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Abstract

This study incorporates the Markov switching model with return

jumps to depict the behavior of stock returns. Based on the daily

Standard & Poor’s 500 index (hereafter SPX) and the daily closing

price of the call option, we use the particle filtering algorithm to fit the

parameter of the model. The joint log-likelihood evaluates the model

performance: the weighted average log-likelihood with the rate of

return of the SPX and the relative implied volatility root-mean-

squared error for the SPX call options. The empirical results identify

that the pricing model with jump risks improves the pricing

performance to the median-term call options. According to the

sensitivity analysis, option prices increase with the probability of

remaining in the recession state but decrease with the probability of

remaining in the expansion state. Moreover, the call option prices are

positively associated with the volatility in each market state and the

factors of jump risk.

Introduction

The normality of economic behavior is sometimes disrupted by

dramatic events. To capture time-series behavior with business cycles,

Hamilton (1990, 1989) pioneers the use of a Markov chain process to

depict market state changes (also termed the Markov switching

model). Since the introduction of Markov switching models to

mainstream econometrics, they have received considerable attention

from financial time-series analysis. There is a class of studies devoted

to the forecasting of stock return, volatility, and the equity premium

using Markov switching models.
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Among these studies, that by Turner et al. (1989) represent the

earliest example of applying the Markov switching technique to

describe stock return behavior. They develop a two-regime Markov

switching model whose transition probabilities remain constant. The

main advantage of their model is an improvement in the accuracy of

the stock return forecast under heteroskedasticity. Hamilton and

Susmel (1994) distinguish a high-, median-, and low-volatility regime

in stock return data, with the high-volatility regime being associated

with economic recessions. Maheu and McCurdy (2000) also reach a

similar conclusion, that volatilities are much higher in a bear market.

Kim et al. (2004) develop a stock return model with a Markov

switching volatility feedback effect to empirical test the positive

relationship between the equity premium and stock market volatility.

Extending the setting of regime-switching volatility, Kim et al. (2005)

further examine the structural break in the equity premium based on

Bayesian margin likelihood analysis. More recently, Chen (2007)

investigates the asymmetric effects of monetary policy on stock

returns using Markov switching models. Note that all of the above

models based on the assumption that the dynamics of variables are

continuous under a given regime. In brief, these studies ignore

discrete effects in describing the behavior of economic variables.

To display the significance of such an effect, we take the Standard and

Poor’s 500 indexes (hereafter SPX) as the sample. From the empirical

results, we observe that the index continued to grow during the period

1999–2000 due to the U.S. “new economy” effect, whereas in the

second half of 2000, the economy faced the bursting of the dotcom

bubble. The expansion from 2003 to mid-2007 is attributed to the

effect of oil-shock-based inflation. However, the global subprime

mortgage crisis occurred in 2008, leading to a recession. Such an

undulating pattern for the index path is the so-called “stock market

cycle,” which is captured well by existing models. It is notable that

fluctuations in the daily returns are visibly stronger, especially when

abnormal events occur (e.g., the subprime mortgage crisis). The

empirical results also identify the index returns to behave in a highly

volatile manner within a short time period (e.g., one day). Such a

dynamic is obviously not in line with the assumption that time-series

variables act continuously. Therefore, the family of existing Markov

switching models cannot explicitly capture the impacts of sudden

shocks.

In 1976, Merton proposed the original type of jump-diffusion models.

In his paper, he assumes that total changes in the asset prices may be
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divided into a normal variation part and an abnormal variation part.

The former is modeled as a standard geometric Brownian motion with

a fixed variance capturing continuous fluctuations in the prices

because of strategic trading by informed or liquidity traders and

market microstructure effects, whereas the latter is modeled as a

counting process that reflects discrete effects due to unanticipated

information released to the public. To capture the sudden shock

under switching regimes, this paper combines Markov regime-

switching processes with jump risks, and jump risks in the model are

assumed to obey a Poisson process with a constant jump rate for the

jump frequency and to follow a normal distribution for the jump sizes.

In the real world, the mean and volatility of a time series variable

usually vary with market regimes. For instance, the mean level of the

stock return is positive in a bull market but negative in a bear market,

whereas its volatility is significantly higher during poor economic

conditions. Such structural changes in the economic series cannot be

captured by traditional models, which assume that all the

observations are drawn from a Gaussian distribution with fixed mean

and variance throughout the sample period. Moreover, based on our

empirical results, it is found that the arrival of unanticipated

abnormal events delivers sudden shocks to market states, leading the

daily observations to behave in a highly volatile manner within a short

time period. Such dynamics cannot be captured using existing

models, which usually assume that variables act continuously under a

given regime. To address this issue, we argue a Markov switching

model with return jumps (MS-RJ). The MS-RJ model is especially

useful for addressing financial phenomena, such as a leptokurtic

feature of the asset return distribution, a volatility smile, and the

volatility-clustering phenomenon.

In this paper, we use the joint log-likelihood to evaluate the model

performance: the weighted average log-likelihood with the rate of

return of the SPX and the relative implied volatility root-mean-

squared error (RIVRMSE) for the SPX call options. For the log-

likelihood for the rate of return of the SPX, we obtain the daily rate of

returns for the SPX between January 5, 1999 and December 30, 2009

as a sample. Owing to the market state, jump risk, and stochastic

volatility be unobservable, we employ an estimating and testing

methodology with the particle filters algorithm (or called by

sequential Monte Carlo algorithm) rather than the traditional

maximum likelihood estimator for hidden states (market state, jump

risks, and stochastic volatility). The employment of the particle filters
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algorithm over maximum likelihood estimation overcomes the

problems of missing data and slow convergence. Because the Markov

switching model comprises a Markov switching dynamics for the

volatility and it can be categorized in the stochastic volatility models.

It would be compared the goodness-of-fitting by others stochastic

volatility models like the discrete-time GARCH family (Ornthanalai

2014; Christoffersen et al. 2012; Stentoft 2008; Heston and Nandi

2000) and the continuous-time stochastic volatility family (Bates

2012, 2000, 1996; Eraker 2004; Eraker et al. 2003; Bakshi et al. 1997;

Heston 1993). Then, the Akaike information criterion (AIC) and the

Bayesian information criterion (BIC) are used in this study to

compare the fitting performance cross the Markov switching model

with/without return jumps and others models. The empirical results

show that the Markov switching model with return jumps exists the

better goodness-of-fitting than other models. That is, the SPX market

does have the features of market state switching and jump risks.

For the log-likelihood for the RIVRMSE of the SPX call options, based

on the estimated parameters, we compute the call option price under

each model with the characteristic function pricing framework which

is a common method for the complex dynamics of the underlying

price. Utilizing the daily closing price of SPX call options between

January 04, 1999 and December 31, 2009 as a sample, we evaluate

the pricing performance of each model with the RIVRMSE. The

empirical results identify that the pricing model with jump risks can

improve the pricing performance and the market state switching in

the pricing formula applies to the median-term (the time-to-maturity

is between 60 and 180 days) options.

There are contributions in this study: First, the time-series of SPX

from January 5, 1999 through December 30, 2009 are characterized

by properties such as the market cycles and jump risks. And, we use

the particle filters algorithm to estimate the parameters of the Markov

switching model with return jumps, because the occurrence of a

market state and jump risks are unobservable, which leads to a latent

data problem. Second, the closed solution of option pricing formula

under the Markov switching model with return jumps is derived by

the characteristic function pricing framework. Finally, because the

Markov switching model is also a type of stochastic volatility model,

we have compared the goodness-of-fitting for SPX and the pricing

performance for SPX options cross others models.

The rest of this study is organized as follows. Section 1 presents stock

return models, a Markov switching model with return jumps and the
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benchmark models. Section 2 estimates the model parameters using

the particle filters algorithm and provides the empirical results for the

SPX. Section 3 shows the European call option pricing formula under

the Markov switching model with return jumps based on the no-

arbitrage theorem and characteristic function pricing method.

Numerical and empirical analyses are provided in Sect. 4. Section 5

draws the conclusion of this paper.

The model

Markov switching model with return-jumps (MS-
RJ)

Consider a filtered probability space  where  is

the set of all the possible outcomes,  is the sigma-field of subsets of 

,  is the sequence of the filtration at time , and  is the

real-world probability measure. The filtered probability space is

generated by three components: First, the Gaussian white noise

process, , representing the continuous noise

of the stock market. Second, the compound Poisson process, 

, indicating the jump noise of the stock market. Note that

the countable infinite sequence (or the jump size)  consists of

independent and identically distributed (IID) random variables

representing the -times jump size (  presents no jumps in the

market). For generalizability, the jump size follows a probability

distribution  and its characteristic function (CF) is denoted by 

 where  is the imaginary unit. And, the

total number of jumps over the time period  is counted by a

Poisson process with the time-homogeneous intensity, i.e. 

. Third, the first-order

Markov chain process exists the finite market states, i.e. 

 and the time-homogeneous transition probability

matrix is

(1)

where

is a time-homogeneous transition probability for 

and . Note that the sum of each entry in the same row
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must equal one; namely,  for . To define

the initial state probability, let , which satisfies 

. In this study, we suppose that the probabilities of initial

state are the same, i.e. . As usual, the four

sources of randomness in the model, , , 

, and  are assumed to be mutually

independent.

Definition 1

Consider a discontinuous trading economy. Under the  measure,

given the filtration , the dynamic process of stock returns, 

, which governed by an MS-RJ model has

the following explicit form:

(2)

where  is the instantaneous mean level and  instantaneous

volatility at time  while the market state belongs to . Other

notations are defined in the previous paragraph.

From Eq. (2), the volatilities of stock returns can be decomposed into

the continuous variation and the jump variation. The continuous

variation is modeled by a product of the Gaussian white noise and the

regime-switching volatility, whereas a jump process reflecting the

non-marginal effect of the information describes the jump variation.

Our idea serves as an extension of Merton’s jump-diffusion model.

Note that  and  are the convexity adjustment

terms, which make the stock return equal to  given the market

state  under the  measure, i.e. 

, where  is the conditional

expectation under the  measure given the condition .

The model of Eq. (2) can reduce in specific cases: First, if the market

does not contain jump risks, , the stock return follows a Markov

switching model (MS) as shown by Duan et al. (2002), Hardy (2001).

Second, if we exclude the market cycles,  and 

, the dynamic of stock return reduces to the pure

jump-diffusion model (denoted by GBM-RJ) as Merton (1976). Third,

if the parameters are assumed by , 

, and , the dynamic process of the stock

price is reduced to geometric Brownian motion (GBM).

= 1∑M
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Risk-neutral dynamics

Proposition 1

Related to Eq. (2), because of the noises from the continuous- and

jump-components,  and  being independent, a

conditional Randon-Nikodým derivative is assumed by the following

form:

(3)

where  and  are the parameters of change-of-measure for

 and  with the market state . Thus, under the 

measure, given the market state , the distributions of the

random variables are

(4)

(5)

(6)

The parameters of change-of-measure,  and , can be seen

as the market prices of risks for the noises from the continuous- and

jump-components,  and . Also, for tractability, we

assume that the jump size obeys a normal distribution with the

constant mean  and the variance . According to equations from (4)

through (6), under the  measure, the number of jumps and the jump

size are distributed by  and 

, respectively.

Assume that the risk-free interest rate ( ) is the constant for

simplifying. According to the fundamental theorem of asset pricing

which is developed by Harrison and Pliska (1983, 1981), based on the

Eq. (3), the discounted stock price  is a martingale under the 

 measure. That is,

(7)
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Related to Eqs. (3) through (7), the martingale condition is

equivalent to

(8)

If we find the market prices of risks for the noises from the

continuous- and jump-components,  and , to satisfy the

martingale condition, the  measure is called by the risk-neutral

probability measure.

Note that the Eq. (8) identifies that the market is incomplete, i.e.

there are infinite risk-neutral probability measures. The total risk

premium can be decomposed into the risk premium from continuous

component  and the risk premium from jump component 

.

In special cases, if jump risk is diversifiable (i.e. ), the jump

risk premium is zero, and the distributions of jump term (the

compound Poisson) are the same between the  measure and the 

measure. It is often called by a Merton measure. If jump risk is non-

diversifiable (i.e. ), and the distributions of jump term are

altered. Gerber and Shiu (1994) select a specific  measure with 

, denoted the Gerber-Shiu (or Esscher) measure.

Definition 2

Consider a discontinuous trading economy. Assume that the jump

risk premiums are the same in the market state, i.e. 

. Under the  measure, given the filtration 

, the dynamic process of stock returns, 

, which governed by an MS-RJ model has

the following explicit form:

(9)

where

and other notations are defined in Eq. (2).

Note that  and  are the convexity adjustment

terms, which make the stock return equal to  given the market state 
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simplify the analysis, we assume that only two market state in the

stock market like the model shown in Lin, Lin, and Wu (2015).

European call options pricing formula under the
MS-RJ model

Theorem 1

Assume that the dynamics of stock return obeys the MS-RJ model

under the  measure like the Eq. (9). Consider a -maturity

European call option with the strike price ( ). Given the filtration 

, the option pricing formula is

(10)

where  presents the probability that the stock market

belongs to the state 1 for  days while the time-to-maturity is 

days given the initial market state . It is proved in Duan et

al. (2002) with a hidden Markov Chain. Others notations

are lists in “Appendix A”. In this paper, the numerical integrations of

 and  are approximated by the Gauss-Laguerre

quadrature.

Equation (10) can reduce in specific cases: First, if the market does

not contain jump risks, , the pricing formula under the MS

model is reduced to Elliott et al. (2005), Duan et al. (2002), Hardy

(2001). Second, if we exclude the market cycles, 

and , the pricing formula reduces to Merton

(1976)’s model. Third, if the parameters are assumed by 

, , and , the pricing

formula becomes to Black and Scholes (1973)’s model. The other

pricing model with the stochastic volatility under the discrete- and

continuous-time framework is shown in “Appendix B”.

Parameters fitting

Joint estimation
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Numerous studies on stock index options perform joint estimations to

fit the model parameters with the prices of the underlying stock and

stock options like Chang et al. (2018) and Ornthanalai (2014). The

key is that the price difference between the stock index and stock

options mutually affect each other. Therefore, we also employ the

joint estimation to fit the model parameters and the market price of

risk for each model.

Let’s talk about the log-likelihood function of the stock index

dynamics first. We take the MS-RJ model as an example. Owing to

the MS-RJ model include the latent/unobservable components (the

market state and the return jump), it is very difficult to estimate the

model parameters by maximizing the incomplete log-likelihood

function from the observable data (the stock return). The particle

filter (PF) algorithm is the common method for estimating the model

parameters like the Markov switching family, the Lévy-jump family,

and the stochastic volatility family. Through sampling and re-

sampling the particles (the latent components), we can compute the

complete log-likelihood function for the stock index dynamics.

Given the observable stock returns , the

latent components like the stock market states and the total jump

sizes are denoted by  and 

. And, the set of parameters

under the MS-RJ model is indicated by , i.e.

(11)

with the boundaries of parameters , 

, . There are two steps for

handling the PF algorithm: The Monte-Carlo filtering and the

resampling.

First, for processing the Monte-Carlo filtering, we obtain 

independent samples for each random variables,  with 

, , 

 from the corresponding distributions.

Then, given the -th particle of market state and return jump and the

parameters of the -th iteration, the probability weight of stock return

is computed by

R = {R (1) , ⋯ ,R (T)}

q = {q (1) , ⋯ , q (T)}

Jump = { , ⋯ , }∑
n=1

ΔN(1)

Yn ∑
n=1

ΔN(T)

Yn

Φ

Φ = { , , , , , , θ, ν,λ,h} ,p12 p21 μ1 μ2 σ1 σ2

0 ≤ , ≤ 1p12 p21

−∞ < , , θ < ∞μ1 μ2 0 ≤ , , ν,λ < ∞σ1 σ2

M ∈ Z+

q (t) = {1, 2}

∼ Bernoulli ( )u (t)|q(t−1)=j pj1 ΔN (t) ∼ Poisson (λ)

Normal (θ, ){ }Yn
∞
n=1 ∼IID ν 2

m
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(12)

Second, the resampling focuses on filtering the independent particles

obtained from the Monte-Carlo filtering. That is, according to the

corresponding weight, we exclude the particles with the lower weight

(i.e. the lower importance) and add in the more important particles

from the set of the original particles. The new particles can depict

latent components (the market states and the return jumps) more

exactly. Given the parameters of the -th iteration and the re-

sampling particles, the complete log-likelihood, , is

shown as follows:

(13)

On the other hand, the information from the stock options market is

also important. Let  be the relative error of the implied volatility

at time , i.e.

(14)

where  represents the market implied volatility call option,

and  is the theoretic implied volatility of call

option given the settle date , maturity , the current price of the

underlying stock index , the strike price , the theoretic premium

of the call option , and the estimated parameters. In addition, the

implied volatility is determined by

(15)

where  is the theoretic premium of the call option

under the Black–Scholes’ model, i.e.

and  is the cumulative density function of standard normal

distribution. Equation (15) evaluates the models based on the pricing
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errors between the market volatility and the model volatility. Given

the daily implied volatilities, we can calculate the log-likelihood for

the options pricing errors as follows:

(16)

In practice, because of the sample sizes of the stock return and the

options being different significantly, we assign the following weighted

average log-likelihood when calculating the joint log-likelihood,

(17)

Finally, we obtain the parameter estimates in the -th iteration

by maximizing , employing the re-sampling

particles from the -th iteration, i.e.

(18)

Substituting  into the Monte-Carlo filtering and the

resampling, then we can perform the -th iteration. Similarly,

we iterate these steps until the maximum likelihood estimators are

convergent.

Description of data

The data include the daily Standard & Poor’s 500 indexes (SPX) from

January 5, 1999 through December 30, 2009, and the daily closing

prices of the call option with the sample period covers between

January 02, 2004 and December 31, 2009. These data are obtained

from the Datastream database. The data on sudden shocks in SPX

daily returns are provided in Table 1. Weak, median, and strong

shocks are defined as occurring when the daily observation is over or

below the single, double, and triple standard deviation, respectively,

of those computed during the full period. From top graphics of Fig. 1,

we observe that the index continued to grow during the period 1999–

2000 due to the U.S. “new economy” effect, whereas in the second

half of 2000, the economy faced the bursting of the dotcom bubble.

The expansion from 2003 to mid-2007 is attributed to the effect of

oil-shock-based inflation. However, the global subprime mortgage

crisis occurred in 2008, leading to a recession. Such an undulating

pattern for the index path is the so-called “stock market cycle,” which

is captured well by existing models.
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∑
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Table 1 Sudden shocks in the daily returns

Fig. 1

Time-series of the stock index and the rate of return. Note

that the data include the daily Standard & Poor’s 500

indexes (SPX) from January 5, 1999 through December 30,

2009. This figure plots the time-series of the daily closing

index and log-return for SPX

Compared to the bottom graphics of Fig. 1, it is notable that

fluctuations in the daily returns are visibly stronger, especially when

abnormal events occur (e.g., the subprime mortgage crisis). The

numbers shown in Table 1 provide a clearer insight into the sudden

shocks. For example, the ratio of strong-shock observations to the

total is 1.5913%, which approximates the likelihood of a strong

sudden shock. Further, the means and variances of returns under

shocks are also lower and higher, respectively, relative to those

computed by the full sample. These facts suggest that as abnormal

events strike the market, the index returns behave in a highly volatile

manner within a short time period (e.g., one day). Such a dynamic is

obviously not in line with the assumption that time-series variables

act continuously. Therefore, the family of existing Markov switching

models cannot explicitly capture the impacts of sudden shocks.

The data on the daily closing price of the SPX options with 6 to

360 days-to-maturity and 0.90 to 1.10 spot-strike-ratio ( ) are

reserved. After filtering the sample, there are a total of 204,351

available observations for call options. The sample of SPX options is

divided into 15 categories, i.e. three types of days-to-maturity (short-

K/S

https://link.springer.com/article/10.1007/s11156-020-00885-x/figures/1
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term for  60; median-term for 60–180; long-term for 180–360) and

five types of moneyness ( ) (deep-in-the-money for 0.90–0.94;

in-the-money for 0.94–0.98; at-the-money for 0.98–1.02; out-the-

money for 1.02–1.06; deep-out-the-money for 1.06–1.10). Obviously,

there exists the volatility smile for the short-term options and the

volatility smirk for the median- and long-term options. Moreover, the

average call price from $3.66 for short-term and out-the-money

options to $154.67 for long-term and in-the-money. Table 2 lists the

sample properties of SPX call options like the average implied

volatility and the average closed price for each category.

Table 2 Sample properties of SPX call options

Fitting results

The particle filter algorithm as shown in Sect. 2.1 estimates the

parameters under the MS, MS-RJ, GBM-RJ, SV, SV-RJ, and SV-RJ-

VJ models while the parameters under the GBM and GARCH model

are estimated by the maximum likelihood estimation. Table 3

presents the estimated parameters, the joint log-likelihood, the

Akaike information criterion (AIC), the Bayesian information

criterion (BIC) for each model. Under the MS-RJ model, the

transition probabilities of SPX return ( , ) are 0.5439 and

0.4491, respectively, and it implies that the market state belongs to

the expansion (market state 2) with the more probability than

recession (market state 1) during the sample period. In a recession,

the mean stock return  is − 0.0022 with a standard deviation  of

0.0128. In contrast, in expansion, the mean stock return  is 0.0019

with a standard deviation  of 0.0067. The volatility of stock returns

in the expansion is more stable than that in recession. For the jump

risks, the jump frequency  is 0.1256, and it means that an average

number of 8 days per jump. And, the mean of jump size  is 0.0021

implying that the release of unanticipated information on average

causes returns to increase but not statistical significance. The

standard deviation of jump size  is 0.0254. The market price of risk 

 is − 0.0330. From the bottom of Table 3, the MS-RJ model exists

the maximum joint log-likelihood function and minimum AIC/BIC,

and it tells that the MS-RJ model is the better goodness-of-fitting and

the pricing performance than other models.

Table 3 The estimating and testing under each
model

Figure 2 shows that the conditional probability of recession (market

state 1) and the conditional probability of jump calculated by the

<

K/S

p12 p21

μ1 σ1

μ2

σ2

λ

θ

ν
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posterior distributions, and the daily jump size estimated by the

particle filter algorithm given the estimated parameters of MS-RJ

model. The top graphics of Fig. 2 indicates that the probability of

recession from 1999 to 2002 is high because of the dot-com bubble

and that the probability of recession from 2003 to 2007 is low.

Therefore, there is a transition of states from 2002 to 2003. In 2008,

as the financial crisis progressed, the probability of a recession in

2008 also increased. There is also a switch of states from 2007 to

2008. The middle and bottom graphics of Fig. 2 shows that the high

probability of jumps and the large jump size from 2000 to 2003 and

in 2007 and 2008, consistent with the events of the dot-com bubble

in 2000, the September 11 attacks in 2001, the end of the Iraq war in

2003, the Yen carry trade in 2007, and the financial crisis in 2008.

Fig. 2

Time-Series of the conditional probability of recession, the

conditional probability of jump, and the jump size. Note

that the data include the daily Standard & Poor’s 500

indexes (SPX) from January 5, 1999 to December 30, 2009.

Based on the estimated parameters of MS-RJ model, the

conditional probability of recession (market state 1) and the

https://link.springer.com/article/10.1007/s11156-020-00885-x/figures/2
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conditional probability of jump are calculated by the

posterior distributions. Moreover, the daily jump size is

estimated by the particle filter algorithm

The validity of the stock index option

Option pricing performance

According to the empirical results of the previous section, given the

full sample, we know that the MS-RJ model can improve the

goodness-of-fitting and the pricing performance. However, we are

also interested in the performance of each model in different periods.

In implementing the in-sample option pricing procedure, we re-fit the

parameters daily with the past 1250 daily rates of return and the

current closing prices of the SPX call options. The joint estimation

process is shown in Sect. 3.1. For assessing the option pricing

performances of models, like Ornthanalai (2014), we report the

relative implied volatility root-mean-squared error (RIVRMSE) at a

specific date . That is,

(19)

where  denotes the number of call options at time ,  and

 are defined by Eqs. (14) and (15), and the

daily re-fitted parameters.

Table 4 reports the daily average of the RIVRMSE computed by

Eq. (19). Let’s observe the short-term categories. The MS-RJ model

exists the smallest RIVRMSE for the deep-in-the-money options

(2.14%) while the GARCH-RJ model demonstrates the superior

pricing performance for the in-the-money (3.22%), the at-the-money

(4.40%), the out-the-money (4.99%), and the deep-out-the-money

options (3.78%). For the median-term call options, the RIVRMSE is

the smallest under the MS-RJ model in the categories of deep-in-the-

money (2.90%), the in-the-money (3.78%), the at-the-money (5.35%),

and the out-the-money (6.48%). And the GARCH-RJ model also

performs the smaller pricing errors than others model in the category

of deep-out-the-money (6.73%). Finally, the MS-RJ model and SV-

RJ-VJ model exist the best pricing performance in each category.

There are three types of the stochastic volatility model in Table 4: the

MS family, the GARCH family, and the SV family. Based on empirical

results, the GARCH-RJ model, the MS-RJ model, and the SV-RJ-VJ

t
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model enhance the pricing performance for the short-, the medium-,

and the long-term options, respectively.

Table 4 In-sample pricing errors

Next, we discuss the evaluation of option pricing model for each

model during the sub-period of the sample. Given the re-fitted

parameters day-by-day as the same as Table 4, the time-series of

monthly averaged RIVRMSE of short-, median-, and long-term call

options are graphed in Figs. 3, 4, and 5, respectively. In the category

of the short-term and deep-in-the-money call options in Fig. 3, the

RIVRMSEs of the MS-RJ model is smaller than other models between

initial-2004 and mid-2007. During the same sub-period, the GARCH-

RJ model improves the pricing error for in-the-money, at-the-money,

out-the-money, and deep-out-the-money call options. Between mid-

2007 and mid-2009 (period of the financial crisis), the SV-RJ-RJ

model exhibits better pricing performance than other models for

deep-in-the-money, in-the-money, at-the-money call options. In

addition, the pricing error of SV-RJ-VJ model increases after late-

2009. Overall, the MS-RJ model exists a smaller deviation of

RIVRMSE than other models. They can provide stable pricing

performance during the sample period of this paper.

Fig. 3
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Time-Series of monthly averaged RIVRMSE for short-term

call options. Note that we re-fit the parameters daily with

the past 1250 daily rates of return and the current closing

prices of the SPX call options. The joint estimation process

is shown in Sect. 3.1. This figure plots the time-series of

monthly averaged RIVRMSE, computed by Eq. (19), for

short-term call options

Fig. 4

https://link.springer.com/article/10.1007/s11156-020-00885-x/figures/3
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Time-Series of monthly averaged RIVRMSE for median-

term call options Note that we re-fit the parameters daily

with the past 1250 daily rates of return and the current

closing prices of the SPX call options. The joint estimation

process is shown in Sect. 3.1. This figure plots the time-

series of monthly averaged RIVRMSE, computed by

Eq. (19), for median-term call options

Fig. 5

https://link.springer.com/article/10.1007/s11156-020-00885-x/figures/4
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Time-Series of monthly averaged RIVRMSE for median-

term call options. Note that we re-fit the parameters daily

with the past 1250 daily rates of return and the current

closing prices of the SPX call options. The joint estimation

process is shown in Sect. 3.1. This figure plots the time-

series of monthly averaged RIVRMSE, computed by

Eq. (19), for long-term call options

In the category of the median-term deep-in-the-money, in-the-

money, at-the-money, out-the-money call options in Fig. 4, the

RIVRMSEs of the MS-RJ model is also lower than other models

between initial-2004 and mid-2007. During the same sub-period, the

GARCH-RJ model improves the pricing error for the deep-out-the-

money call options. However, after the financial crisis in 2008, the

SV-RJ-VJ model exhibits better pricing performance than other

models. Similar empirical results are shown in Fig. 5. Overall, before

the financial crisis in 2008, the GARCH-RJ model, the MS-RJ model,

and the SV-RJ-VJ model strengthen the pricing performance for the

short-, the medium-, and the long-term options, respectively. And,

https://link.springer.com/article/10.1007/s11156-020-00885-x/figures/5
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the SV-RJ-VJ model performs less pricing errors than other models

after the financial crisis.

On the other hand, in implementing the out-of-sample option pricing

procedure, we compute the current model implied volatility of call

option relying on the day-by-day re-fitted parameters of the previous

one day. Table 5 reports the daily time-series of RIVRMSE computed

by Eq. (24). For the category of the short term and deep-in-the-

money, the out-of-sample pricing error measure under the MS-RJ

model exists the minimum error. The ranks cross nine models in each

category are as similar to the results of Table 4.

Table 5 Out-of-sample pricing errors

Volatility smile

Based on the option price, asset price, strike price, risk-free interest

rate, and maturity, the implied volatility is computed under the

Black–Scholes model. Harvey and Whaley (1992) indicate that

implied volatility changes with the expectation and the changes in the

market. Therefore, implied volatility not only represents current

market prices but also reflects market expectations. The volatility

curve is plotted under different ratios of the strike to spot price.

Because the implied volatility for at-the-money options is smaller

than that for out-the-money or in-the-money options, the volatility

curve is convex and thus named a volatility smile. However, Fleming,

Ostdiek, and Whaley (1995), Harvey and Whaley (1992), Schwert

(1989) note that the increasing speed of implied volatility for in-the-

money options is faster than that for out-the-money options, making

the volatility smile more of a smirk.

Figure 6 plots the implied volatility the 1, 2, 6, and 12 months-to-

maturity call options with different cases of moneyness given the

current stock indexes, the annual riskless rates at some trading dates,

and the daily estimated parameters of MS-RJ model. In 2004 and

2005, the implied volatility for call options at the lower strikes is

lower than the implied volatility at higher strikes. It suggests that in-

the-money calls are more costly compared to out-of-the-money calls,

and that is called by volatility smirk. The long-term call options

exhibit similar patterns in other years.

Fig. 6



2021/6/16 Option pricing under stock market cycles with jump risks: evidence from the S&P 500 index | SpringerLink

https://link.springer.com/article/10.1007/s11156-020-00885-x 22/34

Implied volatility curve of a call option under the MS-RJ

model. Note that this figure plots the implied volatility the

1, 2, 6, and 12 months-to-maturity call options with

different cases of moneyness given the current stock

indexes, the annual riskless rates at some trading dates, and

the daily estimated parameters of MS-RJ model

Next, Fig. 7 indicates the implied volatility the 1 months-to-maturity

call options with different cases of moneyness given the current stock

indexes, the annual riskless rates at some trading dates, and the daily

estimated parameters of each model. These graphs show that the

implied volatilities under MS and MS-RJ models are lower than the

implied volatilities under GBM and GBM-RJ models. It suggests that

if the call option premium computed by the model without the

regime-switching pattern would be over-estimated. Nevertheless, in

2009, the implied volatilities of deep-in-the-money and deep-out-the-

money call options under the MS-RJ model are higher than the

implied volatilities under the GBM model. Overall, the MS-RJ model

can improve the fitting of volatility smile and pricing performance.

https://link.springer.com/article/10.1007/s11156-020-00885-x/figures/6
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Fig. 7

Implied volatility curve of call option cross models. Note

that this figure plots the implied volatility the 1 months-to-

maturity call options with different cases of moneyness

given the current stock indexes, the annual riskless rates at

some trading dates, and the daily estimated parameters of

each model

Sensitivity analysis

Because the S&P500 market exhibit stock market state switching, this

section performs sensitivity analysis for the estimated parameters.

Based on the current price ($100), the strike price ($100), the annual

riskless rate (2%), the days-to-maturity (30 days), and the estimated

parameters of MS-RJ model shown in Table 2, Figs. 8 and 9 plot the

sensitivity analysis of European call prices for the market state

switching and jump risk under the MS-RJ model.

Fig. 8

https://link.springer.com/article/10.1007/s11156-020-00885-x/figures/7
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The impact of pricing cycles for call option premium under

the MS-RJ model. Based on the current price ($100), the

strike price ($100), the days-to-maturity (30 days), and the

estimated parameters of MS-RJ model shown in Table 2,

this figure plots the sensitivity analysis of European call

prices for the market state switching under the MS-RJ

model

Fig. 9

The impact of jump risk for call option premium under the

MS-RJ model. Based on the current price ($100), the strike

https://link.springer.com/article/10.1007/s11156-020-00885-x/figures/8
https://link.springer.com/article/10.1007/s11156-020-00885-x/figures/9
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price ($100), the days-to-maturity (30 days), and the

estimated parameters of MS-RJ model shown in Table 2,

this figure plots the sensitivity analysis of European call

prices for the jump risk under the MS-RJ model

According to the sensitivity analysis in Fig. 8, there is a positive

relationship between volatility and call option value in state 1 and

state 2, holding other parameters fixed, implying that larger volatility

indicates a higher probability of increasing stock prices and thus a

higher call price. In addition, there is a  relationship between

 and the call value, other parameters held constant, because the

volatility of state 1 (higher volatility state) is sustained when  is

close to 0. A higher value of  implies a lower probability that the

economy will switch from state 1 to state 2. That is, in the long term, a

longer duration of state 1, which features higher volatility, implies a

higher call value. On the contrary, there is a positive relationship

between  and the value of the call option. A lower value of 

implies a lower probability that the economy will switch from state 2

to state 1. In the long term, a longer duration of state 2, which has

lower volatility, implies a lower value of the call option.

This paper also discusses the influence of jump volatility on call

prices. Figure 9 illustrates the sensitivity analysis of the impact of

jump size and jump frequency on call prices. Other factors held

constant, there is a U-shape relationship between average jump size

and call prices. Because of the total volatility of the rate of return, 

, is positively associated with the

absolute mean of jump size, the standard deviation of jump size, and

the jump frequency, the larger jump risk implies greater volatility of

stock at expiration and thus a higher call price.

Conclusion

This study proposes a Markov switching model with return jumps

(MS-RJ) to price European options. To capture the dynamics of stock

returns over expansion-recession cycles and the occurrences of

abnormal events in financial markets, we assume that the index

return follows the MS-RJ model. In this study, we show that

compared with the discrete- and continuous-time stochastic volatility

models, jump-diffusion model, and geometric Brownian motion, the

MS-RJ model is better able to explain the dynamics of S&P 500 stock

indices than others models. In addition, both the MS-RJ model and

MS model can address the leptokurtic feature of the asset return

negative

p12

p12

p12

p21 p21

+ [ + (1 + ) ]σ2
q(t) λQ θ2 h2 ν 2

− −−−−−−−−−−−−−−−−−−−−
√



2021/6/16 Option pricing under stock market cycles with jump risks: evidence from the S&P 500 index | SpringerLink

https://link.springer.com/article/10.1007/s11156-020-00885-x 26/34

distribution, the volatility smile, and the volatility clustering

phenomenon.

For the goodness-of-fitting for each model, we obtain the daily rate of

returns for the SPX between January 5, 1999 and December 30, 2009

as a sample. Owing to the market state, jump risk, and stochastic

volatility be unobservable, we employ the particle filters algorithm to

estimate the model parameters. Comparing to the discrete-time

GARCH family and the continuous-time stochastic volatility family,

the MS-RJ model exists the better goodness-of-fitting than other

models. That is, the SPX market does have the features of market

state switching and jump risks. On the other hand, for the pricing

error for the SPX call options, we utilize the daily closed price of SPX

call options between January 04, 1999 and December 31, 2009 as a

sample, then the empirical results identify that the pricing model with

jump risks can improve the pricing performance, and the market state

switching in the pricing formula applies to the short-term at-the-

money, median- and long-term in-the-money options.

Furthermore, according to the sensitivity analysis, option prices

increase with the probability of remaining in the recession state but

decrease with the probability of remaining in the expansion state.

Moreover, increases in the standard deviation (in either state), the

absolute mean jump size, the standard deviation of jump sizes, and

the mean jump frequency all increase option prices.
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Appendices

Appendix A: European call option pricing formula

Assume that the jump risk premiums are the same in the market state

1 and 2, i.e. . Given the filtration , the days

belonging to the market state 1 (denoted by ), the stock return

between time  and , , under the 

measure is

(20)

where  is the variance with  days

visiting the market state 1 between time  and . And, the random

variables under the  measure:  is the

Gaussian noise process,  is the

number of jumps during , and  is the jump size.

Let the random variable  be the log-price of stock at time , i.e. 

, and  be

enlarged filtration. Then, we can derive its conditional characteristic

function as follow:

(21)

Consider a -maturity European call option with the strike price .

Given the filtration , the option pricing formula is

= =h2,1 h2,2 h2 F (t)

m

t T lnS (T) − lnS (t) = R (u)∑
u=t+1

T

Q

ln = r (T − t) − − [ (−i) − 1] (T − t) + (t) + ,
S (T)
S (t)

1
2
Vm λQ gQY Vm

−−−√ εQ ∑
n=1

N(T−t)

Yn

= k + (T − t − m)Vm σ2
1 σ2

2 m

t T

Q (t) ∼ Normal (0, 1)εQ

N (T − t) ∼ Poisson [ (T − t)]λQ

(t,T ] (y; )Yn ∼IID fQY h2

X T

X = lnS (T) = lnS (t) + R (u)∑
u=t+1

T

G (t) = F (t) ∨ m

(ϕ)gQ
X|G(t) = ( )EQ

G(t) eiϕX
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(22)

where the second equation is derived by the law of iterated

expectation. By the inverse Fourier transform of the characteristic

function, we can rewrite Eq. (22) as follows:

(23)

(24)

The second equations in Eqs. (23) and (24) are computed by the

Fubini theorem, and the third equations in Eqs. (23) and (24) are

derived by the property of complex conjugate. A similar proof can be

shown in Bakshi and Madan (2000). Therefore, the pricing formula in

Eq. (22) is rewritten by

(25)

where  presents the probability that the stock market

belongs to the state 1 for  days while the time-to-maturity is 

days given the initial market state . It is proved in Duan,

Popova, and Ritchken (2002) with a hidden Markov Chain.

Appendix B: Benchmark models: stochastic
volatility processes

Our model comprises a Markov switching dynamics for the volatility

and it can be categorized in the stochastic volatility models. Under the

discrete-time framework, Li (2019), Ornthanalai (2014),

Christoffersen et al. (2012), Wu (2006) Heston and Nandi (2000)

Call (t;K,T) = [ ( − ) ]EQ

F(t) e−r(T−t) eX eln K 1{X>ln K}

= [ ( )]− K [ ( )] ,e−r(T−t)EQ
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G(t) eX1{X>ln K} e−r(T−t)EQ
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employ the affine GARCH models to depict the stock return and its

variance. That is,

(26)

(27)

where  is the mean of stock return,  is the conditional variance

of stock return at time ,  is the intercept term of the variance

equation,  is the coefficient of leverage effect,  measures the level of

asymmetric leverage effect between the good and bad events,  is the

parameter of volatility clustering effect. The variance is s stationary

process if and only if  is satisfied. Also, note that 

and  are the convexity adjustment terms, which make

the stock return equal to  under the  measure, i.e. 

. Equations (26) and (27) are

called by the GARCH model with return jumps (GARCH-RJ). If there

are no jumps, , Eqs. (26) and (27) reduce to Heston and Nandi

(2000)’s GARCH model.

On the other hand, the stock return is also measured under the

continuous-time framework like Bates (2012, 2000, 1996), Eraker

(2004), Eraker et al. (2003), Bakshi et al. (1997), Eisenberg and

Jarrow (1994), Heston (1993). The dynamic of stock log-price under

the stochastic volatility model is

(28)

(29)

where  is the instantaneous mean,  is the instantaneous

variance at time ,  is the mean-reverting speed,  is the long-

run mean level, and  is the volatility of variance. Moreover, 

 and  are the

correlated Brownian motions with the correlation coefficient . 

 and  are the

independent number of jumps for the return and the variance with

the time-homogeneous arrival rate.  and 

 are the independent jump sizes for the

return- and the variance-jumps, respectively. Equations (28) and (29)
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are called by the stochastic volatility model with return-jumps and

volatility-jumps (SV-RJ-VJ). If there are no jumps for volatility, 

, the model reduces to the stochastic volatility model with

return jumps (SV-RJ) like Bates (2012, 2000) and Bakshi et al.

(1997). Next, if the stock market does not exist the jump risks for the

return and volatility, , the dynamic of stock log-price

degenerates to Heston (1993)’s SV model. For comparing under the

same assumption, in this paper, we suppose that the jump frequencies

of return and volatility are time-homogeneous under the model with

jumps.
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