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Cross-Item Learning for Volatile Demand Forecasting: An 
Intervention with Predictive Analytics 

 

Abstract 

Despite its importance to OM, demand forecasting has been perceived as a “problem-solving” 

exercise; most empirical work in the field has focused on explanatory models but neglected 

prediction problems that are part of empirical science. The present study, involving one of the 

leading electronics distributors in the world, aims to improve prediction accuracy under high 

demand volatility for procurement managers to make better inventory decisions. In response to 

requests for an integrated forecasting methodology, we undertook an iterative process based on 

three guiding principles — data pooling, theory-informed feature engineering, and ensemble-

based machine learning. The resulting framework managed to improve forecast accuracy 

significantly and is applicable to a broad range of situations. We present reflections and insights 

derived abductively through engagement with managers in this problem situation. This “problem-

driven” process corresponds to intervention as a research strategy that can foster theoretical and 

methodological innovations in OM. Our contribution goes beyond the development of the 

prediction framework as it elucidates ways OM researchers could leverage theoretical foundations 

to inform feature derivation and model construction. We posit that this work points to a way 

forward to the combination of OM principles with the emerging innovations in data science and 

artificial intelligence. 

Key words: demand forecasting; lead time; feature engineering; machine learning; data analytics; 

intervention-based research. 

 

1 Introduction 

Forecasting demand over lead time, that is, total demand between the current period and 

anticipated period of order delivery, is a perennial problem in operations management (OM) given 

the importance of demand estimation to inventory control and related planning and sourcing 

decisions (Fildes et al. 2008, Syntetos et al. 2016). Classical inventory models often assume 

decision-makers possess knowledge about the distribution or model structures of stochastic 

demand, and parameters of the presumed distribution to be estimable given demand observations. 
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Such distributional and functional assumptions are, however, often violated in real world 

operations, a problem exacerbated in the electronics and semiconductor supply chains 

characterized by short product life cycles and non-stationary demand. The present study addresses 

a challenging demand forecasting problem.  

Our research partner is one of the largest electronics distributors in the world, henceforth 

referred as Alpha. Alpha procures from global suppliers (e.g., Intel, Texas Instruments) 

semiconductor components that are warehoused and eventually distributed in response to 

production demands of electronics manufacturing services (EMS) companies mostly based in East 

Asia (e.g., Foxconn, Quanta Computer). Despite massive sales revenue (US$18 billion in 2018), 

Alpha’s profit margins are tight, compromised by high inventory holding and obsolescence costs 

primarily attributable to seemingly unpredictable demand; inventory and accounts receivable (i.e., 

recently sold inventory) represent, respectively, 33% and 49% of total assets. How to more 

accurately predict demand is a salient problem for Alpha, whose financial performance is 

contingent on stocking decisions that are based on demand forecasts. 

The demand forecasting problem Alpha faces is common to many firms in high-tech 

manufacturing sectors (Fu and Chien 2019). Alpha, like these other firms, conducts a periodic 

review inventory management system. Procurement managers review every week, for each 

component, in-warehouse and in-transit stocks and determine order quantities based on a forecast 

for demand over supply lead times. Although more accurate demand predictions would afford 

procurement managers better anchoring points for improving inventory decisions, generating 

reliable forecast for demand over lead time proves unexpectedly complex. Demand observations 

in manufacturing supply chains are typically intermittent, lumpy, or erratic (Syntetos et al. 2005), 

that is, items tend to exhibit hard to predict consecutive zero realizations and spikes for non-zero 

realizations (Syntetos et al. 2016). Some firms even consider production demand with isolated 

spikes and frequent zeros to be non-forecastable (Bachman et al. 2016). 

High demand uncertainty being the norm in this industry sector, demand forecasting risk 

increases over long lead times (de Treville et al. 2014), resulting in high safety stocks that translate 

into financial strain. Supply side inventory control could be improved if the downstream EMS 

firms were able to share reliable advance demand information in the presence of highly variable 

demand, that is, a rolling forecast for future production demand (Terwiesch et al. 2005). The rolling 

forecast received by Alpha, however, is noisy and deemed unreliable by procurement executives. 
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In the aggregate, these issues – long supply lead time, unknown demand structures, and noisy and 

unreliable rolling forecast signals – make the demand forecasting problem practically as well as 

theoretically challenging. 

In response to requests for an integrated forecasting methodology for volatile demand patterns, 

we undertook with Alpha managers an iterative process of developing and refining an approach 

for tackling this recurring forecasting problem. Our test case required us to forecast the demand of 

426 items required by multiple plants of a major EMS client. Our initial attempt revealed that 

individual time series methods grounded in historical demand could not outperform a simple 

baseline (moving average) in the presence of intermittent and erratic demand patterns. Further 

conversations with management revealed the need for a robust method that could leverage 

information across items. This motivated us to reframe the prediction problem and pool demand 

data temporally and across items into a single model, as opposed to fitting individual-item models, 

to learn common functional relationships for the prediction tasks. The aggregation of items into a 

single model, i.e., cross-item learning, is methodologically robust (Ban et al. 2019, Wu et al. 2021) 

and becoming increasingly popular (Bojer and Meldgaard 2021). Our first iteration tested the 

single model approach using a machine learning algorithm to exploit data features from relevant 

demand forecasting theories. Results, albeit encouraging, barely matched the performance of the 

baseline model. Our second iteration incorporated rolling forecast data features based on 

operational understanding of supply chain physics. Further improvements were achieved in the 

third iteration with enhancements to the machine learning methods to address forecast robustness. 

Satisfied with results in the test case, we tested the proposed methods on a broader data set from 

an EMS client with more heterogeneous items and longer lead time. The multi-week test 

corroborated the value and applicability of cross-item learning. The test of multiple EMS clients 

also helped validate the parsimony and appropriateness of the feature set made available to the 

algorithms. We further evaluated as a potential avenue for improvement the relative importance of 

demand and forecasting signals and explored all demand patterns for which our methods failed to 

yield accurate forecasts. This concluding reflection identified recurring challenges currently being 

used by management to improve customer communication channels. 

The present study shows that it is possible to improve prediction performance through active 

engagement with managers in the problem situation (problem owners) when established demand 

forecasting methods fail to perform. This “problem-driven” process corresponds to intervention 
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(i.e., confrontation of a situation with a theoretical framework via a methodology) as a strategy for 

fostering research innovations in OM (Oliva 2019). The iterative process went beyond solving a 

problem instance and yielded insights based on three guiding principles — data pooling for cross-

item learning, theory-informed feature engineering, and ensemble-based machine learning. By 

enhancing predictive analytics protocols with OM principles, our intervention managed to improve 

forecast accuracy and, without deterioration of sales or service levels, reduce inventory holdings 

for the focal EMS by 5%, a reduction of inventory value of approximately USD$3 million. With 

the success application to the focal EMS and the verified effectiveness for a second EMS (see §4), 

Alpha executives introduced the new forecasting methodology to other major EMS clients that 

together constitute more than $10 billion annual sales (56% of total sales).  

Our resulting solution is closely related to efforts by the forecasting community that has begun 

to leverage machine learning (e.g., Barker 2020, Gilliland 2020, Montero-Manso et al. 2020). 

Although our modeling effort is not the first to apply machine learning to time series demand 

forecasts (e.g., Carbonneau et al. 2008, Gutierrez et al. 2008, Hill et al. 1996), our integrated 

forecasting approach (as opposed to fitting individual time series models) is distinct in that we 

introduce several techniques (e.g., cross-item learning, model stacking) that have proven to be 

useful on separated occasions and relatively new to the OM community. Our framework allows 

for adoption of as many predictor variables as desirable and does not require knowledge of the 

underlying structure of demand processes. We show that cross-item learning improves 

performance by itself and its efficacy can be substantially enhanced by a wider set of features. 

More importantly, our modeling tactics guided by operational and statistical principles can be 

transferred to other OM settings. The core contribution of our intervention to empirical OM lies in 

articulating and validating the value that OM principles offer in informing those computational 

learning techniques. Specifically, our paper elucidates how OM researchers can leverage 

theoretical understanding of forecast settings (e.g., long lead time with access to a rolling forecast 

signals) to develop sensible, effective data pooling and feature engineering, indispensable steps 

often overshadowed by the allure of learning algorithms. While data and feature engineering are 

crucial to the success of any business predictive analytics initiative empowered by machine 

learning, it is our OM contextual and theoretical knowledge that enable us to generate useful 

features for prediction.  

The remainder of the paper describes chronologically our intervention and development effort 
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and closes with analysis of the theoretical and methodological implications of our results. In §2, 

we describe the problem situation and examine past demand observations as well as rolling forecast 

signals from an EMS client. An unsuccessful improvement attempt based on established models 

and methods is reported in §3.1. In the remainder of §3, we show iterations through which the 

approach substantially improved prediction accuracy. In §4, we corroborate the effectiveness of 

the proposed method by testing data sets from a different EMS client, perform diagnostics to 

identify possible improvements, and report on the deployment strategy and initial results. In §5, 

we reflect on the intervention process, articulate theoretical and methodological insights derived 

from it, and assess the generalizability and transferability of those insights. We conclude by 

summarizing our contribution and articulating directions for future studies. 

2 Problem Situation  

Our intervention is aimed at helping Alpha predict downstream EMS production demand for 

semiconductor components over a stable lead time L (ten weeks) from vendors.1 We analyze 52 

weekly demand observations over a full calendar year for 426 semiconductor items requested by 

a major EMS client with eleven production plants located in southeast China. Each item is unique 

to the requesting plant and all items are specific to the focal EMS and not usable for other of 

Alpha’s EMS clients (i.e., no pooling of components across clients). Note that the 426 items 

represent all the items supplied by Alpha to the focal EMS, i.e., our selection of items was not a 

sample. Alpha managers turned down our suggestion to focus the analysis based on an ABC item 

classification arguing that regardless of cost, all items were equally relevant and operationally 

related for production planning. Failure of delivery of inexpensive items could jeopardize overall 

shipments by the EMS. Nevertheless, even though these were supplies for manufacturing, Alpha 

could not infer production demand dependencies as most EMS clients pull items for their 

production schedule from multiple distributors and without revealing the full bill of materials of 

their products2. 

 
1 The production lead time of semiconductor components lies in general between ten and twelve weeks. Lead time, 

however, varies item by item and occasional shortages may extend the lead time for certain items. Alpha takes the 

stance that forecasting over normal identical lead times suffices procurement decision support purposes. 
2 Among the 426 items, only 44 (0.05%) pairs exhibited absolute pairwise correlation greater than or equal to 0.8 for 

the 52-weeks demand observations. For each of the highly correlated pairs, we estimated the correlation coefficients 

of the first and second half of the year sample. The two vectors of 44 coefficients had a correlation of only -0.12, 
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Figure 1 presents an example of demand observations for five representative items over 52 

weeks. Demand realizations tend to be sparse (i.e., a series of zeros before a large order) and non-

stationary. We were informed that other EMS clients exhibit similar demand patterns.  

 
Figure 1: Example demand patterns 

We categorize the 426 weekly demand series into smooth, intermittent, erratic, and lumpy 

based on metrics proposed by Syntetos et al. (2005), (i) average interval between non-zero demand 

realizations (p), and (ii) the square of the coefficient of variation of a demand series (CV2). 

Syntetos et al. (2005) also suggest cut-off values (p=1.32 and CV2=0.49) widely used by 

subsequent studies for demand classification (e.g., Boylan et al. 2008, do Rego and de Mesquita 

2015). A large p indicates low demand frequency (i.e., more zeros), a large CV2 high demand 

volatility. Figure 2 illustrates the categorization of demand observations. Of 426 items in our 

sample, only 60 (14.1%) belong to the smooth category; the remaining 366 fall into the intermittent 

(211 items, 49.5%), erratic (37 items, 8.7%), and lumpy (118 items, 27.7%) categories, which 

exhibit highly skewed demand distributions inherently difficult to predict (der Auweraer et al. 

2019).  

 
confirming non-stable dependencies in the observed demands. 
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Figure 2: Demand interval and volatility of 426 items 

In addition to past demand realizations observed by the distributor, the downstream EMS 

client provides rolling forecast signals as leading indicators of future demand. Each week, in 

addition to placing the final order for the week, the EMS client provides a forecast of expected 

demand for the ten upcoming weeks – the lead time L for Alpha’s inventory planning. Using the 

Martingale Model of Forecast Evolution (MMFE) method (Heath and Jackson 1994), we calculate 

forecast evolution vectors (i.e., differences between forecast signals released at week t and week 

t-1) for the 426 items in our sample. For each item, we compute L vectors of forecast evolution, 

one for every week of the lead time L, and fit a multivariate normal distribution that, per the MMFE, 

should serve as the basis for simulating demand over the future lead time, conditioning on the most 

recently available rolling forecast information.  

Unfortunately, the computed vectors violate key MMFE assumptions. First, according to the 

Henze-Zirkler and Royston tests (Korkmaz et al. 2014), none of the 426 items’ forecast evolutions 

exhibit multivariate normality (at α=0.01 level). More important, the assumption that downstream 

forecasts improve over time (i.e., a forecast made one week ago should be closer to actual demand 

than a forecast made L weeks ago) also fails to hold. Table 1 reports the average mean absolute 

error (MAE) for all items for the forecast made one, five, and ten weeks before. As can be seen in 

the table, |Errori(1)| has a larger median, interquartile range, and maximum; clearly the most recent 

forecast is not closer to demand than forecasts released five or ten weeks before. This quick 

analysis confirms a statement by one of the procurement executives when we first requested the 

rolling forecast data: “[T]he rolling forecast signals are way too noisy and have no value to us. We 

would rather ignore those troublesome data in forecasting processes.”  
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Table 1 Mean absolute value of rolling forecast errors across all items 
 Min 25%tile Median Mean 75%tile Max 
|Errori(1)| 48.7 2,208.1 9,292.5 27,482.7 26,518.3 575,163.7 
|Errori(5)| 80.3 2,210.0 7,547.8 20,664.7 21,435.3 415,839.7 
|Errori(10)| 96.2 2,023.5 6,913.5 19,696.9 19,871.0 433,883.3 

 
The foregoing issues and responses pushed us to focus on developing forecast models based 

on past demand observations. Surprisingly, Alpha employed a simple, perhaps naïve approach to 

develop demand forecasts over lead time on a weekly basis: it computed an eight-week moving 

average (8wMA) of past weekly observations and multiplies by L weeks as the point estimate 

(Trapero et al. 2019a) for future demand over lead time. Internal analysis showed the 8wMA to 

perform reasonably well for tested items. Executives asked us to improve upon this simplistic 

baseline and develop an integrated approach using the full year (52 weeks) data for model fitting. 

They further designated all the items’ demand over the first ten weeks in the following year (i.e., 

weeks 53-62) as test data to assess the out-of-sample prediction performance. Although demand 

patterns exhibit different levels of volatility and frequency, managers hoped that some common 

patterns might be leveraged to generate demand forecasts.  

3 Iterative Intervention 

This section describes major phases of our intervention process. We first summarize our attempt 

to leverage various single-item methods to improve on the moving average forecasting method 

used by Alpha. Despite their relative refinements — e.g., consideration for sporadic demand and 

non-stationary components — none of the proposed methods was able to consistently improve the 

forecast accuracy of the baseline model used by Alpha: a simple moving average. The failure of 

these ‘more sophisticated’ methods to reduce demand forecast error triggered the ‘reframing 

exercise’ (Chandrasekaran et al. 2020) that resulted in the revised intervention and the 

consequential improvements. The remaining subsections show how we tackled failure modes and 

incrementally improved our solution based on theoretical frameworks and operational 

understanding. 

3.1 Initial Intervention 

The distribution of demand patterns depicted in Figure 2 suggests a variety of time series prediction 

problems. The operations and supply chain management literatures offer no unified theory or 

model for such demand forecasting tasks (Syntetos et al. 2009). A fundamental reason for 

developing alternative forecasting methods (or, as computer scientists call them, learning 
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algorithms) is the no-free-lunch theorem of machine learning, that is, no single method 

outperforms all other methods in all tasks (Wolpert 1996). Thus, our first attempt to address the 

prediction problem and improve on the algorithm used by Alpha was to employ an array of time 

series modeling techniques that matched the demand characteristics of the 426 items in our test 

case. Details of all tested approaches and algorithm implementations are provided in Appendix A. 

We addressed non-smooth demand patterns using two fundamental methods for sporadic 

demand forecasting, Croston’s (1972) exponential smoothing (Cr_Exp) and moving average 

(CR_MA). We also include the Syntetos-Boylan-Approximation (SBA) (Syntetos and Boylan 

2001), which reduces bias in the Croston method by introducing a correction factor into the 

prediction equation demand. Lastly, we included the Teunter-Syntetos-Babai method (TSB) 

(Teunter et al. 2011), which multiplies the forecast of non-zero demand by the predicted probability 

of non-zero demand.  

We also tested three methods capable of handling non-stationary demand processes: 

Autoregressive Integrated Moving Average (ARIMA), Error Trend Seasonality (ETS) (Hyndman 

and Athanasopoulos 2018), and the Trigonometric model – an advanced ETS with Box-Cox 

transformation, ARMA errors, and Trend and Seasonal components (De Livera et al. 2011) – that 

employs the above transformations to model complex patterns in time series (TBATS). These three 

methods are parametric and impose some functional structures on the underlying stochastic 

demand processes.  

Finally, we employed two non-parametric univariate methods – feed forward neural nets (NN) 

with one hidden layer (Hyndman and Athanasopoulos 2018) and multilayer perception (MLP) 

(Ord et al. 2017) – that rely on artificial neural networks and perform well with non-smooth time-

series forecasting (e.g., Gutierrez et al. 2008, Kourentzes 2013, Lolli et al. 2017, Mukhopadhyay 

et al. 2012). Collectively, our initial attempt to tackle the prediction problem employed nine models, 

all more sophisticated than the baseline 8wMA used by Alpha.  

We fitted the nine time series models for each of the 426 item using the 52 weeks’ 

observations (t=1, …, 52). Since procurement decisions on safety stock are entirely contingent on 

aggregate demand over lead time L (Bruzda 2020, Cobb et al. 2015, Trapero et al. 2019b), Alpha’s 

goal is to predict total demand over lead time (i.e., L=10 weeks) and ensure that orders placed at 

the current week would be able to cover the supply deficit after the lead time. 

As mentioned earlier, Alpha gave us demand observations over the first L=10 weeks of the 
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following year as test samples for assessing the predictive power of each model. We evaluated 

model performance by computing the SLE (squared log error) of total demand over the lead time, 

that is, 𝑆𝐿𝐸! = (log(∑ 𝐹!" + 1#$
"%&' ) − log	(∑ 𝐷!" + 1#$

"%&' ))$	(𝑖 = 1,… ,426). The forecast error 

metric SLE was chosen per Alpha’s request to make the error metric scale independent (i.e., 

comparable across demand patterns with different means) and avoid the zero-denominator issue in 

percentage metrics. 3  The SLE has the additional benefit of penalizing under-estimates (i.e., 

forecast F < actual D) more than over-estimates (Kannan et al. 2020), a highly desirable property 

in our setting given that insufficient supply to EMS clients incurs an extremely high cost of 

goodwill loss for Alpha. Figure 3 reports box and whisker plots of the SLE distribution for all ten 

forecasting methods across the 426 items. Because of the right skewness of the SLE distributions 

(i.e., the mean was much larger than the median error) management chose the median and 

interquartile range as key measures of performance. 

 
Figure 3: Squared Log Error (SLE) distribution of forecasting methods across the sample 

of 426 items  
Note: The line within the box is the median, the box covers the Inter Quartile Range (IQR), and whiskers cover 
points within 1.5 times the IQR beyond the end of the box. Far outliers beyond three times the IQR are represented 
by “x.” The graph range does not cover all far outliers. 
 

Surprisingly, none of the proposed techniques improved on the SLE performance of the 

baseline 8wMA model; the 8wMA yielded close to the lowest median SLE and tightest IQR.4 We 

 
3 Results were consistent between assessing prediction performance with mean absolute error (MAE) and SLE. 

Alpha opted for scale-free SLE comparable across items and without the biases of MAE for non-smooth demand 

(Morlidge 2015).  
4 The ARIMA model had a mean SLE 6.6% smaller than the 8wMA, but its IQR was 13.7% larger. 
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further analyzed the number of items for which each method is the best choice (see Appendix A). 

The high dispersion of best-performing methods confirmed management’s concern that it would 

be difficult to a priori identify the best model for each item and that doing so would result in too 

many different models to maintain for thousands of items. Although the results reported are based 

on a single round test, the results show why predicting non-smooth demand over lead time has 

long been considered a difficult problem in supply chain forecasting (Lolli et al. 2017, 

Mukhopadhyay et al. 2012). That several items had SLE>50 for all forecasting methods suggested 

that historical data did not hold useful information for predicting future demand (Bachman et al. 

2016). Although evidence indicated that they could not be predicted with backward-looking 

methods, management insisted these items be retained, as they were a significant part of the 

forecasting challenge.  

In meetings following this initial exploration, managers re-emphasized the goal to predict 

entire demand over lead time and to reduce the total forecast error. This led us to reassess the 

necessity of characterizing week-to-week changes in limited demand data and to recalibrate the 

forecast target. They also asked whether it was possible to develop an integrated modeling 

framework that did not require fitting many individual time series models. Managers’ request for 

“a” method for all items helped us realize that we had fallen into the trap of “time series modeling,” 

our first attempt having been to fit n individual models to weekly demand series. In the wake of 

these initial discussions with managers, we re-examined known theories and methods and, through 

multiple iterations, developed the framework described below.  

3.2 Problem Reframing – Data Aggregation  

Our conversations with management after the initial failures revealed the possibility of 

reformulating the demand forecast target for stocking decisions and interpreting the data as an n 

by T panel. In reframing the problem, we also adopted two data aggregation principles for temporal 

variance reduction and integrated model estimation.  

Our first aggregation is driven by obviating the need to dwell on the week-to-week variation 

that is hard to capture and not aligned with procurement decisions. Since the goal of procurement 

managers is to predict total demand over lead time (L=10 weeks), the target forecast should be in 

line with the operational requirement. Week-to-week differences in forecast accuracy within the 

lead time are not considered as crucial for stocking decisions (Bruzda 2020, Cobb et al. 2015, 

Trapero et al. 2019b). The cumulative demand and errors over lead time remains the focal issue 
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for up-to-date forecasting research (Kourentzes et al. 2020, Prak and Teunter 2019, Trapero et al. 

2019a). Accordingly, we aggregated demand observations by L weeks and redefine the forecasting 

goal to generate demand estimates for the full lead time. Referred to in the literature as temporal 

aggregation (Rostami-Tabar et al. 2013), this strategy has shown that transforming non-smooth 

data series into lower frequencies stabilizes variance and improves forecast performance 

(Petropoulos and Kourentzes 2015, Kourentzes and Petropoulos 2016).  

Specifically, demand observations (wt) in weeks t=1,..,T are aggregated into total demand 

over lead time in a block as the prediction target based on 𝑦( = ∑ 𝑤) , ∀𝑗 = 1,… , 𝑇/𝐿(∗+
)%((-.)∗+0. . 

For a single item with demand series of T weeks, temporal aggregation results in T/L non-

overlapping blocks. Like the classical demand pooling that effectively reduces demand variances 

in supply chains, aggregating weekly demand into a block of sum of demand over L weeks reduces 

the impact of zero demand weeks and averages out the spikes in raw weekly demand.  

Note that it is customary to use non-overlapping temporal aggregation as a robust filter for 

high frequency components (Athanasopoulos et al. 2017). Although, as an alternative to non-

overlapping aggregation, one can make every consecutive block pair differ by one week, doing so 

creates strong dependencies across blocks that are not suitable for statistical modeling approaches 

assuming independent observations (Hastie et al. 2016). Non-overlapping aggregation also results 

in an extra parameter – the width between two consecutive blocks – upon which to decide. We 

chose to begin by assessing the efficacy of non-overlapping aggregation, as we could easily relax 

the restriction later.5  

Our second aggregation is motivated by the possible dependency among the demand patterns 

of individual items. Although Alpha has no detailed knowledge about family structures of item 

sets used by EMS clients, or specific bills of materials, executives are adamant that they are 

required to supply all requested items that are part of manufacturing inventories and operationally-

related (Orlicky 1975, Hopp and Spearman 2011). This suggests that realized demands across 

items and plants, in spite of individual differences, are likely to share some common patterns 

motivating a cross-item learning initiative (Ban et al. 2019, Bojer and Meldgaard 2021). Hence, in 

addition to the item-wise temporal aggregation with a frequency of L weeks based on operational 

 
5 Later tests with overlapping blocks led to poor prediction performance and the idea was abandoned. Managers also 

did not like the added requirement to optimize for the overlapping parameter. 
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lead time, we performed cross-item aggregation by pooling temporarily aggregated observations 

of individual items into an n items by T/L blocks panel data set. With this method, it is technically 

possible for cross-item or cross-store prediction models to capture both common effects and 

individual heterogeneities. The resulting data structure enables learning algorithms (e.g., 

regression, tree, neural nets) to leverage multi-item information for cross-learning of demand 

patterns (Loureiro et al. 2018, Ren et al. 2015, Ren and Choi 2016, Ren et al. 2017). Cross-

individual pooling has been found to be useful for prediction problems in retailing (Ban et al. 2019, 

Chuang et al. 2016), and has the added benefit of compensating for information loss in temporal 

aggregation, which reduces the number of available observations for model building at the item 

level (Petropoulos and Korentzes 2015). 

The aggregated blocks of n items by T/L blocks panel data set (a total of n*T/L observations) 

serves as the target (y) for predictive modeling of total demand over lead time (L weeks). In 

presenting this data pooling to Alpha managers, we put forward the argument that cross-learning 

effects are more salient when stochastic demands share the common error distribution after 

adjusting for their means (Ban et al. 2019). Managers concurred that these effects are likely to be 

present in our case because item demands all originate from the same EMS client. The cross-

learning approach has also been shown to outperform traditional univariate methods in finance 

(Wu et al. 2021), automotive (Gonçalves et al. 2021), and retail (Spiliotis et al. 2021) forecasting 

studies, in addition to well accommodating missing values and limited observations (Hartmann et 

al. 2015). For multiple longitudinal series prediction tasks, cross-learning approaches are 

increasingly popular and proven effective in many forecasting competitions (Bojer and Meldgaard 

2021). 

The effectiveness of this cross-item modeling approach, nonetheless, relies on the input 

factors provided to the forecasting algorithm. The goal is to present the data in a format that enables 

the algorithm to detect patterns relevant to the prediction problem. In this instance, we used our 

understanding inventory and logistics models and forecasting methods to develop features 

hypothesized to contain information relevant to the prediction problem.  

3.3 First Iteration – Fixed Effects and Past Demand Features  

For business prediction tasks, feature engineering is perhaps more crucial to prediction accuracy 

than the machine learning algorithms themselves (Kuhn and Johnson 2019). Features, numerical 

representations of specific aspects of data, sit between data and models in predictive analytics 
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(Zheng and Casari 2018). The critical task here is to create features (i.e., predictor variables) that 

serve as inputs to subsequent machine learning (i.e., model fitting). The creation of input features 

is critical but difficult without a solid understanding of the problem domain. Wu et al. (2021) show, 

in a finance application, that the success of cross-learning relies on feeding algorithms with a set 

of idiosyncratic features rooted in theoretical concepts. Analogously, for our prediction problem, 

we develop three sets of features based on theoretical principles of econometric modeling and 

demand forecasting. 

The first set of features aims to cover base heterogeneity. In the theory of panel data modeling 

and cross-learning for prediction, heterogeneities come from cross-sectional units and time periods 

(Wooldridge 2010). Hence, to control for individual and time fixed effects, we create binary 

variables using one-hot encoding for all item IDs, production plant IDs, and block period index 

(i.e., 1, 2,…, T/L). The block period index absorbs seasonal/trend effects that are rudimentary 

elements of time-series forecasting theory (Hyndman and Athanasopoulos 2018).  

The second set of features from historical demand capture the recent demand level based on 

the theoretical perspective of arguably all forecasting methods in the literature, that is, past demand 

data are correlated with future demand and are legitimate inputs for generating demand predictions 

(Hyndman and Athanasopoulos 2018, Utley and Gaylord May 2010). We compute three statistics 

as input features from demand in the previous block (i.e., a lag of one)6, specifically, the sum of 

demand of the previous block (x1) and sum of demand in the first (x2) and second (x3) halves of 

the previous block. To capture within-block variation not reflected in total demand, we consider 

the feature expansion (Zheng and Casari 2018) of sub demand level (x2 and x3) in addition to total 

level (x1). The three features subsume and expand the best-performing baseline moving average.  

From statistical modeling and forecasting theories, time-variant level is not sufficient for non-

smooth demand prediction (Thomopoulos 2015). Hence, our third set of features attempt to capture 

recent demand volatility. We focus on sporadicity and variability that are crucial for intermittent, 

erratic, or lumpy demand modeling (Syntetos et al. 2005). For sporadicity, we consider the level 

of and density of zeros in demand observations. We capture how sporadic the demand pattern is 

by computing the number of zero-demand weeks in the block (x4), the number of zero-demand 

 
6 Note that we look into a lag of only one block to reduce information losses, that is, after the data pooling phase, 

each item has only T/L=5 blocks/observations in the panel data set. Using a lag of higher order would reduce the 

number of available blocks for training and validation. 
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weeks in the first (x5) and second (x6) halves of the block, and the number of consecutive zero-

demand weeks of the block (x7). As a measure of demand variability in the previous block (x8) we 

use the median absolute deviation (Rousseeuw and Croux 1993) of weekly demand (median of |xi 

– median(x)| for x1, x2,…, xn), as opposed to the standard deviation because the former statistic is 

resilient to outliers. Table 2 provides a succinct summary of the features derived in this stage.  

Including the binary variables for item, plant, and periods, the data set for our prediction 

problem has more than 400 features (i.e., regressors). The number of predictors being nontrivial 

relative to the sample size, we used machine learning to tackle the high-dimensional input data. 

We employ statistical machine learning algorithms to approximate the functional relationship 

between the target y and an array of predictors x. We use random forests (RF) (Breiman 2001), an 

ensemble learning algorithm where the ensemble refers to a set of weak learners (e.g., simple 

classification and regression trees) combined to solve a particular problem (Mendes-Moreira et al. 

2012). RF creates many bootstrapped samples with randomly selected features and fits a regression 

tree to each sample with incomplete features. Averaging predictions across the regression trees 

yields the final forecast. RF is well known for its prediction accuracy, and popular for being much 

easier to train than deep learning approaches.  

To predict the 426 items’ total lead time demand over L=10 weeks as described in §2, we first 

created training and validation sets. Recall that we have a panel data structure with sample size 

1704 = 426 items * 4 blocks (T/L=50/10=5, minus 1 because of the lagged block for x1-x8). We use 

the first three blocks for training (n=1278, 426 items, each with three L-week blocks) and the last 

block (n=426 items, each with one L-week block) for validation. The training set allows algorithms 

to fit functions from data, that is, to take features as inputs in order to generate outputs in the form 

of total demand over the next L weeks by minimizing some error/loss metrics, such as mean 

squared error (MSE) and mean squared log error (MSLE). The validation set is for assessing the 

trained models’ out-of-sample prediction performance before applying the models to the entirely 

unknown out-of-sample test set (weeks 53-62). This validation procedure enables analysts to fine-

tune hyper-parameters of learning algorithms and avoids over-fitting. Training errors significantly 

lower than validation and test errors suggest models with poor generalizability. 
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Figure 4: Squared Log Error (SLE) distribution of forecasting methods 

Note: The distribution for 8wMA is the same as reported in Figure 3. 
 

We trained the RF using the open-source machine learning platform H2O in R (Cook 2016). 

We use the validation set to set the number of trees, maximum depth, number of randomly selected 

feature in a tree, and minimum data points in a leaf. The setup of hyper-parameters of predictive 

machines is reported in Appendix C. Figure 4 shows the distribution of SLEs for the 426 items 

(RF(past)). For reference, the figure includes the SLE distribution for the 8wMA (management 

current practice) as well as the distribution of SLEs selecting for each item the Best of the ten 

methods described in §3.1 during the validation period and using that method to predict for the test 

set.  

Relative to current management practice (8wMA), we find RF(past) to reduce the median 

SLE by 7.5% (from 0.385 to 0.356) and IQR by 6.6% (from 1.425 to 1.331) as well as outperform 

the item-wise selection of the Best method, having a median 9.8% lower and an IQR 3.8% narrower. 

Alpha managers found particularly appealing that, with the data structure for cross-item learning, 

only one integrated model, as opposed to hundreds of individual time series models, is needed to 

generate n predictions. We informed managers, however, that up to this point our features 

encompass just base heterogeneity and demand statistics that reflect recent demand level and 

volatility. Even though test results validated the value of cross-item learning and showed that one 

model could elevate forecast accuracy, we expected that more predictors could further improve 

forecasting accuracy. That the small reduction in SLE seems to imply that those features are 

insufficient for lead time demand forecasting motivated us to proceed to the next phase. 

3.4 Second Iteration – Rolling Forecast Features 

Like many forecast models, our predictive machine in the previous phase relies on input features 

predicated on the fundamental assumption in time series modeling that future demand is dependent 

Electronic copy available at: https://ssrn.com/abstract=3852215



 

17 

on past demand and fixed effects. Leading demand signals, such as advance order data, are 

nevertheless intended to contain information useful for prediction in supply chain operations 

(Terwiesch et al. 2005, Utley and Gaylord May 2010). Despite our unsuccessful attempt to fit 

MMFE assumptions and managers’ skeptical views of rolling forecast prior to our initial 

intervention, we determined to derive two sets of features to leverage forward-looking information 

embedded in noisy forecast signals.  

For any week t, downstream forecast signals of different lengths and versions are available 

for the next L weeks. Theoretically, the latest version carries the most up-to-date information 

(Cakanyildirim and Roundy 2002, Heath and Jackson 1994), from which we derive six features 

(x9-x14) on level and sporadicity of leading order signals. Note that the calculation of those features 

follows a similar logic used in developing the two sets of past demand features. In addition to those 

signals for future demand at week t+1 to t+L, historical forecast signals for past demand in recent 

periods may carry extra information for future demand, because the discrepancies between 

historical signals and demand realizations could be related to future demand propensity 

(Cakanyildirim and Roundy 2002, Albey et al. 2015). Hence, we derive another set of features 

(x15-x17) on retrospective order signals. Details on computing rolling forecast features are reported 

in Appendix B. Table 2 briefly summarizes the operationalization and rationale of all features 

derived from our iterative investigations into literature and discussions with management.  
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Table 2 List of features 
Feature Description* Rationale 

Base 
heterogeneity 

Item Binary indicators To capture individual item heterogeneity.  
Plant Binary indicators To capture individual plant heterogeneity. 

Periods Binary indicators To capture seasonal/time effects. 

Recent 
demand level 

x1 sum of demand of preceding 
block 

x1-x3: Developed to capture inertia in 
realized demand levels and within-block 
changes; the three features retain and expand 
the efficacy of the base MA that is a 
rudimentary model in demand forecasting 
theory (Hyndman and Athanasopoulos 
2018). 

x2 sum of demand in the first half of 
preceding block 

x3 sum of demand in the second half 
of preceding block 

Recent 
demand 
volatility 

x4 number of zero-demand weeks in 
preceding block x4-x6: Developed to capture the number of 

“zeros” as sporadicity measures in past 
demand; important indicators for non-
smooth demand modeling (Syntetos et al. 
2005, Teunter et al. 2011). 

x5 number of zero-demand weeks in 
the first half of preceding block 

x6 number of zero-demand weeks in 
the second half of preceding 
block 

x7 number of consecutive zero-
demand weeks in preceding block 

x7: Developed to capture the timing of non-
zeros; important indicators for non-smooth 
demand modeling (Syntetos et al. 2005, Li 
and Lim 2018). 

x8 median absolute deviation of 
demand in preceding block 

x8: Developed to capture the variability in 
past demand; important indicator for generic 
demand modeling (Rousseeuw and Croux 
1993, Syntetos et al. 2005, Thomopoulos 
2015). 

Leading 
order signals 

x9 sum of diagonal forecast of 
succeeding block  x9-x11 : Developed to capture the latest 

information about demand levels and 
changes over future lead time (Heath and 
Jackson 1994, Terwiesch et al. 2005, Albey 
et al. 2015). 

x10 sum of diagonal in the first half of 
succeeding block 

x11 sum of diagonal in the second 
half of succeeding block 

x12 number of zeros in the diagonal 
rolling forecast of succeeding 
block x12-x14: Developed to capture the latest 

information about demand sparsity over 
future lead time (Heath and Jackson 1994, 
Terwiesch et al. 2005, Albey et al. 2015). 

x13 number of zeros in the diagonal 
of the first half of succeeding 
block 

x14 number of zeros in the diagonal 
of the second half of succeeding 
block 

Retrospective 
order signals 

x15 sum of Fcst(-1) of preceding 
block x15-x17: Developed to capture latent 

production demand (measured by last 
production forecast) and to complement to 
realized demand (x1-x3) (Cakanyildirim and 
Roundy 2002, Albey et al. 2015). 

x16 sum of Fcst(-1) in the first half of 
preceding block 

x17 sum of Fcst(-1) in the second half 
of preceding block 

* Preceding block refers to one temporal aggregation window of last L weeks. Succeeding block refers to one 
temporal aggregation window of next L weeks. 

 

Using the rolling forecast features (x9-x17) identified in Table 2, we execute machine learning 
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using RF. Relative to the RF(past) benchmark established in the previous section, we find the 

forecast features improve the median SLE by 24% (from 0.356 to 0.272) and the SLE IQR by 14% 

(from 1.331 to 1.148) (see RF(fcst) in Figure 5). Furthermore, when combining all the developed 

features, the RF algorithm reduces, relative to RF(past), the median SLE for the 426 items by 38% 

(from 0.356 to 0.218) and the SLE IQR by 32% (from 1.331 to 0.902) (see RF(all) in Figure 5). 

These performance gains attest to the value of more comprehensive feature engineering. 

3.5 Third Iteration – Machine Learning Improvements  

We then adopted a more sophisticated ensemble learning algorithm utilizing gradient boosting 

machines (GBM) (Friedman 2001) capable of extrapolating predictions beyond the observed data 

range. RF, by averaging predictions of trees, is unable to extrapolate observations (Hastie et al. 

2016, Zhang et al. 2017). Further, GBM follows a sequential learning protocol, i.e., a boosting 

process, in which each tree tries to reduce prediction errors from previous trees (Kuhn and Johnson 

2013), whereas in RF each regression tree learns from data independently. The gradient of the loss 

function is a mathematically general representation of residuals. GBM excels at reducing 

prediction bias, but is prone to over-fitting (Natekin and Knoll 2013). 

We used eXtreme gradient boosting (XGB) (Chen and Guestrin 2016), which augments GBM 

by enhancing regularization terms to prevent over-fitting, considers both gradients and hessians of 

loss functions in creating splits, and improves computation efficiency. XGB outperforms other 

deep/shallow learning models in many prediction tasks on non-perpetual and structured data 

(Sjardin et al. 2016). Although XGB does not improve the aggregate performance of RF(all) (see 

XGB in Figure 5), averaging the predictions of RF(all) and XGB reduced the RF(past) median 

SLE by 45% (from 0.356 to 0.197) and the IQR by 39% (from 1.331 to 0.817). Whereas RF(all) 

alone realizes a substantial improvement over the baseline, XGB, with its extrapolative power, 

adds value to the demand prediction problem, the averaging method improving the median SLE 

over its two inputs by 10% and 13% and IQR performance by 10% and 9%. The method is easy to 

use and grounded on “model stacking”, a practically prevalent and theoretically effective approach 

in machine learning for predictive analytics (Cook 2016). 
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Figure 5: Squared Log Error distribution of ML methods across 426 items in sample 

Note: The distribution for RF(past) is the same as reported in Figure 4 
To sum up, the initial failure of individual time series models to predict erratic demand 

patterns lead us to a reframing of the forecasting problem considering the possibility of data 

aggregation (across time and across items). Through an iterative process, we proposed and tested 

specific techniques for data analysis to improve forecast accuracy. Rather than having to fit 426 

individual time series models for all items recounted in §3.1, we end up with one predictive 

machine grounded in two ensemble learning algorithms. The combination of ensemble regression 

trees enables us to capture overall patterns across item-plant pairs while accommodating local 

heterogeneities. More significantly, the predictive machine accommodates as many features as 

desirable and does not presume the underlying structure of demand processes.  

4 Assessment of Proposed Method 

Satisfied with improvements in forecast accuracy achieved with the foregoing averaging method 

(i.e., (RF+XGB)/2), management requested that we test it with demand from other EMS clients. 

We report here findings of these additional tests as robustness checks and diagnoses aimed at 

identifying other possible improvements. Finally, we report on the deployment strategy and initial 

results from the adoption of the predictive modeling framework. 

4.1 Tests with Other Data Set 

Alpha selected one of its most complex customers in terms of item heterogeneity and lead time as 

a test for assessing the appropriateness of the proposed model over multiple prediction rounds. The 

test, involving ~1000 items from 15 production plants, differs from the foregoing case in several 

respects. First, in addition to offering more information for model training, the increased number 

of items represents higher item heterogeneity. Second, items for this EMS client had a longer lead 
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time from the supply side, twelve weeks, suggesting higher demand uncertainty over a longer 

planning horizon.7 Third, we were asked to report prediction performance across ten runs on a 

rolling basis, that is, for total demand from weeks 76-87, 77-88, …, 85-96.  

Numbers of items across prediction rounds varied as the EMS client’s production schedule 

changed, the weekly prediction challenge ranging from 822 to 967 items.8  Accordingly, the 

weighted average improvement across the ten out-of-sample weeks (weighted by the number of 

observed items in each week) relative to 8wMA was a 62.7% reduction in median SLE with an 

improvement range of 50%-69%. The reduction in IQR of the SLE distribution was consistently 

above 97% over the ten runs, with a weighted average of 97.5%. Figure 6 shows the SLE 

distribution for the base and proposed (ML) methods of rolling predictions for forecast windows 

with the best (weeks 79-90), median (weeks 82-93), and least (weeks 85-96) improvement in 

median and IQR. The proposed method dominates the base method even for the case with the least 

improvement. Indeed, the variance in improvement performance seems to stem more from the 

adequacy of the base method in any given window than from differences in the performance of the 

ML method. Moreover, the variance in the number of cases included each week indicates a slight 

but significant (p < 0.001) improvement in the median of the SLE distribution as more items are 

included in the model. 

Despite the significant prediction error reduction shown in Figure 6, a few outlying items 

with large SLE are present in all tested periods (as is the case with the 426 items in Figure 5). 

Management attributed these outlying errors to sudden changes in EMS clients’ product lines or 

production schedules. Such demand patterns are essentially unpredictable based on past demand 

records and forward forecast signals (Bachman et al. 2016).  

 
7 This test was also performed assuming the same lead time for all components (see footnote 1). Technically, it is 

possible to extend our method to items with different lead times by introducing a binary array of input features to 

represent the different length of lead time or normalizing the total demand by lead time length.  
8 The models were trained on an Intel i9 2.6 GHz desktop with 64 GB DRAM. A couple of minutes were required to 

train the RF and XGB models in R, given hyper-parameters. Computing time increases in the number of random 

searches for hyper-parameters, and varies with the number of trees and sampling fraction of observations/columns for 

each tree. That this could take several hours is not a concern to Alpha because of available multi-core and cloud 

computing.  

Electronic copy available at: https://ssrn.com/abstract=3852215



 

22 

 
Figure 6: Squared log error distribution of base and ML method 

Note: The gray triangle denotes the mean SLE and its 95% confidence interval. 

Alpha deemed the test results to demonstrate the method to be robust and adaptive, effective 

not only in situations in which historical data could be leveraged to make sensible predictions (e.g., 

the aforementioned EMS client with 426 items), but also in situations in which current forecasting 

practices were yielding poor results (the latter EMS client with ~1000 items). The performance of 

the cross-item analytics, moreover, is consistent across clients with varying item heterogeneity and 

lead time intervals. In particular, the proposed method’s ability to accrue cross-item learning from 

balanced and unbalanced panel data structures easily accommodates short life cycle items, as 

limited demand observations make individual model fitting difficult. In the following section we 

evaluate, using our original data set, the relative importance of the features used by the ML model 

and examine items for which the method still provides a poor forecast. 

4.2 Relative Importance of Features 

Both RF and XGB construct ensembles of regression trees, in which each tree embeds multiple 

binary splits based on different features. Although post-fitting interpretation is more difficult with 

an ensemble of trees than with a single tree with full transparency, recent developments in 

explainable machine learning enable us to identify important predictors in the post-training stage 

(Kuhn and Johnson 2013).  

Figure 7 shows relative feature importance in the RF(all) and XGB models described in §3.5. 

For RF(all), importance is determined by whether a predictor is selected to split during tree 

construction processes and how much the squared error of all trees drops due to a predictor. 

Specifically, for each tree, a feature’s attributed reduction in error is the difference in variance of 
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response (y) within the node and response variance of its children nodes (Hastie et al. 2016). 

Relative influence is obtained by dividing each feature’s variance reduction to total variance 

reduction. For the XGB model, we calculate, instead of variance reduction, the average gain 

obtained by a feature. The gain metric is a function of gradient and hessian statistics as well as two 

regularization terms in the loss function (Chen and Guestrin 2016). Relative influence is obtained 

by dividing each feature’s gain to total gains. Computational details on the importance of each 

feature in ensembles of randomized trees can be seen in Louppe et al. (2013) and Kazemitabar et 

al. (2017). 

 
Figure 7: Relative feature importance in RF and XGB 

A number of observations can be made from Figure 7. First, the features derived from the 

rolling forecast matrix – x9, x10, and x11 – are the most salient in reducing forecast errors. Our 

understanding of the MMFE idea and theoretical value of advance demand information helps us 

reassess the value of those noisy signals. Although the item-by-item rolling forecast signals neither 

seem helpful nor improve over time, the two models seem to be able to learn from cross-item 

signals and extract useful information for demand predictions. Second, consistent with time series 

modeling theory, past demand observations (i.e., the sum of lead time in the previous block) – x1, 

x2, and x3 – do seem to have an effect on reducing prediction errors, although learning algorithms 

clearly derive more value from forward-looking (albeit noisy) signals than from historical demand. 

Third, features from recent forecast signals FCST(-1) for already realized demand, that is, x17 and 

x15, and item fixed effects have much smaller effects. Features related to the number of zeros in 

rolling forecasts and past demand are not detected as useful in machine learning processes despite 
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the large number of lumpy and intermittent demand patterns. 

Our findings regarding relative feature importance corroborate the efficacy of feature 

engineering for machine learning to generate high-quality predictions. A key lesson is that features 

guided by OM theory (e.g., forecast evolutions) are key to learn from noisy data and improve 

prediction performance. Although noisy signals may not be informative on an item-by-item basis, 

pooling information enables us to detect existing patterns across items. Observed a procurement 

executive at Alpha:  

It is a big surprise to see that features based on rolling forecast signals carry such 

importance. We definitely will elicit more advance demand information and try to 

integrate related features into machine learning.  

Having assessed the importance of features, we investigate items with abnormally high SLE. 

Examining 56 items with SLE greater than seven revealed 53 of the 56 items to have zero demand 

in the test period (weeks 53-62). The remaining three items had just one week with non-zero 

demand. These outliers were abrupt changes in the demand signal, i.e., most of the items had been 

suddenly discontinued or replaced by alternatives. Management suggested that the zeros were 

likely caused by changes in the EMS client or end-of-projects that could not be predicted by 

patterns learned from demand- or rolling forecast-based features. The lack of significance of 

features describing the number of zeros in past demand and rolling forecasts (see Figure 7), despite 

the large number of lumpy and intermittent demand patterns, lends credence to this interpretation. 

Developing codifiable features on such changes on a regular and timely basis for algorithms to 

learn and adapt was, however, not feasible. Alpha explicitly recognized that forecasting methods 

in general are not immediately responsive to abrupt discontinuities. Instead of further pushing for 

improvement of our modeling approach, management is looking for other channels of information 

(beyond the rolling forecast) that better capture the signal of when an item will be suddenly 

discontinued or replaced. Furthermore, Alpha has asked engineers and procurement managers to 

pay extra attention to items with high validation error, i.e., items with less predictable demand 

given available features. Specifically, procurement managers now must report any information 

about “operational changes/anomalies” in the EMS client’s request for the items and engineers are 

required to assess if items exhibit over-fitting (inconsistencies between in-sample and out-of-

sample prediction performance) that could signal a possible need to tune the model. 

We also pointed out in discussions with Alpha that demand uncertainty could be reduced if 
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the long supply lead time (10-12 weeks) could be shortened and shared the results of a simple test 

showing a lower forecast error under reduced lead time. Alpha responded that although 

conceptually appealing, key suppliers’ long lead time is irreducible due to the physics of 

semiconductor manufacturing processes. Moreover, even with annual revenue of more than $18 

billion, Alpha, as a distributor and buffer in the supply chain, has limited power to influence 

vendors and clients. Alpha managers, nevertheless, took the ability to work with shorter lead times 

as further evidence of the framework’s flexibility and robustness.  

4.3 Deployment 

Based on these results, management decided to roll out the methods to different EMS clients and 

production plants. For actual deployment of predictive analytics, management opted for the 

(RF+XGB)/2 model described in §3.5 with all the features listed in Table 2. While the focal EMS 

of the study represented approximately 3% of Alpha’s sales, the framework has been rolled out to 

predict demand for all major EMS clients with large transaction volume and hundreds of items. 

Combined, these large EMS clients represent 56% of Alpha’s sales. The predictive machine for 

each EMS (with its corresponding plants and products) is re-calibrated on a monthly basis as new 

data becomes available. Thus, addition and termination of items in Alpha’s operation is reflected 

in the continual data engineering and machine learning processes.  

The central objective is to use forecasts as better anchoring points for improving stock control. 

Feedback from Alpha has been positive and procurement managers no longer rely on 8wMA to 

make inventory decisions. Improvement performance has not yet been assessed for all clients, but 

associates responsible for implementation of the framework report that for one major EMS client 

forecast error has been reduced by 30% or more for 50% of items and by at least 10% for up to 

80% of items. Alpha’s management acknowledges that more accurate lead time demand 

forecasting has enabled the firm to reduce inventory holdings and scrapping of obsolete material 

without compromising the service level to EMS clients. For the focal EMS of this study, average 

inventory holdings have dropped by 5%, a reduction of inventory value of approximately $3M. As 

it is still managers who make ordering decisions after considering the additional information they 

now possess, we cannot attribute cost improvement solely to better forecasts. But given managers’ 

tendency to anchor to a point (see Harvey 2001 for extensive discussion of the research in this 

area), providing better forecasts of demand over lead time arguably improves the anchoring point 

and should thus relate, to some extent, to better procurement decision-making. 
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5 Discussion 

The iterative process described above — where frameworks to analyze data are tested in their 

ability to create accurate and robust forecasts, and insights are drawn from these tests to further 

improve the frameworks to analyze the data — improved lead time demand forecast accuracy at 

our research site. The iterative process also affords an opportunity to reflect on the theory and 

methods used to improve the problem situation in an example of intervention-based research (IBR) 

(Chandrasekaran et al. 2020), in which insights emerge from mismatches between expected and 

actual outcomes (Oliva 2019).  

The intervention strategy described in §3 can be mapped into multiple iterations of what Oliva 

(2019) calls Mode 1 of intervention-based research, where theories (T) and methods (M) are 

confronted with a problem situation (S) with the goal of improving S (see Figure 1 in Oliva 2019). 

In our setting, the purpose of the iterative process is to develop more accurate, robust forecasts. 

Although better forecasts should in turn lead to better re-stocking decisions (Syntetos et al. 2009), 

because Alpha explicitly limited the scope of our intervention to the forecasting process, the test 

of the usefulness of our theories and methods is their ability to generate accurate forecasts. The 

results of the modeling effort, however, are still empirically validated. Failure to improve forecasts 

or unexpected outcomes (surprises) generate reflections on the appropriateness of the theories and 

methods and redefinition of what might be considered a useful theory (see Figure 8).  

 
Figure 8: Iterative learning from interventions 

We posit that the fine-tuned set of complementary guidelines yielded by the above-described 

iterative process constitutes a generalizable research contribution. Recognizing that the distinction 

between T and M is often not clear and insights largely overlap (see §2.2 in Oliva 2019), by 

contrasting our findings with current theoretical and methodological guidelines we can push the 
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lessons beyond the specifics of the Alpha site. Their importance notwithstanding, context-driven 

data pooling and theory-informed feature engineering tend to be obscured by the shadow of 

machine learning in the wave of big data and artificial intelligence (AI). As opposed to many 

machine learning applications that treat the model as a black box to be fed all sorts of related 

information (Rudin and Radin 2019), we found that it was our understanding of OM that allowed 

us to reach better problem formulation, feature derivation, and model construction. We posit this 

work hints to what the future of OM might be in the context of emerging AI. While there is no way 

that humans can compete with the pattern identification capabilities of algorithms, we show that 

pre-processing the data in accordance with theory played an important part in achieving the 

improvements we obtained. Below, we elucidate and contrast with existing theoretical and 

methodological guidelines these important elements.  

5.1 Data Pooling 

Data pooling is built upon temporal aggregation, which has become increasingly popular in 

business forecasting (Boylan and Babai 2016, Kourentzes and Athanasopoulos 2020, Syntetos et 

al. 2016) as a way to derive low frequency time series from high frequency observations. Although 

aggregation across time has been validated as a useful approach for tackling non-smooth demand 

patterns widely seen in various industry sectors (Nikolopoulos et al. 2011), related studies almost 

exclusively identify patterns from temporally aggregated univariate series via distribution or 

function fitting. Ours differs from prior work by pooling the low-frequency time series into a panel 

data structure. Temporal aggregation focuses on within-item data pooling, and aggregating 

individuals afterwards aims to enable potential cross-item learning.  

Cross-item learning from panel data aims to combine cross-sectional items for fitting models 

that reveal overall demand patterns, a sharp contrast with fitting individual time series models that 

capture exclusively item-specific patterns. While many demand forecast models in the literature 

are trained in a series-wise fashion (Spiliotis et al. 2021), the renowned M4 competition with 

100,000 real-world time series has shown that cross-learning models effectively enhance 

forecasting performance (Makridakis et al. 2020). The aggregate approach has proven successful 

for product demand forecasting in various consumer (Ren et al. 2017, Ban et al. 2019, Spiliotis et 

al. 2021) and industrial markets (Gonçalves et al. 2021). Hu et al. (2019) show that, even by just 

clustering items based on similarities, fitting common curves without input features improves 

demand forecast accuracy. Our results in the electronics distribution sector justify the utility of 
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cross-individual learning for demand forecasting in industrial markets. Notwithstanding 

differences in market types, panel data structures introduce more information on common effects 

into demand modeling processes. Theoretically, by exploring between- as well as within-item 

variation, fitted models can improve prediction performance by obtaining parameter estimates with 

high efficiency (using more samples) while accounting for individual heterogeneity (Greene 2011). 

In addition to leveraging information across individuals, cross-item learning addresses that 

individual time series modeling is unable to capture common patterns and vulnerable to missing 

values and limited observations (Hartmann et al. 2015). Furthermore, cross-item learning affords 

the flexibility to include additional features, whether time variant or not, at the macro (e.g., plant 

and quarter fixed effects) or micro level (e.g., item-specific and block-varying attributes).  

The idea of combining temporal aggregation (that alleviates within volatility) and cross-item 

learning (that serves between variation) thus constitutes a theoretical proposition that can be 

employed for non-smooth series of hundreds or thousands of items common in manufacturing and 

retailing settings. In line with previous successful OM applications in apparel retailing (Chuang et 

al. 2016, Ban et al. 2019) and recent success of employing a cross-individual machine learning 

approach to financial forecasting (Wu et al. 2021), we posit cross-item learning is theoretically 

well-grounded when considering manufacturing inventory operational requirements. With sensible 

input features, cross-learning excels in extracting common patterns in demand targets and the 

strategy is worth exploring in subsequent studies of operational prediction problems.  

5.2 Feature Engineering 

Feature engineering creates predictor variables and serves as the backbone of predictive modeling 

efforts (Kuhn and Johnson, 2019). The success of image recognition by convolutional neural 

networks has led to a claim that deep learning frees analysts from feature creation (Zheng and 

Casari 2018). This claim may hold for image or voice recognition tasks, but prediction 

performance for most management and social problems still relies on relevant predictors identified 

by analysts, and feature engineering remains indispensable to the success of business prediction 

tasks (Martinez et al. 2020). A common strategy of feature engineering in statistical learning is to 

create as many non-linear transformations of raw data variables and all possible two-way 

interaction terms (Kuhn and Johnson 2019) in regression models, such as Lasso and elastic net 

(James et al. 2013), that can handle high-dimensional inputs. An alternative strategy in machine 

learning is to feed into models all raw variables, such as support vector machines and Gaussian 
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process models (Theodoridis 2015), that count on kernel functions to reach high-dimensional 

feature expansion (Hastie et al. 2016). 

These two feature engineering paradigms in statistical/machine learning exploit 

computational power and reduce human involvement. These approaches, however, can drop 

theoretically relevant factors due to collinearities or become combinatorically cumbersome when 

the dimension of raw input variables is high, resulting in high noise-to-signal ratios that undermine 

prediction performance. Instead of brute-force methods to transform data signals, our intervention 

adopts a theory-informed approach to feature engineering. As described earlier, we construct five 

sets of features following theoretical perspectives of forecasting, OM, and econometrics. For 

instance, motivated by individual forecasting techniques for non-smooth demand, in addition to 

rudimentary features for demand levels, we devise an array of features related to zeros for demand 

sparsity and timing. Although revealed by our post-modeling analysis to be less important than 

others, the sparsity and timing features are guided by theoretical ideas and could prove useful in 

other demand forecasting settings. Note that we cannot generalize which features will be more 

useful a priori, since features that appear weak in some sites may become strong in other settings. 

Hence, our advice to researchers and managers is to include features grounded on theoretical 

principles and allow learning algorithms identify the useful features. 

Predicated on the rudimentary theoretical principle that future demand is dependent on past 

realizations, our initial machine learning with past demand and base heterogeneity features 

achieved marginal improvements in forecast accuracy. Guided by OM principles, we salvaged data 

originally discarded by management and further extracted features from the rolling forecast matrix 

to create leading indicators. Unlike MMFE techniques that attempt to capture all observed 

stochastic variation (i.e., forecast evolutions) via distributional tools, we generate a set of features 

using the latest information about future and recent demand. Post-modeling analysis of relative 

feature importance provides empirical support for this process, as both RF and XGB identify the 

leading demand indicators as the most important features.  

Although we tackle rolling forecast via a data-driven alternative to MMFE techniques (Heath 

and Jackson 1994) with somewhat vulnerable assumptions, the data-driven features are motivated 

by, and benefit from, OM theories of the value of advance demand signals with regular updates 

(Utley and Gaylord May 2010). A key lesson from our feature engineering journey is that, although 

brute-force transformation and raw computational power are easily adopted and do not require 
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much “brain effort,” it remains crucial that derivation of features be guided by theoretical and 

contextual principles. 

5.3 Machine Learning 

Machine learning was the least effort-consuming aspect of our intervention. The major learning 

algorithms are not new, but recent improvements in computational tools have made learning from 

high-dimensional data much more accessible. There are, however, insights to be derived from our 

experience. First, note that our recommendation to Alpha was based on a combination of ensemble 

learning techniques – RF and XGB – instead of other algorithms for high-dimensional inputs, such 

as Lasso regression and artificial neural networks (James et al. 2013). Our strategy is based on the 

theoretical virtues of tree methods being robust to outliers and missing data and insensitive to 

variable scales that often create numerical problems for other algorithms. These properties of 

ensemble machine learning techniques are highly desirable for cross-item learning that absorbs 

multiple demand series with broad scale differences. Second, RF was initially chosen because of 

its conceptual simplicity, practical applicability (e.g., sales forecast in Ferreira et al. 2016), and 

theoretical efficacy in error variance reduction. However, RF’s inability to extrapolate led us to 

complement it with XGB, which possesses extrapolative power and error bias reduction 

capabilities (Hastie et al. 2016).  

Because RF and XGB both aggregate predictions from many tree models, point forecasts are, 

by construction, products of hybrid models. Combining point predictions from different models or 

experts into a hybrid forecast has a long tradition in the forecasting literature (Armstrong 2001) 

and time series modeling (Zhang 2003). A hybrid forecast, that is, a weighted linear combination 

of predictions, is commonly generated by identifying weights using the validation error of each 

prediction. One could also identify weights using meta-learners, for example, a least squares model 

with non-negative weights in which each prediction is a regressor for the validation target 

(Breiman 2001). We opted for a simple average of predictions, machine learning theorists having 

shown generalization (out-of-sample prediction) errors to be lower for averaged predictions than 

for single model prediction (see Mendes-Moreira et al. 2012 for a discussion). A simple average 

of predictions is easy to use, theoretically effective, and lowers the risk of over-fitting validation 

sets in attempting to find “optimal” weights.  

Note that the extent of our testing does not preclude the possible existence of better-

performing alternatives. It is, however, essentially impossible to exhaustively test every 

Electronic copy available at: https://ssrn.com/abstract=3852215



 

31 

multivariate and aggregate forecasting approach (e.g., dynamic panel data models, vector 

autoregressions, multiple aggregation prediction algorithm with regressors, recurrent neural 

networks) and their potential combinations. Our exploration of alternatives was limited by the 

constraints of an intervention in the real world – cost and timelines of the solutions – and a 

satisficing solution was deemed appropriate. A comprehensive assessment of multivariate models, 

with and without aggregation, and their potential combination based on their performance 

attributes would be a substantial contribution to the focal demand forecasting problem and related 

literature.  

5.4 Generalizability 

Although machine learning is an important part of our intervention, data aggregation strategy and 

feature engineering based on OM principles constitute our generalizable contributions to the 

theory and practice of predictive analytics. In fact, the theory-informed features derived from our 

intervention have broad application beyond ensemble learning algorithms. Researchers could, for 

example, fit panel data regression or structural simulation models based on those input features for 

the sake of more transparency, or use more obscure black boxes, such as deep neural nets, while 

retaining the benefit of features crafted from theoretical knowledge. For instance, RF models have 

been shown to effectively improve the performance of job dispatching and outperform widely used 

dispatching rules for difficult flexible job shop scheduling problems (Jun et al. 2019). Machine 

learning performance being a function of the input features engineered by researchers possessing 

theoretical knowledge of scheduling, we posit that it is contextual knowledge and theoretical 

understanding that gives OM researchers an edge over computer scientists and statisticians in 

creating input features and better applying machine learning in operational problems. 

Our intervention has led to the development of a predictive modeling framework for a demand 

forecasting problem that is not Alpha-specific, but general to many firms in manufacturing supply 

chains (Fu and Chien 2019). Methodological innovations, like many scientific developments, are 

driven by empirical irregularities, that is, unsuccessful applications of oft-used theories and 

methods. The processes of field validation and deriving theoretical implications imparts to the 

proposed framework a more robust grounding and higher degree of generalizability, major criteria 

for assessing theoretical contributions of empirical work (Oliva 2019). It should be noted, however, 

that intervention-based insights, like the insights from case studies, are intended to generalize to 

theory as opposed to other populations. An intervention is not a ‘sample’ in the common statistical 
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sense, but rather is a rich base from which to develop generalizable theoretical insights. Yin (2003, 

p. 10) calls this generalizing process ‘analytic generalization’ as opposed to the ‘statistical 

generalization’ that is required from sampling studies and Meredith (1998, p. 450) calls for 

‘theoretic generalizability’ from field research, as opposed to the ‘assumptive generalizability’ that 

is required from rationalistic research.  

Indeed, our proposed guidelines will be useful in other settings only to the extent that those 

other settings share the attributes of the problem that we explore here: supply for manufacturing 

processes in innovative markets (short product life) and where the supplier does not have access 

to the bill-of-materials and/or the master production schedule. First, the demand patterns seen by 

Alpha – rapidly changing, non-smooth, and violating MMFE assumptions – are common and 

expectable for upstream members of a supply chain, wherein the supply lead time tends to be 

longer than downstream channels. Second, despite decades of work to achieve information 

integration in supply chains (Cai et al. 2010, Wei et al. 2020), and the demonstrated effects that 

they have on performance (e.g., Devaraj et al. 2007, Yuen and Thai 2016, Gu et al. 2017), this lack 

of integration is still common in industry (see Bughin et al. 2017, IBM Institute for Business 2019) 

due to various barriers such as mistrust, cost, and information risks (e.g., Harland et al. 2007, 

Vafaei-Zadeh et al. 2020). Thus, although our case illustration cannot be claimed to be 

generalizable to a specific population, the guiding principles have a broad range of application.  

One may nevertheless still question whether this type of predictive effort constitutes a 

theoretical contribution. How does predictive analytics — long considered operations research or 

engineering work — fit into OM empirical research? Can we claim a theoretical contribution when 

we have neither shown statistical significance of regressors nor explicitly attempted to reject a null 

hypothesis? We ground our response in Fisher’s (2007) argument that empirical research in OM 

naturally embodies both descriptive and prescriptive elements. Prediction problems that require 

prescriptive interventions are under-appreciated in OM (Terwiesch 2019). Predictive modeling, in 

parallel with explanation through hypothesis testing, has been part of empirical science in other 

fields (Shmueli 2010, Shmueli and Koppius 2011). The explanation-prediction dichotomy and its 

different evaluation standards have undergone critical examinations in the overall science 

community (see Schumeli 2010 for an in-depth discussion). In an intriguing essay, Hofman, et al. 

(2017) point out the pitfalls of the social science research paradigm that relies on unbiasedness and 

significance of parameter estimates to justify and validate generic human explanations formed as 
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theories. Hofman et al. (2017) articulate why explanatory and predictive research — similarly 

driven by empirical phenomenon and validated by empirical data — complement each other and 

enhance theory development in social sciences. In line with this perspective, we posit that our 

intervention employing predictive analytics, despite its problem-solving origin, can lead to 

generalizable contributions to theory development in OM and supply chain demand forecasting.  

6 Concluding Remarks 

Adopting intervention as a research strategy (Oliva 2019) aimed at developing theoretical and 

methodological contributions based on practice, we report the outcome of an intervention 

undertaken to improve demand forecasting. After an unsuccessful problem-solving attempt in the 

field, we develop a methodological framework that substantially reduces forecast errors at our 

research site and yields generalizable insights. We show OM frameworks and perspectives to be 

critical inputs to data pooling for cross-item learning and theory-driven feature engineering, and 

that, absent appropriate prediction units and informative features, machine learning cannot work 

effectively. We further show it to be possible for one aggregate model to outperform many 

individual time series models. Cross-individual learning empowered by ensemble machine 

learning is potentially a new paradigm for demand forecasting (Bojer and Meldgaard 2021). By 

introducing transparency to such powerful methods (often considered unexplainable black boxes), 

feature importance metrics (James et al. 2013) inform feature development through further 

learning. Subsequent studies are encouraged to examine, refine, and improve the guidelines 

generated by our proposed framework. Empirical OM research is not solely about offering generic 

explanations; solving prediction problems that are often among managers’ major concerns affords 

rich opportunities for theoretical and methodological development. Our predictive modeling 

journey presents the OM community with a salient case for exploiting data analytics and machine 

learning to develop new theories, methods, and principles for addressing operational problems 

(Misic and Perakis 2020). Engaging practitioners in interventions is one way for OM researchers 

to obtain useful ideas for innovations and ensure relevance by disseminating those ideas to a 

broader audience. 

Finally, our experience allows us to also reflect on the broader role of pursuing an IBR 

strategy (Oliva 2019, Chandrasekaran et al., 2020) in the context of new technological 

developments. Despite the inherent risks of an intervention might not yield adventitious data that 

requires new theorizing — see discussion of ‘unexpected outcomes’ in §2.1 of Oliva (2019) — it 
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should be noted that a) new technology, by virtue of being new, involves unforeseen execution 

challenges, and b) the adoption of new technologies will normally require an adaptation of the 

technology to make it workable within a specific organizational backdrop. Both characteristics 

surround the adoption with uncertainty and, thus, make it a fertile field for insights and further 

theoretical developments. Our intervention leverages this opportunity by assisting in the adoption 

of data analytics and machine learning in an operational context. We were able to develop a new 

framework informed by the specifics of the context — in this case a forecasting, supply chain, and 

operations management context — from the mismatches between expectations or requirements 

and what we achieved in each iteration. It is these mismatches, the unexpected outcomes, and the 

extent that we took them seriously to act on them, that drove the insights for improvement. Our 

resulting forecasting approach is a very different proposal than the approach a team of data or 

computer scientists would have developed. This is because we made sense of the mismatches from 

the forecasting, supply chain, and operations management perspectives. Interestingly, our proposal 

does not inform the technology per se — a typical outcome of a design science perspective — but 

rather it provides guidelines on how improving the inputs makes the technology more successful 

in this context. That is, we use the theory to better inform how to leverage the new technology. We 

believe that there are ample opportunities for this type of theoretical development using IBR 

strategy and push our theories to be more practical and relevant. 
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Appendix A: Tested time series models  

The Appendix provides details of the time series models tested in our initial intervention reported 

in §3.1. We fit demand observations for each of the 426 items to all models and obtain item-specific 

parameters for out-of-sample prediction. We begin with Croston’s (1972) exponential smoothing 

and moving average. Given demand observations, the two methods independently analyze periods 

with and without zero values. Let qi denote the ith non-zero quantity and ai the number of periods 

between qi-1 and qi. Croston’s exponential smoothing (Cr_Exp) employs two equations: 

𝑞"! = (1 − 𝛼)𝑞"!"# + 𝛼𝑞!"# 

𝑎"! = (1 − 𝛼)𝑎"!"# + 𝛼𝑎!"# 

where α is the smoothing parameter between 0 and 1. The two estimates are updated only if demand 

occurs in period t. The final output of the model is:  

𝑦"$ =
𝑞"!
𝑎"!
. 

Croston’s moving average (Cr_MA) differs only by replacing the two exponential smoothing 

equations with moving average equations. The Croston method having been shown to be biased, 

the Syntetos-Boylan-Approximation (SBA) (Syntetos et al. 2005) corrects the bias by adjusting 

the prediction equation thus: 

𝑦"$ = -1 −
𝛼
2
/
𝑞"!
𝑎"!
. 

The Teunter-Syntetos-Babai method (TSB) uses two smoothing equations for the non-zero 
demand probability pt and non-zero demand size zt. The method updates the demand probability 
in every period and is unbiased. Let dt be a binary variable denoting the occurrence of any non-
zero demand in period t (dt=1 if yt>0, otherwise dt=0). The TSB method has two updating schemes: 

𝑝̂$ = 2𝑖𝑓	𝑑$ = 0, 	𝑝̂$"# + 𝛽(0 − 𝑝̂$"#), 𝑧̂$ = 𝑧̂$"#, 	𝑦"$ = 𝑝̂$𝑧̂$																																	
𝑖𝑓	𝑑$ = 1, 			𝑝̂$"# + 𝛽(1 − 𝑝̂$"#), 𝑧̂$ = 𝑧̂$"# + 𝛼(𝑧$ − 𝑧̂$"#), 	𝑦"$ = 𝑝̂$𝑧̂$		

. 

For each item, the parameters of the foregoing methods are estimated with the aid of the 

tsintermittent package in R. Optimal smoothing parameters α and β are found by minimizing the 

mean absolute rate error function (Kourentzes 2013) within the sample period.  

ARIMA and ETS exponential smoothing are standard, common times series models. Both 

methods are capable of handling non-stationary demand processes, and the latter generalizes the 

Holt-Winters exponential smoothing based on a state-space modeling framework (Hyndman et al. 

2008). Let p denote the number of autoregressive terms, d be the number of differences needed for 

stationarity, and q be the number of lagged forecast errors; the ARIMA(p, d, q) model  (Hyndman 
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and Athanasopoulos 2018) can be written as: 

;1 − 𝜙#𝐵 −⋯− 𝜙%𝐵%?(1 − 𝐵)&𝑦$ = 𝑢;1 − 𝜙# −⋯− 𝜙%? + (1 + 𝜃#𝐵 +⋯+ 𝜃'𝐵')𝜀$ 

where B is the backshift operator (i.e., 𝐵1𝑦" = 𝑦"-1) and u the mean of (1 − 𝐵)2𝑦". The ETS 

exponential smoothing model has eighteen possible combinations from error (additive or 

multiplicative), trend (none, additive, or damped), and seasonal (none, additive, or multiplicative) 

components. Each combination has its own set of prediction equations (see §7 in Hyndman and 

Athanasopoulos 2018 for detailed expressions). 

The TBATS model (De Livera et al. 2011), which mixes ideas from ETS and ARIMA, has 

more complicated forms. The method first applies Box-Cox transformation to observed yt thus: 

𝑦$( = C
𝑦$( − 1
𝜔

	𝑖𝑓	𝜔 ≠ 0

log(𝑦$)	𝑖𝑓	𝜔 = 0
. 

The transformed 𝑦"3 is modeled as a set of equations: 

𝑦$( = 𝑙$"# + 𝜙𝑏$"# +K 𝑠$")!
!

*

!+#
+ 𝑑$ 

𝑙$ = 𝑙$"# + 	𝜙𝑏$"# + 𝛼𝑑$ 

𝑏$ = (1 − 𝜙)𝜙𝑏 + 𝜙𝑏$"# + 𝛽𝑑$ 

𝑑$ =K 𝜙!𝑑$"!
%

!+#
+K 𝜃,𝜀$",

'

,+#
+ 𝜀$ 

𝑠$! =K 𝑠,,$!
.!

,+#
 

where 𝑙" denotes the local level, 𝑏" is the short-term and b the long-term trend, and 𝑑" is an 

ARMA(p, q) error process, 𝜀"  white noise, and 𝑠"!  a collection of Fourier-like/trigonometric 

terms for seasonal components. For each item, the parameters of the ARIMA, ETS, and TBATS 

models are estimated using the forecast package in R (Hyndman and Athanasopoulos 2018). The 

functions automatically return each item’s specification and parameters by minimizing the Akaike 

information criterion among all specifications perceived by algorithms to be appropriate for 

training data. Hyndmand and Khandakar (2008) and Hyndman et al. (2020) describe in detail how 

the forecast package performs automatic model selection and estimation for the ARIMA, ETS, and 

TBATS models.  

The last two methods, NN and MLP, are feedforward neural networks with three major 

components – input, hidden layers with non-linear activation functions, and output layers. As the 

input layer uses lagged demand (yt-1, yt-2,…, yt-p) as input variables, NN and MLP are essentially 
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complex non-linear auto-regression models (Hyndman and Athanasopoulos 2018). NN is a neural 

autoregression with one hidden layer. MLP constructs multiple hidden layers to approximate 

unknown functional forms. The output layer denotes target demand to be forecasted. Let hj denote 

the jth neuron in the hidden layer; NN with one hidden layer with k neurons can be expressed as: 

ℎ, = 𝑔(𝑏, +K 𝑤!,𝑦$"!)
%

!+#
, ∀	𝑗 = 1,… , 𝑘 

𝑦$ = 𝑔(𝑏/ +K 𝑤)ℎ))
.

)+#
 

where g( ) is a non-linear activation function. For each item, we use the sigmoid function for g( ) 

and apply the nnetar/neuralnet functions in R to train NN/MLP, respectively. The parameters are 

estimated by gradient descent for mean squared error minimization with 20 repetitions of randomly 

initialized weights. Numbers of input lags (tested from four to twelve) and hidden neurons (twenty 

random draws between a quarter and two-thirds of input nodes) are determined by minimizing the 

Akaike information criterion. 

Analyzing the number of items for which each method is the best choice revealed the 8wMA 

to be the most successful model, providing the best fit for 24% of the 426 items. Although it was 

expected that no method would perform well for all items (as suggested by the very nature of the 

diversity of patterns described in Figure 2), it was disappointing to find the 8wMA to continue to 

be the best method, and the top four methods to account for only 68% of the best methods identified. 

 
Figure A1. Number of items for which each method is the best performing 
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Appendix B: Operationalization of rolling forecast features  

Figure B1 illustrates that at week t downstream forecast signals of different lengths and versions 

are available for the next L weeks. The j inside Fcst(-j) denotes the forecast released j weeks prior 

to the target week. For time t+1, one has already received L signals, whereas for time t+L one has 

only one signal at time t. Technically, the diagonal elements in the upper triangle forecast matrix 

– {Fcst(-1) for t+1}, {Fcst(-2) for t+2},…, {Fcst(-L) for t+L} – in Figure B1 carry the latest 

information about total production demand over future lead time at time t. Hence, we derive six 

features: sum of diagonal forecast (x9), sum of diagonal in the first (x10) and second (x11) halves of 

the next L weeks, number of zeros in the diagonal (x12), and number of zeros in the diagonal of the 

first (x13) and second (x14) halves of the next L weeks. Although off-diagonal elements in the upper 

triangle matrix in Figure B1 carry information about forecast revisions that could be additional 

features, we focus on the diagonal elements to capture the most up-to-date information, the forecast 

revisions being fairly noisy.  

 
Figure B1 Rolling forecast for one item 

In addition to leading order signals for future demand at time t+1 to t+L, we consider 

retrospective order signals, i.e., Fcst(-1) for demand realizations in the previous block. As 

illustrated in Figure B2, the Fcst(-1) vector in weeks t to t-L+1 stands for last signals of EMS client 

demand in retrospect. Computing the sum of Fcst(-1) for the L demand points (x15) as a feature 

helps to capture the association between retrospective forecast signals and future demand. 

Following the feature expansion idea in x2 and x3, we compute the sum of Fcst(-1) in the first (x16) 

(i.e., Fcst(-1) for D(t),…, D(t-L/2+1)) and second (x17) (Fcst(-1) for D(t-L/2+1),…, D(t-L+1)) 

halves of the past L weeks. In short, we leverage our operational understanding of the rolling 

forecast matrix to create nine features, six (x9-x14) of which are leading indicators of future demand. 

The other three (x15-x17) are indicators of forecasts of recent demand.  
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Figure B2 Past FCST(-1) for demand realizations for one item 

 

Appendix C: Hyper-parameter tuning for ensemble learning 

Both RF and GBM require hyper-parameter tuning to perform appropriately. Since an exhaustive 

search of parameter space is not feasible, we follow a common practice and conduct a random 

search over a grid of hyper-parameter values (Cook 2016). Table C1 shows the grid settings for 

the RF and XGB search. For each algorithm, we randomly select 100 combinations of hyper-

parameters to train the model and choose the best-performing set based on its out-of-sample 

prediction performance on the validation set. For RF(all), we set the number of trees to 500, 

maximum depth to 30, fraction of random samples to 0.6, and minimum data points in a leaf to 

five. For XGB, we set the number of trees to 500, learning rate to 0.036, fraction of random samples 

to 0.6, maximum allowed depth of each tree to five, and minimum data points in a leaf to four. 

Table C1 

Model Hyper-parameters Values 

RF number of trees 

maximum tree depth 

fraction of random samples in a tree 

minimum data points in a leaf 

[100, 1000] with an increment of 100 

[3, 10] with an increment of 1 

[0.5, 1] with an increment of 1 

[1, 10] with an increment of 1 

XGB number of trees 

fraction of random samples in a tree 

maximum tree depth 

minimum data points in a leaf 

learning rate 

[100, 1000] with an increment of 100 

[0.5, 1] with an increment of 1 

 [3, 10] with an increment of 1 

[1, 10] with an increment of 1 

[0.01, 0.05] with an increment of 0.005 
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