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中文摘要

考慮一個分支過程且族群中的每個個體在出生時皆在實數線上移動, 作

一非對稱的隨機漫步, 並記錄每一個個體的位置。 在本篇論文中, 我們證明

了當時間趨近於無限大時,實數線上有個體佔據的位置將會是一個區間。 

關鍵字：分支隨機過程,分支過程,隨機漫步
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Abstract

We consider a Galton-Watson branching process in which each individual

performs an asymmetric random walk on the real line and record the positions of

all individuals in each generation. In this thesis, we show that the set of occupied

positions is eventually an interval.

keywords: branching random walk, Galton-Watson process, random walk
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Chapter 1

Preliminary

1.1 Introduction

The concept of branching processes was formulated by Francis Galton in late nineteenth

century. The motivation of his research came from the observation of the extinction of certain

European nobility compared to the rapid growth of the overall population. He Posted this

extinction problem in the Educational Times in 1874 and Henry William Watson replied with a

solution (see Harris [7]). Seneta andHeyde pointed out that the Frenchmathematician Bienayme

had proposed basically the same model several years ago.

Since the creation of Galton and Watson’s model (called the Galton-Watson branching

process), it had been neglected for many years. After 1940, people’s interest in this model

increased because of the analogy between the population growth and nuclear chain reactions

and also because of people being more and more interested in the application of probability

theory. Since then, branching processes have been considered to be suitable probability models

used to describe the behavior of systems whose individuals reproduce, are transformed, and die.

Now, this theory is an active and interesting research field.

There are many studies on branching process and one of them is the study of branching

random walks, which combines the concepts of branching process and random walk. (see

Biggins [1] [2] [3], Bramson [4], Dekking [5]). Grill [6] raised the question of the range of

branching random walk. He considered the symmetric simple branching random walk in which

each individual, as it is created, may move a unit to right or remain in the same place with

probability of one-half and showed that the set of occupied points is eventually an interval. In

1
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addition, he gave a limit law of the number of individuals in the position close to the border of the

set of occupied positions. Later on Johnson [8] worked on the similar problem with asymmetric

movement. But, in his paper, he considered the case that each individual only had a deterministic

constant number of children.

In this thesis, we are asking the same question for Galton-Watson branching processes when

offspring distribution is no longer deterministic equipped with asymmetric random walks.

In the next sections of this chapter, we review the definitions and basic results of Galton-

Watson branching process (Section 1.2) and branching random walk (Section 1.3)

In Chapter 2, we investigate the local population and study the probability of extinction at

the position k and the properties about the population at two extreme positions, 0 and n, in the

n-th generation.

In Chapter 3, we present our main results on the occupied positions and provide the proofs

for our main results.

1.2 Galton-Watson branching process

A Galton-Watson branching process is a stochastic process often interpreted as the

population size. Usually we assume that this population starts with one ancestor. Each individual

lives a unit of time and produces its offsprings when it dies according to the probability

distribution{πk}k≥0. The reproduction of each individual is assumed to be independent of that

of others.

1.2.1 Model setting

Let {Zn}n≥0 be a Galton-Watson branching process, whereZn is the number of individuals

in the n-th generation and Z0 = 1.

Let ξ(n)i be the random variable denoting the number of children of the i-th individual in

n-th generation.

Assume that {ξ(n)i : n ≥ 0, i ≥ 1} are i.i.d. random variables with the probability

distribution {πk}, where { πk} is called the offspring distribution and

πk = P (Z1 = k)

2
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means the probability of having k offsprings.

Then the total number of individuals in the (n+1)-th generation is the sum of ξ(n)i ’s, which

means

Zn+1 =
Zn∑
i=1

ξ
(n)
i .

Clearly, Z1 = ξ
(0)
1 .

Moreover, if T denotes the family tree generated by the above way, each individual in T

can be labeled by i⃗ = (i0, i1, ..., in), which means that it is in the n-th generation and is the in-th

child of the individual i⃗′ = (i0, i1, ..., in−1) of the (n− 1)-generation. Here we denote the initial

ancestor by (i0), where i0 = 1.

If i⃗ = (i0, i1, ..., in), define |⃗i| = n, i.e the generation number of i⃗.

In order to analyze the process, we introduce the probability generating function of the

offspring distribution. Let

F (z) = E(zZ1) =
∞∑
k=0

πkz
k

be the probability generating function of Z1.

Let

m = F ′(1) =
∞∑
k=0

kπk

be the offspring mean.

1.2.2 Classial results

First, from the definition of F as a power series with nonnegtiove coefficients {πk} adding

to 1 we have the following properties.

1. F is strictly convex and increasing in [0, 1].

2. F (0) = π0; F (1) = 1.

3. Ifm ≤ 1, then F (t) > t for t ∈ [0, 1).

4. Ifm > 1, then F (t) = t has a unique solution in [0, 1).

Let qex be the smallest solution of F (t) = t for t ∈ [0, 1] (Figure 1.1). Then we have the

following lemmas.

Lemma 1.2.1. If m ≤ 1 then qex = 1; if m > 1 then qex < 1. Moreover, qex is the extinction

3
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probability of the branching process {Zn}, i.e. qex = P (Zn = 0 for some n ≥ 1).

Lemma 1.2.2. Let F n be the n-th iteration of F , i.e.,

F 0(z) = z, F 1(z) = F (z), F n+1(z) = F (F n(z)).

If t ∈ [0, qex), then F n(t) is increasing to qex as n → ∞.

If t ∈ (qex, 1), then F n(t) is decreasing to qex as n → ∞.

If t = qex or 1, F n(t) = t for all n.

We have further discussions on the upper and lower bounds of F k in Section 2.2 .

1.3 Branching random walk

The one dimentional branching random walk is a branching process equipped a movement

structure.

1.3.1 Model setting

Let {Zn} be a Galton-Watson branching process with offspring distribution {πk} and Z0 =

1, then we impose a random walk to the Galton-Watson branching process {Zn}.

Assume the initial ancestor (i0) is placed at 0 in the real line, and upon its death, it gives

birth to a random number Z1 children according to {πk}, then the j-th child (1, j) among those

(a) m > 1 (b) m ≤ 1

Figure 1.1: The probability generating function

4
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Z1 children moves away from the position of (i0) with movement X(1,j), where {X(1,j) : 1 ≤

j ≤ Z1} are i.i.d random variables in R.

Similarly, for each individual i⃗′, it gives birth according to {πk} when it dies, and then its

child i⃗ moves away from the position of i⃗′ with movement Xi⃗.

We assume that {Xi⃗}⃗i are i.i.d., i.e., the movements of all individuals in the branching

random walk are i.i.d., and the movements are independent of the reproduction of the branching

process.

Let S⃗i be the position of individual i⃗, and Sn = {S⃗i : |⃗i| = n} be the position chart of the

individuals in the n-th generation, i.e. it is the set of occupied sites on the real line. Moreover,

S⃗i = S⃗i′ +Xi⃗′ , where i⃗′ is the parent of i⃗.

The sequence of random vectors {(Zn, Sn)}n≥0 is called a branching random walk with

offspring distribution {πk}k≥0 and the movement distribution {rk}k∈Z, where rk ≡ P (Xi⃗ = k),

k ∈ Z.

In this thesis, we assume that, for each individual i⃗, the movement Xi⃗ has distribution

{rk}k≥0

rk ≡ P (Xi⃗ = k) =


p, if k = 1

q, if k = 0

where 0 < p, q < 1 and p+ q = 1.

5
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Chapter 2

Properties on local population

Throughout this thesis, we shall always assume that

E(Z1) = m > 1

to avoid the trivial result. Otherwise the process must be extinct with probability 1.

2.1 Local extinction probabilities

First of all, we concentrate on the number of individuals at each posotion, and the

probability that no individual lies at the positions which are less than or equal to k.

Let λ(n, k) be the number of individuals in the position k at time n (i.e. in the n-th

generation).

Let Gn,k(z) = E(zλ(n,k)) denote the generating function of λ(n, k).

Let

pn,k = P (λ(n, k) = 0)

be the probability that no one in the n-th generation is in the position k.

Let

qn,k = P (λ(n, j) = 0, ∀j ≤ k)

be the probability that no one in the n-th generation is in the position less than or equal to k.

Note that pn,−1 = 1 for all n = 1, 2, ..., we obtain the following recursion for pn,k.

6
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Lemma 2.1.1. For all n ≥ 1, k = 0, 1, ..., n, we have

pn,k = F (qpn−1,k + ppn−1,k−1).

Proof. Let λ̃j(n, k) be the number of offsprings in the n-th generation of the j-th individual in

the 1st generation whose position is k. Then

λ(n, k) =

Z1∑
j=1

λ̃j(n, k)

and hence

Gn,k(z) = E(zλ(n,k)) = E(z
∑Z1

j=1 λ̃j(n,k)).

Due to the reproductive structure of the Golton-Watson branching process, we have that,

conditioned on Z1, the random variables {λ̃j(n, k) : j = 1, ..., Z1} are independent and

independent of Z1. So, by the law of total expectation, we have

Gn,k(z) = E(E(z

Z1∑
j=1

λ̃j(n,k)

|Z1))

= E(
Z1∏
j=1

E(zλ̃j(n,k)|Z1))

= E(
Z1∏
j=1

E(zλ̃j(n,k))).

Also, we know that, conditioned on Z1, {λ̃j(n, k) : j = 1, ..., Z1} are identically

distributed, so we have

Gn,k(z) = E(

Z1∏
j=1

E(zλ̃1(n,k))).

Now, note that the 1st individual in the 1st generation only can move to 1 or stay at 0.

Therefore, conditioned on its movement X(1,1), it follows that

Gn,k(z) = E(

Z1∏
j=1

[E(zλ̃1(n,k)|X(1,1) = 0)P (X(1,1) = 0)

+E(zλ̃1(n,k)|X(1,1) = 1)P (X(1,1) = 1)]).

7
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Since, conditioned on X(1,1) = 0, λ̃1(n, k) has the same distribution as λ(n − 1, k), and,

conditioned on X(1,1) = 1, λ̃1(n, k) has the same distribution as λ(n− 1, k − 1), we have

Gn,k(z) = E(

Z1∏
j=1

[E(zλ(n−1,k))q + E(zλ(n−1,k−1))p])

= E(

Z1∏
j=1

[Gn−1,k(z)q +Gn−1,k−1(z)p])

= E([Gn−1,k(z)q +Gn−1,k−1(z)p]
Z1)

= F ([qGn−1,k(z) + pGn−1,k−1(z)]),

where F is the probability generating function of Z1.

Finally, we obtain

pn,k = P (λ(n, k) = 0) = Gn,k(0)

= F ([qGn−1,k(0) + pGn−1,k−1(0)])

= F (qpn−1,k + ppn−1,k−1).

The next lemma is a recursive property for qn,k with qn,−1 = 1, for all n.

Lemma 2.1.2. For all n ≥ 1, k = 0, 1, ..., n, we have

qn,k = F (qqn−1,k + pqn−1,k−1).

Proof. Let Y (n, k) be the number of individuals in the n-th generation whose position is less

than or equal to k.

Let λ̃j(n, k) be defined as given in the proof of Lemma 2.1.1. Then

8
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Y (n, k) =
k∑

j=0

λ(n, j)

=
k∑

j=0

Z1∑
i=0

λ̃i(n, j)

=

Z1∑
i=0

k∑
j=0

λ̃i(n, j).

Let Hn,k = E(zY (n,k)) be the probability generating function of Y (n, k), then

Hn,k(z) = E(zY (n,k))

= E(z
∑Z1

i=1

∑k
j=0 λ̃i(n,j)).

By the law of total expectation, we have that

Hn,k(z) = E(E(z
∑Z1

i=1

∑k
j=0 λ̃i(n,j)|Z1))

= E(

Z1∏
i=1

E(z
∑k

j=0 λ̃i(n,j)|Z1)),

because Z1 is σ(Z1)-measurable and λ̃i are independent.

= E(

Z1∏
i=1

E(z
∑k

j=0 λ̃i(n,j))),

by the independence between λ̃j(n, k) and Z1.

Also, we know that λ̃i(n, k) has the same distribution as λ̃1(n, k), so we have

Hn,k(z) = E(

Z1∏
i=1

E(z
∑k

j=0 λ̃1(n,j))).

Conditioned on the movement X(1,1), by the law of total probability, it follows that

Hn,k(z) = E(

Z1∏
i=1

[E(z
∑k

j=0 λ̃1(n,j)|X(1,1) = 0)P (X(1,1) = 0)

+E(z
∑k

j=0 λ̃1(n,j)|X(1,1) = 1)P (X(1,1) = 1)]).

9
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Since, conditioned onX(1,1) = 0,
∑k

j=0 λ̃1(n, j) has the same distrinbution as
∑k

j=0 λ(n−

1, j), and conditioned on X(1,1) = 1,
∑k

j=0 λ̃1(n, j) has the same distribution as
∑k−1

j=0 λ(n −

1, j), we have

Hn,k(z) = E(

Z1∏
i=1

[E(z
∑k

j=0 λ(n−1,j))q + E(z
∑k−1

j=0 λ(n−1,j))p])

= E(

Z1∏
j=1

[E(zY (n−1,k))q + E(zY (n−1,k−1))p])

= E(

Z1∏
j=1

[Hn−1,k(z)q +Hn−1,k−1(z)p])

= E(Hn−1,k(z)q +Hn−1,k−1(z)p]
Z1)

= F (qHn−1,k(z) + pHn−1,k−1(z)).

Then, we have that

qn,k = P (Y (n, k) = 0) = Hn,k(0)

= F ([qHn−1,k(0) + pHn−1,k−1(0)])

= F (qqn−1,k + pqn−1,k−1).

Now we discuss the monotonicity of qn,k and pn,k. Because each individual can only stay

or move to the right, it is clear that if no individual is located at position less than or eqaul to

k, then no one can go back to there. So, for a fixed k, that λ(n, j) = 0, for all j ≤ k, implies

λ(n+ 1, j) = 0, for all j ≤ k, and it means

qn,k = P (λ(n, j) = 0 ∀j ≤ k) ≤ P (λ(n+ 1, j) = 0 ∀j ≤ k) = qn+1,k.

Moreover, for a fixed n, that λ(n, j) = 0, for all j ≤ k + 1, implies λ(n, j) = 0, for all j ≤ k,

so

qn,k = P (λ(n, j) = 0 ∀j ≤ k) ≥ P (λ(n, j) = 0 ∀j ≤ k + 1) = qn,k+1.

Therefore, qn,k is decreasing in k and increasing in n.

On the other hand, Lemma 2.1.3 tells the behavior of pn,k as a function of n.

10
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Lemma 2.1.3. For each k, ∃n0(k) ∈ N0 s.t. for n > n0(k), pn,k is monotone as a function of n.

Proof. We prove it by induction on k. First, for k = 0,

pn,0 = P (λ(n, 0) = 0) = qn,0

and hence it is increasing as n increases. So, for k = 0, n0(0) = 0.

Suppose that it holds for k = m, i.e. ∃n0(m) ∈ N0 s.t. for n > n0(m), pn,m is monotone

as a function of n.

For k = m+ 1, since pn,m is monotone for n > n0(m), we assume that pn,m is increasing

as a function of n, ∀n > n0(m).

There are two cases:

Case1: If there exists n0(m + 1) ≥ n0(m) s.t. pn0(m+1)+1,m+1 ≥ pn0(m+1),m+1, then by the

recursion of pn,k, we have the following:

pn0(m+1)+1,m+1 = F (qpn0(m+1),m+1 + ppn0(m+1),m)

pn0(m+1)+2,m+1 = F (qpn0(m+1)+1,m+1 + ppn0(m+1)+1,m)

...

Since n0(m+ 1) ≥ n0(m), by the induction hypothesis, pn0(m+1)+1,m ≥ pn0(m+1),m. So,

qpn0(m+1)+1,m+1 + ppn0(m+1)+1,m ≥ qpn0(m+1),m+1 + ppn0(m+1),m

and, since F is increasing, we get

pn0(m+1)+2,m+1 ≥ pn0(m+1)+1,m+1.

Repeated the same procedure, we can have

pn0(m+1)+3,m+1 = F (qpn0(m+1)+2,m+1 + ppn0(m+1)+2,m)

≥ F (qpn0(m+1)+1,m+1 + ppn0(m+1)+1,m)

= pn0(m+1)+2,m+1

11
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and so on.

Therefore, we can conclude that

pn+1,m+1 ≥ pn,m+1, ∀n ≥ n0(m+ 1).

Case2: If there is no such an n0(m + 1) as required in Case 1, then it means that pn,m+1 is

decreasing for all n ≥ n0(m). In this case, we set n0(m+ 1) = n0(m).

In either case, we prove that pn,m+1 is monotone for all n ≥ n0(m+ 1).

By the similarly arguments, we can also obtain the result that there exists n0(m + 1) s.t.

pn,m+1 is monotone for n ≥ n0(m+1)when pn,m is decreasing as a function of n, ∀n > n0(m).

Therefore, by induction, we proved that for each k, ∃n0(k) ∈ N0 s.t. for n > n0(k), pn,k
is monotone as a function of n.

From the lemma above, we have that, for each fixed k, pn,k and qn,k are eventually

monotone as function of n, so the limits

pk = lim
n→∞

pn,k

and

qk = lim
n→∞

qn,k

both exsit. Moreover, because F is continuous, they also satisfy the recursions

pk = F (qpk + ppk−1)

qk = F (qqk + pqk−1),

where p−1 = q−1 = 1 . In addition, due to the fact that pn,0 = qn,0 for all n, we have that p0 = q0

and hence pk = qk for all k.

Next, we consider the leftmost and rightmost occupied position in n-th generation. Let

Kn = inf{k : λ(n, k) > 0}

Ln = inf{j : λ(n, n− j) > 0},

12
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then the distribution ofKn can be found as

P (Kn > k) = P (inf{k : λ(n, k) > 0} > k)

= P (λ(n, j) = 0, ∀j ≤ k)

= qn,k.

Furthermore, by monotonicity ofKn,

K = lim
n→∞

Kn

exists and

P (K > k) = qk.

2.2 Population at extreme points

In this section, we present the results on the limit behavior of the occupied positions. First

of all, we would like to consider the population at two extreme points, 0 and n, in the n-th

generation.

Recall that λ(n, 0) is the number of individuals in the n-th generation whose positions are

0, and λ(n, n) is the number of individuals in the n-th generation whose positions are n. Also,

note that the extinction probability of a Galton-Watson branching process {Zn} is the probability

of the event {Zn = 0, for some n}.

The following lemma gives the distributions of the processes, {λ(n, 0)}n≥0 and {λ(n, n)}n≥0.

Lemma 2.2.1. The processes {λ(n, 0)}n≥0 and {λ(n, n)}n≥0 are two Galton-Watson branching

processes, with the offspring probability generating functions g1(z) = F (qz + p) and g2(z) =

F (pz + q), respectively. In addition, p0 = lim
n→∞

pn,0 is the extinction probability of {λ(n, 0)}

and p′0 := lim
n→∞

pn,n is the extinction probability of {λ(n, n)}.

Proof. Because each individual can only go to the right by one step or stay at the same position,

only parents at the position 0 can reproduce the children at the position 0. Note that each child

stays at 0 with probability q.

Let η(n)i be the number of children of the i-th individual in the n-th generation located at 0.

13
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Let η̃(n)i be the number of children of the i-th individual in the n-th generation located at 0

whose position is 0.

Then, for all j = 0, 1, 2, ...

π̃j = P (η̃
(n)
i = j)

=
∞∑
k=j

P (η̃
(n)
i = j, η

(n)
i = k)

=
∞∑
k=j

P (η̃
(n)
i = j|η(n)i = k)P (η

(n)
i = k)

=
∞∑
k=j

(
k

j

)
qjpk−jπk

which is independent of n and i.

So, {η̃(n)i }n,i are i.i.d. and

λ(n+ 1, 0) = the number of individuals in the (n+ 1)-th generation

whose position is 0

= the number of children of individuals in the n-th generation

located at 0 whose position is 0

=

λ(n,0)∑
i=1

η̃
(n)
i .

So, {λ(n, 0)}n≥0 is a Galton-Watson branching process with λ(0, 0) = 1 and offspring

distribution {π̃j}j≥0.

Also, λ(1, 0) =
λ(0,0)∑
i=1

η̃
(0)
i = η̃

(0)
1 has distribution{π̃j}j≥0.

Now, let g1(z) = E(zλ(1,0)) be the probability generating function of the process

14
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{λ(n, 0)}n≥0. Then

g1(z) = E(zλ(1,0)) =
∞∑
j=0

P (λ(1, 0) = j)zj

=
∞∑
j=0

∞∑
k=j

πk

(
k
j

)
qjpk−jzj

=
∞∑
k=0

πk

k∑
j=0

(
k
j

)
qjpk−jzj , by Tonelli’s theorem

=
∞∑
k=0

πk(qz + p)k

= F (qz + p).

So, we can treat {λ(n, 0)}n≥0, as a branching process with probability generating function

F (qz + p).

Similarly, we can show that {λ(n, n)}n≥0 is a Galton-Watson branching process. To

determine the offspring distribution for λ(n, n), the construction tells us that, if individual i⃗,

|⃗i| = n, is in the position n, then its parent must be in the position n − 1 and it goes to the

position n with probability p. So,

P (λ(1, 1) = j) =
∞∑
k=j

πk

(
k
j

)
pjqk−j.

Let g2(z) = E(zλ(n,n)). Similarly to the argument of g1, we have g2(z) = F (pz + q) is the

generatin function of the branching process {λ(n, n)}n≥0.

And, since each individual can onlymove to the right or stay in the same position, λ(n, 0) =

0 implies λ(n+ 1, 0) = 0. So, {λ(n, 0) = 0}n≥0 is increasing as n is increasing.

Then the extinction probability of the branching process {λ(n, 0) = 0}n≥0 is

P (λ(n, 0) = 0 for some n) = P (
∞∪
n=0

{λ(n, 0) = 0})

= lim
n→∞

P (λ(n, 0) = 0), by the contiuity from above

= lim
n→∞

pn,0

= p0.

15
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Simlarly, we can prove that p′0 := lim
n→∞

pn,n is the extinction probability of the branching

process {λ(n, n)}n≥0.

Note that Zn = 0 implies λ(n, k) = 0 for all k, so P (Zn = 0) < P (λ(n, 0) = 0) for all n,

and hence p0 = q0 > qex.

Lemma 2.2.2. For all k, F k(q0) ≤ qex+ γk
3 , where γ3 = (F (q0)− qex)/(q0− qex), and γ3 < 1.

Proof. Because F k(q0) is decreasing in k, and F is convex (Figure 2.1), the slopes of the secant

lines of F satisfy the inequality

F (F k−1(q0))− F (qex)

F k−1(q0)− qex
≤ F (F k−2(q0))− F (qex)

F k−2(q0)− qex
,

where qex = F (qex) and hence

F k(q0)− F k(qex)

F k−1(q0)− F k−1(qex)
=

F k(q0)− qex
F k−1(q0)− qex

≤ F (q0)− qex
q0 − qex

.

(a)

Figure 2.1: F k(q0)

16
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So,

F k(q0)− qex ≤ F (q0)− F (qex)

q0 − qex
(F k−1(q0)− qex)

= γ3(F
k−1(q0)− qex)

≤ γ2
3(F

k−2(q0)− qex)

≤ ...

≤ γk
3 (q0 − qex)

≤ γk
3 .

And as shown in Figure 2.1, because F (z) is convex and increasing to 1 as z is increasing

to 1, the slope of secant line (F (q0)− qex)/(q0 − qex) = γ3 is smaller than 1.

Lemma 2.2.3. If 0 < qex, then F n(0) ≥ qex − γn
4 , for all n, where γ4 = (qex − F (0))/qex and

γ4 < 1.

Proof. ∵ F n(0) is increasing in n, and F is convex.

∴
F n(qex)− F n(0)

F n−1(qex)− F n−1(0)
=

F n(0)− qex
F n−1(0)− qex

≥ qex − F (0)

qex
.

So,

F n(0)− qex ≥ qex − F (0)

qex
(F n−1(0)− qex)

= γ4(F
n−1(0)− qex)

≥ γ2
4(F

n−2(0)− qex)

≥ ...

≥ γn
4 (0− qex)

≥ −γn
4 .

Then , we have

F n(0) ≥ qex − γn
4 .

Remark 2.2.4. For the Galton-Watson branching process {Zn}n≥0, if π0 > 0, then qex > 0.

17
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Chapter 3

Main results on occupied positions

3.1 Main theorems

In this section, we present the main results in this thesis. That is, under some proper

assumptions on the probability generating functions g1 and g2 of {λ(n, 0)}n≥0 and {λ(n, n)}n≥0,

respectively, we can prove that the occupied positions eventually form an interval on the real

line.

Recall the following notations:

Kn = inf{k : λ(n, k) > 0}, Ln = inf{j : λ(n, n− j) > 0},

K = lim
n→∞

Kn, and L = lim
n→∞

Ln.

Theorem 3.1.1. Suppose g′1(p0) < q/p and g′2(p
′
0) < p/q Then, almost surely, eventually,

{k : λ(n, k) > 0} = [Kn, n− Ln].

Remark 3.1.2. Because Kn and K take only integer values, we have Kn = K eventually with

probability 1. Similarly, Ln = L eventually with probability 1.

So, our main result can be written as [K,n− L] is eventully occupied a.s..

3.2 Proofs of main theorems

In order to prove Theorem 3.1.1, we need the following lemmas.

18
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Lemma 3.2.1. ∀p ∈ (0, 1), if p ≥ q ≥ pF (p) or q > p ≥ qF (q), then ∀n ≥ 2, ∃kn, 0 < kn < n

such that pn,0 ≥ pn,1 ≥ ... ≥ pn,kn ≤ ... ≤ pn,n−1 ≤ pn,n, and kn is increasing as n is

increasing.

Proof. We prove it by induction on n. First of all, for n = 2 by Lemma 2.1.1, we have

p0,0 = P (λ(0, 0) = 0) = 0, becauseλ(0, 0) = Z0 = 1

p1,0 = F (qp0,0 + pp0,−1) = F (p)

p1,1 = F (qp0,1 + pp0,0) = F (q)

p2,0 = F (qp1,0 + pp1,−1) = F (qF (p) + p)

p2,1 = F (qp1,1 + pp1,0) = F (qF (q) + pF (p))

p2,2 = F (qp1,2 + pp1,1) = F (q + pF (q)).

Suppose p ≥ q ≥ pF (p). Since F (z) ≤ 1 for all z ∈ [0, 1] and F is increasing function,

qF (p) + p ≥ qF (q) + pF (p), then p2,0 = F (qF (p) + p) ≥ F (qF (q) + pF (p)) = p2,1. And

by assumption q ≥ pF (p), we have q + pF (q) ≥ pF (p) + qF (q), so p2,2 = F (q + pF (q)) ≥

F (qF (q) + pF (p)) = p2,1. Combining the above two inequalities together gives us that

p2,0 ≥ p2,1 ≤ p2,2

which means it holds for n = 2, and k2 = 1.

Similarly, if q > p ≥ qF (q), we have q > qF (p) and F (q) > F (p). So p2,2 = F (q +

pF (q)) ≥ F (qF (q) + pF (p)) = p2,1. And by assumption q > p ≥ qF (q), we have p2,0 =

F (qF (p) + p) ≥ F (pF (p) + qF (q)) = p2,1. Combining the above two inequalities together

also gives us that p2,0 ≥ p2,1 ≤ p2,2.

Suppose that it holds for n ≥ 2.

19
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Then, for n+ 1,

pn+1,0 = F (qpn,0 + ppn,−1)

pn+1,1 = F (qpn,1 + ppn,0)

...

pn+1,kn−1 = F (qpn,kn−1 + ppn,kn−2)

pn+1,kn = F (qpn,kn + ppn,kn−1).

By induction hypothesis, we get qpn,0 + ppn,−1 = qpn,0 + p ≥ qpn,1 + ppn,0 ≥ ... ≥

qpn,kn−1 + ppn,kn−2 ≥ qpn,kn + ppn,kn−1. Since F is increasing, we have

pn+1,0 ≥ pn+1,1 ≥ ... ≥ pn+1,kn ≥ pn+1,kn .

On the other hand,

pn+1,n+1 = F (qpn,n+1 + ppn,n)

pn+1,n = F (qpn,n + ppn,n−1)

...

pn+1,kn+2 = F (qpn,kn+2 + ppn,kn+1)

pn+1,kn+1 = F (qpn,kn+1 + ppn,kn)

Similarly, by induction hypothesis, we get qpn,n+1+ppn,n = q+ppn,n ≥ qpn,n+ppn,n−1 ≥

... ≥ qpn,kn+2 + ppn,kn+1 + ppn,kn−2 ≥ qpn,kn+1 + ppn,kn , hence

pn+1,n+1 ≥ pn+1,n ≥ ... ≥ pn+1,kn+2 ≥ pn+1,kn+1.

Now, we compare pn+1,kn and pn+1,kn+1.

If pn+1,kn ≥ pn+1,kn+1, then

pn+1,0 ≥ ... ≥ pn+1,kn ≥ pn+1,kn+1 ≤ pn+1,kn+2 ≤ ... ≤ pn+1,n+1.

20
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So, we set kn+1 = kn + 1.

Otherwise, if pn+1,kn ≤ pn+1,kn+1, then

pn+1,0 ≥ ... ≥ pn+1,kn−1 ≥ pn+1,kn ≤ pn+1,kn+1 ≤ ... ≤ pn+1,n+1

and set kn+1 = kn.

In either case, we can conclude that there exists kn such that

pn+1,0 ≥ pn+1,1 ≥ ... ≥ pn+1,kn+1 ≤ ... ≤ pn+1,n ≤ pn+1,n+1

and clearly kn+1 ≥ kn.

Therefore, by induction, we get ∀n ≥ 2, pn,0 ≥ pn,1 ≥ ... ≥ pn,kn ≤ ... ≤ pn,n−1 ≤ pn,n,

and kn is increasing as n is increasing.

Lemma 3.2.2. For any θ ∈ (0, 1), ∃α ∈ (0, 1
2
), and γ2 ∈ (0, 1) such that, for large n, and

0 ≤ k ≤ αn, we have
(
n
k

)
θn−k ≤ γn

2 .

Proof. First, we know, for 0 ≤ k < αn < 1
2
n,

(
n

k

)
θn−k ≤

(
n

k

)
θn−αn ≤

(
n

⌈αn⌉

)
θn−αn.

Also, for large n, by Stirling formula, we have

(
n

⌈αn⌉

)
=

n!

⌈αn⌉!(n− ⌈αn⌉)!

≈
√
2πn(n

e
)n

√
2παn(αn

e
)αn

√
2πn− αn(n−αn

e
)n−αn

=
1√

2π(1− α)αn

1

(αα(1− α)(1−α))n
.

Claim: 1
αα(1−α)(1−α) → 1 as α → 0+.

By the facts that logx is a continuous function at 1 and

lim
α→0+

logαα = lim
α→0+

α logα = 0,

21
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we have

αα → 1 as α → 0+

and hense

αα(1− α)(1−α) → 1 as α → 0 + .

.

Then we get 1
αα(1−α)(1−α) → 1 as α → 0+.

Since 0 < θ < 1, θ− 1
2 > 1 and hence θ− 1

2 − 1 > 0. So, for any ϵ ∈ (0, θ−
1
2 − 1), we have

that

0 < (1 + ϵ)θ
1
2 < 1

and ∃δ > 0 s.t. ∀α ∈ (0, δ), 1
αα(1−α)(1−α) < 1 + ϵ.

Therefore, for any given θ ∈ (0, 1), for any ϵ ∈ (0, θ−
1
2 − 1), ∃δ > 0 and ∃γ2 ∈ ((1 +

ϵ)θ
1
2 , 1) s.t. ∀α ∈ (0,min{1

2
, δ})

γ2
θ1−α

>
γ2

θ
1
2

> 1 + ϵ >
1

αα(1− α)(1−α)
.

Therefore we can find γ2 < 1 s.t. ( γ2
θ(1−α) ) ≥ ( 1

αα(1−α)(1−α) ).

Then, for large n

(
γ2

θ(1−α)
)n ≥ (

1

αα(1− α)(1−α)
)n

1√
2π(1− α)αn

.

So, for large n

γn
2 ≥

(
n

⌈αn⌉

)
θn−αn ≥

(
n

k

)
θn−k.

Note that g1 and g2 are probability generating functions and p0 and p′0 are extinction

probabilities of {λ(n, 0)} and {λ(n, n)}, respectively.

Lemma 3.2.3. Suppose g′1(p0) < q/p and g′2(p′0) < p/q, then ∃0 < ρ < 1 and a constant C s.t.

for n ≥ 2, 0 ≤ k ≤ kn

pn,k − qn,k ≤ Cρn,

where kn is defined as in Lemma 3.2.1.
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Proof. Let

dn,k = pn,k − qn,k.

For k = 0, dn,0 = pn,0 − qn,0 = 0, and by the basic recursion,

dn+1,k = pn+1,k − qn+1,k

= F (qpn,k + ppn,k−1)− F (qqn,k + pqn,k−1)

= F ′(z)(qdn,k + pdn,k−1), by the mean value theorem,

where qqn,k + pqn,k−1 ≤ z ≤ qpn,k + ppn,k−1.

Because pn,k is decreasing in k, ∀0 ≤ k ≤ kn and pn,0 is increasing in n, we have, for any

0 ≤ k ≤ kn,

z ≤ qpn,k + ppn,k−1 ≤ qpn,0 + p ≤ q lim
n→∞

pn,0 + p ≤ qp0 + p.

Also, F ′(z) is increasing function for positive z, so we get that

dn+1,k ≤ F ′(qp0 + p)(qdn,k + pdn,k−1) ≤ max{p, q}F ′(qp0 + p)(dn,k − dn,k−1).

Similarly, for kn + 1 ≤ k ≤ n,

z ≤ qpn,k + ppn,k−1 ≤ q + ppn,n ≤ q + p lim
n→∞

pn,n ≤ q + pp′0

and hence

dn+1,k ≤ F ′(q + pp′0)(qdn,k + pdn,k−1) ≤ max{p, q}F ′(q + pp′0)(dn,k − dn,k−1).

Note that, since p0 and p′0 are the extionction probabilities and g1 and g1 are the probability

generating functions for {λ(n, 0)} and {λ(n, n)}, respectively, we know that g′1(p0) < 1 and

g′2(p
′
0) < 1.
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By assumptions and the fact that g′1(z) = qF ′(qz + p) and g′2(z) = pF ′(pz + q) , we have

0 < γ1 := max{p, q}max{F ′(qp0 + p), F ′(pp′0 + q)}

= max{p, q}max{g
′
1(p0)

q
,
g′2(p

′
0)

p
} < 1.

Then we get that, for all k ≤ n,

dn+1,k ≤ γ1(qdn,k + pdn,k−1).

Next, we show the following:

dn,k ≤
(
n

k

)
γn−k
1 , ∀k ≤ n, ∀n.

We prove this inequality by induction on n.

For n = 0, we know that d0,k = p0,k − q0,k = 0.

Suppose dn,k ≤
(
n
k

)
γn−k
1 .

For n+ 1, by the above argument, we have, for 0 ≤ k ≤ n,

dn+1,k ≤ γ1(qdn,k + pdn,k−1)

≤ γ1(q

(
n

k

)
γn−k
1 + p

(
n

k − 1

)
γn−k+1
1 )

≤ γ1(q

(
n

k

)
γn−k
1 + p

(
n

k − 1

)
γn−k
1 )

≤ γn−k+1
1 (q

(
n

k

)
+ p

(
n

k − 1

)
)

≤ γn−k+1
1 (

(
n

k

)
+

(
n

k − 1

)
)

= γn−k+1
1

(
n+ 1

k

)
, by double counting.

For k = n+ 1, it is clear that dn+1,k+1 = pn+1,k+1 − qn+1,k+1 ≤ 1 =
(
n+1
n+1

)
γ
(n+1)−(n+1)
1 .

So, by induction, we have dn,k ≤
(
n
k

)
γn−k
1 , ∀k ≤ n, ∀n.

Then, by Lemma 3.2.2, we can find 0 < α1 < 1/2, γ2 < 1, and n0 ≥ 1, for all n > n0 and

k ≤ α1n,

dn,k ≤
(
n

k

)
γn−k
1 ≤ γn

2 .
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Now, consider for small n with n ≤ n0, and take α2 = 1
n0
, then k < n

n0
< 1, i.e., k = 0,

and,

dn,0 ≤
(
n

0

)
γn−0
1 = γn

1 ,

i.e., in this case, we can take γ2 = γ1.

Let α = min{ 1
n0
, α1} and γ = max{γ1, γ2}. Thus, we find α > 0 and γ < 1 s.t. for all n

and for k ≤ αn, we have

dn,k ≤ γn.

We also need to take care the case when αn < kn. For αn < k < kn, we first compute the

upper bound of pn,k, and lower bound of qn,k.

pn,k = F (qpn−1,k + ppn−1,k−1)

≤ F (pn−1,k−1), because pn,k is decreasing in k for k < kn

≤ F k(pn−k,0)

≤ F k(q0), because pn,0 = qn,0 is increasing in n and q0 = lim
n→∞

qn,0.

So, by Lemma 2.2.2, we have, for k > αn,

pn,k ≤ qex + γk
3 ≤ qex + γαn

3 .

By the similar way, we can get lower bound of qn,k.

qn,k = F (qqn−1,k + pqn−1,k−1)

≥ F (qn−1,k), because qn,k is decreasing in k

≥ F n(q0,k)

= F n(0).

So, according whether the value of F (0) is 0 or not, we have two cases.

If F (0) > 0, then qex > 0 and by Lemma 2.2.3, we have that qn,k ≥ qex − γn
4 . Because F

is convex, the slope of secant line (qex − F (0))/qex = γ4 is smaller than 1, then pn,k − qn,k ≤

γαn
3 + γn

4 ≤ γα
3 + γ4. Let ρ = max{γ, γα

3 , γ4}, and C = 2.

On the other hand, if F (0) = π0 = 0, then qex = 0 and the lemma is also true when
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ρ = max{γ, γα
3 }, that is, in this case, qn,k ≥ F n(0) = 0 with γ4 = 0.

Summarizing the above, we get, for all k ≤ kn, there are constant C and 0 < ρ < 1, s.t.

pn,k − qn,k ≤ Cρn.

Now, we are ready to prove our main result, Theorem 3.1.1.

Recall thatKn = inf{k : λ(n, k) > 0}.

First, we prove the claim that ∃Kn ≤ k ≤ kn s.t. λ(n, k) = 0 if and only if ∃0 ≤ k ≤ kn

s.t. λ(n, k) = 0, λ(n, k − 1) > 0.

(⇒) Suppose ∃Kn ≤ k ≤ kn : λ(n, k) = 0. Because Kn = inf{k : λ(n, k) > 0}, by the

well-ordering principle, there exists a smallest number betweenKn and kn, denote it by k, then

0 ≤ k ≤ kn, λ(n, k) = 0, λ(n, k − 1) > 0.

(⇐)We prove it by contradiction. Suppose that ∀Kn ≤ k ≤ kn : λ(n, k) > 0 , then, by

definition ofKn, λ(n, k) = 0 for all k < Kn. So, it is clear that there is no such 0 ≤ k ≤ kn s.t.

λ(n, k) = 0, λ(n, k − 1) > 0.

So, the claim holds.

Now, let An = {∃Kn ≤ k ≤ kn : λ(n, k) = 0}.

Then

P (An) = P (∃Kn ≤ k ≤ kn : λ(n, k) = 0)

= P (∃0 ≤ k ≤ kn : λ(n, k) = 0, λ(n, k − 1) > 0)

≤ P (
kn∪
k=0

({λ(n, k) = 0)} − {λ(n, j) = 0, ∀j ≤ k}))

≤
kn∑
k=0

(pn,k − qn,k)

≤ Cnρn, by Lemma 3.2.3.

Then

∞∑
n=0

P (An) ≤
∞∑
n=0

Cnρn < ∞.
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Thus, by Borel-Cantelli lemma, P (An i.o.) = 0, i.e., [Kn, kn] is a.s. eventully occupied.

Finally, we will show that the interval [kn, n− Ln] is also a.s. eventually occupied.

Consider another branching randomwalk {(Z∗
n, S∗n)}n≥0, whereZ∗

n = Zn for the branching

structure and for each individual i⃗ in {(Z∗
n, S∗n)}n≥0, the movementX∗

i⃗
= 1−Xi⃗. So, if |⃗i| = n,

then we have

S∗
i⃗
= n− S⃗i.

Therefore, for each n ≥ 0 and k = 0, 1, 2, ..., n,

λ∗(n, k) = the number of individuals in the n-th generation of {(Z∗
n, S∗n)}n≥0 at position k

= λ(n, n− k).

Hence,

Ln ≡ inf{j : λ(n, n− j) > 0}

= inf{j : λ∗(n, j) > 0} ≡ K∗
n

and

p∗n,k ≡ P (λ∗(n, k) = 0)

= P (λ(n, n− k) = 0)

= pn,n−k.

So, by reversing the role of p and q and by the similar lines of proofs, we have that there

exists a increasing sequence {k∗
n}n≥0 s.t. the interval [K∗

n, k
∗
n] is a.s. eventually occupied by

individuals in {(Z∗
n, S∗n)}n≥0 and k∗

n = n− kn.

Since

Bn ≡ {∃k ∈ [kn, n− Ln], λ(n, k) = 0}

= {∃k s.t. n− k ∈ [Ln, n− kn], λ(n, k) = 0}

= {∃j ∈ [K∗
n, k

∗
n], λ(n, j) = 0}

≡ A∗
n.
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It is clear, by the previous arguments, that P (A∗
n i.o.) = 0.

So, P (Bn i.o.) = 0, i.e., [kn, n− Ln] is a.s. eventually occupied.

Therefore, we conclude that [Kn, n − Ln] is a.s. eventually occupied and the proof of

Theorem 3.1.1 is complete.

Remark 3.2.4. If we consider the branching random walk in which each individual has

probability p to go the right by one step and, instead of staying in the same position, it has

probability q to go to the left by one step, then we can get a similar result. In this case, we let

Y⃗i =


1, if Xi⃗ = 1

−1, if Xi⃗ = 0

and recall thatXi⃗ is the movement of i⃗ and S⃗i is the position of i⃗ in the branching random walk

{(Z∗
n, S∗n)}n≥0 defined for Theorem 3.1.1. Let λ′(n, k) be the number of individuals in position

k at time n, and S ′
i⃗
be the position of i⃗ in the branching random walk with movement {Y⃗i}. Then

S ′
i⃗
= 2k − n if and only if S⃗i = k. So,

λ′(n, 2k − n) = λ(n, k).

Thus, Theorem3.1.1 implies that, in this branching random walk, λ′(n, 2k − n) > 0 for all

k ∈ [Kn, n− Ln].

Note that, it is impossible for people to go to even position with odd steps, so the occupied

positions do not form an interval. In this case, we only can say that all occupied positions are

a.s. eventually contained in the interval [2Kn − n, n− 2Ln].

28



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202100827

Bibliography

[1] John D Biggins. Martingale convergence in the branching random walk. Journal of Applied

Probability, pages 25–37, 1977.

[2] John D Biggins. Growth rates in the branching random walk. Zeitschrift für

Wahrscheinlichkeitstheorie und Verwandte Gebiete, pages 17–34, 1979.

[3] John D Biggins. Uniform convergence of martingales in the branching random walk. The

Annals of Probability, pages 137–151, 1992.

[4] Maury D Bramson. Minimal displacement of branching random walk. Zeitschrift für

Wahrscheinlichkeitstheorie und verwandte Gebiete, pages 89–108, 1978.

[5] Frederik Michel Dekking and Bernard Host. Limit distributions for minimal displacement

of branching random walks. Probability theory and related fields, pages 403–426, 1991.

[6] Karl Grill. The range of simple branching random walk. Statistics & probability letters,

pages 213–218, 1996.

[7] Theodore Edward Harris et al. The theory of branching processes, volume 6. Springer

Berlin, 1963.

[8] Torrey Johnson. On the support of the simple branching random walk. Statistics &

Probability Letters, pages 107–109, 2014.

29


	致謝
	中文摘要
	Abstract
	Contents
	List of Figures
	Preliminary
	Introduction
	Galton-Watson branching process
	Model setting
	Classial results

	Branching random walk
	Model setting


	Properties on local population
	Local extinction probabilities
	Population at extreme points

	Main results on occupied positions
	Main theorems
	Proofs of main theorems

	Bibliography

