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Abstract

In this thesis, we first establish the existence of semi-traveling wave solutions
to a diffusive generalized Holling-Tanner predator-prey model in which the
functional response may depend on both the predator and prey populations.

Next, by constructing the Lyapunov function, we apply the obtained result
to show the existence of traveling wave solutions to the diffusive Holling-Tanner
predator-prey models with various functional responses, including the Lotka-
Volterra type functional response, the Holling type II functional response, and the
Beddington-DeAngelis functional response.

Finally, we establish the existence of semi-traveling wave solutions of a
diffusive Holling-Tanner predator-prey model with the Ratio-Dependent functional
response by using the upper and lower solutions method. Then, by analyzing the
limit superior and limit inferior of the semi-traveling wave solutions at infinity, we
show the existence of traveling wave solutions.

Keywords: reaction-diffusion system; traveling wave solution; predator-prey
system; Holling-Tanner model; Beddington-DeAngelis functional response; Ratio-

Dependent functional response.
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Chapter 1

Introduction

Traveling wave solutions to diffusive predator-prey systems have been studied extensively
(see [5, 8, 10], etc). In recent years, some researchers focused on the study of the diffusive
Holling-Tanner predator-prey model. For example, Chen, Guo and Yao in [3] studied the

diffusive Holling-Tanner model of Lotka-Volterra type functional response

Up = Upy +ru(l —u) — rkuv,

(1.1)
Uy = dUyy + SU (1—%),

where d, r, s and k are positive constants. Under the condition 0 < k£ < 1, they showed that
system (1.1) admits a traveling wave solution with speed c iff ¢ > ¢* := 2v/ds. Ai, Du and Peng
in [1] first established the existence of semi-traveling wave solutions of a generalized Holling-

Tanner model

Up = Ugy + B(u) - f<U)U,

vt:dvxx—i—sv(l—g),
U

and then applied it to show the existence of traveling wave solutions to the following diffusive

Holling-Tanner model

ku™
v
14+ bu™

Up = Uz +u(l —u) —

Y

(1.2)

vt:dv$$+sv<1—%>.

1
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They showed that system (1.2) admits a traveling wave solution with speed ¢ > c¢* for the
twocases: (i)m = 1,0 < k < 1,and b > 0; (i) m = 2, and either £ > 0,0 < b < 3
or0 < k < b33 —0b3),0 < b < 27. To the authors’ knowledge, there are no results
in the literature for traveling wave solutions of the diffusive Holling-Tanner system with the

Beddington-DeAngelis functional response

rkuv

ut:um—i-ru(l—u)—m,

(1.3)

vt:dvarsv(l—g),
u

where k, 7, s, band e are positive constants. Here u(z,t) and v(x,t) represent the density of
prey and predators at position x and time ¢, respectively; d denotes the ratio of the diffusivity
of the predator to that of the prey. Besides, let us consider two particular cases of (1.3). For
b =e = 0, (1.3) is reduced to system (1.1) or system (1.2) with m = 1 and b = 0. For the
case b > 0 and e = 0, (1.3) is reduced to system (1.2) with m = 1 and b > 0. Although the
existence of traveling wave solutions to these two cases has been investigated in [3] and [1].
However, the results are under the restriction 0 < k£ < 1. Based on the above reasons, we
will first establish the existence of semi-traveling wave solutions to the following generalized

diffusive Holling-Tanner model

Up = Uz + B(u) — F(u,v)v,
(1.4)

vt:dvm%—sv(l—g),
U

in Chapter 2, and then use the obtained result to show the existence of traveling wave solutions
of system (1.3) with b > 0 and e > 0 in Chapter 3. In particular, for b = e = 0, we will relax
the restriction on k.

For convenience, we rewrite (1.4) in the following form

Uy = Uy + h(u)[f(u) — g(u, v)],
(1.5)

vt:dvxx—l—sv(l—E).
U
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For functions A, f, and g, we impose the following hypotheses:

(H1) A(u) and f(u) are twice continuously differentiable functions on [0, o), and g(u, v) is a

twice continuously differentiable function on [0, c0) x [0, 00).
(H2) h(0) = 0and h(u) > 0 forall u € (0, 1].
(H3) f(0) >0, f(1)=0,and f(u) > 0 forallu € (0,1).
(H4) ¢g(1,v) > 0and g(u,v) > 0forallu € [0,1) and v € [0, 1].
(H5) There exists a unique positive number n* € (0, 1) such that f(n*) — g(n*,n*)n* = 0.

Under the hypotheses (H3) and (H5), system (1.5) has a boundary equilibrium point (1, 0) and
a unique interior equilibrium point (i.c., the coexistence equilibrium point)(n*, n*). A solution

(u,v) of system (1.5) is called a traveling wave solution if it is of the form

(u(z, t),v(z,t)) = (U(2),V(2)), z = x + ct, (1.6)

where ¢ denotes the wave speed and (U, V) € C?(R) x C*(R) is a pair of positive functions
satisfying the boundary conditions (U, V)(—oc0) = (1,0) and (U, V)(+00) = (n*,n*). Upon

substituting (1.6) into systems (1.5), we are led to the governing system for (U, V') as follows:

U — cU" + h(U)[f(U) - (U, V)V] =0,

(1.7)
Vv
av" —cV' + sV <1——> =0
U
on R, together with the boundary conditions
(U, V)(=00) = (1,0) and (U, V)(+00) = (0", 7"). (1.8)

Therefore, to show the existence of traveling wave solutions of system (1.5) is equivalent to
show the existence of positive solutions of system (1.7) satisfying (1.8). The main results for

system (1.5) and (1.3) are stated in the following.
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Theorem 1.1. [9] Suppose (H1)—(HS) hold. Then system (1.5) admits a semi-traveling wave
solution (u,v) with speed c iff ¢ > c¢*. In addition, § < u < 1 and 0 < v < 1 for some positive

constant 9.

Theorem 1.2. [9] Suppose that0 < b <1, e > 0, and

0<k<[-(1+b+2e)+/(1+b+2e)2+16(1+0b+e)?]/[2(1 +b+e)].

Then system (1.3) admits a traveling wave solution (u,v) with speed c iff ¢ > c¢*. In addition,

0 <u<land0 < v <1 for some positive constant 6.
In particular, when b = e = 0, the restriction on k can be further relaxed as follows.

Theorem 1.3. [9] Suppose that b = ¢ = 0. There exists a constant ky € (4,5) such that if
0 < k < ko, then system (1.3) admits a traveling wave solution (u, v) with speed c iff ¢ > c*. In

addition, ) < u < 1and 0 < v < 1 for some positive constant 9.

There are two parts in the proof of the existence of traveling wave solutions to system (1.3).
In the first part, we show that system (1.5) admits a positive solution (u,v) of the form (1.6)
with (U, V))(—o0) = (1,0). Such a solution is so-called a semi-traveling wave solution. The
argument of the proof for the existence of semi-traveling wave solutions of (1.5) is followed
from that of [1] with a modification. In the second part, we apply the result in the first part
to system (1.3) and show that the obtained semi-traveling wave solutions are actually traveling
wave solutions under certain conditions by constructing the Lyapunov function and applying
the LaSalle’s invariance principle. Though this argument is standard, the main difficulty is the
construction of the Lyapunov function. Motivated by [4], we construct a Lyapunov function
different from that in [1] to improve the known result.

Next, we consider the following diffusive Holling-Tanner model with Ratio-Dependent

type functional response

rkuv
u—+qu’ (1.9)

vt:dvm—l—w(l—g),
U

Up = Uz + Tu(l —u) —

where d, r, s, ¢ and k are positive constants. Zuo and Shi in [11] proved that, under the condition

4
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0 <k < (1+q)q/(2+ q), system (1.9) admits a traveling wave solution with speed ¢ iff
¢ > ¢* := 2v/ds. In Chapter 4, we intend to release the condition.

Note that system (1.9) has a boundary equilibrium point (1,0) and a unique interior
equilibrium point (i.e., the coexistence equilibrium point) (n*,n*) withn* := 1 —k/(1 +q) €
(0,1) iff £ < 1+ q. Therefore, throughout this thesis, we always assume that k& < 1 + ¢ for this
system. Then it is easy to verify that system (1.9) satisfies the hypotheses (H3) and (H5) and

the governing system for (U, V) is as follows:

rkUV

U'"—cU +rU(1-U) — =0 1.10
UV U) = =0, (1.10)
%
dV" —eV' + sV (1—5) =0 (1.10b)
on R, together with the boundary conditions
(U, V)(=00) = (1,0) and (U, V)(+00) = (0", ") (1.11)

Since system (1.9) does not satisfy the hypothesis (H4), we cannot apply Theorem 1.1 directly.
Instead, we will follow the arguments in [11] with a modification to get better results. More
specifically, the structure of the proof is the same as that in [11]. But our proof is simpler and
clearer. Besides, since system (1.10) has a singularity at (U, V') = (0,0), the authors in [11]
derived a positive lower bound of U to overcome the difficulty. Here we get a better estimate
of the lower bound of U to relax the restriction on k. The main result for system (1.9) are stated

in the following.

Theorem 1.4. Suppose that
k<G +2¢+5—2. (1.12)

Then system (1.9) admits a traveling wave solution with speed c iff ¢ > ¢*. In addition, A <

u < 1land(0 < v < 1 for some positive number A.

We remark that (1+¢)q/(2+q) < /¢ + 2¢ + 5 — 2 by a simple calculation. This shows
that our range of k£ is wider than that in [11]. Besides, we note that £ < 1 + ¢ is a necessary
condition to assure the coexistence equilibrium point exists. Since numerical simulation shows
that our restriction on k is also a technical assumption (see the discussion in Section 4.5), we

conjecture that the optimal result should be as follows: suppose that £ < ¢+ 1, then system (1.9)
5
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admits a traveling wave solution with speed c iff ¢ > ¢*.

The rest of the thesis is organized as follows.

Chapter 2 is devoted to the study of the existence and non-existence of semi-traveling wave
solutions to system (1.5). In Section 2.1, we analyze the trajectory of system (1.7) near the
equilibrium point (1,0) to show that there exist no semi-traveling wave solutions with speed
¢ < c*. For the existence of traveling wave solutions, since system (1.7) has a singularity, we
follow the idea of [1] to consider a modified system in which the reaction term sV (1 — V /U)
is replace by the function sV (1 — V' /o.(U)), where o, is a continuous function to be defined
in Chapter 2 such that 0.(U) = U if U > e¢. We show that the modified system has a positive
solution (U, V;) and U, has a positive lower bound ¢, which is independent of ¢. Then (U, V¢)
with € < § is actually a semi-traveling wave solution of (1.5).

Chapter 3 is concerned with the existence and non-existence of traveling wave solutions to
system (1.3). In Section 3.1, we apply the result obtained in Chapter 2 to get semi-traveling wave
solutions to system (1.3). Then, by constructing the Lyapunov function and using the LaSalle’s
invariance principle, we prove that the obtained semi-traveling wave solutions to system (1.3)
are actually traveling wave solutions under certain assumptions. Some numerical simulation
results for system (1.3) are presented in Section 3.2.

Chapter 4 is focused on the existence and non-existence of traveling wave solutions to
system (1.9). In Section 4.1, we review a general existence result in [11]. In Section 4.2, we
construct a pair of upper and lower solutions to system (1.9) for ¢ > c¢*. In Section 4.3, by
applying the general existence theorem together with the constructed upper and lower solutions,
we get semi-traveling wave solutions to system (1.9). Then, in Section 4.4, we show that
(U, V)(+o0) = (n*,n*) by analyzing limit superior and limit inferior of the semi-traveling
wave solutions at +-c0. This confirms that the obtained semi-traveling wave solutions to system
(1.9) are actually traveling wave solutions. Finally, some numerical simulation results of system
(1.9) are also presented in Section 4.5.

We remark that the contents of Chapter 2 and Chapter 3 have been published in [9].
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Chapter 2

Semi-traveling wave solutions to system

(1.5)

In this chapter, we prove Theorem 1.1 for the existence and non-existence of semi-traveling
wave solutions to system (1.5). The proof is outlined as follows. First, the non-existence of
semi-traveling wave solutions is followed by the standard phase plane analysis. Next, since
system (1.7) has a singularity at U = 0, we follow the idea of [1] to consider a modified system
in which the reaction term sV (1 — V/ /U) is replace by the function sV (1 — V' /o .(U)). Here

o : [0,1] — (0, 1] is a continuous function defined by

U, iU > e,
o (U) := 2.1)

1
U+ eeU-e, if0 < U < e,

where € is a sufficiently small constant. Then we get a semi-traveling wave solution (U, V)
to the modification system. Finally, we show that U, has a positive lower bound ¢, which is
independent of e. It follows that (U, V,) with e < § is actually a semi-traveling wave solution

of (1.5).

2.1 Non-existence of semi-traveling wave solutions

We show the non-existence of semi-traveling wave solutions of system (1.5) with speed

¢ < c* in the following.
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Lemma 2.1. Suppose (H1)-(HS5) hold. For ¢ < c*, there exist no positive solutions of
system (1.7) satisfying

Proof. First, we consider the linearized system of (1.7) around (1, 0)

U" — U’ + h(1) f'(1)(U — 1) — h(1)g(1,0)V = 0, (2.22)
AV — V' 4+ sV = 0. (2.2b)

Note that (2.2b) has two eigenvalues \; and \,, where

). - c—~/c2—4ds \ c++c? —4ds
1=, 9 = .
2 2

For contradiction, we assume (U, V) is a positive solution of system (1.7) with ¢ < 2v/ds such
that (U, V')(—oco) = (1,0). Suppose that ¢ < —2v/ds. Then we have \; < 0,7 = 1,2, and so
V/(z) is unbounded as z — —oc, a contradiction. Suppose |c| < 2v/ds, then \; and ), form
a complex conjugate pair. This would imply that V' (z) cannot be of the same sign for z near

negative infinity, a contradiction again. Hence we complete the proof of this lemma. U

2.2 The modified system

We will establish the existence of semi-traveling wave solutions of (1.5) with speed ¢ > ¢*.

Since system (1.7) has a singularity at U = 0, we first consider the following modified system

U" —cU' +hU)[f(U) - g(UV)V] =0,
(2.3)

v
AV — / 1 — —
Vv cV —|—5V< O‘E(U)> 0

on R, where o, is the function defined by (2.1).
Following the arguments of [1, Lemma 2.3], we establish the following lemma for the

existence of semi-traveling wave solutions to the modified system.

Lemma 2.2. Suppose (H1)—-(H5) hold. For ¢ > c*, system (2.3) admits a positive solution
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(Ue, Vo) on R satisfying
0<U(2z) <1, 0<Vi(z)<1, VzeR, (2.4)

and

(U, UL Ve, V) (—00) = (1,0,0,0). (2.5)

Furthermore, U! and V! are bounded on R, and there exist sufficiently small positive constants

0 and €y such that, for 0 < € < ¢,
Uclz) > 0,Vz € R. (2.6)

Proof. By applying [1, Theorem 2.1], system (2.3) admits at least one nonnegative solution
(U., V,) satisfying (2.5) if ¢ > ¢*. In addition, (U,, V,) satisfies

0<Ufz)<land0 <V (2) <1, Vz€R,

Ve(z) > 0, V2 <0, 2.7)

and U/, V! are bounded on R. Furthermore, we claim that 0 < V,.(z) < 1 for all z € R. For
contradiction, we assume that there exists z; > 0 such that V.(z;) = 0. Then V/(z;) = 0 and
so the existence and unique theorem gives that V. = 0 for all z € R, which contradicts (2.7).
Assume that there exists 71 € R such that V.(Z;) = 1. Since V, attains the maximum at the point

z = 7y, it follows that V/(Z,) = 0 and V’(Z1) < 0. On the other hand, by (2.3), we have

dV!" (%) = V! (z1) — sVi(%) (1 — Ue((}(ff)))> > 0,

a contradiction. Hence V,(z) < 1 forall z € R.

Now it suffices to claim that there exist sufficiently small positive constants ¢ and €, such
that U.(z) > d forall z € Rand 0 < € < ¢5. We divide the proof of this claim into several steps.
For convenience, we denote U := U, V := V,, and o(U) := 0.(U) in the remaining proof.

Step 1. Show that

U/(2)|/U(2) < 70, V2 €R (2.8)
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Here 7y := (c+ /2 + 4M,) /2 is a positive solution of ¢y + My — v* = 0, where

h(U UWVYV — f(U
M, = sup (O)[g(U,V) f(U)] > 0.
(U,V)€(0,1]x[0,1] U

By (2.3), the function ¢, := U’/U satisfies

U//
¢/1:7—¢%:C¢1—

WU)f(U) = g(U, V)V]

U —¢%§C¢1+M1—¢?~

Since 1)(2) := 7, satisfies ¢/ = ¢y + My — +? and ¢ (—00) = 0 < (—00), one can easily
verify that ¢1(z) < ¢(z) for all z € R. Hence ¢; < 7, on R.
Now we claim that ¢; > —~,. For contradiction, suppose that ¢;(z5) < —~, at some

point z; € R. Let ¢(z) be the unique solution of the equation

¢ =cop+ M — ¢ (2.9)

such that ¢(z2) = ¢1(22). By the comparison principle, we have

¢1(2) < #(2), V2 > 2. (2.10)

Letv_ := (¢ —+/c? + 4M;) /2 be another root of ¢y + M; — ~* = 0. By solving (2.9), we have

vy — 776—\/C2+4M1(z—23)
o(2) = | _ o—V@+ad(—z3)

where

23 1= Z9 +

1 T+ — ¢(22)
) 7 =

This yields ¢ — —oo as z — z3—. Together with (2.10), we find that ¢; — —oco as z — 24—
for some point z4 € (22, 23], which contradicts the fact that ¢, is defined for all z € R. Hence
(2.8) holds.
Step 2. Show that
V'(2)/V(2) <\, Vz € R, (2.11)

where \ := (¢ —+/c? — 4ds)/(2d).

For contradiction, we assume that (V//V')(Z;) > A at some point z;. Then (V'/V)(z) > A

10
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for all z > Z;. To see this, we also use a contradictory argument and assume that there exists
Zy > 7y such that (V'/V)(%;) = X and (V'/V)/(%2) < 0. Then, by using d\?> — cA + s = 0, we

have

(V") (5 = V@) V@ -V(E)oUE) | AV(E) —sV(E) _A—s_

v ANV (%) TV G

which, together with (V'/V')(22) = A, yields that

(%)/(52) = (Vv) (%) — (%)2 (%) >0,

a contradiction. Hence V'(2)/V (z) > A forall z > 2, and so V(z) > V(3)er*=%) — oo as
2z — 00, which contradicts the fact that V' < 1. Therefore, (2.11) holds.

Step 3. Show that there exist a positive constant €, such that, for 0 < € < €,
V(z)/o(U(2)) < dMs/s, ¥z € R, (2.12)

where My := s/d + c|1/d — 1|y + My + 7.
Let p := V /o(U). By computation, we obtain that

- (- )

and
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DOI:10.6814/NCCU202100501



"o_ K/_ (U(U))’ / V_//_ K/ 2_ O'//(U)(U/)2—|—O’/(U)U” (U(U))/ 9
p_<V a(U))p+ v <V) 0 +(U(U)) p
_ (V@) eV s VN (U (O)?
(v S ) lav it () - e
_CU'U((U(;;]' +c;’<(l(]])) WO)[f(U) — g(U,V)V] + <(<Z((((]])>)’ »
VOO e (2, @)Y s ("))
-(v-%o ) GG ) e -
i oo (0 (53]

#3505 e (5 =1) O 2w o vy - COEE],

(2.14)

From step 3 in [1, Lemma 2.3], we can find ¢; > 0 such that, for 0 < ¢ < ¢; and U > 0,

max{U, ee"/} < o(U) <min{1,U + €}, 0<0'(0) <o'(U) <1, 0<0"(U) <0"(0) <1,

(2.15)
so that
a'(U) < i and o"(U) < l < i (2.16)
oU) — U oU) — U~ U?
Using (2.16), (2.8), (2.11), and the definition of M7, we get from (2.14) that
I ¢ Q(U(U))/ / S (2.17)
s (d s )P <dp M) p
Multiplying (2.17) by the integrating factor Q(z) := ¢>(U)e~%*/?, we obtain that
s
QA > Q=) [5p(2) = Ma) pl2), ¥z € R. (2.18)

Suppose that p(z) < dMy/s forall z € R is false. Due to p(—o0) = 0, there exists a smallest z;
such that p(z5) = dMs/s and p'(z5) > 0. Together with (2.18), we get [Q(25)p'(25)] > 0. So

there exists a positive constant 7, such that Q(z)p'(2) > Q(z5)p'(25) > 0forall z € (25, 25+12).

12
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Since Q(z) > 0, it implies that p'(z) > 0 and p(z) > dMy/s for all z € (zs5, 25 + 12). Further,

we claim that p/(z) > 0 for all z > z5. For contradiction, we assume that there exists a smallest

26 > z5 such that p'(z5) < 0. By integrating (2.18) from z5 to zg and using the fact that

p'(z5) >0, p'(26) <0,and p’ > 0in (25, z6), we have

S

02 Qao)i (20) —~ Qe a) = [ Q) [30(2) —

z5

} p(z)dz > 0,

a contradiction. So p'(z) > 0 and p(z) > dMs/s for all z > z;, which gives

Q(2)p'(2)] >0, Vz > z5 and Q(2)p'(2) > Q(2z5 + m2)p (25 + m2), V2 > 25 + 19,

and therefore

/ Q<Z5 + 772) /
p(2) > Q) p' (25 + n2)
a*(U(2s5 + m2))
- . pc(z=(z5+m2))/d
O_Q(U(Z)) € P (25 + 772)
> 0P(U(zs +12))e T (25 4 1pp), Yz > 25+ 1.

Thus p'(z) — oo as z — 0o and so

p(z) = 0o as z — 0.

By (2.16) and (2.8), we have

which, together with (2.20), yields

V(z) s

(2.19)

(2.20)

(2.21)
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Combining (2.11) and (2.21), we get

V'(2)]
V(z)

< M (2.22)

for all z > z5, where M3 := max{c/(2d), . }. By (2.13), (2.22), and (2.20), we deduce that

(52 2 - 5 ol

where My := (¢/d + 27y, )(M3 + vy ). Then, by (2.17), we get

#'(2) > (5p(2) = Mo = My) p(2)

for all z > z5. Due to p(00) = oo, there exists Zg > z5 such that, for z > Z,
p(z) > 2d(Ms + M,)/s,
which follows that

7 S
P (Z) > ﬁp(z)27

and so, by multiplying the above inequality by p’ and integrating the resulting inequality, we

obtain

Now we take z7 > Zg such that, for z > 27,

p(z)3 > 2p(ZA6)37

which yields that
s
(02(2) > p(),

and therefore,

§ 3/2

P(2) > 5qP%)

This implies that p blows up in finite time, a contradiction. Thus we finish the proof of step 3.

14
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Step 4. Show that there exist positive constants €y and  such that, for 0 < € < ¢,
U(z) >0, Vz € R. (2.23)

Set

My = max u,v).
0 (u,v)€[0,1]%[0,1] g( )

We consider the function O(7) := f(7) — (dMoMs/s)(T + «), where o := f(0)s/(2dMyMs).

Due to ©(0) > 0, there exist a constant 6 € (0, 1) such that
o(r) > 0, Vr € [0,]. (2.24)

Recall that U(—o0) = 1. For contradiction, we assume that there exists a smallest zg such that
U(zg) = dand U'(zg) < 0. For 0 < € < €y := min{ey, a}, it follows from (2.3), (2.12), (2.15),
and the definitions of M that, as longas U < § and U’ < 0,

U =l = h(U)F(U) — g(U, V)V

< el = h(U)[f(U) ~ BT + a)] < 0.

Hence one can easily verify that U”(z) < 0 and U’(z) < 0 for all z > zg and therefore U(z) —
—o0 as z — oo, which contradicts the boundedness of U. Thus we finish the proof of (2.23)

and the lemma. U

2.3 Proof of Theorem 1.1

With the help of Lemma 2.2, we establish the following result for the existence of semi-

traveling wave solutions of system (1.5), which, together with Lemma 2.1, gives Theorem 1.1.

Lemma 2.3. Suppose (H1)—(HS) hold. For any ¢ > c*, there is a sufficiently small constant

d > 0 such that the system (1.7) has at least one positive solution (U, V') on R satisfying

d<U(z) <1, 0<V(2)<1, VzeR; V(2) >0, Vz> 2 (2.25)

15
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for some zy € R, and

(U, U’,V,V’)(—oo) = (1,0,0,0). (2.26)
Furthermore, U', V' are bounded on R.

Proof. Pick e sufficiently small such that 0 < ¢ < min{eg, J}, where ¢ and ¢ are constants
defined in Lemma 2.2. By Lemma 2.2, system (2.3) admits a solution (U, V;) satisfying (2.4),
(2.5), and (2.6). Since U, > § > e, it follows from definition of o, that o.(U.) = U, and so
(U, V) := (U, V,) is a solution of (1.7) satisfying

d<U(z) <1, 0<V(2)<l1, VzeR,

and

(U, U, V,V')(—00) = (1,0,0,0).

Now we claim that there is a 25 € R such that 1/(z,) > 0. For contradiction, we assume

that
V(z) <6, VzeR. (2.27)

Since V(—o0) = 0and V(z) > 0 forall z € R, there are two possibilities: (i) there is a smallest
z such that V'(2) < 0; (i) V'(z) > 0 for all z € R. For the case (i), we note that, as long as
V < dand V' <0, it follows from (2.23) that

dV" =V — sV (1 -~ g) <0,

which implies that V”(z) < 0 and V'(2) < 0 for all z > 2. This leads to V(z) — —o0
as z — 00, that contradicts the boundedness of V' (z). For the case (ii), V' (o0) exists and is
positive. Since V and sV (1 — V' /U) are bounded on R, it follows from Lemma A.3 that V' and
V" are bounded on R. Then, differentiating the second equation of (1.7) and using Lemma A.3
again, we also have V" is bounded on R. Thus, by Lemma A.1, we have V'(c0) = V" (c0) =
0. This, together with (1.7) and the fact that V(co) > 0, yields that U(oo) also exists and
U(oo) = V(o0). From (2.23) and (2.27), we get U(oco) = V(o0) = §. Arguing as above,
we have U'(co) = 0 and U”(c0) = 0. Therefore, using the first equation of (1.7), we get
that f(0) — g(d,0)0 = 0. On the other hand, by the definitions of A/, in step 3, we know that

16
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dMs/s > 1. Together with definition of M, and (2.24), we get that

J(6) = 9(8,6)8 > [(8) — dMyMa/s -5 > 0,

a contradiction. Hence we conclude that there is a zy € R such that V'(zg) > 4.

Furthermore, we claim that V(z) > ¢ for all z > z,. For contradiction, we assume that
there exists Z > zo such that V' (2) = 6 and V’(2) < 0. Recall we have shown in the case (i) that
V" < 0aslongasV < ¢and V' < 0. It follows that V”(z) < 0 and V'(2) < O forall z > 2
and therefore V' (2) — —oo as z — oo, which contradicts the boundedness of V. So we finish

the proof of this lemma. []

17
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Chapter 3

Traveling wave solution to system (1.3)

In this section, we apply the obtained result to system (1.3) and show that, under
certain conditions, the semi-traveling wave solutions are indeed traveling wave solutions by

constructing the Lyapunov function and applying the LaSalle’s invariance principle.

3.1 Proof of Theorem 1.2 and Theorem 1.3

In this section, we prove Theorem 1.2 and Theorem 1.3 for the existence of traveling wave
solutions of system (1.3). To begin with, we set h(u) := ru, f(u) :== 1 — u, and g(u,v) =
k/(1+bu+ ev), where r >0,k > 0,b> 0and e > 0. Then (1.5) and (1.7) become (1.3) and

rkUV

" !
" 4 1 — _ =
U= cU 4+ rU( U) U TV

0,
(3.1)
"o / _K -
AV = V' sV (L— ) =0,

respectively. Besides, it is easy to check that the functions f, g, and A satisfy the assumptions

(H1)~(H5) with

1
— ifb=e=
1 1 e=20,

N = (3.2)
b+e—1—k++/(b+e—1—k)?>+4(b+e)
2(b+e) ’

otherwise.
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So it follows from Lemma 2.3 that for any ¢ > ¢*, there is a sufficiently small constant § > 0

such that system (3.1) has at least one positive solution (U, V') on R satisfying

d<U((z) <1, 0<V(z)<l, VzeR; V(z) >0, V2> 2z (3.3)

for some 2y € R, and

(U, U, V,V')(—o0) = (1,0,0,0). (3.4)

In addition, there exists a positive constant M such that

U'| < M, |V'| < M, Yz €R. (3.5)

Moreover, we will use the LaSalle’s invariance principle to prove that

(U, U, V, V") (+o0) = (n*,0,1%,0). (3.6)

For this, we first rewrite system (3.1) as a first-order ODEs system:

U =Y,
Y'=¢cY —rU [I—U—%},
+ +e (3.7)
V=127,
v
dz' =cZ — sV {1—-—=
and set
Yi=(0,1) x (=M, M) x (§,1) x (=M, M).
Next, motivated by [4], we define the Lyapunov function L : > — R as follows:
Y “)2Y *)2 an*Z
L(U,Y,V,Z):zg——+(77> +c(77) +r|cV —dZ + —cen*InV |,
r r rU? rU

where « is a positive constant to be determined later. To proceed, we need the following lemma.

Lemma 3.1. The equation —k3 — k* + 16k + 32 = 0 has a unique solution, saying ko. In
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addition, ko € (4,5) and
—k* — E* + 16k + 32 > 0,Vk < ko.

Proof. Note that Py(k) := —k3 — k? + 16k + 32 has a positive local minimum at k =
—8/3 and a positive local maximum at £ = 2. In addition, the graph of F; is concave up on
(—00, —1/3) and concave down on (—1/3,00). Since Py(4) > 0 and Fy(5) < 0, we can find
a number ky € (4,5) such that Py(ko) = 0, and Py, > 0 in (—o0, ko) and Py < 0 in (ko, 00).

Hence we complete the proof of this lemma. O
Lemma 3.2. Suppose one of the following conditions holds:
(i) b=e=0and 0 < k < ko, where ky is defined in Lemma 3.1;

(i) 0<b<1,e>0, and

0<k<[-(L4+b+2e)+/A+b+2e)2+16(1+b+e)?2/2(1+b+e)] <2

Ifc > c*, then the orbital derivative of L along any trajectory X (z) = (U(z),Y (2),V(2), Z(2))
of (3.7) lying in 3. is non-positive; that is,

d
—L(X <
4 (x(z) <0,
and” =" holds only at (n*,0,1*,0).
Proof. By (3.7), we see that
kn*

l—-nf=——. 3.8

" 1L+ (b+e)n* (3.8)
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Together with (3.7), we deduce that

LLXE) = VIXE)- X
cY cY KV
== [T—U(l—U—m)]
(77*)2 CY /{V
e {T_U(l_U_mﬂ
_2(73323}/2 B C£Z32Y L ew — K {CZ —sV(1— g)}
+/<;‘7;* ‘ [cZ Wi g)} B Kd‘?f;z _ /@c‘n/*Z
1 ) ) o k= V) + Kbyt (U = V)
= (U +n) U —7") {—(U—U )+ (1+(b+e)n*)(1+bU+eV)}
b (RS (U — )V =) — ws(V — Y]
0 %{—A(U =0V A B =)V —a) = OV =)},
where
[ kb (U + )
B R e e e A
> _ \\ k(1 + bn*) (U + )

1+ (B+e)n*)(1+bU +eV)’
and

C = ks.
By U,V > 0 and using (3.8), and (i) and (i1), we get

kbn* - kbn*
1+ O+e)n|(l+oU+¢€eV) 1+ (b+e)n*

=b(l—17") <1, (3.9)

and so A > 0. Thus, if B2 — 4AC < 0, that is,

k(L + o) (U + %) }2_4“ ll B kbn*
(I1+(b+e)n)(1+bU +€V) (I+(b+e)n)(1+bU +¢€V)

RS —

(U+n") <0,
(3.10)
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then the quadratic form

—AU ="+ BU —n*)(V —=n") = C(V —n*)?

is negative unless U = n* and V' = n*. So we get dL(X (2))/dz < 0.

Now we must find x > 0 such that (3.10) holds. For this, we rewrite (3.10) as the form

k(1 —bn")

22U * 2
(5 = 2T | T oy ey + b0 1 ev) T2 )
(3.11)
RO+ ) U+
(I1+ (b+e)n*)?(1+bU +€V)? '
We claim that
1 _ * 2 2 1 *\2
D= £~ by') +2| = AL+ ') > 0.
(14 (b+e)n*)(1+bU + €V) (L+ (b+e)n*)?(L+bU 4 €V)?
After computation, we use 1 4+ bU + eV > 1 and (3.8) to get
B o * 2709%
D _ i k(1 —bn*) 3 k*bn 1
L I+ OFe)p)I+0U+eV)  (1+(b+e)n)?>(1+bU +eV)?
- |1 k(1 — bn*) A kb(1 —n*) ]
I+ OFe)p)(1+0U+eV) (1+(b+e)n)(1+bU+eV)
[ k(1 —0b)
= 411
I \ (14 (b+e)n*)(1+bU + eV)]
[ 1—0 1
411+——|——1
- I + 1+b+e (77* >]

(3.12)
Since b < 1, (3.12) implies D > 0. So (3.11) holds if and only if

(U +1*)(H — VD) < ks < (U +1*)(H + VD), (3.13)

where
k(1 — bn*)
(1+b+e)n)1+bU +eV)

H =2+

22

DOI:10.6814/NCCU202100501



By (1), (i1),0 < U <land 0 < V < 1, we have

k(1 —bn) k(1 —bn)
2+ <H<24+ —r—"—.
(I+B+en)(L+b+e) 1+ (b+e)n*
This, together with (3.8), yields
1—bn* (1 1
24 —— | —=—-1)<H<24+(1-")(—-1). 3.14
1+b+e(m ) ( ”)<m ) G19

Note that H — /D is positive. By (3.12), (3.14), and 0 < U < 1, we can find a suitable x > 0

such that (3.13) holds if
2+ (1—0bn*) (%—1) —2\/1+%;+b€ (%—1)‘
+(A)¢Tf)(_)‘
Rearranging (3.15), we get
(1+n*) {2—1—(1—1777*) (%—1)] —n* [2+1l+_—bb—7z*e (%—1)]

1-06 1
244" ) [ 1+ —— [ — —1
< (2+ 77)\/ +1+b—|—e(n* )’

which is equivalent to

(1+77)

< n*

(3.15)

* *\2
by b+e +i_ en b(b+e)(n*)
l+b+e n* 1+b+e 1+b+e
(3.16)
2b+e 1-0 1
2+ 4n* —.
< 2+ 77)\/1+b—i-e+(1—1—1)—|—e> n*
For (i), weuse b = e = 0 and n* = 1/(k + 1) to simplify (3.16) in the form
—k* — E* + 16k + 32 > 0. (3.17)

Since 0 < k < ko, it follows from Lemma 3.1 that (3.17) holds, and so does (3.15). For (ii), we
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first claim that n* > 1/(1+k). Using (3.8) and the fact 1+ (b+¢)n* > 1, we have 1 —n* < kn*,
which implies n* > 1/(1+ k). By 1/(1 + k) < n* < 1, (3.16) holds if

T SRS SR ‘ AL
1+b+e (1+b+e)(l+k) 1+b+e
(3.18)
2k+6\/ 2b+ e N 1—b
1+kV1i+b+e 14+b+e
Simplifying (3.18), we get
2k — ‘ <oy b (3.19)
l+b+e (L+b+e)(l+k) 1+ k
After some simple calculations, we get (3.19) holds if
(1+b+e)k®>+(1+b+2e)k—4(1+b+e) <0. (3.20)

From the assumption on £, (3.20) holds, and so does (3.15). Hence the proof is complete. [
Finally, since L is continuous and bounded below in ¥ and X (2) := (U(z),Y (2), V(2), Z(2))
is a solution of (3.7) obtained in Lemma 2.3 and is positively invariant in X for all z > z,
it follows from Lemma 3.2 and the LaSalle’s invariance principle that (U,Y,V, Z)(c0) =
(n*,0,nm*,0). So we establish the existence of traveling wave solutions of system (1.3) in the

following lemma, which, together with Lemma 2.1, gives Theorem 1.2 and Theorem 1.3.
Lemma 3.3. Suppose one of the following conditions holds:
(i) b=e=0and 0 < k < ko, where ky is defined in Lemma 3.1;

(i) 0<b<1,e>0,and

0<k<[-(1+b+26e)++/(14+b+2e)2+16(1+b+e)?]/[2(1L+b+e).

For ¢ > ¢, system (3.1) has a positive solution (U, V') satisfying (1.8). In addition, there exists

a positive constant § such that

d<U(z) <1, 0<V(z)<1, VzeR.
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3.2 Numerical simulation results

Now we present some numerical results for system (1.3). In Figure 3.1 and Figure 3.2, we
see that the large time behaviours of the solutions of the initial value problem of system (1.3) are
two traveling waves propagating outwards in opposite directions, where the initial data (u, vo)
is chosen so that ugp = 1 and vy = 0.05(1 + sign(51 — z))(1 + sign(x — 49))/4. From Figure
3.3 and Figure 3.4, we find that the restrictions b < 1 in Theorem 1.2 and on % in Theorem 1.2
and Theorem 1.3 are technical assumptions since the values of the parameters b and & in Figure

3.3 and Figure 3.4 do not satisfy the restrictions.

t=0 t=10

uandv
o
o
uandv
o
o

o o o
N @ oo =
c—>
o o o
N oo oo =
<4’<

o 10 20 30 40 50 60 70 80 90 100 o 10 20 30 40 50 60 70 80 %0 100

uandv
o
o
—>

uandv
o
o

o 10 20 30 40 50 60 70 80 90 100 o 10 20 30 40 50 60 70 80 90 100
Distance x Distance x

Figure 3.1: The solution of system (1.3) as a function of the spatial variable x is plotted at t=0,
t=10, t=20 and t=30. The initial data (ug,vg) is chosen so that up = 1 and vy = 0.05 * (1 +
sign(bl — x)) * (1 + sign(x — 49))/4. The parameter valuesare k = 1.4, b =e = 1,d = 1,
r =4and s = 0.6.
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Figure 3.2: The solution of system (1.3) as a function of the spatial variable x is plotted at t=0,
t=5, t=10 and t=20. The initial data (ug,vo) is chosen so that uy = 1 and vy = 0.05 * (1 +
sign(b1l — z)) x (1 + sign(x — 49))/4. The parameter values are k = 4,b = e = 0, d = 1,

r=2and s = 0.5.
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Figure 3.3: The solution of system (1.3) as a function of the spatial variable x is plotted at t=0,
t=10, t=20 and t=30. The initial data (ug,vy) is chosen so that ug = 1 and vy = 0.05 x (1 +
sign(bl — x)) % (1 4 sign(x — 49))/4. The parameter values are k = 10, b =5,e = 1,d = 1,

r =4and s = 0.6.
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Figure 3.4: The solution of system (1.3) as a function of the spatial variable x is plotted at t=0,
t=5, t=10 and t=20. The initial data (ug,vo) is chosen so that uy = 1 and vy = 0.05 * (1 +
sign(b51 — x)) * (1 + sign(z — 49))/4. The parameter values are k = 10,0 = e = 0,d = 1,

r=2and s = 0.5.
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Chapter 4

Traveling wave solutions to system (1.9)

4.1 A general system

In this section, we review a general existence result obtained in [11]. Consider the general

system

U= U+ £1(U, V) = 0,
(4.1)
AV" = V' + f(U, V) =0

on R. Here ¢,d > 0 and f;, : = 1, 2, are continuously differentiable functions.
Definition 4.1. (U™, V") and (U~,V ™) are called a pair of upper and lower solutions of (4.1)
if U, vVt U, V- e C(R) satisfy

(U)"(2) =c(UT) (2) + £1(UT(2), V™ (2)) <0,

(U7)"(2) = e(UT)'(2) + 1(U(2),V7(2)) 2 0,

d(VT)"(z) = e(VT)'(2) + f2(UT(2), V7 (2)) <0,

d(V7)"(z) = e(V7)'(2) + f2(U(2),V7(2)) 2 0

except for finitely many points of z in R.

Using the Schauder’s fixed point theorem, the authors in [11] established the following

theorem for the existence of solutions to system (4.1).
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Theorem 4.2. Let a.,a*, b,,b* be real numbers such that a, < a* and b, < b*. Suppose that

the functions f1 and fs satisfy the following conditions:

(A1) (Lipschitz condition) There exists a positive constant L such that

| filur,v1) = fi(ug,v2)| < L(Jug — ug| + vy — va|),1 = 1,2

forall a, < uy,us < a*andb, < vy,ve <b%;

(A2) (Mixed quasi-monotonicity) There exist two positive constants [, and [y such that

filur,vr) = filug, v1) + Bi(w —uz) 2 0,
Silur, ) = fi(ur, v2) <0,
fo(ur, v1) = fa(un, v2) + Ba(v1 — v2) = 0,
folur,v1) — foluz,v1) > 0

forall a, < us <uy <a*andb, < vy < vy < b

If (4.1) has a pair of upper and lower solutions (U, V) and (U™, V™) which satisfy
a, <U- <UT<a*, b, <V <VT <,

on R, and

for all z € R, then system (4.1) has a solution (U, V') satisfying
U <U<U'andV- <V <V*"

on R.
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4.2 Upper and lower solutions to system (1.10)

In this section, we will construct upper and lower solutions of (1.10) for ¢ > ¢* = 2V ds.
By linearizing the second equation of (1.10) around the equilibrium point (1,0), we get two

positive eigenvalues

_JZ 1 . JZ 4
A= (T Ve —Ads ;d 05 and § = CHVCE —dds ;d ds (4.2)

which are two roots of the characteristic equation

P(y) :=dy* —cy +s5=0.

Now we assume that (1.12) holds. Then one can easily verify that (¢ — 1) > k* +4(k — q) and
so the equation

U(y) =y’ +(q—Ny+k—q=0 (4.3)

has two real roots, saying

SR ek VA U Ve et ) S Bl B VA e Vil Gl 1

2 2

A

In addition, AT > (1 — ¢ + k)/2. Moreover, we claim that A" is positive. For ¢ < 1, itis
obviously true. For ¢ > 1, it can be done if one can show that ¢ > k. For this, we consider two
cases: (i) £ < 1; (i1) k > 1. For the case (i), we have ¢ > 1 > k. For the case (i1), we have
Vk2 + 4k — 1 > k. Also, by (1.12), we have ¢ > \/k? + 4k — 1. Taken together, we get ¢ > k.

Therefore there exists a positive constant A satisfying

1— k
max{0, A, ++

< A< AT (4.4)
Clearly, ¥(A) < 0 and so A? + (¢ — 1)A + k — q < 0, which follows that

k
1-4A——>0. 4.5
A+q (4.5)
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The case ¢ > ¢*

For ¢ > ¢*, we define four nonnegative continuous functions as follows:

1— Me"?, if z < 2,
Ut(z) =1, Vz €R, U (2):= (4.6)
A, if 2 > 2z,
e, if 2 <0, e (1 — ae’?), if 2 < 29,
VH(z) = V7(2) =
1, if 2 >0, 0, if 2 > 2z,

(4.7)
where \ is defined in (4.2), A, v, n, M, « are positive constants such that (4.4) holds and

v < min{c, A}, (4.8)
n < min{\, X — A}, (4.9)
M > max{1 — A, k/A}, (4.10)
a > max{[M/(1 — A)]"", —s/[AP(X + )]}, (4.11)
and
2 :=1/vIn[(1 — A)/M] < 0and z, :== —1/nlna < z. (4.12)

The graphs of U*, U, V™, V~ for ¢ > ¢* are given in Figure 4.1.

31

DOI:10.6814/NCCU202100501



Function Plots of U*(z), U'(z), V*(z) and V(z) as c>c

U+
¥ (2,.A) A
V+
v
z,,0
(2 ) 0 Z’

Figure 4.1: Upper and lower solutions to system (1.10) : U™, U~, V*, V™~ for ¢ > ¢*.

Lemma 4.3. Assume that (1.12) holds, then (U, V) and (U~,V ™), where UT, V*, U™, and
V'~ are defined in (4.6) and (4.7), are a pair of upper and lower solutions to system (1.10) for

*

c>c
Proof. Firstly, it is obvious that the function U™ (z) = 1 satisfies the inequality

rkUT(2)V~(2)

U (2) —e(UT) U+ 1-U" — <0 4.1
(UT)"(z) = c(UT)'(2) + U (2)( (2)) T+ () = (4.13)
forall z € R.
Secondly, we claim that the function V' (z) satisfies the inequality
AVHY'(2) — (VY (2) + sV (2) (1 — VHE)N (4.14)
Ut(z)) ~

forall z # 0. For z > 0, since V*(z) = U"(z) = 1, (4.14) immediately holds. For z < 0,
VT(z) = e and UT(z) = 1. Since P()\) = 0, it follow that

V*(2)
Ut(2)

dVHY'(z) — (V) (2) + sVT(2) (1 - ) = P(\)eM — se** <0,
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and thus (4.14) holds.

Thirdly, we claim that the function U~ (z) satisfies the inequality

rkU~(2)V*(z)
U=(z) +qV*(2)

(U7)"(2) =e(UT)'(2) + U (2)(1 = U™ (2)) —

v

0, (4.15)

forall z # z;. Forz > 21, U (2) = Aand V*(2) < 1. By (4.5), we have

rkU=(2)V*(z)
U=(2) +qV+(2)

(U7)"(2) =e(U7)'(2) +rU~(2)(1 = U™ (2)) —

k

> _A—
> rA(l1—A s

) > 0.

So (4.15) holds. For z < z;, we have that U~ (z) = 1 — Me”*. By (4.8), (4.10), V1 (2) = **
and U~ (z) > A, we deduce that

rkU=(2)V*(z)

(U7)"(2) —cU7) (2) + U (2)(1 = U™ (2)) — U-(2) + gV (=)

rk(1 — Mev#)e?*

> —v2Mev* + cvMe”* +r(1 — MeY?) Me’* A
k: vz
> r(1— Me"?) (Me”z— Z )
> r(1 — Me"#)e* (M — %) > 0.
Hence (4.15) holds.
Finally, we claim that the function V'~ (z) satisfies the inequality
—\// —\/ — V_(Z)
dV7)'(z) —c(VT)(2)+ sV (2) | 1— ) >0 (4.16)
z

for all z # z5. For z > 2y, since V'~ (z) = 0, it follows that (4.16) holds. For z < 25, we
have that V™~ (2) = e*(1 — ae™) and U~ (2) = 1 — Me**. By (4.9), (4.11), (4.12), P(\) = 0,
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P(A+n) <0and U~ (z) > A, we deduce that

AV =V )+ v o) (1= 1))

862)\2(1 o 046772)2

> P(V)eM = PO+ p)ael ) A
> —P (X + )Xtz — Sejz
> e+m)2 (—aP()\ b)) — se(Zn)z)
> ez (—aP(A+1n) —s/A) > 0.
So (4.16) holds. This completes the proof of this lemma. ]

The case c = c*
In this case, A = X and ¢ = 2d\. Let v and  be positive constants such that
v < min{c, \} (4.17)

and

Kk > \e. (4.18)

Then there exists a negative number z, such that
—kzpe™ =1 and 2y < —1/A\. (4.19)

Let M be a positive constant such that

M > max{1, (1 — A)e "}, (4.20)
where Z; 1s a negative constant such that 2; < z; and

(A—v)z

A
—ze < —, Vz< 2. (4.21)
kk
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Then

z1:=—1/vIn[M/(1—-A)] < 7 < 2. (4.22)

Select
[ > max{1, K/ —22}, (4.23)

where 2, is a negative constant such that z; < z; and

Ad
7/2 Az A
(_Z) e < @7 Vz < 2. (4.24)
Then
2y = —(l/R)Y < %3 < 2. (4.25)

For ¢ = ¢*, we define four nonnegative continuous functions as follows:

1 — Me"?, if z <z,
Ut(z) =1, Vz €eR, U (2) := (4.26)
A, if 2 > 2z,
—Kze?, if 2 < 2, (—kz — ly/—2)e*, if 2 < 29,
VH(z) = V7 (2) =
1, if z > 2y, 0, if 2 > 29,

4.27)
where A, v, k, M, l, 2o, 21, 2o are constants such that (4.5), (4.17)—(4.25) hold. The graphs of
Ut, U™, V*,V~ for ¢ = ¢* are given in Figure 4.2.
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Function Plots of U*(z), U'(z), V*(z) and V'(z) as c=c

(zy:1) 1
(z,.A) A
U+
i
V+
4
z,,0
et 0 Z’
A A
22 Z,1

Figure 4.2: Upper and lower solutions to system (1.10) : U™, U=, V*, V™ for ¢ = ¢*.

Lemma 4.4. Assume that (1.12) holds, then (U, V") and (UT,V ™), where U™, V', U™, and
V'~ are defined in (4.26) and (4.27), are a pair of upper and lower solutions to system (1.10) for

c=c"
Proof. Firstly, it is obvious that the function U™ (2) = 1 satisfies the inequality

rkUT(2)V ™ (2)

+\/ o +\/ + 77t \ <
(U (2) = c(UT)(2) +rU"(2)(1 = U (2)) T o+ () = 0 (4.28)
for all z € R.
Secondly, we claim that the function V" (z) satisfies the inequality
d(VH)'"(2) — (V) (2) +sVT(2) [ 1 - Vi(z) <0 (4.29)
U*(z)) ~ '

for all z # 2. For z > 2z, since V' (z) = UT(z) = 1, (4.29) holds. For z < z, V*t(z) =
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—kze* and U (z) = 1. From the fact that P(\) = 0 and ¢ = 2d)\, it follows that

AV = V) 4 5V o) (1= 1))

= —P(\)kzeM — (2d)\ — ¢)re* — s(V )2 <0,

and therefore (4.29) holds.

Thirdly, we claim that the function U~ (z) satisfies the inequality

rkU=(2)V*(2)
U=(2) + qV*(2)

U)'"(2) = cU)(2)+rU (2)(1 =U(2)) — >0 (4.30)

forall z # z;. For z > 2, since U~ (z) = Aand V' (2) = 1, from (4.5), we obtain that

rkU= (2)V*(2)
U~(2) + qV*(z)

- rA(1—A)—£iAq:rA(1—A—AL+q)>o,

(U7)"(z) =c(U7)(2) +rU=(2)(1 = U~ (2)) =

and so (4.30) holds. For 2; < z < 2, U (2) = Aand V' (2) = —kze*. By (4.5) and
V*t(z) <1, we get

rkU= (2)V*(2)
U=(2) +qVT(2)

U7)"(z) —cU)(2) + rU=(2)(1 = U™ (2)) —

and so (4.30) holds. For z < 21, we have that U~ (2) = 1 — Me”? and VT (2) = —kze**. By
(4.17)-(4.22), U~ > Aand V* > 0, we deduce that

rkU=(2)V*(z)
U=(2) +qV+(2)

(U7)"(z) =cU7)'(2) +rU(2)(1 = U™ (2)) —

rk(1 — MeV?)(—kze?)

> —v2Me"* + cuMe”* +r(1 — Me"*)Me? — I
kr(— Az
> r(1— Me"?) <Me”z — —K( 2)e )
A
kr(— A=v)z
> r(1 — Me"#)e"* (M — al ijf ) >0
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Hennce (4.30) holds.

Finally, we claim that the function V' ~(z) satisfies the inequality

dV)"(2) = (V) (2) + sV (2) (1 — 5_52) >0 (4.31)

for all z # z5. For z > 2o, since V~(z) = 0, it follows that (4.31) holds. For z < z,, we have
that V= (2) = (—kz — ly/=2)e* and U~ (2) > A. By (4.24)-(4.25), P(\) = 0 and ¢ = 2d),

we deduce that

AV ) =V Y+ v (1= =)

l
= P(A)(= — /= Az 2d)\ — ~ Az
> PO)(—hz = /=2)e + C>( B 2\@)@
n dleM 4 se?M[k(—2) — Iv/=2)?
A(=2)3? A

> dleAZ B SH22262)‘Z N 28/1[(—2)3/262/\Z B SZQ(—2)62)‘Z
B A=) A A A

et sl(— )2
— W(Adl “u 48/{2(—Z)7/26/\z) + %(2%(—2)1/2 . l) < 0.

Thus (4.31) holds. -

4.3 Semi-traveling wave solutions to system (1.9)

Following the proof of Lemma 2.1 with a slight modification, we have the following lemma.

Since its proof is almost the same as that in Lemma 2.1, we omit it here.

Lemma 4.5. If ¢ < ¢* := 2V/ds, then system (1.10) has no positive solution (U, V) satisfying

Lemma 4.6. Suppose that (1.12) holds. If ¢ > c*, then system (1.10) admits a positive solution
(U, V) satisfying (U, V)(—o0) = (1,0). In addition,

A<U<1land0 <V <1

on R, where A is a positive constant satisfying (4.4).
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Proof. Define

rkuv
u+qu’

filu,v) =ru(l —u) —
(4.32)

fo(u,v) = sv <1 - E) .

u

One can easily verify that f; satisfies (A1)-(A2) and f;(1,0) = f;(n*,n*) =0fori =1,2. So it
follows from Theorem 4.2, Lemma 4.3, Lemma 4.4, and definition of (U, V*) and (U~,V ")

that system (1.10) has a solution (U, V') satisfying
A<U () <UR)<UT(2)<1and 0<V (2) <V (2) < VT(2) <1, Vz e R (4.33)
Dueto U™ (—o0) = Ut (—00) = 1and V= (—o0) = VT (—o00) = 0, we have
(U, V)(—o0) = (1,0). (4.34)

We now just need to prove that A < U < 1land 0 < V' < 1. First, we claim V' (z) > 0 for all
z € R. For contradiction, we assume that there exists a smallest z3 > 2, such that V' (z3) = 0.
By the definition of V', we have that V'(z) > 0 for all z < z3 that implies V/(23) = 0 and so
the existence and unique theorem gives that V' = 0 for all z € R which makes a contradiction.
Second, we claim U(z) < 1 forall z € R. For contradiction, we assume that there exists z4 € R

such that U(zy) = 1, then U’(z4) = 0 and U"(z4) < 0. But, by (1.10) and V' > 0, we have that

rkU(z4)V (24)
U(zy) + qV (z4)

U"(z4) = —rU(24)(1 — U(24)) + > 0,

yielding a contradiction. Using a similar argument, we can show that IV < 1 for all z € R.
Finally, we show that U(z) > A for all z € R. For contradiction, we assume that there exists a

smallest z5 > z; such that U(z5) = A. By the definition of U~, we have that U(z) > A for all
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z < z5 that implies U’(z5) = 0 and U"(z5) > 0. But, by (1.10), (4.5), and V' < 1, we have that

0 — e e U - Ul - G
kV (25)
= (1 —A- m)
> rA(l—A—ALqu>>O’

yielding a contradiction. So we have that U(z) > A for all z € R. Now we finish the proof of
Lemma 4.6. [

In the remaining, we will show that the semi-traveling wave solutions established in Lemma
4.6 to system (1.9) are actually traveling wave solutions. To this end, we need the following

lemma.
Lemma 4.7. Suppose that (1.12) holds. Let ¢ > ¢* and let (U, V') be a positive solution obtained
in Lemma 4.6 to system (1.10) on R. Then there exists a constant zg € R such that

V(z)> A (4.35)

for all z > zg, where A is a positive constant satisfying (4.4).

Proof. First, we claim that there exists zg € R such that V(z) > A. For contradiction, we
assume that

V(z) <A, VzeR. (4.36)

Since V' (—oo) = 0and V(z) > 0 for all z € R, there are two possibilites: (i) there is a smallest
z7 such that V'(z7) < 0; (i) V'(z) > 0 for all z € R. For the case (i), we note that as long as
V < Aand V' <0, it follows from (1.10) and Lemma 4.6 that

AV =V — V(1 — g) <0,

which implies that V”(z) < 0 and V'(z) < 0 for all z > zz. This leads to V(z) — —oc as
z — oo, which contradicts the boundedness of V' (z). For the case (ii), V' (c0) exists and is
positive. Since V and sV (1 — V' /U) are bounded on R, it follows from Lemma A.3 that V" and
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V" are bounded on R. Then differentiating the second equation of (1.10) and using Lemma A.3
again, we also have V" is bounded on R. Thus, by Lemma A.1, we have V'(c0) = V" (c0) = 0.
This, together with (1.10) and the fact that 1V (co) > 0, yields that U (c0) also exists and U (co) =
V' (o0). From (1.10b), U > A and (4.36), we get U(o0) = V(c0) = A. Arguing as above, we
have U’(0c0) = 0 and U”(c0) = 0. Therefore, by (1.10a), we get that 1 — A — k/(1 + ¢) = 0.
On the other hand, by (4.5)and A < 1,wegetl — A — k/(1 + q) > 0, a contradiction. Hence
we conclude that there is a 2z € R such that V'(z5) > A. Furthermore, we claim that V(z) > A
for all z > z5. For contradiction, we assume that there exists zg > zg such that V'(zg) = A and
V’(2z3) < 0. Recall we have shown in the case (i) that V" < 0 as longas V' < Aand V' < 0.
It follows that V”(z) < 0 and V’(z) < 0 for all z > zg and therefore V' (z) — —o0 as z — oo,

which contradicts the boundedness of V. So we finish the proof of this lemma. [

4.4 Proof of Theorem 1.4

Now we are ready to prove Theorem 1.4.
Proof of Theorem 1.4. By Lemma 4.6, system (1.10) has a positive solution (U, V') satisfying
(U, V)(—o0) = (1,0). In addition, A < U < land 0 < V < 1 on R, where A is a positive

constant satisfying (4.4). To complete the proof, we just need to show that

(U, V)(o0) = (n",n"). (4.37)

For this, we define
u:=limsupU(z),u := liminfU(z),v := limsup V(z),v := liminf V' (z), (4.38)

z2—+00 z2—+00 =400 2—+00
and claim that
kuv

u(l —u) — = 4.39
(1 — ) - = 439)

Note that there are two possibilities for the behaviour of U at oo: (i) U is eventually monotone;

(it) U is oscillatory. For the case (i), since U is bounded, it follows that U (co) exists and

U(0) = 4. (4.40)
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Referring to the proof of Lemma 4.7, we also get

U'(c0) = U"(c0) = 0. (4.41)

For any given € > 0, by definition of limit inferior, there exists z* > 0 such that

V(z)>v—ce (4.42)

for all z > z*. So it follows from (1.10a) and (4.42) that

rkU(2)(v — €)

U +ao—e "

U"(2) = cU'(2) + rU(2)(1 = U(2)) —

for all z > z*. Letting 2 — co and using (4.40) and (4.41), we get

kiu~¢

R

Finally, letting e — 0, we get (4.39). For the case (ii), we select a sequence { z,,} of the maximum
points of U such that z,, > z* foralln € N, z, — oo asn — oo, and lim,,_, ., U(z,) = 4.

Then U'(z,) = 0 and U"(z,) < 0 for all n € N. Together with (1.10a) and (4.42), we get

rkU(z,)V (2,)
U<Zn) + qV(Zn)

0 = U(2p) — cU"(2n) +1U(2,) (1 = U(2)) —

rkU (z,)(v — €)
U(zn) +q(v — ¢

< rU(z)( = U(z) -

for all n € N. Letting n — oo and then letting e — 0, we get (4.39). By similar arguments, we

also get the following inequalities

l—u)— —— <0 4.43
u(l —w) g =9 (4.43)
Vo |
v(l ﬁ)_o, (4.44)
and
v
y(l—:)go. (4.45)
u
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Note that v > 0 by Lemma 4.7. Together with (4.45), we have

v>u. (4.46)

Substituting (4.46) into (4.39), we deduce that

k
(1—w)———>
u+qu
which gives
u— a4 qu — quu — ku > 0. (4.47)

Similarly, using (4.43) and (4.44), we also have

a>v (4.48)

and

—u+u? — qu + quu + ku > 0. (4.49)

Combining (4.47) and (4.49), we obtain that

(@ -w)(l-g+k—-u—u)>0.

By (4.4), we have

u<v<v<u=u, (4.50)
and so
v=0=u=1u. (4.51)

Hence both U(oo) and V' (o00) exist, and U(oco) = V(o0). Substituting (4.51) into (4.39) and
(4.43), we obtain that U(co) = V(oc0) =1 — k/(1 + q) = n*. Then (4.37) holds and we finish
the proof of Theorem 1.4.
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4.5 Numerical simulation results

Now we present some numerical results for system (1.9). In Figure 4.3 and Figure 4.4, we
see that the large time behaviors of the solutions of the initial value problem of system (1.9) are
two traveling waves propagating outwards in opposite directions, where the initial data (ug, vo)
is chosen so that ugp = 1 and vy = 0.05(1 + sign(51 — z))(1 + sign(x — 49))/4. From Figure
4.5, we see that the restriction k£ < \/m — 2 in Theorem 1.4 is a technical assumption

since the values of the parameters ¢ and £ in Figure 4.5 do not satisfy the restriction.

1 1
08 T 1 09 r
08| u 08 T
0.7 | 1 07 r u
06 [ = 06
> >
Eosr Bosf ?
04 1 04r v
03[ 1 03 r
0z v 02
01| i 01
o [\ o
o 10 20 30 40 50 60 70 80 90 100 o 10 20 30 40 S50 60 70 80 90 100
Distance x Distance x
1 1
08 1 09 r
o8| T 1 08 ?
o7 4 07t
uv uv
06 [ = 06
> >
2osp EBost
o4t 4 04t
03 4 03
02F ! 02
01} 4 01

o o -
o 10 20 30 40 50 60 70 80 90 100 o 10 20 30 40 50 60 70 80 90 100
Distance x Distance x

Figure 4.3: The solution of system (1.9) as a function of the spatial variable x is plotted at t=0,
t=5, t=10 and t=20. The initial data (ug,vg) is chosen so that uy = 1 and vy = 0.05 * (1 +
sign(51 — x)) * (1 4 sign(xz —49))/4. The parameter valuesare k = 1,¢=5,d=1,r = 0.5
and s = 1.
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The solution of system (1.9) as a function of the spatial variable x is plotted at t=0,
t=5, t=10 and t=20. The initial data (ug, vo) is chosen so that ug = 1 and vy = 0.05 * (1 +
sign(b1 — z)) % (1 4 sign(x — 49))/4. The parameter values are k = 0.28, ¢ = 0.1, d = 1,
r=0.5and s = 1.

1 1
oo T 0ot
o8| u o8t
o7t 07t
06| 06
>
osh 2ost
0.4 04
03} 03 \" v\u
oz} v 02f i
01| L o1 f
o A o
o 10 20 80 40 50 60 70 80 90 100 10 20 30 50 60 70 80 90 100
Distance x Distance x
1 1
oo 09
o8| o8
o7} 07t
o6 06
>
05 2os
3
04 04
03 03t
0.z uv 02 uv
01| L o1 f L
o o
o 10 20 80 40 50 60 70 80 90 100 10 20 30 50 60 70 80 90 100

Distance x

Distance x

Figure 4.5: The solution of system (1.9) as a function of the spatial variable x is plotted at t=0,

t=5, t=10 and t=20. The initial data (ug,vo) is chosen so that vy =

1 and vg = 0.05 * (1 +

sign(51 — x)) % (1 + sign(x — 49)) /4. The parameter values are k = 2.99,g =2, d=1,r =5

and s = 1.

45

DOI:10.6814/NCCU202100501



Appendix

In this chapter, we collect some useful lemmas which are used in the proof.

Lemma A.1. (Barbailat’s Lemma [2]) Suppose w € C'(b, 00) and limy_, ., w(t) exists. If w' is

uniformly continuous, then lim;_, ., w'(t) = 0.

Lemma A.2. (LaSalle’s Invariance Principle [7]) Consider the following initial value
problem:

X' = f(X), X e R". (A.1)

Let Y C R™ be an open set in R". Suppose X (z) is a solution of (4. 1) which is positive invariant
in ¥. If there is a continuous and bounded below function V' : ¥ — R such that the orbital

derivative of V' along X (z) is non-positive, i.e.,

d%V(X(z)) — VV(X(2) - X'(2) <0,

then the w-limit set of X (z) is contained in.¥, where .7 is the largest invariant set in {X € ¥ :
dV /dz = 0},

The following a priori estimates for the second-order differential equations can be found

in [6].

Lemma A.3. (Fu [6, Lemma 3.2]) Let B be a positive number and G € C(R). Suppose that
w € C*(R) is a solution of
w" — Buw' = G(z)

inR. If w and G are bounded in R, then so are w' and w". Moreover,

G| 700
||w/HL°O(R) < H Hg (R)
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and

|w” || oo ) < 2[|G| oo (m)-
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