishment decision, that is,

          when to place an order and in what quantity, for perishable

          products in a retail setting. On the other hand, the second

        stream includes studies that consider other issues such as

           pricing to improve the profit of a retailer from the sale of

perishables.

 The literature on replenishment decisions in a retail setting

can be further classified into two groups depending upon the

        modeling approach deployed. In the first approach, lifetime of

          the product is assumed to be fixed and known. Once the prod-

 uct reaches the end of its usable lifetime, it becomes unfit for

          consumption and must be discarded (perhaps for a cost) or sal-

         vaged. In the second approach, inventory is assumed to perish

        at a uniform rate. When the lifetime is fixed and known, the

       retailer may either salvage old inventory while replenishing

          stock (eg, Li et al. 2012) or may sell inventories of different

 ages simultaneously (eg, Li, Yu, and Wu, 2016). In the latter

          scenario, a model also needs to consider the order in which

    inventories of different ages are sold. Li et al. (2016) assume

         the order to be last-in, first-out (or, LIFO) since consumers

          select the freshest unit available when all units are sold at

          the same price in a retail setting. (An alternative is first-in,

first-out or FIFO, which we discuss shortly.)

   On the other hand, when inventory is assumed to perish at

        a uniform rate, Nahmias (1977), Friedman and Hoch (1978)

         and Chu, Hsu, and Shen (2005) examine a periodic review

          model for lot sizing. This approach has also been utilized in

 numerous continuous-time models; see Raafat (1991), Goyal

        and Giri (2001), and Bakker, Riezebos, and Teunter (2012)

 for reviews.

           We note that there also exists a large class of papers that

        assume FIFO consumption of inventory for a perishable prod-

         uct with fixed and known lifetime. Such models are applicable

       in scenarios where the inventory manager controls the order

         in which inventory of different ages is sold or consumed.

         The reason is that the FIFO order minimizes spoilage due

        to expiry, which any inventory manager would prefer. An

   example of such a setting is blood bank. Assuming the FIFO

       issuance policy, Fries (1975) and Nahmias (1975) charac-

         terize the form of the optimal policy when excess demand

        is lost and backordered, respectively. A few other papers

         that have analyzed models when the issuing policy is FIFO

        are Brodheim, Derman, and Prastacos (1975), Li, Lim, and

        Rodrigues (2009), Chen, Pang, and Pan (2014), and Minner

and Transchel (2017).

       Three excellent reviews of literature on inventory con-

         trol of products with fixed and known lifetime are Nah-

      mias (1982), and more recently, Karaesmen, Scheller–Wolf,

    and Deniz (2011) and Bakker et al. (2012). Within this liter-

ature, the studies that are of particular relevance to us are the

    ones that consider age-dependent demand. Abouee-Mehrizi,

       Baron, Berman, and Chen (2019) consider multiple demand

      classes that have different freshness requirement. Moreover,

        the demand classes may have nonidentical penalties for not

        fulfilling demand. Chen, Li, Yang, and Zhou (2018) also

         study a similar problem. Within this stream, the paper that

           comes closest to this study is Li et al. (2012). Similar to

         us, they consider a retailer that discards old inventory when

         she places a new order. However, their model and results

          are significantly different from us, and a list of key differ-

        ences is as follows. One, they consider an infinite-horizon

       model with average-cost criterion whereas we consider a

       finite-horizon dynamic program. Two, their objective is to

       develop a computational procedure to identify optimal replen-

ishment, pricing and salvaging decisions. In contrast, we aim

         to develop insights on when to replace old inventory while
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         differentiating between lost sales due to old inventory and a

        stockout. Overall, we contribute to this literature by capturing

       both sources of unfilled demand, insufficient inventory and

high age, separately.

         We now discuss the literature on the management of perish-

         ables in a retail setting. Studies in this stream have considered

         a wide variety of research issues such as in-store logistics,

       shelf management, value of information, and markdown strat-

          egy. As an example of a study on in-store logistics, Reiner,

         Teller, and Kotzab (2013) examine the logistics of dairy prod-

         ucts inside 202 stores of a supermarket chain to benchmark

         processes and to identify ways to improve them. Similarly, Li,

   Yu, and Wu (2017) develop insights on shelf management by

         analyzing the replenishment decision for a product that is sold

        with two packaging technologies that result in differential life-

       times; one packaging technology results in greater lifetime

          than the other technology, though it is more expensive as well.

       In another example with relevance for shelf management,

        Blackburn and Scudder (2009) develop a model to identify

the harvesting batch size and pick rate for fresh produce such

         as melons to minimize the total cost of picking the produce,

 which includes the loss in freshness, and transporting it from

   farm to retail store.

      Many studies have sought to determine the value of infor-

  mation that can potentially reduce deterioration and spoilage

       of perishable products. Two examples are Ketzenberg and

      Ferguson (2008) and Ketzenberg, Bloemhof, and Gauk-

      ler (2015). Ketzenberg and Ferguson (2008) develop a frame-

     work to identify the value of sharing information and central-

      ized control (as opposed to decentralized decision-making)

          for a supply chain consisting of a supplier and a retailer.

   Similarly, Ketzenberg et al. (2015) develop a model to deter-

        mine the value of information regarding time and temper-

        ature history for a perishable product with random life-

        time and demonstrate the application of their model for

fish.

       Lastly, since the value of perishable products reduces

        over time, many retailers consider reducing prices for old

      items. Accordingly, multiple studies have developed models

        to derive insights on the optimal markdown strategy. Fergu-

        son and Koenigsberg (2007) develop a two-period model to

       analyze pricing and replenishment strategy when new and

         leftover units from the first period compete in the second

        period. Hu, Shum, and Yu (2015) incorporate strategic behav-

         ior of customers, exhibited in the form of forward buying,

         to determine how many leftover units to sell at markdown

         price and the quantity to order using a stochastic dynamic

program.

        For an excellent review of literature on retail operations,

    see Mou, Robb, and DeHoratius (2018), which also discusses

issues related to perishables in a grocery store.

         By examining when to renew inventory in the face of

        declining demand with increasing age, the findings of this

       study will be useful for better management of perishables in

         a retail setting. Thus, the study contributes to the literature

      in the above stream as well. Overall, this is the first paper to

  derive insights on the replenishment interval and order quan-

    tity for a perishable product that is renewed periodically and

whose demand depends on age.

        Having positioned this article in the extant literature, we

     now proceed to defining the notation and describing the fixed

cycle model in the following section.

3   F I X E D C Y C L E M O D E L

          In the fixed cycle model, the retailer places an order once

  every R periods.1 2,        (The lifetime of the product S is greater

            than or equal to .) While placing the order, she incurs a fixedR

  cost K cand variable cost at the rate of per unit ordered. The

         lead-time is zero, so the order is delivered immediately. At

    the same time, the retailer salvages any unsold old inventory

       through a clearance sale at a price of w R    per unit, where the

 subscript (R) in w R         stands for the age at the time of clear-

    ance. Similar to Li et al. (2016), we assume that the demand

          at clearance price is so large that all leftover inventory gets

         sold rapidly and that the demand at clearance price does not

     impact the demand for fresh inventory.3   The clearance price

  is nonnegative and decreases with the age of inventory at the

time of clearance, that is, w R1
  w R2

 for R1  < R2.

 3.1 Demand

   Whenever the product is in stock, the demand D t s,  for inven-

            tory whose age is equal to s at the beginning of a generic

 period t is equal to:

D t s,  = D t   f s( ), (3.1)

 where Dt       is a random variable. The terms D t   and f s( ) may

  be interpreted as the total number of customers who arrive in

    period t and the fraction of customers that decide to purchase

        the product after observing the age, respectively. The factor

            f s( ) applies so long as the product remains in stock. If and

   when the product runs out of stock, the customers who arrive

        subsequently cannot observe the age of the product. Even

  though a fraction (f s) of such customers would not have pur-

     chased the product had it been available, their loss of demand

          is actually caused by a lack of stock and not old age. There-

       fore, we penalize the loss of demand of all the customers who

       arrive subsequent to a stockout at the same rate, as we discuss

in the following subsection.

We make the following assumptions on D t  and f s( ):

1See Table 1 for a summary of notation.
2  R may also be interpreted as shelf-duration, defined in Section 1.
3              It is possible that instead of a clearance sale, the retailer may salvage the

  leftover inventory, for example, to a thrift store or just discard it. Bread may

           be salvaged to thrift stores at heavy discounts and meat may be salvaged to

chemical manufacturers, who may extract useful compounds from it. On the

           other hand, if the retailer just discards the leftover inventory, the clearance

price will be equal to 0. In either case, the model remains unchanged.
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 TABLE 1 Summary of notation

D  t s,                         Demand in period t when age of inventor y at the beginning of the period is (subscr ipts t is omitted in the paper unless necessar y)

D( )s Sum of demands of ages 0 through s, that is, D0  + D1 + · · · + Ds

 s Age of inventory at the beginning of a period

  f s( ) Fraction of customers who purchase the product when age is s

G s CDF of D( )s

 S Lifetime of the product

 T Number of periods in the planning horizon

 R Replenishment interval when cycle length is fixed

 x Inventory at the beginning of a generic period

 z Amount of inventory salvaged in a period when partial salvage is permitted

 q Inventory postsalvage in a period when partial salvage is permitted

 y Order quantity

y
R

Optimal order quantity in fixed cycle model when cycle length is R

 c Unit purchasing cost

  K Fixed cost of order placement

 h Unit holding cost

p1 Unit penalty cost for each customer walking away due to stale inventory

p2 Unit penalty cost for each unsatisfied customer due to stockout

w s Salvage value when age of inventory is s

Ls    ( ) Total inventory-related cost in a period when x x units of age s are on hand

v t     ( , )s x Optimal cost from period t onward when x units of age s are on hand

V R  (y) Cost of a cycle in fixed cycle model when order quantity is y

v1
t    ( )s x, Optimal cost from period t onward in flexible replenishment and partial salvage models when no order is placed in period t

v2
t    ( )s x, Optimal cost from period t onward in flexible replenishment and partial salvage models when an order is placed in period t

      Assumption 1 1. For any t D, t   is a con-

     tinuous random variable with density. Further-

 more, {D t     } are identically and independently

distributed.

    2. f s( ) is a deterministic and decreasing func-

          tion of s that takes values in the interval [0, 1]

  such that f (0) = 1 .
4

   We omit subscript t from Dt s, and D t   , unless necessary, in

         the rest of the paper to keep notation simple. Furthermore,

         we note that it is possible to extend our results to more gen-

 eral demand functions, for example, f s( ) may be random and

 correlated with D t  , since our results only require that D t s, be

decreasing in s.

          The functional form of f s( ) should be determined by the

characteristics of the product (Tsiros & Heilman, 2005). One

        such characteristic is product quality risk, which is defined

    as the health risk associated with consuming a product as its

         expiry date nears. If the product quality risk for a product is

high (eg, beef, chicken), Tsiros and Heilman (2005) find that

         the willingness-to-pay, which can be interpreted as a proxy for

     willingness to purchase at full price,5  decreases exponentially

4           Throughout this paper, we use the terms “increasing” and “decreasing” to

mean weakly increasing and weakly decreasing, respectively.
5             As Tsiros and Heilman (2005) state. “ The way that WTP (willingness…

           to pay) decreases throughout the course of the product’s shelf life provides

       information about consumers’ perception of how product quality deteriorates

 over time . . . .”

 as expiry date approaches. In contrast, for items whose prod-

          uct quality risk is perceived to be lower (eg, carrots), the

      willingness-to-pay decreases linearly. Another factor is the

       controllability of aging. For milk, aging is difficult to control,

          and so the willingness-to-pay 1 day before expiry is lower than

      vegetables such as lettuce whose aging can be controlled (to

some extent) through refrigeration.

  3.2 Cost model

          We consider three types of costs related to the amount of

  inventory and its age in a period. The first type is the holding

  cost. As per the convention, this cost is charged proportional

           to the amount of inventory at the end of the period. Therefore,

   it is equal to [hE x D− s ]+     , where x  0 is the available inven-

   tory to satisfy demand at the beginning of the period, h is the

unit holding cost and []+  = max[, 0].

        The second and third types of costs arise from unsatisfied

        customers. A customer may not purchase the product because

 either there is no stock on-hand or age of the inventory is too

    high for him. We use p1        to denote the unit cost of a lost sale

 due to high age of inventory and p2 to denote the unit cost of

a lost sale due to stockout.

        The expression for the lost-sales cost depends on whether

           or not inventory is stocked out in the period. Suppose first that

        a stockout occurs in the period, that is, Ds     > x. This is only

       possible if f s( )> 0, so we assume that to be the case as well.

        Let   [0, D) be the number of customers who arrive before
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the stock runs out. Using the definition of ,

 f s x( ) = .

       This means that the number of customers who do not pur-

         chase the product because of unacceptable age is equal to

    ( − ( )) =1 f s
 x f s( −1 ( ))

 f s( )
      . On the other hand, the number

         of customers who do not purchase the product because of

        unavailable stock is equal to ( − −D ) = D
x

 f s( )
 . Con-

          versely, when there is no stockout, lost sales occur only due

        to unacceptable age. The number of such customers is equal

  to D D− s     = −D(1 f s( )).

        Putting both cases together, the total cost of lost sales when

   f s( )> 0 is equal to

1(D s  > x)


p1


  x f s( −1 ( ))

 f s( )


 + p2


 D −

x

 f s( )



 + (1 Ds   x p) 1    D f s( −1 ( )),

          where 1( ) is an indicator function. On the other hand, if

     f s( ) 0, all demand is lost and every lost sale is due to unac-=

          ceptable age. Hence, the total lost-sale cost in this case is

equal to p1 D.

      Bringing all the terms together, the expected

inventory-related cost in a period is equal to

L s   ( [ −x) = hE x D s]
+

 + E


1(D s  > x)


p 1


  x f s( −1 ( ))

 f s( )


 + p2


 D −

x

 f s( )



 + (1 Ds   x p) 1        D f s f s( −1 ( ))), ( ) > 0

   = +hx p1    E D f s( ), ( ) = 0. (3.2)

    We assume that both p1  and p 2      include the list price, so we

        do not need to include a revenue term in the cost model. We

illustrate the cost model using the following example.

        Example 1 Let D = 50 (ie, realized value of

      D x s), = 20, and = 2 in a period. Furthermore,

       f (2) = 0.8. Given this information, the number

     of customers who would find the age of inven-

     tory acceptable is equal to D s       = =D f s ( ) 40.

Since D s    > x , a stockout occurs. The number of

      customers who arrive before the stockout occurs

    is equal to  =
x

 f s( )
    = 25. Of these, 20 pur-

         chase the product and five find the age of the

      inventory unacceptable and their demand is lost.

      The remaining 25 customers arrive after the

   stockout; their demand also remains unfulfilled.

     The inventory-related cost incurred in the

period is thus equal to 5p1  +25p2 .

         Although the two types of lost-sale penalties do not seem

          to have been compared in the literature, it is possible to

         draw some conclusions based on the many studies that have

         analyzed the behavior of customers in the presence of a

         stockout. Based on this literature, we believe that in general

           the two penalties should not be equal to each other. To see

           this, note that each penalty is equal to the sum of short-

       and long-term costs associated with a dissatisfied customer

      (Anderson, Fitzsimons, & Simester, 2006). The short-term

          cost is the expected foregone revenue due to a customer not

         purchasing the product, and the long-term cost is the expected

loss of future business.

    When a customer chooses to not purchase an old unit or is

      unable to purchase the product due to stockout, he has many

         choices such as switching to another size, brand or flavor,

       postponement, and purchasing the product from another store.

        Clearly, the most damaging choice from the retailer’s per-

       spective is the switch to another store. Although many factors

         that influence a customer’s decision have been listed in the

      existing literature, for example, nature of the product (hedo-

        nic vs utilitarian), urgency of need, and perceived product

       risk (Emmelhainz, Stock, & Emmelhainz, 1991; Sloot, Ver-

   hoef, & Franses, 2005), no study has listed circumstance (old

           age or stockout) as a factor. Intuitively as well, what a cus-

           tomer chooses to do when he is unable to purchase the product

          should not have a strong relationship with the reason for no

  purchase. Thus, contribution of the short-term cost should be

identical for both p1 and p2 .

         In contrast, the long-term cost, which is driven by a

         loss of customer confidence or damage to brand image, is

          likely to be different in the two scenarios since the senti-

         ments felt by the customers are different. When a customer

        faces a stockout, he forms an impression of incompetence

          on the part of the retailer (Peterson, 2018). On the other

         hand, selling old or nearly expired food creates an impres-

       sion of carelessness or lack of concern for customers’ health

     (Palmer, 2019). This difference in sentiments may lead to dif-

          ferent actions in the long run in the two scenarios, which

        implies differential costs (and hence penalties) in the two

scenarios.

        Even though the penalties can take different values, the

        methodology to estimate them should be the same. Two

       research studies that discuss such methods are Emmelhainz

    et al. (1991) and Anderson et al. (2006). The first study uses

          a survey to identify the choices made by customers in case

          of a stockout. This can be used to estimate the short-term

costs associated with stockout and old age. The second study

         tracked both short- and long-term shopping behavior of a con-

          trol group of customers. This approach can be used to identify

  the aggregate cost, which includes both short- and long-term

costs, associated with an upset customer.

Since p1 and p2 may take different values, we have consid-

          ered general values for them in this study. The analysis and

       the structure of optimal policy, however, depends on their rel-

       ative values. This is reflected in our first result, in which we

  show that L s            (x) is a convex function of x for a given s pro-

vided p2  is sufficiently large relative to p 1  . We also show that

the expression for L s      ( ( )x) can be simplified when f s >0. The

result is as follows.

     Proposition 1 Consider the expression in

(3.2).

Printed by [N
ational C

heng C
hi U

niversity (N
C

C
U

) - 140.119.080.208 - /doi/epdf/10.1002/nav.21956] at [03/03/2021].





   CHEN A N D SA PR A 365

     1. An alternative expression for L s   ( ) x is as fol-

lows

Ls   ( [ −x) = hE x D s]
+  + s E D[ s  − ]x + +

   1 − ( )f s

 f s( )
p1E D[ s],

 where  s  = p1 +
p2 −p1

 f s( )
. Fur ther mor e, i f

p 2   p1       (1 ( )) ( )− f s − hf s , th en Ls   ( ) x is convex in

x for a ny g ive n s.

  2. If p1  = p 2, L   s + 1   ( )x  L s     ( ), 1 .x s + < S

         Proofs of all the results are available in Appendix S1,

Supporting Information.

             In the proof of part 1, we show that the cost of lost sales

      due to age can be simplified to
 1− ( )f s

 f s( )
p1    E x Dmin ( , s), which

         is increasing in x. In other words, lower inventory reduces

 this cost. This is intuitive since the smaller the inventory, the

         faster it gets consumed, which leads to smaller number of

disappointed customers and hence lower penalty. In contrast,

        the cost of lost sales due to insufficient inventory is equal to

p2E D( s  − x )+, which decreases with x. The component of the

        sum of the two lost-sales costs that depends on is thus equalx

 to s E D( s  − x )+, where  s  = p1 +
p2−p 1

 f s( )
   . Observe that for

  large enough p1  , s      becomes negative. In that case, the total

        lost-sales cost (and hence the inventory cost function L s ( ))x

     becomes increasing in x. This is in contrast to the traditional

       inventory models in which lost-sales cost always decreases

with additional inventory.

   Not only does L s        (x) become monotone, but it may also cease

  to be convex when  s  is negative.6   A necessary and sufficient

    condition to ensure that s     remains strictly positive for all

        s S p …{0,1,2, , − 1} is that 2  > p1       (1 (− f S −1)). In general,

  three possibilities arise depending upon the relative values of

p1 and p2.

1. For p2    (0, p1      (1 (− f S −1))], s is strictly positive for at

              least one value of , but it is also negative for at least one values

 of s. Furthermore, s      decreases with s. Let s be the smallest

     value of s for which s   0.

2. For p2   (p1       (1 (− f S −1)), p 1],  s       >0 for all s S − 1. In

  particular, when p 2  = p 1  ,  s       is independent of s. As before, s

decreases with s.

  3. Finally, for p2   (p1   , ), s        >0 for all s S − 1. But now,

s increases with s.

        Part 2 of the proposition provides a sufficient con-

       dition for inventory-related costs to increase with age

         for a given amount of inventory. The result hints at

         the possibility that it is not necessary for such costs

        to always increase with age. Whereas the holding cost

       always increases with age (since demand decreases with

        age), the lost-sales cost may, in fact, decrease. For

      example, if x is small, then E D( s  − x )+   E D( s    )− x and

E D(   s + 1  − x)+   E D(   s + 1        )− x. Also, we can ignore the holding

6L s  ( ) becomes a concave function of x x when  s   < − h.

cost. Therefore,

L s(x)  p2 E D( ) − s   x p> 2E D( ) − s+1   x L s+1( )x

when    s + 1 > s (equivalently, p2  > p1       and f s( +1)< f s( )).

        An explanation for the above observation is as follows.

              Since f s( + 1)< f s( ), more customers find the age of the

   inventory unsatisfactory and walk away when the age is 1s +

          compared to when the age is s (assuming identical levels of

         demand in both scenarios). This means that fewer cus-D

         tomers observe a stockout in the period in which inventory

              of age s + 1 is sold. Since the penalty for lost sales due to

         stockout is higher than the penalty for losing customers due

to higher age, the total lost-sales cost is smaller when the age

is higher.

         We are now ready to state the cost model for the planning

      horizon. We will formulate the problem in two stages. In the

          first stage, we will analyze the order quantity decision for a

 given reorder interval R. In the second stage, we will explore

      the optimal reorder interval. Accordingly, let v t  ( ,s x) be the

          optimal cost from period t through the end of horizon when

              x sunits of age are on hand for a given R. (We have omit-

       ted an explicit dependence of R on v t     ( ,s x) for brevity.) The

expression for v t   ( , ) depends on whether an order is placeds x

 in period t tor not. When no order is placed in period ,

v t  (s x , ) = Ls ( [x) + E v t+1      ( + ( −s 1, x D s)
+ )],

           where T is the length of the planning horizon. On the other

hand, if an order is placed in period ,t

vt  (R x , ) = −wR   x + min
y0

  { (K 1 y > 0) + L0 (y) + cy

 + Ev t+1    ( ( −1, y D0)
+ )},

where v   T + 1  ( , )s x = − ws    x. We assume that it is suboptimal to

not place an order even though there is nothing on hand. The

assumption is stated formally as follows.

       Assumption 2 There exists a y > 0 such that

    K L+ cy + 0   ( )y − w1   E y D( − 0)+  < p2 E D( ).

        One implication of the above assumption is that the set of

             feasible values for R is not empty. ( 1 is feasible due toR =

          the assumption.) An empty set for R would imply the order

          quantity to be zero, which, apart from being a trivial solu-

 tion, suggests the possibility of incorrect estimation of model

parameters.

     3.3 Structure of the optimal solution

     The structure of the optimal solution depends on the relation-

        ship between the imputed cost of lost sales (s ) and age of

 inventory (s). When s  decreases with s, provided it remains

     positive, the optimal value function v t  ( ,s x) is convex in

 on-hand inventory. The convexity property continues to hold

    even when the imputed lost-sales cost increases with age pro-

        vided the cost does not increase too rapidly. More precisely,

    we find that if 0     s + 1   s           +  … −h sfor any {0, 1, , R 2}
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 and    R − 1   wR         − h, then the optimal value function is convex.

   The convexity of vt       implies that the function of order quantity,

L0     ( )y + +cy Ev   t + 1   (1, (y D− 0)
+), is also convex in it.

We state the result in the following proposition.

     Proposition 2 Let 0     s + 1   s  + h f or a n y

          s R …{0, 1, , −2} and    R − 1   w R   − h. The

   optimal cost function v t       ( , )s x is convex in x for

 any s.

  Note that when both assumptions together get violated, the

        value function becomes concave. This implies that the opti-

             mal value of y will be at one of the boundary points (0 or

          +) depending upon the value of c, which makes the problem

       uninteresting. Thus, the assumptions are not only necessary

       for a nice structure, but are also crucial to make the problem

meaningful.

The condition    s + 1    [0, s  + h] can be equivalently stated

as p2   [p1       (1 (− f R − 1)), p1    + −hF (R 1)], where

   F R( − 1) = min
    s R f s f s{0 1, , ,… − 2 ( )> ( + )}1

    f s f s( ) ( + )1

    f s f s( ) − ( + )1
,

          As an example, when f s( ) is linear, the minimand decreases

     in s. Therefore, F R( − 1) =
  f R f R( − )1 ( − )2

  f R f R( − )−2 ( − )1
   . Note that the

      expression for 1) assumes that there exists at least oneF R( −

                    value of s  {0, 1, … −, R 2} for which f s f s( )< ( + 1). If

            f s f s( ) = ( + 1) for all values of s  {0, 1, 2}, then we… −, R

  set F R( − 1) = .

      Consider now the scenario in which either

   s + 1    [0,  s    + h] for some s or    R − 1  < w R     − h. In this case,

  the function L0     ( )y + +cy Ev   t + 1    (1, (y D− 0 )+    ) may be neither

         convex nor concave and it may have multiple local minima.

             (We say that a function has multiple local min- :  

         ima if there exist at least two local minima w 
1
< w

2
such

  that either  (w
1
  ) (  w 

2
    ) or there exists w3  (w

1
 , w

2
)

  such that (w 3   ) (  w

1
      ).) To see this result, without loss

         of generality, we consider the cost incurred over one cycle.

  The cost incurred over one cycle is a suitable objective since

             the choice of affects the cost of only the followingy R − 1

periods. We denote this cost by V R(y), and it is equal to

V R  ( +y) = K

R−1

i=0

E






Li







 y −

i−1

j=0

Dj

+









   + −cy wR E


 y −

R−1

j=0

D j

+

.

        Let the optimal order quantity be denoted by y
R

   . In the follow-

   ing proposition, we characterize the equation that y
R

satisfies

 and prove that the equation has at least one solution. We also

         obtain simple bounds on the optimal order quantity in two

cases:    s + 1 > s      + h sfor all and    s + 1    s     + h sfor all .

      Proposition 3 1. The optimal order quantity

y
R

   satisfies the following equation:

  c−0+

R−2

s=0

  ( +h  s  −s+1 )G s   (y)+(h w− R  +R−1)G R−1(y) = 0,

(3.3)

 where Gs   ( ) (y = P D0 + · · · + D   s − 1  + D s   y .)

       Moreover, the above equation has at least one

solution.

    2. Let h +    R − 1   w R   . When    s + 1   s  + h f or

 all s

G−1
0


0  − c

0    + −Rh w R


  y

R
  G−1

R−1


0  − c

0    + −Rh w R


.

     On the other hand, when    s + 1>s  + h f or

 all s,

G−1
R−1


0  − c

0    + −Rh wR


  y

R
  G−1

R−1


R−1     − (R h c− )1 −

R−1    + −h w R


.

 To derive the equation in part 1, we expand Ls () using the

      alternative expression stated in Proposition 1. Subsequently,

         we simplify the terms corresponding to the lost-sales cost. On

           the other hand, the bounds in part 2 are obtained using the

  observation that G   s + 1   ( )y  G s         (y) for any s  {0, 1, 2}.… −, R

         Using the same approach, it is possible to obtain simple

    bounds on the optimal order quantity in two other (more gen-

 eral) cases: One, when    s + 1 >s      + h s sfor  0 where s0 is an

    arbitrary integer lying in {1, 2, , … R − 2} and    s + 1   s  + h

   otherwise, and two,    s + 1 < s      + h s sfor  0  (where s 0  is as

before) and    s + 1   s   + h otherwise.

    The assumption h +    R − 1   wR     is useful in deriving the

lower bound when    s + 1   s      + h sfor all . However, it is pos-

         sible to derive another lower bound when the assumption is

violated. The details are available in the proof.

        We will now use (3.3) to explain why V R(y) may not be

         convex and why it may have multiple local minima when

   s + 1    [0,  s  + h] or    R − 1  < w R    − h. To keep analysis simple,

  consider this equation for R = 2:

  c − 0   + (h + 0  − 1 )G0   (y) + (h w− 2  + 1)G 1(y) = 0. (3.4)

Thus,

d2 V2( )y

dy2
  = (h + 0  −  1)0   (y) + (h w− 2  + 1 )1( )y ,

 where 0  and 1    are the densities of D0  and D0  + D1  , respec-

    tively. Suppose first that 1 > 0      + h. For large enough 1 ,

   the RHS may become negative, which would imply a lack of

 convexity. Similarly, when 1  < w 2    − h, for small enough 1 ,

     the RHS may, once again, become negative. However, when

w2    − h  1   0     + h, the above expression is always positive.

         To see the possibility of multiple local minima, we restate

(3.4) as

0   − c + (1    − −h 0)G0   (y) = (h w− 2  + 1)G1 ( )y .

 For 1 > 0      + +h hand 1  > w 2      , both the LHS and RHS

      increase in y, and they may be equal at several places. Simi-

  larly, both the LHS and RHS decrease in y if 1  < w2    − h < 0.

          Once again, the LHS and RHS may be equal at several
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  FIGURE 1 Expected cost over planning horizon as a function of cycle length (R). We take p 1  = p 2     = =12 and K 250. All other parameters are same as in

 Table 2

       places. The above equation also provides another glimpse

          of why there is a single minimum in order quantity when

1    (0,  0    + h) and h +  1  > w2     . Under these conditions, the

         LHS is decreasing and the RHS is increasing in y, which

results in a single local minimum.

         We next discuss how the cycle length (R) affects VR(y
R
)

 and y
R

        . We state these relationships in the following three

remarks.

   1. It is not necessary that y
R

 increases in R. For

  example, if w   R − 1 is significantly larger than

w R     , then it is possible that y
R−1

 > y
R
. How-

ever, w   R − 1   wR     is not a necessary condition

 for y
R−1

 > y
R

      . Even if the salvage value is

  uniformly zero (ie, w i   = 0 for all i y), 
R

may

    still be smaller than y
R−1

   . One scenario in

   which this may occur is when demand in the

          last period in the cycle is likely to be low (due

   to low f R( − 1)).

   2. The optimal cycle cost, V R(y
R

 ), increases in

     R. There are two main drivers of this result.

    One, the inventory-related costs increase

     with R. Even though the optimal order quan-

        tity may not be monotone with respect to R

        (as noted in the first remark), the total cost

      of carrying inventory and lost sales increases

       with R. Two, the salvage value of leftover

     inventory decreases with R. Together these

factors cause V R(y
R
  ) to increase with R.

 3. V R(y 
R
 ) is not necessarily convex in .R

       We present examples below to illustrate the nonmonotone

  behavior of y 
R

 when wi       0 and possible nonconvexity of

V R(y
R

       ). Following the examples, we analytically establish two

       other observations that we discussed above: the increasing

  nature of V R(y
R

    ), and the nonmonotone behavior of y
R

when

wi   0.

           Example 2 1. If (1)D N (10, 2), f = 0.5,

    c h p= 5, = 1, 1  = 6, p2  = 7, w 1  = 3.8, w 2  = 1.5,

 then y
2

  = 9.61 < y
1

 = 9.88.

      2. Suppose D is deterministic such that

    D f s= 100 and ( ) = exp

−

s

2


 . V 3(y 

3
) −

V2(y
2

  ) = 73.6h V> 4 (y
4
) − V3 (y

3
) = 66.9h.

  Proposition 4 1 V. R(y
R
   ) increases with R.

  2. Suppose w i     0 and p1  = p2    . There exists an

       > 0 such that for all f ( ) , R   y
R

  y
R+1

.

   3.4 Optimal cycle length

 The importance of the correct cycle length decision is appar-

  ent from the difference in fortunes of Interstate Bakeries and

          Flower Foods, as we discussed in Section 1. As the lifetime

           of bread (S) increased from 3 to 7 days, Interstate chose to

          increase the cycle length R automatically from 3 to 7 days

           while Flower Foods selected a smaller value of R of 4 days.

         For Interstate, the reduction in demand due to old inventory

   caused far more damage to its sales than the savings in fixed

          costs due to less frequent replenishment. See Figure 1 for a

          sample plot on how a sub-optimal selection of could leadR

          to reduction in expected profit. (In the figure, we have set

p1  = p2          = unit price, so the expected cost can be interpreted

as negative of expected profit.)

        With this motivation, we next discuss the computation of

         the optimal value of R. Given R, the total cost incurred over

     the planning horizon may be approximated by
T V R(y

R
)

R
. Let R *

      be used to denote the optimal value of R. We first show that

R*          cannot be greater than s whenever s S − 1. (Recall that

    s sis the smallest value of for which s   0.)

  Proposition 5 R   s.

        One implication of the above proposition is that when

p2    (0, p1              (1− f (1))], s = 1 and so it is optimal to place an

order every period.

     In general, the computation of R*    will be relatively straight-

 forward if
V R(y 

R
)

R
   is convex in R. However, this ratio may not

         be convex. For one example, consider the setting given in

         Example 2, part 2. For h = 1 and K = 20,
V2 (y

2
)

2
−

V 1(y
1
)

1
=

  20.33 11.08> =
V3 (y

3
)

3
−

V2(y 
2
)

2
.
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        A weaker property than convexity but still conducive to

     the optimization is quasi-convexity. With quasi-convexity of
VR

(y
R
)

R
         , multiple local minima are ruled out, and the deter-

  mination of R *   is easier. Indeed,
V R (y

R
)

R
  will be quasi-convex

 provided V R(y 
R
      ) is convex (Boyd & Vandenberghe, 2004,

   p. 103). However, as noted above, VR(y
R
   ) may not always be

convex.

       In the absence of convexity or quasi-convexity of
VR(y 

R
)

R
,

           one heuristic that could be used is to take the smallest local

         optimal solution; that is, identify the smallest R such that
VR+1(y 

R+1
)

R+1
−

VR(y 
R
)

R
   > 0. If no such R exists, which would imply

that
V R(y

R
)

R
      strictly decreases in R for all feasible values of R,

          then take the cycle length equal to S. The heuristic appears

         to perform well when we tested it computationally. For 25

different parameter combinations, the heuristic identified the

optimal value of cycle length with 100% accuracy.

   4 F L E X I B L E R E P L E N I S H M E N T M O D E L

         In this section, we model and analyze a flexible replenishment

    strategy. In this strategy, the retailer can place an order in any

 period, so the time between two successive orders is not nec-

         essarily identical. In each period, the retailer pursues one of

         the following two options: Either retain old inventory or place

          an order and sell old inventory at clearance price. Once the

     age of inventory becomes equal to the lifetime of the product,

         an order is necessarily placed. We refer to the option in which

       no order is placed as Strategy 1. The other option in which an

order is placed is referred to as Strategy 2.

   With this setup, the optimal cost from period t through the

end of horizon is

vt  (s x , ) =







 min{v 1
t   ( )s x , , v2

t      ( )}s x , , < ,for s S

v2
t      ( ) =s x , , for s S,

−w s       x t T, for = + 1,

where

v1
t  (s x , ) = L s(x) + Ev t+1      ( + ( −s 1, x D s )

+  ), (4.5)

           is the optimal cost from period t through the end of horizon

 when Strategy 1 is used in period t and

v2
t  (s x , ) = −w s   x + min

y0
    { ( +K 1 y > 0) + cy L0( )y

 + Ev t+1    ( ( −1, y D 0)
+  )} (4.6)

           is the optimal cost from period t through the end of horizon

when Strategy 2 is followed in period t. The term L s   (x) in (4.5)

and (4.6) is as defined in (3.2).

To make analysis interesting, we assume the following.

  Assumption 3 v 2
t

   ( )s,0 < v1
t

 ( )s,0 . Moreover,

    if for some x v, 1
t  (s x , ) = v2

t      ( )s x , , then the tie is

broken in favor of Strategy 2.

 The assumption ensures that an order is necessarily placed

        when there is nothing on-hand. If the assumption regarding

   relative values of v2
t    ( )s,0 and v1

t       ( )2 0, is violated for some ,t

            then it may be optimal not to place an order in the period

      and lose all the demand. Thus, the assumption helps in avoid-

       ing trivial outcomes. Moreover, any inventory system with

        such an outcome is likely incorrectly estimating the cost

       parameters. Remaining assumptions remain the same as in

Section 3.

          Observe that similar to the model in Section 3, the above

      model becomes a multi-period newsvendor model when

           S D d= 1. Furthermore, when demand is deterministic (ie,  ),

       the fixed cycle and flexible replenishment models produce

      identical results. Since the flexibility to place orders is more

     useful when demand is more volatile, flexible replenishment

is likely to be more useful in volatile demand environments.

 4.1 Analysis

     For the flexible replenishment model, the optimal cost func-

 tion vt         ( ,s x) is not necessarily convex in . To see this, observex

            that the optimal cost for either strategy is convex for t T=

          (assuming s S< ). However, the minimum of two convex func-

         tions is not necessarily convex, so the optimal cost function

          for t T= or any other period is not necessarily convex.

          This is also illustrated in Figure 2A, which shows a sample

         plot of the optimal cost function. The figure also shows that

         the optimal cost function appears to lack properties, such as

   quasi-convexity or monotonicity, that are useful in establish-

         ing a structure for the optimal policy. This makes analysis

  inherently difficult, though we are still able to derive several

results on the structure of the optimal policy.

  4.1.1 Inventory renewal

             We begin by showing that if the age of inventory in a period is

     equal tos (and so s        0), then it is optimal to follow Strategy

       2 in the period. In other words, if the imputed shortage cost is

negative, then it is optimal to renew the inventory. The result

is stated in the following proposition.

     Proposition 6 If s = s in p erio d t , then

      Strategy 2 is optimal in the per iod.

Recall that if p2   p1        (1 (1)), then− f s = 1. Thus, similar to

     the Fixed Cycle model, an order must be placed every period.

          For the rest of this section, we assume that s < s. In the

following proposition, we state two properties of the optimal

policy when the lifetime is equal to two periods.

     Proposition 7 Let S = 2, a nd l et 1  >0.

    1. If h + 1   w2, the n v 1
t

    ( )s,  is convex. Con-

    vers e ly, if h + 1   w2, then v 1
t    ( )s,  is con-

  cave and decreasing.
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        FIGURE 2 For (A), K = 100, 1, 5, h = c = p1  = 10, p2          = = + = −10, D (40 ), ( ) f s 2 exp(0.1s w), s               0.75, t = = = = 5, s 2, T 8, S 6,  N (0, 10) truncated

at          ± = = =10. For (B), K 30, h 1, c 2, p1  = 6, p2                  = = − = = = =18, D  40, f s( ) 2 exp(0.04s S), 6, t 2, s 1, T 8.

  2. Either v2
t

   ( )s x , < v 1
t

    (s x , ) x , i n w h i ch c a s e

        Strategy 2 is followed for every x, or there

   exist two thresholds xl
t  and x u

t   such that Strat-

         egy 1 is followed for all values of x  (x l
t  , x u

t )

   and Strategy 2 other wise.

 When v1
t       is concave, it always remains above v2

t . On the

      other hand, when it is convex, it may either remain above v 2
t

    for all x vor meet 2
t       twice. When the two functions meet twice,

Strategy 2 is optimal when the initial inventory is either very

          low or very high. When the inventory is very low, it may be

         insufficient to satisfy demand in that period, so the retailer

      prefers to place an order. On the other hand, when inventory

  is very high, the cost of holding inventory may outweigh the

         possible future gain (through sale of that inventory) that could

          be obtained by retaining it. Therefore, it may be optimal for

the retailer to write-off the old inventory through a clearance

sale and make a fresh start through a new order.

         We next discuss the general case in which the lifetime

         could be more than two periods. In the following theorem,

         we characterize the form of the optimal policy for general

           lifetime values. Similar to the case when S = 2, there exist

    two thresholds such that an order is placed when the amount

           of inventory at the beginning of a period is less than the

     lower threshold or greater than the upper threshold. However,

           it is not necessary that no order is placed between the two

thresholds.

      Theorem 1 Suppose that the distribution of

        D has a bounded support, that is, there exists

           M D M . If v< such that 0   1
t   ( )s x , <

v2
t          ( )s x , for some x, then there exists a lower

 threshold xl
t

    ( ) s and an upper threshold xu
t
( )s

         such that Strategy 2 is followed when x  x l
t( )s

   and x  x u
t ( )s .

        Although Strategy 1 may not be followed between x l
t
( )s

 and x u
t        ( )s , our extensive numerical experiments show this to

        be the case usually. They indicate that only when demand is

      deterministic or has very low volatility that an order might be

       placed when on-hand inventory lies between the two thresh-

        olds. In other words, when demand is sufficiently volatile,

     only Strategy 1 is likely to be optimal between xl
t  ( )s and xu

t ( )s .

        To explain this observation, consider Figure 2B. In this

   figure, we have plotted optimal costs corresponding to Strat-

    egy 1, Strategy 2, and their minimum as a function of inven-

        tory. To construct this example, we have assumed the demand

to be deterministic.

     Observe that the plot corresponding to Strategy 1 has sev-

        eral peaks and troughs. Consider the trough point denoted

         by A. This point corresponds to the inventory required to

         satisfy exactly one period’s demand. If the inventory at the

           beginning of the period is less than A, the retailer will lose

    sales. When the inventory increases beyond A, it is more than

         sufficient to satisfy one period’s demand but not enough to

        satisfy demands of two periods. Thus, any remaining inven-

           tory will have to be salvaged in the next period when an

        order will be placed. This is true for all the inventory values

          between points andA B. For such values, the cost increases

            at a rate equal to the difference of holding cost rate and sal-

    vage value (h w− s      ). When the inventory increases beyond

             point B, it is now more beneficial to use it to satisfy a sec-

ond period’s demand than salvaging it entirely. For inventory

        values between points andB C, where C corresponds to the

  amount of inventory required to satisfy demands of two peri-

          ods, the retailer will have to incur some lost-sales. As the

         inventory increases beyond C, the retailer once again has to

          salvage some of it while placing an order two periods later

until it reaches the next peak.

        As can be seen from Figure 2B, multiple points of intersec-

  tion between v1
t    ( )s,  and v2

t        ( )s,  may arise due to the zigzag
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     nature of the plot for v1
t

      ( )s,  . Sharp peaks and troughs arise

          since demand is fully known. This ceases to be true when

         demand is not deterministic. As a result, the curve becomes

 more “smooth” and peaks and troughs gradually vanish. Our

       experiments indicate that relatively mild values of demand

          uncertainty result in a smooth curve with mild or no peaks

    and troughs. In such a case, it is very likely that only Strategy

1 is followed between xl(s) and x u( ).s

       However, since it is not certain that Strategy 1 will neces-

sarily be followed between points x l
t  ( )s and xu

t ( )s , we identify

         a set of inventory values where Strategy 1 is sure to be opti-

        mal. We accomplish this objective by developing two upper

  bounds on v1
t         ( )s x , . These bounds are convex functions of x

  and thus intersect v2
t        ( )s x , at none or two points since v 2

t  ( )s x ,

       is a linear function of x for any given s. When a bound inter-

  sects with v 2
t

           ( )s x , at two points, the values of that lie betweenx

           the two points follow Strategy 1. We also note that the left

   intersection point of v 2
t       ( )s x , with either bound provides an

  upper bound on xl
t     ( )s . Similarly, the right intersection point of

v 2
t   ( )s x , with either bound provides a lower bound on x u

t  ( )s x , .

       We obtain the first upper bound on v1
t    ( )s x , by imposing

     the restriction that Strategy 1 be followed in period t + 1 and

         Strategy 2 be followed in period t + 2. (Clearly, the bound is

          feasible only when s + 1 < s.) Similarly, the second upper

bound is obtained by imposing the requirement that Strategy

  2 be followed in period t + 1.

We state the result formally in the following proposition.

       Proposition 8 Let t < T . L e t B1
t   ( )s x , and

B 2
t

     ( )s x , be defined as follows:

B1
t  (s x , ) = Ls (x) + EL s+1   (( −x Ds)

+)

 + Ev2
t+2      ( + (( −s 2, x D s)

+  − D s+1)
+),

      s + (1 < min s S, )

 where    s + 1    [0, s      + +h] and h    s + 1   w   s + 2 ,

and

B2
t  (s x , ) = L s (x) + Ev2

t+1      ( + ( −s 1, x D s)
+      ) (, <s min s S, ),

   where h + s   w   s + 1  . B1
t    ( )s,  and B2

t   ( )s,  are

     convex. Thus, these functions intersect with

v2
t        ( ) s x , at none or two points. When B i

t  ( )s x ,

  intersects with v 2
t        ( )s x , at two points, let the lef t

       and right intersection points be denoted by  i

 and u i    , respectively. If B i
t

    ( )s x , does not intersect

 with v 2
t

 ( )s x , , s et i  = + and u i  = 0. T h en,

x l
t       ( )s is bounded from above by min(1  , 2) and

x u
t       ( )s is bounded from below by max(u 1  , u2).

    Observe that it is possible to develop more bounds similar

  to the B1
t          by requiring that Strategy 1 is followed in next k,

    k  2, periods and Strategy 2 is followed in (k + 1)-th period.

     Similar to Proposition 2, the assumptions on cost parame-

           ters are crucial to ensure the convexity of the two functions. If,

  for example, h +    s + 1   w   s + 2    and h + s <   s + 1 , then B 1
t  ( )s x ,

     becomes concave and decreasing. Furthermore, the function

will always remain above v2
t .

         To examine how close the bounds are to the optimal

     thresholds, we computed the thresholds, min(
1  , 

2) and

max(u1  , u2        ), for 25 different parameter combinations. For a

            sample of results, see Table S1 in Appendix S1. It is clear from

    the sample data that the bounds are either equal to the thresh-

        olds or very close to them. This means that the bounds, which

    are easier to compute, can be heuristically used as substitutes

for the thresholds.

  4.1.2 Order quantity

         We note that the computation of the optimal order quantity

      is time intensive due to lack of a simple structure of the cost

         function. It is also possible that there exist multiple order

       quantities that minimize the cost locally. However, the com-

          putational effort can be reduced if the search is restricted to

an interval. With this objective, we state an upper bound and

   a lower bound on the optimal order quantity in the following

proposition.

    Proposition 9 Suppose that    s + 1   s  + h for

           all s  … −{0, 1, , S 2} and s       (s − 1)h w+ 1

         for al l s  … −{0, , S 1}. If an order is

            placed in period t t T S,  − ( − 1), then the

     optimal order quantity is bounded from

above by G−1
S−1


0−c

0+ −h w1


   and from below by

G−1
0


0−c

0+ −Sh w S


.

     Both bounds can be interpreted in terms of the critical ratio

       used in the newsvendor model. The lower bound is equivalent

to the critical ratio for a newsvendor model with demand D0 ,

    one-period underage cost of 0      − c, but with the maximum

        possible overage cost of c w+ Sh − S      . On the other hand, the

upper bound is equivalent to the critical ratio with maximum

 possible demand D   (S − 1)     , maximum possible underage cost of

0             − c, but lowest possible overage cost of c h w+ − 1. In Table

            S3 in Appendix S1, we report the bounds as a function of mul-

tiple model parameters along with the optimal order quantity

             at t = 10. The table shows that the upper bound is closer to

the optimal order quantity than the lower bound.

      Since the computation of the optimal order quantity is not

 easy, an alternative is to use a heuristic. One such heuristic is

           the use of the optimal order quantity for the fixed cycle model.

Not only is this heuristic relatively easy to implement, it also

     appears to perform well. Upon testing for accuracy, we found

           that the heuristic results in a cost that is within 0%-2.3% of

the optimal cost (see Table S2 in Appendix S1).

         Before we close this section, we note that the flexible

       replenishment strategy can be alternatively modeled using a

 renewal process, which can be solved using the machinery of

       fractional programming. This approach is also applicable to

         the partial salvage strategy. For two examples of this approach
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          for inventory control models, see Li et al. (2012) and Feng

and Xiao (2000).

5   P A R T I A L S A L V A G E M O D E L

In the previous section, we learned that when the retailer has

        excessive amount of inventory, she may be better off selling

   all of it at clearance price to save on inventory holding costs.

        Since the flexible replenishment model only permits either no

      salvage or full salvage, it may be even more cost effective to

           salvage only a few units instead of all of them and continue

   to sell the remaining inventory at list price without placing a

  new order. The strategy of partially salvaging extra inventory

     not only saves carrying costs, but may also result in fetching

          higher salvage revenue if some units are unlikely to be sold

          before the next order is placed. In this section, we analyze

       such a model in which some inventory may be salvaged at the

beginning of each period in which Strategy 1 is followed.

        Inventory write-offs or disposals for both perishable or non-

 perishable products are quite common in the real world. This

         is also reflected in the inventory control literature, as many

       papers have modeled disposal of inventory. Rosenfield (1989)

        develops an approach using a continuous review model to

         identify when and in what quantity to salvage some inven-

          tory when demand is stochastic. He also looks at the case

        when the product is perishable. Another paper that models

inventory disposal is Çetinkaya and Parlar (2010). They con-

         sider a one-time disposal during the transition to a different

         replenishment policy. Finally, Li et al. (2016), which is also

          an excellent source for a summary of the papers that model

       inventory disposal, consider a periodic-review model for a

        perishable product with the possibility of clearance sale in

     every period. The key difference between that paper and our

          study is that they assume a LIFO issuance policy, while the

         consideration of an issuance policy is not required in our

model.

         We now discuss the modeling of partial salvage. For this

         purpose, we include a new decision variable z, which rep-

       resents the partial salvage quantity, into the formulation.

        The modified expression for one-period expected cost is as

follows:

L s  (x z, ) = −w s       z x z D+ hE[ − − s]
+

 + s E D[ s    − + ]x z + +
   1 − ( )f s

 f s( )
p1 E D[ s],

          where we have included z as an argument in the definition

of Ls .

  Given the definition of L s   ( ,x z), we now state the formula-

tions of Strategies 1 and 2 as follows:

v1
t  (s x , ) = min

0 z x
{L s  ( [x z, ) + E v t+1        ( + ( − −s 1, x z D s)

+)]},

(5.7)

v 2
t  (s x , ) = −w s   x + min

y0
    { ( +K 1 y > 0) + cy L0  ( )y,0

 + [E v t+1    ( ( −1, y D0)
+  )]}. (5.8)

       Observe that the formulation for Strategy 2 remains

       unchanged. The analysis is simplified if we substitute

             x z q q− = into the formulation. The variable may be inter-

         preted as the quantity remaining after the partial salvage. With

this substitution, the new formulation is

v1
t   (s x , ) = min

0 q x
{Qs  ( [x q, ) + E v t+1      ( + ( −s 1, q D s)

+)]},

v2
t  (s x , ) = −w s   x + min

y0
    { ( +K 1 y > 0) + cy Q0  ( )y y,

 + [E vt+1    ( ( −1, y D 0)
+)]},

where

Qs  (x q, ) = −w s     ( − [ −x q) + hE q D s]
+

 + s E D[ s  − ]q + +
   1 − ( )f s

 f s( )
p1 E D[ s].

  Observe that Qs    ( , )x q = Ls        ( ,x z), where q x z= − . The optimal

 cost function vt        ( ,s x) remains the same as in Section 4, that is,

vt  (s x , ) =






 min{v1
t   ( )s x , , v2

t      ( )}s x , , < ,for s S

v2
t      ( ) =s x , , for s S,

−ws       x t T, for = + 1.

       Similar to the flexible replenishment model, we assume that

v 2
t

   ( )s,0 < v1
t

      ( )s,0 to ensure that an order is necessarily placed

        when there is nothing on hand. The remaining assumptions

remain the same as for the fixed cycle model.

       Compared to the flexible replenishment model, the opti-

         mal cost function for the partial salvage model has simpler

          structure. It still lacks convexity for the same reasons as in

Section 4, but it is now decreasing in x. The difference arises

because v1
t    ( )s x , is now decreasing in x. (See subsection A.11

 for a proof.) Since v2
t

   ( )s x , , which remains unchanged, is also

     decreasing, the optimal cost function is decreasing in x. The

monotonicity of vt makes analysis considerably easier.

 5.1 Analysis

  5.1.1 Inventory renewal

           We now turn our attention to establishing the form of the opti-

       mal replenishment policy. To accomplish this objective, we

      transform the cost functions as follows: g i
t  (s x , ) = vi

t  (s x , ) +

ws     x for i = 1,2, and let g t   ( {s x , ) = min g1
t   ( )s x , , g 2

t  ( )}s x , . It

is easy to see that gt  ( , ) s x = vt   ( , )s x + w s x. By definition,

g1
t   (s x , ) = min

0 q x
{w s     q q D+ hE[ − s]

+

 + s E D[ s  − ]q +  + p1

   ( − ( ))1 f s

 f s( )
E D( s)

 + [E g t+1      ( + ( −s 1, q D s)
+) − w s+1   ( −q Ds)

+]}

 = min
0 q x

{w s    q + (h w− s+1   ) [ −E q Ds]
+

 + p1
   ( − ( ))1 f s

 f s( )
E D( s ) + sE D[ s  − ]q +

 + [E g t+1      ( + ( −s 1, q D s)
+)]}

  min
0 q x

J q( ),
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and

g 2
t  (s x , ) = v2

t  (s x , ) + w s   x = min
y0

    { ( +K 1 y > 0) + cy L 0  ( )y,0

 + [E v t+1    ( ( −1, y D0)
+)]}.

  Note that g 2
t         ( )s x , is independent of both x sand , so we

       define it as a constant H . If H g 1
t       ( )s x , for all x, then it is opti-

          mal to always follow Strategy 2. One scenario in which this

   condition is satisfied is when s = s. (The argument is similar

         to proof of Proposition 6.) The more interesting case occurs

  when H g> 1
t        ( )s x , for some x. We state the optimal policy for

that case in the following theorem.

   Theorem 2 Suppose q
x   is the constrained

          minimizer of J q x( ) over q  [0, ] and let q *

     be the global minimizer of J q( ). Fu rther more,

    suppose that H > g 1
t  (s q, ).

     1. There exists a threshold xl
t    ( )s such that an

         order is placed if and only if x  xl
t ( )s .

       2. Suppose Strategy 1 is followed. Then, the

   quantity x q− 
x     is salvaged. Fur thermore, for all

  x q *      , the quantity x − q*  is salvaged.

         The above theorem states that there exists a threshold (x l
t( ))s

              such that an order is placed in a period if and only if the inven-

tory at the beginning of the period is less than or equal to the

     threshold. Otherwise, no order is placed and some inventory

       may be salvaged if necessary. When the inventory exceeds a

  certain threshold (q*         ), it is optimal to salvage every unit in

         excess of the threshold. Even when the inventory lies between

x l
t  ( )s and q*     , it may still be optimal to salvage some inventory.

         If it is optimal to salvage some inventory, its purpose would

    be to bring the inventory level to that local minimum of J q( )

lying within the interval (x l
t   ( ) )s , x that has the least cost.

          Similar to Proposition 8, it is possible to obtain an upper

  bound on x l
t         ( )s by requiring that Strategy 2 be followed in

       period t + 1. The corresponding cost function B t    ( )s x , is as

follows:

B t   (s x , ) = min
0 q x

w s    q + (h w− s+1   ) ( −E q D s )
+

 + p1    ( − ( )) (1 f s E D) + s E D( s  − )q +

 + Eg2
t+1      ( + ( −s 1, q Ds )

+ ).

 Since g2
t+1

         is a constant and the minimand of is con-q

vex, Bt         ( )s x , is convex and decreasing in x (assuming

  h + s   w   s + 1   ). Since g2
t+1

   ( )s x ,  gt+1  ( )s x , , B t   ( )s x , 

g1
t

  ( )s x , . As a consequence, it meets g2
t

   ( )s x , at most once, and

its meeting point provides an upper bound on x l
t( )s .

  5.1.2 Order quantity

 Similar to the flexible replenishment model, the computation

        of the order quantity is challenging. With some modifications,

           the proof of Proposition 9 can be adapted to the partial sal-

         vage model. Thus, the bounds derived in Proposition 9 remain

         valid. Moreover, the optimal order quantity for the fixed cycle

           model can be used as a heuristic. Upon testing, we find that

           the heuristic results in a cost that is within 0%-1.81% of the

optimal cost (see Table S2 in Appendix S1).

6  N U M E R I C A L E X P E R I M E N T S

     In this section, we numerically compare the optimal costs of

      the flexible replenishment and partial salvage models to that

         of the fixed cycle model. The purpose of these experiments

       is to estimate the value of flexible replenishment and partial

         salvage strategies. A second objective is to conduct a sensi-

        tivity analysis to understand how the cost improvements are

     affected by model parameters. Finally, we compare the mag-

          nitude of expected lost-sales due to old age and stockout for

the three models.

         We first describe the experimental setup. We use the follow-

ing function to model the effect of product age on demand:

   f s s( ) = 2 − exp( ),  > 0.

     Observe that this function is concave, which implies that the

           reduction in the fraction of customers who do not want to pur-

            chase the product due to its age is slow when age is small,

 but accelerates as age increases. The parameter  determines

        the rate at which the expected demand declines with respect

           to age. For small values of , the demand reduction as age

 increases is relatively small, vice versa, this reduction occurs

       more and more rapidly as  increases. This is why we refer to

   as age sensitivity of demand in the rest of this section.

           Given the expression for ( ), the demand in a period isf s

equal to

D s    = ( − ( ))D 2 exp s .

           We take D to have a truncated normal distribution with mean a

  and variance 2      ; the truncation occurs at 0 and 2a. The values

      of a and  and other parameters used in our experiments are

listed in Table 2.

    In Table 3, we report the percent reduction in optimal costs

 of the flexible replenishment and partial salvage models with

          respect to the fixed cycle model as a function of lost-sales

parameters p1 and p2  , volatility of demand , age-sensitivity

     of demand  and fixed cost of order placement K. We use the

following formulae to compute the percent reductions:

        Optimal cost of fixed cycle model - Optimal cost

   of flexible replenishment model

     Optimal cost of fixed cycle model
 × %100 ,

and

        Optimal cost of fixed cycle model - Optimal cost

   of partial salvage model

     Optimal cost of fixed cycle model
 × %100 .

In Table S4 in Appendix S1, we present the same metrics for

p1  = 16, p2  = 10.

Key observations from both tables are as follows.
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 TABLE 2 Default parameter values used for Table 3

 T a  K c h ws p1 p2   S

           30 30 10 200 5 1 0.8-0.1 s 10 16 0.1 6

  TABLE 3 Percent cost improvement for the flexible replenishment and partial salvage models
with respect to the fixed cycle model

p1   8 1 0 1 2 1 4 1 6 18

      Flexible replenishment 5.69 5.13 4.14 3.41 2.99 2.82

      Partial salvage 5.77 5.17 4.16 3.43 3.01 2.83

p2   8 10 12 14 16 18

      Flexible replenishment 0.00 2.42 3.63 4.48 5.13 5.66

      Partial salvage 0.00 2.42 3.65 4.50 5.17 5.70

       0.09 0.095 0.11 0.12 0.130.1

      Flexible replenishment 5.06 5.12 5.13 5.16 4.95 4.79

      Partial salvage 5.09 5.15 5.17 5.20 5.02 4.87

       8 9 10 11 12 13

      Flexible replenishment 3.87 4.56 5.13 5.63 6.06 6.42

      Partial salvage 3.90 4.59 5.17 5.67 6.11 6.47

      K 125 150 175 200 225 250

      Flexible replenishment 4.59 4.69 4.95 5.13 5.07 4.96

      Partial salvage 4.60 4.71 4.97 5.17 5.11 5.02

1. The tables demonstrate that the optimal cost of the flex-

   ible replenishment model is lower than that of the fixed cycle

          model by 0%-6.4%. The tables also show that the optimal cost

         of the partial salvage model is only marginally better (less

         than 0.1%) than that of the flexible replenishment model. This

 small difference implies that the marginal value added by the

        use of the partial salvage strategy is significantly less than the

         marginal value added by the flexibility in placing an order

based on the inventory level.

       2. The tables also show that the reduction in cost in flexible

       replenishment and partial salvage models increases with p 2

    and , but, interestingly, the trend reverses with respect to p 1.

     To explain this observation, first consider p2. As p2 increases,

   the value of s  = p 1+
p2−p1

 f s( )
  increases. Since s  is the imputed

    cost of lost-sales, a higher value for it results in higher order

        quantities in each of the three models. An increase in also

         leads to higher order quantities due to greater safety stock

      requirement. However, higher order quantities increase the

     risk of excessive inventory. Since both flexible replenishment

       and partial salvage strategies manage inventory risk better,

     their cost advantage improves as p2     and  increase. On the

   other hand, as p1  increases,s     decreases. The reduction in cost

      improvements in flexible replenishment and partial salvage

models with respect to p1 is thus consistent.

        3. The cost improvements due to flexible replenishment and

  partial salvage strategies are nonmonotonic with respect to 

          and K. In fact, for both parameters, the values of p1  and p 2

       determine the shape of the percent cost reduction curve. For

       both parameters, this curve has a quasi-concave shape when

p1   = 10 and p 2     = 16. However, it becomes decreasing when

p1   = 16, p 2        = 10. (We have also observed a quasi-convex

    shape for some values of p1 and p2   .) Even though the optimal

cost function for each model shows a clear trend (increasing)

     with respect to both parameters, there does not appear to be a

consistent trend in the percent cost reduction.

          One key factor that plays a role here is relatively rapid

      changes in the optimal cycle length (R*     ) for the fixed cycle

           model as either  or K increases, which leads to a sharp

         change in the cost components (eg, holding cost) for the

 model. Such changes may influence the shape of the curve.

 4. In general, greater number of lost-sales due to age occur

     in the flexible replenishment and partial salvage models com-

          pared to the fixed cycle model. In contrast, lost-sales due to

         stockout are more numerous in the fixed cycle model. (See

       Figure 3 for an example.) Out of the 52 parameter combina-

   tions considered in Table 3 and Table S4, in only three cases,

       the expected lost-sales due to age is greater for the fixed cycle

        model. Similarly, the expected lost-sales due to stockout is

           smaller for the fixed cycle model in none of the cases. At

         the same time, the expected quantity salvaged in the fixed

         cycle model is significantly larger than the other two mod-

     els. Together these observations confirm that supply–demand

         mismatch is larger in the fixed cycle model. However, this

         mismatch is beneficial in some way for customers since when-

           ever they see the inventory, it is fresher than the other two

models.

 7 E X T E N S I O N S

         In this section, we discuss two extensions to our models,

random lifetime and nonzero lead-time.
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  FIGURE 3 All parameters are as in Table 2

  7.1 Random lifetime

           So far, our analysis is based on an implicit assumption that the

        product quality does not deteriorate randomly over time. In

           other words, age of the product is a good of its qual-predictor

 ity. If, however, product quality declines randomly over time,

 demand may decrease depending upon product quality rather

         than age, and the lifetime becomes random. In this subsection,

we describe an approach to model such a scenario.

           To model this phenomenon, we now let s to denote the qual-

          ity level at the beginning of a period. The random variable

               s Scan take a value in the set {0,1,2, … , } such that a high

 value of the state indicates greater deterioration. The product

            is fresh when s sis equal to 0 and perishes when becomes

equal to S.

     We assume that the process {st    } evolves according to

       a discrete-time Markov chain with the following transition

probability matrix:

P s( t+1  = j s t  = i) =


r ij    for j i  ,

 0 otherwise.

       State S ris an absorbing state, so SS     = 1. We further assume

     that the evolution of chain {st       } is independent of D in any

         period. Observe that the case in which age determines the

           demand is a special case of the above model such that r ij is

    equal to 1 for j i= + 1 and 0 for other values of j.

        The revision in the demand model also necessitates a

        revision in the cost formulations. For the flexible replenish-

        ment and partial salvage models, the revisions are relatively

    straightforward. For example, the formulation of the flexible

replenishment model can now be stated as

v t  (s x , ) =








 min{v1
t   ( )s x , , v2

t      ( )}s x , , <for s S

v2
t      ( ) =s x , , for s S

−ws       x t T, for = + 1

where

v 1
t  (s x , ) = Ls(x) +

S


j s=

r s jEv t+1    ( ( −j, x D s)
+  ) (7.9)

and

v 2
t  (s x , ) = −w s   x + min

y0
     K y L1( > 0) + cy + 0( )y

+

S

j=0

r0j Ev t+1    ( ( −j, y D0 )
+)


 . (7.10)

       However, the fixed cycle model requires an additional clari-

  fication: Can a new order be placed if inventory reaches state

            S even before the completion of a cycle? In the spirit of the

         fixed cycle length assumption, we assume that a new order

             will be placed only at the end of every periods even if inven-R

  tory has reached the end of its life before. The revised model

 formulation for a given R is as follows:

v t  (s x, ) =











L s(x) +

j s

rsj E v[ t+1    ( ( −j, x Ds )
+         )], < , ,s S t  nR + 1

−w S   x p+ 2 E D( ) + Evt+1          ( ) = +S, 0 , s S t,  nR 1,

−w s   x + min
y0

  { (K 1 y > 0) + L 0(y) + cy

+

j0

r0j Evt+1    ( ( −j, y D 0)
+      )}, ,t = nR + 1

 where n is a positive integer and v   T + 1( , ) s x = − ws x..

        While some of the results, for example, Proposition 1,

        remain entirely unaffected, all the other results continue to

  hold, though the proofs may require some modification. One

    result whose proof requires a major modification is part 1 of

       Proposition 4. We restate this result and its proof in Appendix

        S1 (subsection A.13) to illustrate the changes required in

re-proving the results.

7.2   Nonzero lead time

          In this subsection, we briefly discuss the case in which the

lead-time for order placement is equal to one period.

          For the fixed cycle model in Section 3, the optimal deci-

        sions remain unchanged. The only change required will be

that orders are placed one period in advance.

For the flexible replenishment model, the formulation now

becomes:

vt  (s x , ) =



 min{v1
t   ( )s x , , v2

t      ( )}s x , , < ,for s S

v2
t        ( ) = −s x , , for s S 1,

v1
t      ( ) =s x , , for t T,

−ws       x t T, for = + 1,

where

v1
t  (s x , ) = L s (x) + Evt+1      ( + ( −s 1, x D s)

+  ), (7.11)
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and

v2
t  (s x , ) = L s (x) − ws+1   E x D( − s)

+

 + min
y0

    { ( +K 1 y > 0) + cy Ev t+1   ( )}0, y . (7.12)

        Observe that the formulation changes only for Strategy 2.

         Owing to the revision, the cost function for Strategy 2

            is no longer linear in ; it now is convex inx x, provided

s   w   s + 1           − h. As for the optimal cost function, it may lack

        convexity just as in the case when lead time is zero. However,

 we have verified that a result similar to Theorem 1 continues

to hold.

         For the partial salvage model, we assume that the partial

        salvage decision (when Strategy 1 is followed) continues to

         be taken at the beginning of a period. With this assumption,

  the formulation for only Strategy 2 changes, and the new for-

   mulation is identical to (7.12). (The formulation for Strategy

      1 remains same as in (5.7).) Therefore, v2
t     ( )s x , is convex for

        the partial salvage model as well. The nonmonotonicity of

v 2
t

          ( )s x , implies that the optimal cost function may also not

        be monotone. Additionally, we have proved that there now

           exist two thresholds such that it is optimal to use Strategy 1

            on the left of the smaller threshold and on the right of the

larger threshold. Of course, it may be optimal to use Strategy

         1 for some inventory values lying between the two thresh-

           olds as well. (We omit a formal statement of the results for

brevity.)

   8 C O N C L U S I O N A N D F U T U R E

D I R E C T I O N S

          We develop three models to obtain insights on when to replace

           old inventory and the quantity of fresh inventory to order for a

  perishable product while taking into account the reduction of

 demand with age. In the first model, the replenishment inter-

      val is static. In the second model, the replenishment interval

    is flexible and the retailer can choose to place an order in any

         period to replace aged inventory with fresh inventory. In the

       third model, the replenishment interval continues to remain

          flexible, but the retailer may also salvage a few units when-

           ever it has excess inventory. A key contribution of the paper is

     to consider differential costs of lost-sales caused by stockout

and customers walking away due to staleness of inventory.

A list of major insights from the study is as follows.

          1. The total lost-sales penalty cost, which is the sum of

        lost-sales costs due to stockouts and customers not buying the

         product due to staleness, can be written as the product of an

        age-dependent imputed cost and the excess of demand over

         inventory. Thus, it has the same functional form as shortage

       cost in traditional inventory models. The imputed lost-sales

         cost may be both positive and negative depending upon the

       rate at which demand declines with age and the relative val-

         ues of two lost-sales penalties. In particular, when the imputed

       cost is negative, the inventory-related cost function, which

  includes the holding cost and the total lost-sales penalty cost,

 may not be convex.

         2. When the replenishment interval is fixed, the value func-

        tion need not be convex in order quantity, unlike in traditional

       inventory control models. The convexity requires that the

   imputed lost-sales cost to be not only positive, but also to not

          increase too rapidly with age. We develop bounds on the opti-

mal order quantity when the value function is convex as well

as when it is not convex.

           The cycle cost as a function of cycle length also does not

         appear to have a useful structure for an easy computation

           of the optimal cycle length. We show that a cycle does not

    include a period with negative imputed lost-sales penalty. We

  also develop heuristics to identify cycle length. The accuracy

of the heuristic is 100% in the computational experiments.

3. When the replenishment interval is permitted to be flex-

        ible, the optimal cost function appears to lack important

        properties such as convexity and monotonicity that are use-

ful in identifying the characteristics of the optimal decisions.

     We show existence of two thresholds such that it is optimal to

           place an order when the inventory at the beginning of a period

           is either less than the lower threshold or greater than the upper

    threshold. Furthermore, we develop bounds on the thresholds

         that are easy to compute. In the numerical experiments, we

find that the bounds are tight.

     Numerical experiments show that flexible replenishment

may reduce cost by 0%-6.4% over the planning horizon.

         4. In addition to flexible cycle length, when the retailer

        has the flexibility to reduce inventory level through partial

       salvage, the corresponding optimal value function has more

        structure. In particular, the value function now decreases in

          inventory and there exists a threshold such that an order is

           placed if and only if the inventory is less than the thresh-

      old. The partial salvage strategy, however, contributes little in

      reducing the cost further on top of the flexible replenishment,

       and the marginal cost improvement due to it is less than 0.1%.

     One direction for future research is estimation of the penal-

    ties associated with customers walking away due to stockout

        and unsatisfactory age. In particular, as our analysis illus-

           trates, it will be useful for retailers to know how the two

     penalties compare with each other for different products and

  whether one penalty always dominates the other. This knowl-

   edge on relative values of the penalties is necessary not only

       for effective inventory management of perishables, as we

note in the paper, but also for effective resource allocation to

increase customer satisfaction.
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