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a b s t r a c t 

Predicting customer repurchase propensity/frequency has received broad research interests from mar- 

keting, operations research, statistics, and computer science. In the field of marketing, Buy till You Die 

(BTYD) models are perhaps the most representative techniques for customer repurchase prediction. Those 

probabilistic models are parsimonious and typically involve only recency and frequency of customer ac- 

tivities. Contrary to BTYD models, a distinctly different class of predictive models for customer repurchase 

is machine learning. This class of models include a wide variety of computational and statistical learning 

algorithms. Unlike BTYD models built on low-dimensional inputs and behavioral assumptions, machine 

learning is more data-driven and excels at fitting predictive models to a large array of features from cus- 

tomer transactions. Using a large online retailing data, we empirically assess the prediction performance 

of BTYD modeling and machine learning. More importantly, we investigate how the two approaches can 

complement each other for repurchase prediction. We use the BG/BB model given the discrete and non- 

contractual problem setting and incorporate BG/BB estimates into high-dimensional Lasso regression. In 

addition to showing significant improvement over BG/BB and Lasso without BG/BB, the integrated Lasso- 

BG/BB provides interpretability and identifies BG/BB predictions as the most influential feature among 

∼100 predictors. The lately developed CART-artificial neural networks exhibit similar patterns. Robust- 

ness checks further show the proposed Lasso-BG/BB outperforms two sophisticated recurrent neural net- 

works, validating the complementarity of machine learning and BTYD modeling. We conclude by articu- 

lating how our interdisciplinary integration of the two modeling paradigms contributes to the theory and 

practice of predictive analytics. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

In highly competitive consumer markets, predicting customer 

epurchase propensity/frequency has received broad research in- 

erests from marketing, operations research, statistics, and com- 

uter science ( De Caigny, Coussement, & De Bock, 2018 ; Platzer 

 Reutterer, 2016 ). Repurchase prediction has been a focal is- 

ue in personalized marketing as well as customer base analyt- 

cs for many years ( Chou & Chuang, 2018 ; Martínez, Schmuck, 

ereverzyev Jr, Pirker, & Haltmeier, 2020 ; Suh, Lim, Hwang, & 

im, 2004 ). Identifying who are likely to purchase within the next 

eek/month/quarter from a large customer base is a penial prob- 

em in data analytics because it allows managers to allocate sales 

esources and launch marketing campaigns more efficiently. On the 
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04.021 
usiness side, this issue has become increasingly important with 

he advent of multiple types of online platforms, all of which have 

o understand customer behaviors and predict customer activities 

ased on transactional data. On the methodological front, machine 

earning has become increasingly popular for repurchase prediction 

ecently ( Martínez et al., 2020 ). Nonetheless, there is still continual 

evelopment of marketing models for this prediction task ( Dew & 

nsari, 2018 ; Gopalakrishnan, Bradlow, & Fader, 2017 ). 

In the marketing literature, the Buy till You Die (BTYD) mod- 

ls are perhaps the most representative techniques for customer 

epurchase prediction. Based on the transaction setting – contrac- 

ual versus non-contractual – and transaction timing – continu- 

us versus discrete, marketing researchers have developed an array 

f probability models for each of the four setting - timing combina- 

ions ( Fader & Hardie, 2009 ). Various probability distributions are 

sed to characterize customer lifetime, purchase intensity, and so 

orth to model a repeated purchase and dropout processes. Those 

robabilistic models are parsimonious and typically involve only 
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ecency and frequency of customer activities. Well-known BTYD 

odels include Pareto/NBD ( Schmittlein, Morrison, & Colombo, 

987 ) and BG/NBD ( Fader, Hardie, & Lee, 2005 ) for non-contractual 

ontinuous timing, and BG/BB ( Fader, Hardie, & Shang, 2010 ) –

or non-contractual discrete timing, etc. The non-contractual set- 

ing is particularly challenging because it is difficult to closely ob- 

erve customer status, and models have to be built upon transac- 

ion records. Note that the widely seen customer churn prediction 

s tightly coupled with repurchase prediction in non-contractual 

ettings ( Buckinx & Van den Poel, 2005 ; Miguéis, Van den Poel, 

amanho, & e Cunha, 2012 ), where churn is a latent status and 

as to be inferred from repurchase incidences or BTYD estimate. 1 

hile some use these two terms interchangeably in the literature, 

e use repurchase prediction that more precisely matches our re- 

earch objective. 

Contrary to the BTYD models that attempt to explicitly model 

ehavioral processes through probability distributions, a distinctly 

ifferent class of models for customer prediction tasks is machine 

earning . Note that machine learning here covers not only sta- 

istical machine learning , but also supervised/unsupervised learn- 

ng algorithms from computer science. Unlike BTYD models that 

ely on few inputs (i.e., recency and frequency as sufficient statis- 

ics) and behavioral assumptions, machine learning takes a data- 

riven approach to predictive modeling. While machine learning 

an uncover patterns from low-dimensional inputs too, this mod- 

ling approach is distinctly powerful in being able to extract infor- 

ation from high-dimensional customer features ( Martínez et al., 

020 ). Learning algorithms such as linear/logistic regression, deci- 

ion trees, random forests, support vector machines, and artificial 

eural networks (ANN) are then employed to generate predictions 

 De Caigny et al., 2018 ; Verbeke, Martens, Mues, & Baesens, 2011 ). 

Unlike BTYD models with parameter estimates that represent 

ustomer heterogeneity, purchase intensity, and churn propensity, 

opular machine learning models (e.g., ANN, support vector ma- 

hines) typically have no such transparency. When it comes to pre- 

ictive analytics for customer repurchase propensity/frequency, de- 

pite that both avenues have the same objective, researchers and 

ractitioners still have limited understanding about whether the 

wo classes of modeling approaches can cross-fertilize each other. 

ould BTYD models built on simple statistics and behavioral as- 

umptions be complementary to algorithms learnt from various 

eatures? Alternatively, do the BTYD models simplify customer pur- 

hase and dropout processes too much and ignore nuanced infor- 

ation hidden in other features to be explored by machine learn- 

ng algorithms? Moreover, how can the BTYD models’ estimates be 

ntegrated into machine learning approaches? We are intrigued by 

he foregoing issues that are relevant to many industry sectors and 

et fully addressed. Hence, we conduct an empirical study in which 

e compare and assess the complementarity of the two avenues. 

For our empirical investigation, we collect a large data set 

hat has transaction records of an anonymous online retailer with 

ver 50 0,0 0 0 members and over 1.25 million transaction records 

ver 33 months. The research goal is to develop data-driven ap- 

roaches that help the online retailer predict whether each of its 

embers will return and purchase in the next quarter. To ad- 

ress the practical need and research questions discussed above, 

or the BTYD modeling approach, we calibrate a BG/BB (Beta- 

eometric/Beta-Bernoulli) model ( Fader et al., 2010 ) in line with 

ur non-contractual data and discrete problem setting. The BG/BB 

odel has been widely applied and proven effective for such re- 

urchase/churn prediction tasks ( McCarthy, Fader, & Hardie, 2016 ; 

hang, 2008 ). For the machine learning approaches, we extract 
1 P(Active)/P(Alive) estimates from BTYD models indicate repurchase/churn likeli- 

ood. Alternatively, when repurchase events of a customer remain zero for a period 

f time, he/she could be labelled as “churn”. 

l

m

t

2 
round 100 features (e.g., recency, frequency, monetary (RFM), re- 

urn/cancel, tool of payment, and device) from customer transac- 

ion records pertaining to multiple dimensions as predictor vari- 

bles. To assess whether the two approaches can complement each 

ther, we incorporate prediction values and behavior estimates of 

he BG/BB model into learning processes. Specifically, we adopt 

he Lasso regression method originated from statistical machine 

earning ( Tibshirani, 1996 ). Lasso modeling has appeared in prior 

achine learning studies (e.g., Cui, Rajagopalan & Ward, 2020 , 

artínez et al., 2020 ) and has become an impactful technique in 

redictive modeling. Instead of going directly for other powerful 

earning algorithms with lower transparency, we begin with Lasso 

ot only because of its ability to shrink effect sizes of non-effective 

redictors, but also due to its theoretical robustness to member- 

uarter panel data that could violate i.i.d. assumptions imposed 

y numerous learning algorithms ( Medeiros & Mendes, 2016 ). Also, 

wing to the transparency of Lasso regression, it would be intrigu- 

ng to see how the BG/BB estimates are ranked among other fea- 

ures directly calculated from data. 

To our surprise, despite having the luxury of exploiting infor- 

ation carried by high-dimensional input features, Lasso regres- 

ion, without BG/BB estimates, does not outperform the BG/BB 

odel with merely recency and frequency as inputs. Nonethe- 

ess, incorporating BG/BB estimates into Lasso regression leads to a 

ignificant improvement in prediction performance. Moreover, the 

ariables with non-negligible effects identified by Lasso are almost 

xclusively BG/BB outputs and related to old-fashioned RFM. In- 

rigued by the performance enhanced by adding BG/BB estimates 

nto high-dimensional Lasso regression, we further apply feedfor- 

ard ANN with more flexible/complicated functional forms. By 

eeding BG/BB into ANN, we find that the integrated model consis- 

ently leads to the best performance. Further, considering time de- 

endencies of panel data, we conduct robustness checks and show 

hat the proposed Lasso-BG/BB outperforms two sophisticated re- 

urrent neural networks. 

Our modeling effort makes major contributions to the litera- 

ure and practice. First, based on an empirical study on longitudi- 

al online customer repurchase behaviors, we show that machine 

earning models exposed to high-dimensional features do not nec- 

ssarily outperform a low-dimensional BTYD model when it comes 

o predicting customer repurchase. Moreover, parameter estimates 

nd prediction outputs of the BTYD model emerge as the most in- 

uential predictors of the proposed Lasso-BG/BB, supporting that 

TYD would not be entirely overtaken by machine learning ap- 

roaches and could enhance their performance. By offering empir- 

cal evidence on the complementarity of BTYD modeling and ma- 

hine learning, we present a conversation-provoking study to stim- 

late more integrative work of the two schools of models. Second, 

e show that the parsimonious Lasso regression, with BG/BB es- 

imates as input features, performs well compared to more com- 

licated feedforward and recurrent neural networks without full 

ransparency. The research findings are highly relevant to numer- 

us practitioners who prefer to adopt simple, stable, and inter- 

retable prediction models for consumer marketing analytics. By 

everaging the BG/BB model and readily available data, the pro- 

osed Lasso-BG/BB is easy-to-implement, with much lower com- 

uting costs than ensemble/deep learning models that might re- 

ult in marginal improvement for prediction tasks of non-perpetual 

ata ( Rudin & Carlson, 2019 ). 

. Literature review 

Application of probability models, BTYD models in particu- 

ar, to customer repurchase/churn has been investigated by both 

arketing and operations researchers for decades, and most of 

hose models treat observed transactions as the outcome of un- 
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erlying stochastic processes ( Fader & Hardie, 2009 ; Gupta et al., 

006 ). Note that we cover studies on customer repurchase as well 

s churn prediction because the two terms are bundled in non- 

ontractual settings (see Introduction). In the marketing literature, 

robability models for customer repurchase are classified into four 

ategories based on the transaction timing – continuous versus 

iscrete – and setting – contractual versus non-contractual ( Fader 

 Hardie, 2009 ). Those models are especially well-known for their 

on-contractual applications, where the uncertainty is higher than 

he contractual setting due to the lack of observational evidence of 

hurn ( Reinartz & Kumar, 20 0 0 ). BTYD is arguably the most repre-

entative class of low-dimensional probability models for customer 

epurchase prediction. A BTYD model is formulated by a proba- 

ilistic mixture conditional on a set of distributional assumptions 

egarding customer lifetime and purchase intensity. Specifically, the 

lass of BTYD models share the common idea of modeling the 

ransaction process, dropout process, and consumer heterogeneity 

ith the aid of various probability distributions. 

Among the BTYD models, the Pareto/NBD ( Schmittlein et al., 

987 ) for continuous, non-contractual data is the seminal and per- 

aps the most famous BTYD model. The BG/NBD is a well-known 

lternative to Pareto/NBD due to its lower computational difficul- 

ies ( Fader et al., 2005 ). For discrete, non-contractual data, the 

G/BB ( Fader et al., 2010 ) is a representative probability model. 

he afore-mentioned models have motivated a lasting stream of 

ubsequent studies that either introduce alternative distributions 

e.g., Batislam, Denizel, & Filiztekin, 2007 , Jerath, Fader, & Hardie, 

011 ) or add a dimension on top of recency and frequency (e.g., 

opalakrishnan et al., 2017 , Platzer & Reutterer, 2016 , Reutterer, 

latzer, & Schröder, 2020 , Zhang, Bradlow, & Small, 2015 ). In spite 

f the seemingly complicated mixture distributions for customer 

isits/transactions over discrete or continuous time periods, BTYD 

odels are simple in that they require only two sufficient statistics 

purchase recency and frequency – as data inputs for modeling 

ustomer response. Despite that few BTYD models (e.g., Abe, 2009 , 

chweidel & Knox, 2013 ) attempt to quantify effects of covariates 

uch as initial purchase amount on estimated transaction/dropout 

ates, advances in BTYD models primarily come from employing 

eneric probability distributions to customer heterogeneities. Ac- 

ordingly, studies that aim for improving well-known BTYD mod- 

ls are usually benchmarked against probability models only (e.g., 

atislam et al., 2007 , Gopalakrishnan et al., 2017 , Jerath et al., 2011 ,

latzer & Reutterer, 2016 , Shi, Chen, & Sethi, 2019 , Van Oest &

nox, 2011 ), leaving research opportunities for empirically com- 

aring/integrating BTYD models and machine learning models that 

onsider much higher input dimensions. 

In contrary to BTYD models with explicit behavioral and prob- 

bilistic assumptions on transaction, dropout, and heterogene- 

ty, a majority of machine learning models for customer repur- 

hase/churn in the literature rely on uncovering patterns from 

igh-dimensional features using statistical learning and compu- 

ational algorithms ( Martínez et al., 2020 ). The popular machine 

earning models (e.g., ANN, random forest, support vector ma- 

hines) used to generate predictions are almost ‘black box’. Re- 

ently, more sophisticated techniques such as gradient boost- 

ng machines ( Lemmens & Gupta, 2020 ; Martínez et al., 2020 ; 

iloševi ́c, Živi ́c, & Andjelkovi ́c, 2017 ) and recurrent neural net- 

orks ( Alboukaey, Joukhadar, & Ghneim, 2020 ; Mena, De Caigny, 

oussement, De Bock, & Lessmann, 2019 ; Wang, Lai, Zhang, Wang, 

 Chen, 2020 ) have been employed to predict customer repur- 

hase/churn. The predictive power of those algorithms also comes 

t a price of limited interpretability. However, methods with higher 

nterpretability, e.g., classification tree and logistic regression, are 

sually outperformed by near black box models ( De Caigny et 

l., 2018 ). The advantage of brute-force learning algorithms lies 

n their capability of extracting hidden patterns from data with 
3 
ewer assumptions about underlying customer transaction pro- 

esses ( Chatfield, 1995 ). However, this modeling approach comes 

t costs of computational complexities and more noise embed- 

ed in correlated/irrelevant inputs ( Hadden, Tiwari, Roy, & Ruta, 

007 ; Verbeke, Dejaeger, Martens, Hur, & Baesens, 2012 ). In terms 

f predicting customer repurchase/churn, machine learning is in- 

reasingly popular for predictive analytics in marketing and oper- 

tions. For brevity, we refer readers to studies with extensive lit- 

rature review ( De Caigny et al., 2018 ; Gupta et al., 2006 ; Verbeke

t al., 2011 , 2012 ) on the application of machine learning in repur-

hase/churn prediction. 

From reviewing related work, we find that the two streams of 

odeling approaches, in spite of their shared goal of predicting 

ustomer behavior, are fairly isolated in the literature. The hard 

ore marketing modelers attempt to push the performance bound- 

ry of BTYD models by tweaking probabilistic assumptions (e.g., 

eutterer et al., 2020 , Shi et al., 2019 ), whereas many other re- 

earchers ( Baesens, Viaene, Van den Poel, Vanthienen, & Dedene, 

002 ; De Caigny et al., 2018 ; Keramati et al., 2014 ; Verbeke et

l., 2012 ) broadly expand inputs and use complex learning algo- 

ithms for the sake of boosting prediction accuracy. Few stud- 

es have compared the performance of rudimentary learning algo- 

ithms – regression model ( Hopmann & Thede, 2005 ; Zhang, 2008 ) 

nd decision tree ( Jahromi, Stakhovych, & Ewing, 2016 ) – to BTYD. 

o the best of our knowledge, Tamaddoni, Stakhovych, and Ew- 

ng (2016) is the first to compare the predictive performance of 

ophisticated machine learning (i.e., support vector machines and 

oosting) to BTYD modeling. They find machine learning outper- 

orms Pareto/NBD under most of the tested circumstances (varying 

ample size, purchase frequencies, and churn ratio). However, their 

omparisons are performed in a low-dimensional setting with only 

requency, recency, and total time observed as input features. More 

ecently, some studies compare BTYD models with ANN ( Chen, 

uitart, del Río, & Periánez, 2018 ; Xie & Huang, 2020 ). While Chen

t al. (2018) find that ANN based on high-dimensional customer 

ehavior variables outperform BTYD based on RFM variables in 

redicting customer lifetime value, Xie and Huang (2020) find that 

NN and BTYD perform almost identically when only the above- 

entioned low-dimensional variables are available. In summary, 

achine learning using low-dimensional inputs empirically tends 

o perform at least as good as BTYD, and usually outperforms BTYD 

hen high-dimensional information is available. Nonetheless, all 

f the foregoing studies assess the performance of BTYD models 

or continuous problem setting except Zhang (2008) , leaving re- 

earch opportunities to further contrast the two modeling streams 

nder discrete timing (e.g., BG/BB). Besides, instead of using learn- 

ng algorithms typically developed for cross-sectional data, we de- 

iberately employ Lasso regression that is robust to panel data, 

hich enables researchers to better capture the temporal evolution 

f customer behaviors for repurchase/churn prediction ( Holtrop, 

ieringa, Gijsenberg, & Verhoef, 2017 ). 

In addition to model comparisons, a few studies ( Schwartz, 

radlow, & Fader, 2014 ; Xie, 2019 ) apply machine learning al- 

orithms to facilitate BTYD model selection and parameter esti- 

ation. Specifically, Schwartz et al. (2014) propose a tree-based 

odel, which takes summary statistics as inputs, to select a type of 

TYD models that best fit a given transaction dataset. The model 

s highly interpretable and does not require one to fit multiple 

andidate models to data beforehand. Xie (2019) uses ANN that 

ake time-varying recency and frequency as inputs to predict BTYD 

odel (Pareto/NBD) parameters, and uses the estimates to predict 

urchase frequency from the expectation expression of Pareto/NBD, 

chieving lower prediction errors than BTYD. Prior studies on inte- 

rating the two modeling streams mainly apply machine learning 

o model selection and updating, and make predictions based on 

TYD formulations. The parametric assumptions make BTYD par- 
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a

imonious in its design, and exhibit high transparency and inter- 

retability ( De Caigny et al., 2018 ; Gupta et al., 2006 ). However,

TYD modeling is usually limited to sufficient statistics and does 

ot fully utilize input features beyond RFM ( Abe, 2009 ; Schweidel 

 Knox, 2013 ). 

Considering the advance of collecting data in nowadays, how 

o integrate BTYD models with high-dimensional data on behav- 

ors related to cancel, return, delivery, payment, and discount is 

nder-explored. A modeling approach that integrates BTYD and 

achine learning would enable one to better leverage informa- 

ion in collected data and lead to a more flexible prediction en- 

ine. Hence, we complement the literature by proposing a novel 

ombination of BG/BB and Lasso regression, a powerful statistical 

achine learning algorithm for high-dimensional data, under the 

ontext of online retailing. We choose the powerful yet easy-to- 

mplement Lasso regression because it allows us to maintain high 

odel transparency and it can be scaled up to a large number 

f input features, a critical attribute that BTYD models are short 

f. In addition to showing the efficacy of this hybrid Lasso-BG/BB 

odeling approach, our proposition is triangulated via combining 

G/BB and ANN. Grounded in a real-world case, our analysis of- 

ers insights that have not been reported in the literature and aims 

o prompt more interactions between the two predictive modeling 

aradigms. 

. Data and features 

We use the dataset provided by one of the biggest online re- 

ailing service providers in Taiwan. The service provider offers on- 

ine storefronts and associated IT infrastructures for merchants to 

pen online stores simply by a few clicks. This setting serves our 

tudy well because the service provider has been actively trying 

o develop prediction models for customer repurchase as a value- 

dded service to merchants. The company considers BTYD and ma- 

hine learning as contenders for their prediction tasks. We obtain 

he representative dataset of an anonymous merchant (the retailer 

ereafter) who utilizes the online retailing service to sell clothing 

nd accessories for almost three years (33 months from May 2015 

o January 2018). The dataset is composed of 1,250,587 transaction 

ecords and a total of 532,410 members. Each transaction may con- 

ain more than one product and each record is composed of mem- 

er id, cart id, and product id. The cart id represents a transaction 

here goods are bought together in a basket. 

Accordingly, we first compute the transaction-level summary 

tatistics by aggregating transaction records with the same mem- 

er id and cart id. In addition to covering purchase-related RFM, 

he transaction records encompass cancel events, return events, 

elivery choices, payment choices, and discount usage. Via the in- 

erview with managers of the service provider, they note that the 

etailer usually plans marketing campaigns by quarters due to the 

ature of the apparel goods. As a result, our goal is to help the 

etailer predict whether a member would repurchase in the next 

uarter. To meet the operational requirements in our research site, 

e collapse transaction-level details of each member into features 

hat reflect his/her state across different quarters (to be introduced 

elow). Starting from a member’s first active quarter, we consis- 

ently compute and fill in his/her state metrics for all subsequent 

uarters and detect no missing value in the afore-mentioned activ- 

ty dimensions. Details of raw data pre-processing can be found in 

he Appendix A . 

Fig. 1 shows the number of total members (left panel) and new 

embers (right panel) of the retailer over eleven quarters (a quar- 

er is composed of three months). We can observe that the num- 

er of new members increases from quarter 1 to quarter 6, espe- 

ially during the period from quarter 4 to quarter 6. Since then, the 

umber of new members gradually decreases over quarters but the 
4 
otal number of members still increases. Other than members, we 

ook into the summary of transactions over eleven quarters (see 

able 1 ). The number of transactions grows and peaks at the quar- 

er 5, and starts to decline since then. Interestingly, while the num- 

er of orders decreases in the later periods, the average number 

f products bought and amounts spent per order increases over 

ime. We also find 55% of members in our dataset are one-time 

uyers in the observation periods. The pattern seems common in 

nline stores as alternative options are just a few click away. The 

ervice provider is concerned that many members of the retailer 

re probably short-lived. Thus, it is critical to the retailer to assess 

ustomer response and find out who are the returning customers. 

For each quarter t , we characterize a customer’s purchase be- 

aviors in the current quarter ( t ) using 34 quarter-varying fea- 

ures (see Table 2 ), which go beyond purchase-related RFM and 

over multiple aspects of transaction activities. Among the fea- 

ures, 28 (including RFM) are directly created from the aggrega- 

ion of his/her transactional records in the focal quarter. These fea- 

ures have covered many aspects of customer purchasing behav- 

or, i.e., transaction, device, payment, promotion, pickup, order re- 

urn, and cancelation. In addition to ordinary RFM-related features, 

e refer to Martínez et al. (2020) and create six extra features re- 

ated recency and frequency. They are mean time between purchases 

 MTBP ), standard deviation of time between purchases ( STBP ) and 

uying pattern ( BP ) that encompasses 4 binary indicators. These 

eatures are effective indicators of purchase regularities/potential 

hurns, and are defined as below: 

T B P i 
�= 

τi ∑ 

k =2 

�t k,i 

τi − 1 

; ST B P i 
�= 

√ √ √ √ 

τi ∑ 

k =2 

(
�t k,i − MT B P i 

)2 

τi − 1 

 P i 
�= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

normal, i f ( Recenc y i ) ≤ T hre s i, 1 
at t rit ion, i f T hre s i, 1 < ( Recenc y i ) ≤ Thre s i, 2 
at risk, i f T hre s i, 2 < ( Recenc y i ) ≤ Thre s i, 3 

chur n, other wise 

here τ stands for the number of active quarters (i.e., a quarter 

ith at least one transaction) up to the current quarter, so the 

aximum value of τ is eleven. The subscript k and i respectively 

enote the id of active quarter and the id of customer. For any 

ember in a given quarter, we use �t k,i to denote the time in- 

erval between the k -th and the ( k -1)-th active quarter of the i th

ustomer, and calculate the mean and standard deviation of �t k,i 

p to the quarter as MT B P k and ST B P k . Note that the index k starts

rom two because we have no information before the first trans- 

ction of any member. We define T hre s i,δ : MT B P i + δ · ST B P i as the

ritical value, and use T hre s i,δ to classify the time interval since 

he last purchase (i.e., the so-called Recency in the literature) into 

our types (i.e., normal, attrition, at-risk, and churn) denoted by B P i 
omposed of four binary variables. As for one-time buyers, we set 

heir MT B P i and ST B P i to −1, and set all B P i variables to zeros to

ndicate the features are not accessible. 

Fig. 2 shows the panel structure of n customers by T quarters, 

omposed of all features and the target. Quarterly Data refers 

o the 34 features in Table 2 which only account for the total 

mount in the current quarter t without considering differences in 

he number of transactions being made, e.g., a customer spending 

500 in four transactions is different from another spending $20 0 0 

n one transaction. A well-known measure to eliminate such ambi- 

uity is the Monetary from RFM analysis (i.e., the average payment 

er transaction), which highlights the importance of average statis- 

ics. So we create 26 features ( x 35 - x 60 ) of Transaction Average from

ividing quarterly data ( x 3 - x 28 ) by the number of transactions 

 x 2 ). Moreover, since the above-mentioned features only reflect 

 member’s behaviors in quarter t , it is natural to consider past 
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Fig. 1. Total (left) and new (right) members over eleven quarters. 

Table 1 

Summary of transactions over quarters. 

Quarter 1 2 3 4 5 6 

Number of Transactions 29,217 65,513 86,611 129,802 159,362 152,973 

Avg. Number of Products 3.94 3.67 3.58 3.87 4.05 4.02 

Avg. Amounts($) 766.64 845.69 880.61 887.76 883.48 949.76 

Quarter 7 8 9 10 11 

Number of Transactions 122,308 132,804 146,814 112,205 112,979 

Avg. Number of Products 4.24 4.24 4.53 4.11 4.55 

Avg. Amounts ($) 1039.87 963.54 1014.59 1016.54 1133.53 

Table 2 

Overview of derived features. 

Description Description 

x 1 Months since last transaction (Recency) a x 18 Number of transactions with canceled items 

x 2 Number of transactions (Frequency) x 19 Number of cart-product pairs canceled 

x 3 Number of transactions in holiday x 20 Total cancellation-induced refund (in NT$) 

x 4 Number of unique cart-product pairs x 21 Number of transactions with returned items 

x 5 Number of purchased units x 22 Number of cart-product pairs returned 

x 6 Total payment amount (Gross Monetary) b x 23 Total return-induced refund (in NT$) 

x 7 Number of transactions paid before pickup x 24 Total net payment amount (Net Monetary) 

x 8 Number of transactions paid by ATM x 25 Number of retailer-caused cancel/return 

x 9 Number of transactions paid by credit card x 26 Number of customer-caused cancel/return 

x 10 Number of transactions paid in stores x 27 Number of delivery-caused cancel/return 

x 11 Number of pickups in convenience stores x 28 Number of other-caused cancel/return 

x 12 Number of cart-product pairs with discount x 29 Mean time between purchases (MTBP) 

x 13 Total discount amount (in NT$) x 30 Standard deviation of time between purchases (STBP) 

x 14 Number of cart-product pairs with coupon x 31 Indicator for recency type (BP: normal) 

x 15 Total coupon discount (in NT$) x 32 Indicator for recency type (BP: attrition) 

x 16 Number of gifts received x 33 Indicator for recency type (BP: at-risk) 

x 17 Number of transactions via PC x 34 Indicator for recency type (BP: churn) 

a Recency is the time interval (in months) between last purchase and the ending month of current quarter. For instance, 

if a customer makes just one purchase in the first month of the first quarter, his/her recency in the tenth quarter will be 

29 months. 
b We are aware that the monetary measure in RFM is defined as the average spending per transaction, and do calculate 

a series of features related to transaction average ( x 35 - x 60 ), including the monetary measure. 

Fig. 2. The panel data structure of features and target for machine learning. 

5 



P. Chou, H.H.-C. Chuang, Y.-C. Chou et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; May 25, 2021;15:29 ] 

t

a

a  

h

a

o  

(  

x

t

r  

a

f

l

h

a

t

4

4

9

a

w

c

i

r

i

(

b

B

fi

b

U

i

l

(

L

l

n

t

g

f

w

t

g

l

w

T

i

o

g

s

L

w

f

s

v

p

t

&  

s

s

t

t

p

p

t  

p

T

c

p

d

a

f

s

f

m

m

o

o

f

(

n

s

f

c  

o  

a

d

u

c

(

c

p

w

p

c

w

t

t  

u

a

α
a

m

a

p

h

w

we find that the Lasso logit loss occasionally reveal difficulty to converge and the 
ransaction records of a customer. That is, a customer can be evalu- 

ted by his/her accumulated consumptions too. Thus, we calculate 

 customer’s Age ( x 61 ) in terms of the number of quarters since

is/her first purchase. We then obtain a customer’s cumulative 

verage value ( Historical Average ) from dividing cumulative value 

f x 2 - x 28 up to the measured quarter by Age for each member

 x 62 - x 88 ). We further include one-hot encoding for quarters ( x 89 -

 92 ) to control for time fixed effects ( Quarter ). Finally, Repurchase is 

he binary prediction target indicating whether a customer would 

epurchase next quarter ( t + 1) or not. Overall, we use the unbal-

nced panel data structure (not all members have T = 10 records) 

or machine learning algorithms to approximate functional re- 

ationships between Repurchase and 92 features. More, despite 

aving more than 2.2 million observations in our training set, to 

lleviate potential influences of outliers, we apply Winsorization 

o transform all input features in line with De Caigny et al. (2018) . 

. Base models, evaluation metrics, and experimental settings 

.1. Lasso and BG/BB 

From the feature engineering, each customer is represented by 

2 features indicating his/her behaviors in the current quarter and 

ccumulations over the quarters (see Fig. 2 ). With these features, 

e then apply the high-dimensional machine learning to predict 

ustomer repurchase in the next quarter. Instead of directly go- 

ng for black-box learning algorithms, we begin with interpretable 

egression modeling for the sake of better interpretability. Specif- 

cally, we apply the logistic regression with Lasso regularization 

 Tibshirani, 1996 ) to force coefficients of non-effective predictors 

e zero, such that we can identify influential predictors clearly. 

eing able to handle high-dimensional inputs and alleviate over- 

tting, Lasso regularization in linear and non-linear regression has 

ecome an impactful technique and a prosperous research area. 

nlike many supervised learning algorithms are developed under 

.i.d. data assumptions, Lasso regression is theoretically valid for 

ongitudinal data with time dependencies. Medeiros and Mendes 

2016) prove that the Adaptive Lasso, which generalizes ordinary 

asso, exhibits model selection consistently in high-dimensional 

ongitudinal data. The consistency holds even when error terms are 

on-Gaussian and heteroskedastic. Smeekes and Wijler (2018) fur- 

her provide evidence in simulation/empirical data that Lasso re- 

ression models outperform other standard econometric models 

or predicting non-stationary macroeconomic time-series. Hence, 

e posit that the Lasso logit regression is robust for our predic- 

ion tasks using member-quarter panel data, while satisfying our 

oal of directly uncovering feature importance. The following is the 

ogit log-loss function for binary Lasso regression: 

−
n ∑ 

i =1 

[
y i · log 

(
1 

1 + e −
(
β0 + 

∑ p 
j=1 

β j x i j 

)
)

+ ( 1 − y i ) · log 

(
1 − 1 

1 + e −( β0 + 
∑ p 

j=1 
β j x i j ) 

)]
+ λ

p ∑ 

j=1 

∥∥β j 

∥∥
here λ is the penalty factor to control for the penalty level. 

he higher the level is, the stricter the selection of critical factors 

s. The penalty term is composed of the sum of absolute values 

f coefficients. Therefore, factors with marginal influences would 

et zero coefficients in order to minimize the loss function. 2 The 

tatistically-grounded Lasso regularization is applicable to a wide 
2 While the logit loss function is a standard for binary response modeling, adding 

asso regularization in practice could make the loss function difficult to optimize 

hen the number of inputs and samples are high. A widely-adopted alternative 

or binary prediction models is to label y as 1 and −1 and fit the model using least 

quares loss that is much easier to optimize ( Chatla and Shmueli 2017 ). In our cases, 

e

S

s

f

r

o

6 
ariety of supervised learning algorithms and has gained increasing 

opularity because of its ability to mitigate over-fitting and iden- 

ify influential predictors in high-dimensional models ( Qiao, Wang, 

 Yang, 2019 ; Wang, Cai, Chang, & Zurada, 2017 ; Zhu, Rosset, Tib-

hirani, & Hastie, 2003 ). 

For the low-dimensional BTYD modeling, in line with prior 

tudies ( McCarthy et al., 2016 ; Zhang, 2008 ) on a similar discrete- 

ime setting we apply the BG/BB model to the non-contractual 

ransaction data for repurchase predictions. In contrast to multi- 

le features explored by machine learning, the only required in- 

ut information for BG/BB is a customer’s binary transaction pat- 

ern illustrated in Fig. 3 . In each period, a binary indicator is ap-

lied to show whether a customer has at least one transaction. 

aking a quarter as a period, the first customer has the same pur- 

hase pattern (1 1 1 1) as that of the second customer. Yet, their 

urchase patterns will be quite different if we measure binary in- 

icators over months. To better capture customer heterogeneities 

nd increase variance in transaction patterns, we use monthly data 

or the BG/BB model estimation. 3 The key role BG/BB serves is 

imply generating outputs that are turned into quarterly features 

or all the other learning algorithms. The same logic applies to 

any other features that are also transformations/aggregations of 

onthly data points. 

Specifically, we observe a customer’s purchase pattern in terms 

f the number of periods for possible purchases ( n : transaction 

pportunity), the number of periods with purchases occurred ( x : 

requency), and the most recent period with purchases occurred 

 t x : the last active period, equivalent to current period index mi- 

us recency). In Fig. 3 , for example, both the customers have the 

ame n = 12 transaction opportunities, i.e., the number of periods 

rom the beginning till the time of analysis. Accordingly, the first 

ustomer shows the pattern of x = 12 and t x = 12 while the sec-

nd presents x = 4 and t x = 10. In fact, the simple metrics ( x , t x )

re sufficient statistics for the BG/BB model, illuminating the low- 

imensional nature of this probability modeling approach. 

The probabilistic assumptions of the BG/BB model allow us to 

se above simple inputs of purchase patterns to estimate how a 

ustomer would be alive for some periods and become inactive 

death) afterwards. First, for each transaction period/opportunity, a 

ustomer has the probability θ to become inactive. Therefore, over 

eriods, a customer turns into the inactive status in the i th trial, 

hich can be described by the geometric distribution (dropout 

rocess). Before the i th trial that a customer becomes inactive, a 

ustomer’s purchases can be described by a Bernoulli distribution 

ith the purchased probability p for each opportunity over ( i-1 ) 

rials (transaction process). Finally, customers are heterogeneous in 

erms of their purchase patterns: x, t x , n . Two beta distributions are

sed to describe customer heterogeneities in the purchase prob- 

bility p ∼beta( α, β) and dropout probability θ∼beta( γ , δ), where 

, β, γ , δ are parameters of two beta distributions. The four prob- 

bility distributions above and their mixtures constitute the BG/BB 

odel. 

Given the number of transaction opportunities n , frequency x , 

nd the last active period t x calculated from data (see the exam- 

le above), we estimate the BG/BB model using a maximum likeli- 

ood approach. After estimating the four parameters ( α, β, γ , δ), 

e can then obtain a customer’s probability estimates, i.e., the 
asy-to-tackle least squares loss leads to stable parameters and decent performance. 

o we report Lasso regression results derived from the more well-behaved Lasso 

quared loss function. 
3 BG/BB that relies on only two sufficient statistics will be short of granular in- 

ormation if it is calibrated on quarterly data. Estimating BG/BB based on monthly 

ecency and frequency counts leads to better model outputs and fits our research 

bjective of exploring its complementarity to machine learning better. 
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Fig. 3. Example of binary transaction pattern. 
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4 In addition to group 5-fold CV, we use prequential validation with growing win- 

dows ( Cui et al. 2018 , Cerqueira et al. 2020 ) to optimize the hyper-parameter(s). 

Due to the large samples we have for model training, the identified optimal hyper- 

parameters are highly consistent for the two CV approaches. 
osterior mean transaction rate (E[ p ]), posterior mean dropout 

ate (E[ θ ]), and alive probability in the following transaction op- 

ortunity ( P ( alive )) . In addition to the three probability estimates 

hat reflect latent status of a customer, we further obtain the ex- 

ected number of months with purchases over the future peri- 

ds ( E [ X( n, n + n ∗)]). This statistic explicitly captures a customer’s

urchase intensity, which can be transformed into whether he/she 

ould purchase in the next quarter. For technical details and math- 

matical formulations of the log-likelihood function and probabil- 

ty estimates, please refer to Fader et al. (2010) . Other than com- 

aring prediction performance of Lasso from statistical machine 

earning and low-dimensional BG/BB from BTYD modeling, we aim 

o examine whether the two schools of modeling approaches can 

e complementary. We use the logit Lasso, to integrate the above 

our BG/BB estimates with high-dimensional features on behaviors 

elated to cancel, return, delivery, payment, and discount. 

.2. Evaluation metrics and experimental settings 

Since the target variable (Repurchase) is binary, any model 

hould be evaluated under a threshold that transforms output 

robabilities into 0 and 1, where 0 stands for negative (no repur- 

hase) and 1 stands for positive (repurchase)). Given the actual re- 

ults, predictions can be classified as: true positive (TP), false pos- 

tive (FP), true negative (TN), and false negative (FP). On the ba- 

is of the four classifications, different performance metrics have 

een proposed. According to Verbeke et al. (2012) , performance of 

 classification model is usually evaluated in terms of area under 

he receiver-operating characteristic curve (AUC hereafter) and top- 

ecile lift (TDL hereafter). These metrics are robust in that they 

valuate model on various thresholds. In binary modeling, AUC 

uantifies the probability that a model ranks any randomly se- 

ected positive case higher than a randomly selected negative case, 

ssuming positive ones have higher ranks ( Burez & Van den Poel, 

009 ), and TDL describes how many times the focal model is more 

ccurate than a random classifier when evaluating the two models 

n the top 10% of customers with the highest predicted probability 

f churn. 

Although AUC and TDL are widely adopted, in cases with imbal- 

nced targets, a popular alternative is the average precision score 

APS hereafter). Similar to AUC that integrates true positive and 

alse positive rates, APS is an overall performance measure for re- 

all and precision over various thresholds, which is calculated as 

elow: 

PS = 

h ∑ 

j=1 

(Recal l j − Recal l j−1 ) ∗P recisio n j 

here j stands for the threshold that recall (i.e., TP/(TP + FP)) and 

recision (i.e., TP/(TP + FN)) is computed. Thus, the idea of APS is 
7 
 weighted average of precision at different threshold values using 

he increase in recall from the previous threshold as the weight. 

or customer repurchase prediction, having high recall and pre- 

ision is desirable for the retailer that aims to maximize mar- 

eting efficacy while avoiding ineffective attempts/false positives. 

n addition, due to the nature of online platform, the distribu- 

ion of our target variable is uneven (on average only 10 −20% 

argets with Repurchase = 1). Essentially, the APS value stands for 

rea under the precision-recall (PR) curve, which is suitable for 

kewed/imbalanced targets ( Davis et al., 2005 ). Further, a model 

hat dominates over the other in the precision-recall curve in prin- 

iple would dominate the other in the ROC curve ( Davis & Goad- 

ich, 2006 ). Hence, in the following sections, we use APS in addi- 

ion to AUC and TDL in order to obtain a holistic understanding of 

rediction performance. 

After ensuring the methodological foundation of Lasso and se- 

ecting evaluation metrics, we have to design experimental set- 

ings. To match the operational requirements of the platform 

e work with, our model developed for predicting future repur- 

hase requires prospective validation of all members, where the 

est set must be isolated from model tuning and temporally for- 

ard ( Nelson et al., 2020 ). As a result, the panel data described in

ection 3 is divided into a training set including the first 9 quar- 

ers and a temporally forward testing set based on the last quarter 

 Holtrop et al., 2017 ; Martínez et al., 2020 ). We train logistic re-

ression with Lasso regularization (Lasso regression hereafter) on 

he training set, which is composed of the 92 input features ex- 

racted from members’ transaction records from 1st to 9th quar- 

er (see Fig. 2 ), and whether he/she would return in the following 

uarter (from 2nd to 10th) for repurchase as the target. To make 

ptimization processes stable and effect estimates comparable, we 

tandardize all input features using z-normalization. Models esti- 

ated from the training set are then applied to the test set for 

epurchase prediction in the 11th quarter (using the 92 features in 

he 10th quarter as the input features). The prediction is a continu- 

us value within [0, 1], indicating the likelihood a customer would 

epurchase in the next quarter. 

Like other machine learning methods, Lasso regression also has 

 hyper-parameter – the penalty value λ in the objective function 

that affects its prediction performance. We use grid search and 

roup 5-fold cross-validation (CV) ( Pedregosa et al., 2011 ) 4 on the 

raining set to determine the optimal value of λ. Unlike ordinary 

V that randomly split samples into folds and fails to account for 

ithin-member dependencies over quarters, the group 5-fold CV 
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Table 3 

Summary of performance evaluation. 

Model AUC TDL APS 

BGBB 0.774 (0.0012) 3.750 (0.0219) 0.323 (0.0028) 

Lasso-Current 0.773 (0.0013) 3.670 (0.0164) 0.317 (0.0024) 

Lasso-All 0.777 (0.0012) 3.728 (0.0204) 0.326 (0.0027) 

Lasso-Current( + BGBB) 0.783 (0.0013) 3.870 (0.0210) 0.341 (0.0026) 

Lasso-All( + BGBB) 0.784 (0.0012) 3.870 (0.0198) 0.342 (0.0027) 

Standard deviations from 30 n-out-of-n bootstrap test set samples are in the paren- 

theses. 
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nsures that samples from the same member would fall into the 

ame fold, and hence better fits our empirical study on member- 

uarter panel data. Note that all of the other tested machine learn- 

ng algorithms in the rest of our paper also follow the same group 

V procedure for hyper-parameter optimization. 

We estimate the BG/BB model based on monthly data of binary 

atterns explained earlier (see Fig. 3 ). We obtain customers’ pur- 

hase patterns ( x, t x , n ) from the training set: 1st to 30th months

1st to 10th quarters) and estimate associated parameters. Given 

hese parameters, we compute E [ X( 30 , 30 + 3 )] as the expected

umber of months that customers will return in the 11th quarter. 

hat is, instead of generating repurchase probabilities in [0,1], the 

G/BB model produces predictions from 0 up to 3 months to indi- 

ate how frequent customers may repurchase in the next quarter. 

o make the BG/BB predictions comparable to the output of Lasso 

egression, we scale E [ X( 30 , 30 + 3 )] into [0, 1] (to approximate

epurchase propensity of members) using min-max scaling. 5 As a 

esult, we can evaluate prediction performance of machine learn- 

ng and BTYD models for our binary repurchase problem. 

After training and tuning proposed models, we evaluate all 

he models on the test set using the three afore-mentioned per- 

ormance metrics – AUC, TDL, and APS. To statistically compare 

odels, we evaluate each model 30 times on the n-out-of-n boot- 

trap sample of the temporally forward test set 6 ( Dusenberry et 

l., 2020 ; Hughes et al., 2020 ; Klug et al., 2020 ; Rajkomar et al.,

018 ; Soffer, Klang, Barash, Grossman, & Zimlichman, 2020 ). The 

 - out-of - n test set bootstrap is an emerging practice for deriving

est statistics under large samples and the test protocol is desir- 

ble when retraining a model many times is too costly or infeasi- 

le ( Wood-Doughty, Shpitser, & Dredze, 2020 ). In line with related 

iterature ( De Bock & Van den Poel, 2011 ; Verbeke et al., 2011 ), we

ainly use paired t -tests to compare model performance in terms 

f AUC, TDL, and APS. Three non-parametric tests are conducted for 

riangulation purposes. Because of the non-trivial number of mod- 

ls and metrics tested, we introduce the test method and present 

etailed test statistics and p -values for all model comparisons in 

ppendix D for the sake of brevity. 

. Empirical findings 

.1. Primary results 

Table 3 shows the prediction performance of the test set (the 

1th quarter) using different models, where bold numbers de- 

ote the best ones. The first row of Table 3 shows prediction 

erformance of BG/BB , Lasso-Current that denotes Lasso regression 

ith 65 features in the current quarter without historical infor- 

ation, and Lasso-All that denotes Lasso regression with all the 

2 features in Fig. 2 . We find that BG/BB, which only considers 

wo sufficient statistics from past transaction, significantly out- 

erforms Lasso-Current in terms of AUC (0.21%), TDL (2.18%) and 

PS (1.71%). Comparing BG/BB to Lasso-All with the opportunities 

o learn from detailed features on historical information, we find 
5 Note that this may not be the best-case application of BG/BB predictions. For 

ompleteness, we fit a logistic regression where E[X(n, n + n ∗)] is the predictor and 

he Repurchase (1 or 0) is the response variable using training samples, such that 

[X(n, n + n ∗)] can be scaled into [0, 1] in a model-based fashion. This, however, 

oes not lead to performance gains so we report BG/BB results based on the easy- 

o-implement min-max scaling. Also, BG/BB tends to excel over longer forecast hori- 

ons (more than one quarter), as shown in related studies. 
6 A popular alternative for model testing is 5x2cv ( Dietterich 1998 ), which is, 

owever, usually deployed for cross-sectional data and computationally feasible 

nly for non-large samples ( Dietterich 1998 ). Also, our problem setting with more 

han 2.2 million training samples requires validation procedures that explicitly ac- 

ommodate within-member observations and a temporally forward test set with 

ull units. Hence, we adopt the n-out-of-n test set bootstrapping broadly used in 

ecent machine learning studies. 
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8 
hat Lasso-All significantly outperforms BG/BB in terms of AUC/APS 

y 0.35%/1.02%, but is significantly outperformed by BG/BB in TDL 

0.58%). Our results indicate that high-dimensional Lasso regres- 

ion does not necessarily outperform BG/BB that takes merely two 

nputs (R and F). We further explore how the two models can 

e complementary to each other. Specifically, we include three 

robability estimates (E[ p ], E[ θ ], P(alive)) and expected purchase 

ntensity ( E [ X( n, n + n ∗)]) from BG/BB as additional inputs to the

asso regression. Accordingly, the second row of Table 3 shows 

erformance of Lasso-Curren t( + BG/BB ) with 69 features and Lasso- 

ll ( + BG/BB ) with 96 features. The former improves Lasso-Current by 

.29%/5.47%/7.38% in AUC/TDL/APS, and the latter improves Lasso- 

ll by 0.90%/3.78%/4.83% in AUC/TDL/APS. The improvements are 

ll statistically significant. 

Moreover, while Lasso regression without BG/BB estimates (in 

he first row) does not outperform the baseline BG/BB, incorpo- 

ating BG/BB estimates into Lasso regression with full features, 

.e., Lasso-All( + BG/BB) , leads to 1.26%, 3.18%, and 5.91% significant 

mprovement in the three metrics over the BG/BB. As the four 

G/BB estimates reflect customers’ latent status and resulting pur- 

hase intensity, the finding indicates that these BG/BB outputs can 

dd additional value to high-dimensional Lasso regression. Finally, 

s Lasso-All with historical information outperforms Lasso-Current , 

G/BB complements Lass-Current and makes Lasso-Current( + BG/BB) 

ith 69 features significantly outperforms Lasso-All with 92 fea- 

ures in AUC (0.73%), TDL (3.82%), and APS (4.51%). Additionally, 

he most complicated Lasso-All( + BG/BB) performs almost identical 

o Lasso-Current( + BG/BB) and differs by just 0.001 in AUC/APS, sug- 

esting that BG/BB outputs extracted from timing patterns of past 

ransactions might have already captured a valuable proportion of 

istorical information. 

As mentioned earlier, Lasso regression tends to shrink effect 

izes of non-crucial variables and in our case, despite having ∼70 

o ∼100 features in the four Lasso models in Table 3 , most predic-

ors turn out to have zero or close to zero coefficients. For each 

asso regression model, we identify five predictors with biggest 

bsolute effect sizes and report the effects in Table 4 . We re- 

ort important features with their abbreviation, and add prefix 

Hist’ to features derived from historical average. Note that the ef- 

ect estimates are comparable among predictors because all fea- 

ures are already scaled by z-normalization before estimation. The 

rst column shows that recency (R), the number of quarters since 

is/her first purchase (Age), two mean time between purchases in- 

icators (BP-Normal and BP-Churn), and payment in convenience 

tores (PayInStores) are the most influential factors among 65 cur- 

ent quarter features. For the Lasso-All with historical informa- 

ion (92 features), standard deviation of time between purchases 

STBP) and historical average of payment in convenience stores 

Hist.PayInStores) outrank BP-Churn and PayInStores in terms of 

eature importance. 

For Lasso-Current( + BG/BB) and Lasso-All( + BG/BB) , regardless of 

he inclusion of features on historical information, E [ X( n, n + n ∗)]

s the most influential predictor with positive effects. We ob- 

erve that some influential features are outranked and shrunk 
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Table 4 

Important features in Lasso regression. 

Lasso-Current Lasso-All Lasso-Current ( + BGBB) Lasso-All ( + BGBB) 

Feature Coef Feature Coef Feature Coef Feature Coef 

R −0.153 R −0.129 E[X(n, n + n ∗)] 0.129 E[X(n, n + n ∗)] 0.115 

BP-Normal 0.082 Age 0.096 R −0.046 F 0.052 

Age 0.081 BP-Normal 0.064 F 0.039 R −0.050 

PayInStores 0.072 STDB −0.046 PayInStores 0.036 E[ θ ] −0.028 

BP-Churn 0.071 Hist.PayInStores 0.042 NetPay 0.029 Hist.NetPay 0.028 
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Table 5 

Summary of ANN performance. 

Model AUC TDL APS 

ANN-Current 0.781 (0.0013) 3.858 (0.0203) 0.335 (0.0024) 

ANN-Current( + BGBB) 0.783 (0.0013) 3.890 (0.0203) 0.342 (0.0026) 

ANN-All 0.785 (0.0012) 3.873 (0.0207) 0.342 (0.0026) 

ANN-All( + BGBB) 0.785 (0.0012) 3.895 (0.0189) 0.345 (0.0026) 

Standard deviations from 30 n-out-of-n bootstrap test set samples are in the paren- 

theses. 
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n their effect sizes due to the substitution effects brought by 

G/BB outputs, i.e., E [ X( n, n + n ∗)] and E[ θ ] (expected dropout rate)

hat is negatively related to repurchase likelihood. Incorporating 

G/BB outputs into Lasso makes the influential BP-Normal in Lasso - 

urrent( + BG/BB) as well as BP-Normal/STDB in Lasso - All( + BG/BB) 

all out of top five influential predictors. On the other hand, we 

nd that influential R and PayInStores in Lasso-Current are also re- 

ealed by Lasso - Current( + BG/BB) , but their effect sizes are greatly 

ompressed ( ∼70% reduction in R and ∼50% reduction in PayIn- 

tores). That is, E [ X( n, n + n ∗)] not only absorbs but also comple-

ents the information of current quarter features, resulting in 

etter prediction performance. Comparing Lasso-All( + BG/BB) with 

asso-Current( + BG/BB) , we find that including historical informa- 

ion only mildly reduces the effect size of E [ X( n, n + n ∗)], which

till stands out and surpasses all other historical features. In both 

odels, the effect size of E [ X( n, n + n ∗)] is almost the sum of abso-

ute effect sizes of other predictors in the same column. Also, R and 

 are consistently identified as important inputs and outrank other 

eatures such as payment in convenience stores (PayInStores), the 

et payment amount (NetPay), and the historical average of the net 

ayment amount (Hist.NetPay). Together with the significant im- 

rovement in AUC/TDL/APS brought by BG/BB in Table 3 , the out- 

tanding effect of E [ X( n, n + n ∗)] in Table 4 offers strong support

or the complementarity between BG/BB and high-dimensional lin- 

ar statistical machine learning. 

.2. Non-Linear machine learning algorithms 

To consolidate our findings, we further relax the linear assump- 

ion behind the Lasso regression. We verify our results using feed- 

orward ANN that are more flexible and capable of capturing non- 

inear relationships. ANN are computational graphs composed of 

n input layer with all predictor variables and an output layer with 

arget variable(s). One or more hidden layer(s) lies in between the 

nput and output layers. Take a rudimentary case for illustration, 

 fully-connected ANN with 1 hidden layer and H hidden nodes, p 

nput variables ( X ), and one output node can be presented as 

f ANN ( w, X ) = g o 

( 

b out + 

H ∑ 

h =1 

w h g 
h 

( 

b h + 

p ∑ 

j=1 

w jh X i j 

) ) 

here w and b denote parameters to be learnt from data by min- 

mizing a pre-specified loss function. The power of ANN comes 

rom activation functions g() that enable one to learn non-linear 

epresentations of input-output relationships. ANN have been 

idely used for cross-sectional study and recently have also been 

hown to be effective for panel data forecasting ( Jahn, 2020 ). In 

ection 5.3 , we will assess the robustness of apply our member- 

uarter ANN versus cross-sectional ANN, as well as sophisticated 

eural nets that explicitly consider sequential dependencies in lon- 

itudinal observations. 

Following what we have done for Lasso modeling, we use the 

ame training/testing data for ANN and determine optimal hyper- 

arameters (i.e., network topology, patience for early-stopping, and 

atch size) by grid search and group 5-fold cross-validation on 
9 
he training data. Details regarding the architecture and optimiza- 

ion of ANN are reported in Appendix B . We report the results in

able 5 (where bold numbers denote the best ones) based on the 

ame testing and naming convention in Table 3 . ANN-Current uses 

nly 65 input features without historical average in Fig. 2 , whereas 

NN-All uses all 92 features. These two neural nets are further 

ugmented by the four BG/BB outputs, called ANN-Current ( + BG/BB ) 

nd ANN-All ( + BG/BB ), respectively. Table 5 shows results from ANN 

hat employ non-linear transformation to extract more informa- 

ion from data than Lasso regression. ANN-Current improves Lasso- 

urrent by 1.10%/5.12%/5.61% in AUC/TDL/APS, whereas ANN-All im- 

roves Lasso-All by 0.97%/3.88%/4.87% in AUC/TDL/APS. The im- 

rovements are statistically significant. 

In cases where the BG/BB outputs are in- 

luded, ANN-Current ( + BG/BB) improves ANN-Current in 

UC(0.22%)/TDL(0.84%)/APS(2.16%), whereas ANN-All( + BG/BB) 

mproves AUC/TDL/APS of ANN-All by 0.08%/0.58%/0.87%. For both 

ases, the improvements are statistically significant. Consistent 

ith Lasso regression results in Table 3 , the BG/BB with its abilities 

o absorb R and F patterns of past transactions, complements ANN 

ost in the case with only current quarter features. Even though 

NN ( ANN-Current/All ) moderately outperforms Lasso regression 

ithout BG/BB estimates ( Lasso-Current/All ), the advantage of 

NN is gone after BG/BB outputs are added to Lasso regression 

 Lasso-Current/All( + BG/BB) ). In the presence of current quarter 

ata and information provided by BG/BB, ANN-Current( + BG/BB) 

ignificantly improves Lasso-Current( + BG/BB) in AUC/TDL/APS by 

.04%/0.51%/0.48%, and ANN-All( + BG/BB) significantly improves 

asso-All( + BG/BB) in AUC/TDL/APS by 0.15%/0.68%/0.91%. A major 

akeaway is that if properly modeled, combining BG/BB estimates 

longside other features in a regularized Lasso regression could 

erform almost equivalently to ANN but require much lower costs 

f model training and tuning. 

In spite of observing that the inclusion of BG/BB outputs im- 

roves the performance of ANN, we would like to assess whether 

NN performance could be compromised due to the inherent diffi- 

ulty of optimizing model parameters and architecture. Therefore, 

e adopt a new type of ANN, which utilizes classification and re- 

ression tree (CART) ( Breiman, Friedman, Stone, & Olshen, 1984 ) 

o identify top k important features from m raw features ( m >> k ),

nd then feed only the k features as inputs to ANN ( Chakraborty, 

hakraborty, & Murthy, 2019 ). In addition to establishing statistical 

roperties (universal consistency under a single-hidden layer) of 

his CART-ANN modeling approach, Chakraborty et al. (2019) de- 
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Table 6 

Important Features in CART-ANN. 

CART-ANN-10 of Current( + BGBB) CART-ANN-10 of All( + BGBB) 

Feature Importance Feature Importance 

E[X( n , n + n ∗)] 0.1836 E[X( n , n + n ∗)] 0.1145 

Total Payment (Q) 0.1087 Total Payment (H) 0.1019 

Net Payment (Q) 0.0801 Net Payment (H) 0.1011 

Total Payment (A) 0.0758 Discount Amount (H) 0.0582 

Net Payment (A) 0.0705 Total Payment (Q) 0.0448 

Discount Amount (Q) 0.0361 Purchased Unit (H) 0.0324 

Discount Amount (A) 0.0351 Holiday Transaction (H) 0.0317 

E[ p ] 0.0236 Items Purchased (H) 0.0302 

Purchased Unit (Q) 0.0195 Net Payment (Q) 0.0289 

Purchased Unit (A) 0.0190 Coupon Usage (H) 0.0266 

Q: current quarter; A: transactional average; H: historical average. 
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Table 7 

Summary of model comparison. 

Model AUC TDL APS 

Lasso-Current( + BGBB) 0.792 (0.0016) 4.384 (0.0205) 0.351 (0.0029) 

Lasso-All( + BGBB) 0.793 (0.0016) 4.389 (0.0203) 0.352 (0.0029) 

ANN-Current( + BGBB) 0.791 (0.0016) 4.401 (0.0244) 0.350 (0.0030) 

ANN-All( + BGBB) 0.793 (0.0016) 4.421 (0.0229) 0.353 (0.0030) 

LSTM 0.791 (0.0016) 4.399 (0.0246) 0.350 (0.0034) 

GRU 0.789 (0.0016) 4.356 (0.0248) 0.341 (0.0034) 

Standard deviations from 30 n-out-of-n bootstrap test set samples are in the paren- 

theses. 
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ive an expression 

7 of the required hidden nodes. The analytical 

pproach greatly reduces the burden of ANN architecture design 

s well as the number of total parameters to be optimized (due to 

educed inputs). 

We adopt the recently developed model and first train CART us- 

ng current features and all features respectively. For each CART 

odel, we identify k = 10 important features based on Gini im- 

urity and re-train corresponding ANN. CART-ANN with 10 of 

urrent inputs achieve 0.781/3.869/0.339 in AUC/TDL/APS, whilst 

ART-ANN with 10 of all features reach 0.784/3.865/0.340 in 

UC/TDL/APS. Albeit greatly simplified, both ANN still perform 

lose to their counterparts without feature selection (see Table 

 ). 8 More importantly, similar to feature importance revealed by 

asso in Table 4 , Table 6 shows top 10 features identified by CART 

or both ANN. E[ X ( n , n + n ∗)] is identified as the most influential

eature in both models. However, R and F that emerge in Lasso- 

urrent( + BG/BB) and Lasso-All( + BG/BB) models are not deemed as 

mportant features in CART-ANN. M-related (monetary) features 

uch as amount of payment, discount, and purchase turn to be 

ey inputs. In sum, the findings that E[ X ( n , n + n ∗)] consistently

merges as the leading input feature, and that ANN with BG/BB 

each the highest AUC/TDL/APS, consolidate our proposition: BGBB 

utputs can complement machine learning. 

.3. Robustness checks 

The empirical tests in Sections 5.1 and 5.2 offer firm support for 

ur proposition on the complementarity of BG/BB to linear Lasso 

nd non-linear ANN for repurchase predictions. Unlike Lasso re- 

ression that has been proven to be consistent for longitudinal 

ata ( Medeiros & Mendes, 2016 ), ANN, as mentioned earlier, do 

ot explicitly take into account time dependencies in our large N - 

mall T panel. Despite recent empirical evidence for the efficacy 

f ANN for panel data forecasting ( Jahn, 2020 ), we conduct robust 

hecks and assess whether neural nets with sequential dependen- 

ies would outperform ordinary ANN. We employ Recurrent Neu- 

al Networks (RNN) ( Goodfellow, Bengio, Courville, & Bengio, 2016 ), 

 class of neural nets that are capable of processing longitudinal 

ata and connecting sequential feedback among input-output fea- 

ures. Specifically, we adopt Long-Short Term Memory (LSTM) and 

ated Recurrent Unit (GRU) neural networks, both of which are 

tate-of-the-arts sequence data modeling techniques. With the aid 
7 Define n and d m as the number of observations and the dimension of input 

ayer in ANN, Chakraborty et al. (2019) derive 
√ 

n 
d m log (n ) 

as the number of hidden 

odes robust to sample sizes. 
8 We have also identified the optimal number of retained features (48 for Cur- 

ent and 76 for All) through group 5-fold cross-validation. The CART-ANN with a 

ot more features only improves AUC by 0.02%, implying that our ANNs are not 

ompromised and effective given only 10 features influential in CART. 
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10 
f input(s), output(s), and mathematical functions of forget gates 

s well as memory cells in hidden states for extracting sequen- 

ial feedback information in each time step, LSTM has been shown 

o be effective for customer repurchase/churn prediction ( Mena et 

l., 2019 ). GRU, on the other hand, has gained enormous popular- 

ty due to being simpler than LSTM (GRU only has update and 

eset gates), easier to train, and well-performing on many occa- 

ions ( Cholet, 2017 ). We provide more explanations of LSTM and 

RU in Appendix C . Goodfellow et al. (2016) also offer in-depth 

ntroduction to the two RNN. Although there are other regres- 

ion or Markovian models for sequential data, we believe the so- 

histication and scalability of LSTM and GRU for large input di- 

ensions makes them ideal candidates for robustness checks and 

trong benchmark for ANN and Lasso regression. 

Because LSTM and GRU that consider recursive feedback at each 

uarter require sequential observations as inputs for training, we 

imit our training samples to members with Age > = 4 (2,069,459 

ember-quarter observations). 9 We limit the training/testing sam- 

les to the same used in the two RNN models and re-train Lasso 

egression and ANN for the sake of fair comparison. Following 

hat has been done for Lasso, ANN, and CART-ANN in previous 

ections, grid search and group 5-fold CV on training data are 

sed to determine the optimal value of hyper-parameters for LSTM 

nd GRU. Details regarding the architecture and optimization of 

STM and GRU are reported in Appendix B . Table 7 shows pre- 

iction performance of four methods, where bold numbers de- 

ote the best ones. The proposed Lasso-Current( + BG/BB) signifi- 

antly outperforms LSTM in AUC/APS by 0.01%/0.29%, and signifi- 

antly outperforms GRU in all three metrics. On the other hand, 

NN with BGBB delivers significantly higher AUC/TDL/APS than 

STM or GRU. The results suggest that the proposed Lasso-BGBB, 

ith much lower training cost than complicated RNN, is able to 

apture relevant information from numerous members over quar- 

ers. 

After empirically showing that Lasso-BGBB and ANN-BGBB 

ould outperform RNN, we conduct additional tests to ensure that 

he two models mostly applied to cross-sectional data are not 

ompromised by our sampling structures. Specifically, we re-train 

asso and BGBB models using (1) only cross-sectional observations 

n the ninth quarter, (2) 50–50 random under-sampling of the orig- 

nal panel data (preferred over-sampling according to Burez and 

an den Poel (2009) ), and (3) cross-sectional observations in the 

inth quarter with 50–50 under-sampling. Then we compare the 

hree sampling methods to the initial estimation approach using 

nbalanced panel data with all observations. The purpose of do- 

ng so is to assess the impact of longitudinal dependency and class 

mbalance (20% repurchase) on Lasso/ANN performance. 
9 In general, members with fewer than q quarterly records are not predictable for 

NN with time step q . A larger q implies more members are excluded for predic- 

ion. For q = 4, there are ∼25% members non-included, whereas for q = 8, ∼75% of 

embers of the merchant are not predictable by RNN. After a discussion with the 

latform engineers, we set q = 4 quarters that provide reasonable information for 

NN while covering ∼75% members (with Age > = 4) for prediction assessment. 
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Table 8 

Prediction performance under different sampling approaches. 

Model AUC TDL APS 

Lasso-Current( + BGBB) full-panel 0.783 (0.0013) 3.870 (0.0210) 0.341 (0.0026) 

Lasso-Current( + BGBB) cross-sectional 0.781 (0.0013) 3.868 (0.0219) 0.339 (0.0026) 

Lasso-Current( + BGBB) under-sampling 0.781 (0.0013) 3.794 (0.0196) 0.334 (0.0026) 

Lasso-Current( + BGBB) cross + under 0.780 (0.0013) 3.772 (0.0213) 0.329 (0.0026) 

Lasso-All( + BGBB) full-panel 0.784 (0.0012) 3.869 (0.0198) 0.342 (0.0027) 

Lasso-All( + BGBB) cross-sectional 0.782 (0.0013) 3.860 (0.0198) 0.340 (0.0027) 

Lasso-All( + BGBB) under-sampling 0.782 (0.0013) 3.810 (0.0213) 0.332 (0.0029) 

Lasso-All( + BGBB) cross + under 0.781 (0.0013) 3.791 (0.0218) 0.328 (0.0028) 

ANN-Current( + BGBB) full-panel 0.783 (0.0013) 3.890 (0.0203) 0.342 (0.0026) 

ANN-Current( + BGBB) cross-sectional 0.776 (0.0013) 3.829 (0.0203) 0.333 (0.0026) 

ANN-Current( + BGBB) under-sampling 0.782 (0.0013) 3.873 (0.0203) 0.338 (0.0026) 

ANN-Current( + BGBB) cross + under 0.780 (0.0013) 3.818 (0.0213) 0.330 (0.0026) 

ANN-All( + BGBB) full-panel 0.785 (0.0012) 3.895 (0.0189) 0.345 (0.0026) 

ANN-All( + BGBB) cross-sectional 0.777 (0.0012) 3.782 (0.0210) 0.333 (0.0025) 

ANN-All( + BGBB) under-sampling 0.784 (0.0012) 3.891 (0.0211) 0.342 (0.0025) 

ANN-All( + BGBB) cross + under 0.782 (0.0012) 3.806 (0.0219) 0.329 (0.0026) 

Standard deviations from 30 n-out-of-n bootstrap test set samples are in the parentheses. 
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Table 8 reports testing results of four different sam pling ap- 

roaches, where bold numbers denote the best ones. Among 

ll of the tested specifications – Lasso-Current( + BG/BB) , Lasso- 

ll( + BG/BB) , ANN-Current( + BG/BB) , and ANN-All( + BG/BB) , models 

rained from full panel data structures consistently deliver the best 

erformance in AUC/TDL/APS. Using only cross-sectional training 

ata in the most recent quarter in attempt to conform with inde- 

endent sampling properties, however, does not improve predic- 

ion performance. Under-sampling does not outperform its imbal- 

nced counterpart either, indicating our mildly imbalanced targets 

o not compromise ordinary modeling performance. Finally, for 

oth Lasso and ANN models, using cross-sectional data with under- 

ampling consistently results in the worst performance. Taken 

ogether, in line with econometric studies on Lasso regression 

 Medeiros & Mendes, 2016 ; Smeekes & Wijler, 2018 ) and ANN 

 Jahn, 2020 ), the robustness checks suggest that it is desirable 

or the two methods to leverage information embedded in large 

ember-quarter data sets. The empirical results support our use 

f full panel for model training. 

. Discussion and conclusions 

Models for customer repurchase/churn prediction, particularly 

n non-contractual settings, have drawn wide attention from re- 

earchers in marketing, operations research, computer science, 

nd so on. Our study contributes to the literature by analyz- 

ng an under-investigated link between BTYD models based on 

ow-dimensional statistics and data mining/machine learning ap- 

roaches to customer base analysis. The divide between the two 

ethodological streams might be attributed to the extent to which 

he researcher is willing to shift between the two edges of causal- 

ty (i.e., structural formulation) and correlation (i.e., brute-force 

unction approximation). Or it might be due to analysts’ inten- 

ion to leverage an array of features derived from cross-sectional 

ata as opposed to R and F statistics accumulated over time. In- 

rigued by the divide in the literature, we empirically compare the 

erformance of BG/BB to Lasso and ANN. We find that notwith- 

tanding the seemingly restrictive probabilistic assumptions, the 

G/BB model performs reasonably well. In our study, the BG/BB 

odel with understandable data-generating assumptions stands as 

 strong option for customer predictive analytics. 

Moreover, we show the predicted future transaction of BG/BB, 

hen used as an input to Lasso regression, is the most influen- 

ial predictor for the model to further improve prediction accuracy. 
11 
his hybrid approach – jointly using BTYD outputs and other fea- 

ures in machine learning – is simple and to some extent addresses 

he potential shortcoming that BTYD models usually consider lim- 

ted covariates. While it may be technically possible to integrate 

dditional covariates into BTYD models, doing so would just result 

n complex parameterizations that make the already complicated 

og-likelihood functions more difficult to optimize. The fact that 

TYD models rarely leverage other covariates (such as categorical 

ata of customer profile) may be the main reason why BTYD mod- 

ls are rarely introduced as a benchmark to machine learning ex- 

eriments in the literature of customer scoring. Our findings sug- 

est that researchers should not view machine learning as default 

lternatives to BTYD models for customer repurchase/churn predic- 

ion. Following our contribution to the literature of predictive an- 

lytics, we suggest researchers in marketing and data analytics to 

ontinue investigating the intersection of probabilistic BTYD mod- 

ls and machine learning algorithms. 

In addition to the afore-mentioned implications for researchers, 

ur modeling effort has non-trivial implications for practitioners. 

ven though the context of our study is within online retailing, 

ur prediction problem is also relevant to other industry sectors. 

ow to efficiently calibrate customer repurchase/churn prediction 

odels using historical transactions is crucial for platforms as well 

s individual retailers. For one thing, instead of high-dimensional 

eatures from historical records, our predictive modeling ap- 

roach only requires features from current transaction records 

nd BG/BB estimates. Estimating the BG/BB model demands only 

imple inputs of transaction timing, and can be easily computed 

n even Excel spreadsheets. Comparing to massive development 

f machine learning approaches to customer base analysis, low- 

imensional BTYD models still have broad applications in the 

eal world because of their underlying simplicity and training 

fficiency ( Gauthier, 2017 ). For another, provided the critical input 

eature from the BG/BB model, the prediction performance of an 

ntegrated Lasso regression is comparable to that of black-box 

odels allowing for non-linear interactions in empirical tests. The 

ybrid regression modeling approach can be useful to practitioners 

ho prefer transparent models and interpretable predictions. This 

s in line with the recent research trend that seeks for higher 

nterpretability of machine learning models. Last, in practice, 

either all members are predictable, nor they all have to be 

redicted for marketing campaign considerations. In fact, man- 

gers of the service provider posit that retailers on the platform 

sually only target at a subset of their customers when launching 
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Table A.1 

Overview of the raw dataset. 

Table Columns Description Type 

Purchase Member Id The identifier of member String 

Cart Id The identifier of cart String 

Product Id The identifier of product String 

Detail Id The identifier of (Cart Id, Product 

Id) pair 

String 

Timestamp The date and time of transaction Date-time 

Category The product category and 

sub-category 

String 

Is Major The indicator of major product Binary 

Is Gift The indicator of gift Binary 

Price The unit price Integer 

Quantity The purchased quantity Integer 

Discount The promotional discount value Integer 

Device The used device (Mobile, PC) Dummy 

Source The used channel (Android, iOS, 

Web) 

Dummy 

Payment Price ∗ Volume – Discount –

Coupon Discount 

Integer 

Payment Type The payment tool (Cash, Credit 

Card, ATM) 

Dummy 

Coupon Id The identifier of e-coupon String 

Coupon 

Discount 

The discount value of e-coupon Integer 

Pickup Type The approach for receiving goods Dummy 

Cancel Detail Id The identifier of (Cart Id, Product 

Id) pair 

String 

Is Cancel The indicator of cancellation Binary 

Cancel Refund The refund amount of cancel Integer 

Cancel Quantity The quantity of cancel Integer 

Cancel Time The cancelation time Date-time 

Cancel Reason The reason of cancelation Dummy 

Return Detail Id The identifier of (Cart Id, Product 

Id) pair 

String 

Is Return The indicator of returned 

transaction 

Binary 

Return Refund The refund amount of return Integer 

Return Quantity The quantity of return Integer 

Return Time The return time Date-time 

Return Reason The reason of return Dummy 

p

o

p

t

r
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c
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arketing initiatives in a new quarter. Preliminary tests in our 

esearch site suggest that splitting members into RFM-based 

roups helps managers identify groups with better predictability. 

or practical operations, our Lasso-BG/BB model can be used 

n conjunction with data-driven decision rules for identifying 

redictable segments such that marketing campaigns can be more 

ost-effective. 

Our study has several limitations that leave opportunities for 

uture research. First, given the discrete, non-contractual prob- 

em setting, we focus on the BG/BB model and empirically inves- 

igate its complementarity to machine learning algorithms. Con- 

inuous and/or contractual data are, however, beyond the scope 

f our study. Subsequent studies on customer repurchase predic- 

ion should explore the remaining categories. On top of the bi- 

ary repurchase incidence commonly assessed in our paper and 

rior studies (e.g., Chou & Chuang, 2018 , Martínez et al., 2020 , 

uh et al., 2004 ), subsequent studies can further predict continu- 

us metrics such as repurchase dollars/quantities. Second, our em- 

irical analysis is based on data from one online apparel retailer, 

hus limiting the generalizability of our results. That said, the op- 

rational setting (i.e., a web-based specialty retailer) and available 

ustomer information (i.e., purchase/payment/return activities) are 

early identical to many other online retailers that also intend to 

redict customer intention based on historical transactions. Hence, 

ubsequent studies can follow our analysis protocol and triangu- 

ate our findings. Third, our transactional features do not include 

ustomer website browsing activities. Our retailer runs its business 

n a platform enabled by a technological service provider and the 

ervice provider is not allowed to release customers’ detailed click- 

treams in neither the focal retailer nor other retailers who use 

he same platform services. While cross-retailer clickstream data 

f each customer might help machine learning algorithms improve 

rediction performance, such data are unavailable to many retailers 

nd involve privacy issues to be resolved. When data is available, 

uture studies can explore how to incorporate unstructured infor- 

ation such as customers’ clickstream behaviors and social net- 

ork. 

Despite the research limitations, our study aims to be a provok- 

ng example for researchers in marketing modeling and machine 

earning. Both schools of researchers develop numerous models 

or the sake of using historical data in prediction tasks related to 

ustomer purchase, churn, and value. However, in the academic 

esearch community, it seems that there exists a dichotomy be- 

ween low-dimensional BTYD models in marketing and learning al- 

orithms utilizing high-dimensional inputs from computer science, 

tatistics, and operations research. On the contrary, practitioners 

ave already begun investigating BTYD modeling versus machine 

earning approaches for customer base analysis ( Google Cloud 

019 ). Data scientists in the industry ( Brownell, 2019 ) also re- 

ort evidence that various continuous, non-contractual BTYD mod- 

ls outperform RNN in predicting future customer transactions. In 

esponses to practitioners’ interests in comparing and contrasting 

he two customer modeling avenues, we posit that the divide in 

he literature should be broken and encourage more researchers to 

ontribute to the emerging literature on cross-fertilizing BTYD and 

achine learning. 

ppendix A. Transaction data tables and pre-processing 

rocesses 

In Table A.1 , we present the raw transaction data obtained 

rom the online service provider. The dataset is composed of three 

nter-related tables. The Purchase table provides records of each 

ustomer order containing specifics on member id, cart id, and 

roduct id. In addition to the three identifiers, the Purchase table 

ontains a variety of attributes related to this order, including 
12 
rice, quantity, device, channel, payment, delivery, etc. After an 

rder is placed, it is possible for a member to cancel or return 

urchased goods later on. The Cancel and Return tables document 

hose events. Note that members are allowed to partially cancel or 

eturn a subset of their purchase. The tables also contain details 

n cancel/return time, product, quantity, reason, etc. Both Cancel 

nd Return have an attribute detail id being an identifier for each 

art-product pair, such that we can connect cancel/return events 

o specific orders. The three tables jointly constitute an episode of 

ne customer transaction. Note that the service provider screens 

or outlying observations within its site and asks us to leverage all 

aw data. 

After we join the three tables based on the common product 

d and cart id for each transaction, we compute transaction de- 

ails of each member id within each quarter of 3 months, in line 

ith operational needs for quarterly analyses. The transaction de- 

ails are then aggregated into summary statistics that character- 

ze member behavior in a quarter ( x 1 to x 28 in Table 2 ). After re-

eating this process across all members and quarters, we obtain 

n unbalanced panel data of N = 496,536 members by 10 quarters. 

iven the data structure with 28 quarterly features, we go on to 

ompute features transaction average, historical average, Age, and 

uarter fixed effects terms shown in Fig. 2 . Note that the resulting 

anel data structure has no missing values. Since there are a total 

f ∼100 features, for brevity we report descriptive statistics of the 

udimentary 28 base features in Table A.2 . 
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Table A.2 

Descriptive statistics ( n = 2707,356). 

Mean Std. Min Max Mean Std. Min Max 

x 1 7.057 6.225 0 27 x 15 −9.302 31.996 −200 0 

x 2 0.369 0.645 0 3 x 16 0.025 0.177 0 3 

x 3 0.117 0.354 0 2 x 17 0.065 0.284 0 3 

x 4 1.454 2.898 0 17 x 18 0.059 0.285 0 4 

x 5 1.473 2.929 0 17 x 19 0.115 0.648 0 6 

x 6 333.201 660.244 0 4020 x 20 25.614 143.541 0 1395 

x 7 0.027 0.197 0 3 x 21 0.023 0.160 0 2 

x 8 0.000 0.016 0 1 x 22 0.027 0.249 0 3 

x 9 0.027 0.196 0 3 x 23 5.508 54.640 0 749 

x 10 0.379 0.742 0 7 x 24 272.965 560.570 0 3306 

x 11 0.343 0.627 0 3 x 25 0.060 0.390 0 4 

x 12 0.558 1.674 0 11 x 26 0.026 0.245 0 3 

x 13 −30.669 93.316 −654 0 x 27 0.038 0.323 0 4 

x 14 0.373 1.321 0 9 x 28 0.024 0.234 0 3 
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Table B.2 

Parameter setting for experiments with LSTM and GRU. 

Layer Hidden Nodes Patience Batch Fraction 

LSTM 1 [10, 30, 50, 70, 90, 110, 130, 

150 , 190] 

[1, 2 , 3, 4] [ 1e-2 , 2e-2, 5e-2] 

GRU 1 [10, 30, 50, 70, 90, 110, 130 , 

150, 190] 

[1, 2 , 3, 4] [1e-2, 2e-2, 5e-2 ] 

underline: the selected parameters. 
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ppendix B. Hyper-parameters and architecture of ANN, LSTM, 

nd GRU 

We only consider ANN with at most 2 hidden layers 

 Łady ̇zy ́nski, Żbikowski, & Gawrysiak, 2019 ; Martínez et al., 2020 ;

u et al., 2018 ), and cross-validate hidden nodes from 10 to 90, by 

ncrements of 20, in addition to limiting the nodes in the second 

idden layer to be less than or equal to the nodes in the first hid-

en layer. For notational brevity, we denote 1-layered ANN with 

 1 nodes as (N 1 ), and 2-layered ANN with N 1 and N 2 nodes as

N 1 , N 2 ). We set epoch to a large number and optimize patience 

i.e., patience + 1 is the consecutive number of allowed unimproved 

raining iterations) to dynamically terminate the training process. 

wing to poor convergence of mini-batch in our pre-test, the batch 

ize is set to be proportional to the sample size of the training set, 

s shown in the rightmost column. We use Adam in Tensorflow to 

rain ANN and set other optimizer-related parameters according to 

he recommendation by Kingma and Ba (2014) . As described in the 

aper, the best hyper-parameters are identified by the group 5-fold 

V of all training samples. 

As for LSTM and GRU, we set the number of sequential time 

locks to 4 quarters and each block learns from 65 features (used 

n Lasso-Current and ANN-current) that depict customer behavior 

n the corresponding quarter. Because LSTM and GRU by construc- 

ion would extract historical information over time, hand-crafted 

eatures on past transactions are not needed for each block that 

arries over information from quarter to quarter. We adopt a 1 

idden-layer structure following related work ( Mena et al., 2019 ; 

alehinejad & Rahnamayan, 2016 ). The number of hidden nodes 

re cross-validated from 10 to 190, with increments of 10. Table B.2 
Table B.1 

Parameter setting for experiments with ANN. 

Layers Hidden Nodes Patience Batch 

Fraction 

1, 

2 

(90), (70), (50), (30), (10) [ 1 , 2, 3] [ 1e-3 , 2e-3, 

5e-3] (90, 90), …, (50, 30) , …, ( 30, 

10 ), …, (10, 10) 

italic: selected parameters for ANN-Current; underline: selected parameters for 

ANN-All. 

c

i

i

s

r

13 
hows hyper-parameters to be optimized. Same as Lasso and ANN, 

e identify the best setting using the group 5-fold CV of training 

amples. 

ppendix C. LSTM and GRU 

The core idea of RNN is that, instead of taking all the variables 

ollected at the same period as inputs like feedforward ANN do, 

NN take (multi-variate) time series of realized observations as 

nputs to generate predictions. RNN embed a sequential structure 

ooking back to n periods ago. In each period/block, current states 

 t together with previous hidden states h t-1 are used to generate 

urrent hidden states h t . The rudimentary RNN, however, capture 

nly short-term dependencies of time series. Therefore, LSTM and 

RU, two powerful and popular variants of RNN, have been de- 

eloped to capture both short-term and long-term dependencies. 

ig. C.1 illustrates the recurrent structure of LSTM (in the top 

alf) and GRU (in the bottom half). LSTM stores short-term and 

ong-term dependencies in two distinct hidden states ( S and L ), 

hereas GRU captures both dependencies in a single hidden state 

 H ). Same as RNN, both models generate and update the depen- 

encies simply using current states X t together with previous 

idden states ( S t-1 and L t-1 for LSTM, and H t-1 for GRU). 

The major difference between LSTM and GRU lies in the mathe- 

atical formulations of their hidden states, i.e., the LSTM and GRU 

ells in Fig. C.1 . In Figs. C.2 and C.3 , we present the computation

tructures of LSTM and GRU cells in details. Define the gates (i.e., 

quare blocks) as activation functions; symbols � and � as sum 

nd product operations; in-flow/out-flow arrows as input/output. 

ll inputs are turned to weighted sum before being fed into 

ctivation functions. For instance, when X t and S (t-1) (or H (t-1) 

or GRU) are simultaneously fed into sigmoid activation function 

denoted by σ ()), the output is calculated as σ ( W X X t + W h S (t-1) ), in

hich W X and W h are weights to optimize. For LSTM cells shown 

n Fig. C.2 , the two states S t and L t are generated from three gates

Forget Gate , Input Gate , and Output Gate –store short-term and 

ong-term information separately in order capture dependencies 

mong current and previous hidden states over time. As for GRU 

ells in Fig. C.3 , the hidden states H t with simplified design to 

mprove computational efficiency are produced by two gates, 

.e., Reset Gate and Update Gate . Albeit with fewer gates, GRU is 

till capable of capturing sequential patterns in short and long 

uns. 
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Fig. C.1. Recurrent structure of LSTM/GRU. 

Fig. C.2. Complete structure of LSTM cell. 

Fig. C.3. Complete structure of GRU cell. 
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ppendix D. Statistical test results of model comparison 

For the various models in the paper, we evaluate each model 

0 times on the n-out-of-n bootstrap sample of the temporally for- 
14 
ard test set ( Dusenberry et al., 2020 ; Hughes et al., 2020 ; Klug

t al., 2020 ; Rajkomar et al., 2018 ; Soffer et al., 2020 ). Using the

0 samples on three performance metrics, we statistically compare 

odels based on the paired t -test ( Dietterich, 1998 ). 

Denote A and B as two algorithms to be compared, N as the 

umber of n-out-of-n bootstrapped subsets of the test set, P A = 

 P A 
1 
, P A 

2 
, . . . , P A 

N 
] and P B = [ P B 

1 
, P B 

2 
, . . . , P B 

N 
] as the performance mea- 

ures of A and B on the N subsets. Let P i = ( P A 
i 

− P B 
i 
) be the perfor-

ance difference of A and B on the i th subset, the paired t -test cal-

ulates the following t statistic the null hypothesis that the mean 

ifference P̄ = 

1 
N 

N ∑ 

i =1 

P i is equal to zero (i.e., A and B are not statisti- 

ally different): 

 = 

P̄ · √ 

N √ ∑ N 
i =1 ( P i −P̄ ) 

2 

N−1 

A large positive t score would suggest that A outperforms B, 

hereas a more negative t score would indicate the reverse. The 

ollowing tables present the results of pair-wised comparisons 

ased on the paired t -test. Table D.1 shows the statistical com- 

arison of models in Tables 3 and 4 of the paper; Tables D.2 and

.3 separately show the comparison of models in Tables 7 and 

 of the main text. The values in the tables are the t statistics, 

nd the star signs are the significance level of the comparisons. 

 positive t means the model in the row outperforms the model 

n the column, and a negative t refers to the opposite. In addi- 

ion to paired t -test, we also confirm the testing results based on 

ilcoxon sign rank test ( Coussement & De Bock, 2013 ; Zhu, Bae- 

ens, & Van Den Broucke, 2017 ), a non-parametric alternative of 

aired t -test ( Demšar, 2006 ), as well as Friedman test with post- 

oc Holm test ( De Bock & Van den Poel, 2012 ; De Caigny et al.,

018 ). The testing result of these approaches are highly consistent. 

ecause of the non-trivial number of models and metrics, we only 

etain the results of the paired t -test. 
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Table D.1 

Paired t -test of primary result. 

1 BG/BB 2 Lasso 

Current 

3 Lasso All 4 Lasso Current 

( + BG/BB) 

5 Lasso All 

( + BG/BB) 

6 ANN 

Current 

7 ANN All 8 ANN Current 

( + BG/BB) 

9 ANN All 

( + BG/BB) 

AUC 2 −19.06 ∗∗∗

3 33.66 ∗∗∗ 86.40 ∗∗∗

4 156.13 ∗∗∗ 177.16 ∗∗∗ 94.63 ∗∗∗

5 156.13 ∗∗∗ 199.48 ∗∗∗ 180.35 ∗∗∗ 44.23 ∗∗∗

6 111.70 ∗∗∗ 168.50 ∗∗∗ 71.39 ∗∗∗ −32.55 ∗∗∗ −54.62 ∗∗∗

7 144.12 ∗∗∗ 187.77 ∗∗∗ 194.97 ∗∗∗ 37.27 ∗∗∗ 15.68 ∗∗∗ 63.29 ∗∗∗

8 160.67 ∗∗∗ 221.04 ∗∗∗ 115.77 ∗∗∗ 11.01 ∗∗∗ −29.83 ∗∗∗ 66.45 ∗∗∗ −35.77 ∗∗∗

9 148.89 ∗∗∗ 202.77 ∗∗∗ 186.56 ∗∗∗ 56.00 ∗∗∗ 40.75 ∗∗∗ 6 8.6 8 ∗∗∗ 29.07 ∗∗∗ 48.11 ∗∗∗

TDL 2 −28.58 ∗∗∗

3 −8.54 ∗∗∗ 30.23 ∗∗∗

4 48.22 ∗∗∗ 90.68 ∗∗∗ 63.86 ∗∗∗

5 48.11 ∗∗∗ 106.92 ∗∗∗ 71.54 ∗∗∗ −1.42 

6 41.63 ∗∗∗ 82.74 ∗∗∗ 56.58 ∗∗∗ −6.99 ∗∗∗ −6.79 ∗∗∗

7 51.51 ∗∗∗ 73.69 ∗∗∗ 51.16 ∗∗∗ 1.10 1.82 ∗ 7.35 ∗∗∗

8 60.55 ∗∗∗ 114.42 ∗∗∗ 71.62 ∗∗∗ 16.21 ∗∗∗ 15.53 ∗∗∗ 17.51 ∗∗∗ 8.72 ∗∗∗

9 67.18 ∗∗∗ 105.08 ∗∗∗ 68.89 ∗∗∗ 14.35 ∗∗∗ 16.15 ∗∗∗ 23.81 ∗∗∗ 16.50 ∗∗∗ 3.55 ∗∗∗

APS 2 −20.46 ∗∗∗

3 15.45 ∗∗∗ 70.89 ∗∗∗

4 116.57 ∗∗∗ 154.94 ∗∗∗ 127.95 ∗∗∗

5 129.13 ∗∗∗ 151.81 ∗∗∗ 151.82 ∗∗∗ 28.89 ∗∗∗

6 59.02 ∗∗∗ 138.26 ∗∗∗ 72.94 ∗∗∗ −53.54 ∗∗∗ −57.67 ∗∗∗

7 109.37 ∗∗∗ 151.07 ∗∗∗ 152.89 ∗∗∗ 13.33 ∗∗∗ 1.55 72.09 ∗∗∗

8 126.11 ∗∗∗ 159.81 ∗∗∗ 137.54 ∗∗∗ 31.14 ∗∗∗ 8.70 ∗∗∗ 83.21 ∗∗∗ 4.90 ∗∗∗

9 122.64 ∗∗∗ 179.61 ∗∗∗ 158.97 ∗∗∗ 53.50 ∗∗∗ 41.66 ∗∗∗ 107.61 
∗∗∗

43.71 ∗∗∗ 31.45 ∗∗∗

H0: P row − P column = 0 , where P row / P column are the performance of model in the row/column. 
∗significant at p < 0.05; ∗∗significant at p < 0.01; ∗∗∗significant at p < 0.001. 

Table D.2 

Paired t -test of robustness check with RNN. 

1 Lasso Current ( + BG/BB) 2 Lasso All ( + BG/BB) 3 ANN Current ( + BG/BB) 4 ANN All ( + BG/BB) 5 LSTM 6 GRU 

AUC 2 49.42 ∗∗∗

3 −3.62 ∗∗∗ −46.14 ∗∗∗

4 32.04 ∗∗∗ 6.03 ∗∗∗ 37.39 ∗∗∗

5 −1.91 ∗ −28.64 ∗∗∗ 0.13 −30.46 ∗∗∗

6 −42.71 ∗∗∗ −66.85 ∗∗∗ −42.76 ∗∗∗ −58.41 ∗∗∗ −59.04 ∗∗∗

TDL 2 3.56 ∗∗∗

3 9.44 ∗∗∗ 5.57 ∗∗∗

4 20.41 ∗∗∗ 17.69 ∗∗∗ 8.59 ∗∗∗

5 5.92 ∗∗∗ 3.27 ∗∗ −0.91 −7.19 ∗∗∗

6 −10.51 ∗∗∗ −11.12 ∗∗∗ −15.59 ∗∗∗ −20.51 ∗∗∗ −17.87 ∗∗∗

APS 2 26.34 ∗∗∗

3 −6.14 ∗∗∗ −23.61 ∗∗∗

4 18.05 ∗∗∗ 8.73 ∗∗∗ 29.80 ∗∗∗

5 −5.12 ∗∗∗ −12.46 ∗∗∗ −2.49 ∗∗ −18.14 ∗∗∗

6 −41.15 ∗∗∗ −52.37 ∗∗∗ −41.11 ∗∗∗ −63.44 ∗∗∗ −60.75 ∗∗∗

H0: P row − P column = 0 , where P row / P column are the performance of model in the row/column. 
∗ significant at p < 0.05; ∗∗ significant at p < 0.01; ∗∗∗ significant at p < 0.001. 

Table D.3 

Paired t -test of robustness check on Lasso and ANN. 

Current All 

1 Panel 2 Cross-Sectional 3 Under- Sampling 4 Cross + Under 1 Panel 2 Cross-Sectional 3 Under- Sampling 4 Cross + Under 

Lasso AUC 2 −50.86 ∗∗∗ −49.12 ∗∗∗

3 −58.30 ∗∗∗ −0.55 −77.93 ∗∗∗ −3.34 ∗∗

4 −81.45 ∗∗∗ −19.05 ∗∗∗ −88.37 ∗∗∗ −90.38 ∗∗∗ −20.05 ∗∗∗ −56.72 ∗∗∗

TDL 2 −2.16 ∗∗ −7.54 ∗∗∗

3 −44.26 ∗∗∗ −40.42 ∗∗∗ −39.77 ∗∗∗ −27.84 ∗∗∗

4 −50.67 ∗∗∗ −49.38 ∗∗∗ −16.94 ∗∗∗ −47.28 ∗∗∗ −39.14 ∗∗∗ −10.68 ∗∗∗

APS 2 −38.52 ∗∗∗ −34.92 ∗∗∗

3 −84.82 ∗∗∗ −53.97 ∗∗∗ −95.57 ∗∗∗ −65.52 ∗∗∗

4 −91.22 ∗∗∗ −81.64 ∗∗∗ −78.70 ∗∗∗ −92.74 ∗∗∗ −80.21 ∗∗∗ −47.08 ∗∗∗

ANN AUC 2 −116.72 ∗∗∗ −140.48 ∗∗∗

3 −64.66 ∗∗∗ 99.97 ∗∗∗ −40.60 ∗∗∗ 108.47 ∗∗∗

4 −78.20 ∗∗∗ 79.36 ∗∗∗ −37.99 ∗∗∗ −93.18 ∗∗∗ 86.18 ∗∗∗ −59.10 ∗∗∗

TDL 2 −32.79 ∗∗∗ −60.17 ∗∗∗

3 −14.45 ∗∗∗ 21.81 ∗∗∗ −3.08 ∗∗ 43.40 ∗∗∗

4 −37.97 ∗∗∗ −5.12 ∗∗∗ −25.67 ∗∗∗ −47.94 ∗∗∗ 10.92 ∗∗∗ −39.66 ∗∗∗

APS 2 −81.46 ∗∗∗ −114.42 ∗∗∗

3 −52.90 ∗∗∗ 46.27 ∗∗∗ −38.81 ∗∗∗ 83.72 ∗∗∗

4 −80.61 ∗∗∗ −17.74 ∗∗∗ −49.01 ∗∗∗ −129.81 ∗∗∗ −24.79 ∗∗∗ −112.81 ∗∗∗

H0: P row − P column = 0 , where P row / P column are the performance of model in the row/column. 
∗significant at p < 0.05; ∗∗ significant at p < 0.01; ∗∗∗significant at p < 0.001. 
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