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Abstract

We consider a Galton-Watson branching process in which each individual
performs an asymmetric random walk on the real line and record the positions of
all individuals in each generation. In this thesis, we show that the set of occupied
positions is eventually an interval.

keywords: branching random walk, Galton-Watson process, random walk
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Chapter 1

Preliminary

1.1 Introduction

The concept of branching processes was formulated by Francis Galton in late nineteenth
century. The motivation of his research came from the observation of the extinction of certain
European nobility compared to the rapid growth of the overall population. He Posted this
extinction problem in the Educational Times in 1874 and Henry William Watson replied with a
solution (see Harris [7]). Seneta and Heyde pointed out that the French mathematician Bienayme
had proposed basically the same model several years ago.

Since the creation of Galton and Watson’s model (called the Galton-Watson branching
process), it had been neglected for many years. After 1940, people’s interest in this model
increased because of the analogy between the population growth and nuclear chain reactions
and also because of people being more and more interested in the application of probability
theory. Since then, branching processes have been considered to be suitable probability models
used to describe the behavior of systems whose individuals reproduce, are transformed, and die.
Now, this theory is an active and interesting research field.

There are many studies on branching process and one of them is the study of branching
random walks, which combines the concepts of branching process and random walk. (see
Biggins [1] [2] [3], Bramson [4], Dekking [5]). Grill [6] raised the question of the range of
branching random walk. He considered the symmetric simple branching random walk in which
each individual, as it is created, may move a unit to right or remain in the same place with

probability of one-half and showed that the set of occupied points is eventually an interval. In
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addition, he gave a limit law of the number of individuals in the position close to the border of the
set of occupied positions. Later on Johnson [8] worked on the similar problem with asymmetric
movement. But, in his paper, he considered the case that each individual only had a deterministic
constant number of children.

In this thesis, we are asking the same question for Galton-Watson branching processes when
offspring distribution is no longer deterministic equipped with asymmetric random walks.

In the next sections of this chapter, we review the definitions and basic results of Galton-
Watson branching process (Section 1.2) and branching random walk (Section 1.3)

In Chapter 2, we investigate the local population and study the probability of extinction at
the position £ and the properties about the population at two extreme positions, 0 and n, in the
n-th generation.

In Chapter 3, we present our main results on the occupied positions and provide the proofs

for our main results.

1.2 Galton-Watson branching process

A Galton-Watson branching process is a stochastic process often interpreted as the
population size. Usually we assume that this population starts with one ancestor. Each individual
lives a unit of time and produces its offsprings when it dies according to the probability
distribution{ 7 }x>0. The reproduction of each individual is assumed to be independent of that

of others.

1.2.1 Model setting

Let {Z,, },>0 be a Galton-Watson branching process, where Z,, is the number of individuals
in the n-th generation and Z, = 1.

Let §§") be the random variable denoting the number of children of the i-th individual in
n-th generation.

Assume that {61(") :n > 0,7 > 1} are i.i.d. random variables with the probability

distribution {my }, where { 7} is called the offspring distribution and
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means the probability of having k£ offsprings.
Then the total number of individuals in the (n + 1)-th generation is the sum of fi(”) ’s, which

means

Zn L (n)

Clearly, Z; = 550).

Moreover, if T denotes the family tree generated by the above way, each individual in T
can be labeled by i = (49,41, ..., i), Which means that it is in the n-th generation and is the 7,,-th
child of the individual i/ = (0,1, ..., in—1) of the (n — 1)-generation. Here we denote the initial
ancestor by (7o), where ig = 1.

Ifi = (ig, 41, ..., in), define |i] = n, i.e the generation number of i.

In order to analyze the process, we introduce the probability generating function of the

offspring distribution. Let

F(2) = E(z%) = 5 mp2”
k=0
be the probability generating function of 2.
Let
m = F/(l) = Zkﬂ'k
k=0

be the offspring mean.

1.2.2 Classial results

First, from the definition of F as a power series with nonnegtiove coefficients {7} adding
to 1 we have the following properties.

1. F is strictly convex and increasing in [0, 1].

2. F(0) =m; F(1) = 1.

3.1fm < 1,then F(t) >t fort € [0, 1).

4. If m > 1, then F'(t) = t has a unique solution in [0, 1).

Let ¢, be the smallest solution of F'(t) = t for ¢t € [0, 1] (Figure 1.1). Then we have the

following lemmas.
Lemma 1.2.1. Ifm < 1 then q., = 1, if m > 1 then q., < 1. Moreover, q., is the extinction
3
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probability of the branching process {Z,,}, i.e. e = P(Z,, = 0 for somen > 1).

Lemma 1.2.2. Let F" be the n-th iteration of F), i.e.,
Fl(z) =z Fiz)=F(z), F"(2)=F(F"(2)).

Ift €10, gex), then F™(t) is increasing to qe, as n — oo.
Ift € (Qes, 1), then F™(t) is decreasing to qe, as n — oo.

Ift = qe, or 1, F"(t) =t for all n.

We have further discussions on the upper and lower bounds of F* in Section 2.2 .

1.3 Branching random walk

The one dimentional branching random walk is a branching process equipped a movement

structure.

1.3.1 Model setting

Let {Z,, } be a Galton-Watson branching process with offspring distribution {7} and Z, =
1, then we impose a random walk to the Galton-Watson branching process {Z,, }.
Assume the initial ancestor (ig) is placed at 0 in the real line, and upon its death, it gives

birth to a random number Z; children according to {7}, then the j-th child (1, j) among those

F(z)

0 qex l 0 l
@m>1 b)ym<1

Figure 1.1: The probability generating function
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Zy children moves away from the position of (iy) with movement Xy ;), where {X; ;) : 1 <
j < Z;} are i.i.d random variables in R.

Similarly, for each individual 7, it gives birth according to {m,} when it dies, and then its
child 7 moves away from the position of ¢ with movement X;.

We assume that {X:}- are i.i.d., i.e., the movements of all individuals in the branching
random walk are i.i.d., and the movements are independent of the reproduction of the branching
process.

Let S; be the position of individual i,and S, = {S:: |f7| = n} be the position chart of the
individuals in the n-th generation, i.e. it is the set of occupied sites on the real line. Moreover,
S:= S + X, where 7 is the parent of .

The sequence of random vectors {(Z,,S,)}.>0 is called a branching random walk with
offspring distribution {7 } x> and the movement distribution {ry } ez, where r, = P(X; = k),
keZ.

In this thesis, we assume that, for each individual 7, the movement X; has distribution
{7k }e=o0

v, itk =1

q, ifk=0

where 0 < p,g < landp+q =1.
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Chapter 2

Properties on local population

Throughout this thesis, we shall always assume that
E(Z)=m>1

to avoid the trivial result. Otherwise the process must be extinct with probability 1.

2.1 Local extinction probabilities

First of all, we concentrate on the number of individuals at each posotion, and the
probability that no individual lies at the positions which are less than or equal to k.
Let A(n, k) be the number of individuals in the position k£ at time n (i.e. in the n-th
generation).
Let G, 1(2) = E(2)™*)) denote the generating function of A(n, k).
Let
Dok = P(A(n, k) =0)

be the probability that no one in the n-th generation is in the position &.
Let

be the probability that no one in the n-th generation is in the position less than or equal to k.

Note that p, _; = 1 forall n = 1,2, ..., we obtain the following recursion for p;, ;.
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Lemma 2.1.1. Foralln > 1, k=0,1,....,n, we have

Pk = F(qPn-1k + PPn-14-1)-

Proof. Let /\~j (n, k) be the number of offsprings in the n-th generation of the j-th individual in
the 1st generation whose position is k. Then

Z1

An,k) =Y X(n, k)

J=1

and hence
o

Goi(z) = B(zM0) = Bz k)
Due to the reproductive structure of the Golton-Watson branching process, we have that,
conditioned on 7, the random variables {\;(n,k) : j = 1,..,7Z;} are independent and

independent of Z;. So, by the law of total expectation, we have

Z1 .
> Aj(nk)
Ghi(2) = E(E(z= 1Z1))

Z .
= E([] B(z%0""]21))
j=1

Al £
= BT BGMO)),
j=1
Also, we know that, conditioned on 7, {S\j(n,k) © j = 1,..,7Z,} are identically

distributed, so we have

Gon(z) = B[] B0,

Now, note that the 1st individual in the 1st generation only can move to 1 or stay at 0.
Therefore, conditioned on its movement X 1), it follows that
VA

Guir(z) = E(]] [B(NP| X1 = 0)P(X(11) = 0)

J=1

—|—E(Z>‘~1(n’k)’X(1,l) = 1)P(X(1,1) = 1)})
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Since, conditioned on X ;1) = 0, A (n, k) has the same distribution as A(n — 1, k), and,

conditioned on X(; 1) = 1, A1(n, k) has the same distribution as A(n — 1, k — 1), we have

Z1

G i(2) = B(J[IEE")g + B D))

Jj=1
Z1

_ E([[[Gra14(2)q + G ia(2)p])

j=1

= E([Gnn(2)q + Gr1s1(2)p]?)
— F([qGp-11(2) + pGn_1x-1(2)]),

where F' is the probability generating function of 7.

Finally, we obtain

Pk = P(/\(n’ k) N 0) = Gn,k(o)
> F([aGn-1,(0) + pGr-1,4-1(0)])

= F(qpn-1% + pPn—1k-1)-

The next lemma is a recursive property for ¢, , with ¢, _; = 1, for all n.

Lemma 2.1.2. Foralln > 1, k=0,1,....,n, we have

Gnk = F(qGn-11+ Pln-14-1)-

Proof. Let Y (n, k) be the number of individuals in the n-th generation whose position is less
than or equal to k.

Let \;(n, k) be defined as given in the proof of Lemma 2.1.1. Then
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k
Yk = 3 Am)

= 2D M)

j=0 i=0
Zy ok ~
= > ) N(ny).

i=0 j=0

Let H,,;, = E(zY™")) be the probability generating function of Y (n, k), then

Hpx(2) = E(zY (k)
n BTk

By the law of total expectation, we have that

Hu(2) | = BEE=S=re9) )
— B[] B z,)
i=1
because Z; is o(Z;)-measurable and XZ are independent.
— E(ﬁ E(sz:o /\Q(nﬁj))),
i=1

by the independence between Xj(n, k) and 7.

Also, we know that \;(n, k) has the same distribution as \;(n, k), so we have

Z1 . '
Hyp(2) = E(H E(ZZ;?:O /\1(%]))).
i=1

Conditioned on the movement X, 1, by the law of total probability, it follows that

A
k ~ .
Ho(z) = E(]] [E(2>=0MD) | X () 1) = 0)P(X(1,1) = 0)

roe
+E(Z2j:o/\1(”’ﬂ)|X(171) =1)P(Xu1 = 1))).
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Since, conditioned on X(; 1) = 0, Zf:o A1 (n, §) has the same distrinbution as Z?:o A(n—
1,7), and conditioned on X(; 1y = 1, Z?:o A1(n, j) has the same distribution as Zf;é A(n —

1,7), we have

VA

Huz) = BE([IBEE=1) 4 BEE=01)y)
= B g+ By
= E(H[Hn_l,k(z)q + Hyo16-1(2)p))

- E(Hp11(2)q+ Hy16-1(2)p)?)

= F(qHp—14(2) +pHp1 5-1(2)).
Then, we have that

An,k = P(Y(n7 k) N 0) = Hn,k<0>
= F([anfl,k(O) + panl,kfl(())])

S F(qqn—11 + DGn-1j-1)-

]

Now we discuss the monotonicity of g, , and p,, . Because each individual can only stay
or move to the right, it is clear that if no individual is located at position less than or eqaul to
k, then no one can go back to there. So, for a fixed k, that A\(n, j) = 0, for all j < k, implies
A(n+1,7) =0, forall j <k, and it means

Gk = P(A(n,7) =0Vj <k)<PAn+1,7) =0V <k)=qui1k-

Moreover, for a fixed n, that A(n, j) = 0, for all 7 < k + 1, implies A(n,j) = 0, for all j < k,
)

Therefore, g, 1s decreasing in £ and increasing in n.

On the other hand, Lemma 2.1.3 tells the behavior of p,, ;; as a function of n.

10
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Lemma 2.1.3. For each k, Iny(k) € Ny s.t. for n > ny(k), pnx is monotone as a function of n.

Proof. We prove it by induction on k. First, for £ = 0,

Pno = P()‘(nv O) = O) = qn,0

and hence it is increasing as n increases. So, for k = 0, n(0) = 0.

Suppose that it holds for £ = m, i.e. Ing(m) € Ny s.t. for n > ng(m), py,» is monotone
as a function of n.

For k = m + 1, since p,, ,,, is monotone for n > ny(m), we assume that p,, ,,, is increasing
as a function of n, Vn > ng(m).

There are two cases:
Casel: If there exists ng(m + 1) > ng(m) s.t. Dug(mr1)+1,m+1 = Pro(m+1),m+1, then by the

recursion of p,, ., we have the following:

Pro(m+1)+1,m+1 = F(qpno(m+1),m+1 + ppno(m+1),m)

DPno(m+1)+2,m+1 = F(qPno(m+1)+1,m+1 + PPro(m+1)41,m)

Since ng(m + 1) > ng(m), by the induction hypothesis, P, (m-+1)+1,m = Pno(m+1),m- SO,

qPno(m~+1)+1,m+1 +ppn0(m+1)+1,m > qPno(m+1),m+1 +ppno(m+1),m

and, since F is increasing, we get

Pro(m+1)+2,m+1 > Pro(m+1)+1,m+1-

Repeated the same procedure, we can have

Pno(m+1)4+3,m+1 = F(qpno(m+1)+2,m+1 + ppno(m+1)+2,m)

v

F(qPng(m+1)+1,m+1 + PPro(m+1)+1,m)

- pno(m+1)+2,m+1

11
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and so on.

Therefore, we can conclude that

Prtlm4l = Pnms1, VN > ng(m+1).

Case2: If there is no such an ng(m + 1) as required in Case 1, then it means that p,, ,,, 1 is
decreasing for all n > ny(m). In this case, we set ng(m + 1) = no(m).

In either case, we prove that p,, ,,+1 is monotone for all n > ng(m + 1).

By the similarly arguments, we can also obtain the result that there exists ng(m + 1) s.t.
Pn.m+1 1s monotone for n > ny(m+ 1) when p,, ,,, is decreasing as a function of n, Vn > ng(m).

Therefore, by induction, we proved that for each &, Ing(k) € Ny s.t. for n > no(k), prnx

is monotone as a function of n. ]

From the lemma above, we have that, for each fixed k, p, and g, are eventually

monotone as function of n, so the limits

n—oo
and

qr = lim qn,k

n—oo

both exsit. Moreover, because F is continuous, they also satisfy the recursions
pr = F(qpx + ppr-1)

@ = F(qqr + par—1),

where p_; = ¢_; = 1. In addition, due to the fact that p,, o = g, for all n, we have that py = go
and hence p; = ¢, for all k.
Next, we consider the leftmost and rightmost occupied position in n-th generation. Let
K, =inf{k : A\(n, k) > 0}

L, =inf{j: AX(n,n —j) > 0},

12
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then the distribution of K, can be found as

P(K, > k) = P(inf{k : A\(n, k) > 0} > k)

= P(A(n,j) =0, Vj <k)

= dnk-
Furthermore, by monotonicity of K,
K= 1lm K,
n—0o0
exists and

2.2 Population at extreme points

In this section, we present the results on the limit behavior of the occupied positions. First
of all, we would like to consider the population at two extreme points, 0 and n, in the n-th
generation.

Recall that A(n, 0) is the number of individuals in the n-th generation whose positions are
0, and A(n, n) is the number of individuals in the n-th generation whose positions are n. Also,
note that the extinction probability of a Galton-Watson branching process { Z,, } is the probability
of the event {Z,, = 0, for some n}.

The following lemma gives the distributions of the processes, { A(n, 0) },,>0 and {\(n, n) },,>0.

Lemma 2.2.1. The processes {\(n,0)}n>0 and {\(n,n) },>o are two Galton-Watson branching

processes, with the offspring probability generating functions ¢,(z) = F(qz + p) and g2(z) =

F(pz + q), respectively. In addition, py = lim p, is the extinction probability of {\(n,0)}
n—o0

and pjy := lim p,, , is the extinction probability of {\(n,n)}.
n—oo

Proof. Because each individual can only go to the right by one step or stay at the same position,
only parents at the position 0 can reproduce the children at the position 0. Note that each child
stays at 0 with probability q.

Let 7" be the number of children of the i-th individual in the n-th generation located at 0.
13
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Let ﬁ§") be the number of children of the ¢-th individual in the n-th generation located at 0
whose position is 0.

Then, forall j =0,1,2, ...

which is independent of n and .

So, {ﬁf")}m are i.i.d. and

A(n+1,0) % the number of individuals in the (n + 1)-th generation
whose position is 0
= the number of children of individuals in the n-th generation

located at O whose position is 0
A(n,0)

— Z A,

i=1

So, {A(n,0)},>0 is a Galton-Watson branching process with A(0,0) = 1 and offspring

distribution {7; } ;0.

2(0,0)
Also, A\(1,0) = ; ﬁi(o) = ﬁ%o) has distribution{7; };>o.
Now, let gi(z) = E(z*9) be the probability generating function of the process

14
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{)\(n, 0) }nZO- Then

91(2)

k=0 7=0

> milgz +p)*
k=0

F(qz+p).

J
00 k
Z Tk Z (’;) ¢’p" 727, by Tonelli’s theorem

So, we can treat {\(n,0)},,>0, as a branching process with probability generating function

F(qz + p).

Similarly, we can show that {\(n,n)},>0 is a Galton-Watson branching process. To

determine the offspring distribution for A(n,n), the construction tells us that, if individual i

m = n, is in the position n, then its parent must be in the position n — 1 and it goes to the

position n with probability p. So,

PO =) =3 m(pe .

Let go(2) = E(2*™™). Similarly to the argument of ¢, we have g2(2) = F(pz + q) is the

generatin function of the branching process { (1, 1) },,>0.

And, since each individual can only move to the right or stay in the same position, A\(n,0) =

0 implies A(n + 1,0) = 0. So, {\(n,0) = 0},,>¢ is increasing as n is increasing.

Then the extinction probability of the branching process {A(n,0) = 0},,> is

P(\(n,0) = 0 for some n)

= P(J{®n,0)=0})

= lim P(A(n,0) = 0), by the contiuity from above

n—o00
= lim Pn,o
n—oo

= Po-

15
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Simlarly, we can prove that p, := lim p,, is the extinction probability of the branching
n—oo
process {A(n, 1) } >0
Note that Z,, = 0 implies A(n, k) = 0 for all k&, so P(Z,, = 0) < P(A(n,0) = 0) for all n

and hence py = qo > Qes- ]
Lemma 2.2.2. Forall k, F*(qy) < qep +75, where v3 = (F(q0) — qez) /(G0 — Gex ), and vz < 1.

Proof. Because '*(qp) is decreasing in k, and F is convex (Figure 2.1), the slopes of the secant

lines of F' satisfy the inequality

(F’“ (@) = Fger) _ F(F**(q0)) = F(ger)
1( ) — Gex - Fk*2(Q0) — Gex ’

where ¢., = F(q..) and hence

Fk(qO) ME Fk(Qex) - Fk(q()) — (e < F(qO) — Gex
Fk_l(qO) - Fk_l(QG:L‘) Fk_l(QO) — Gex o qo — Gex

(@)

Figure 2.1: F*(qp)

16

DOI:10.6814/NCCU202100827



So,

F(qo0) — F(qea)

Fk(QO) — (ex S (Fk_l(%) - Qez>
4o — Qex
= Y3(F* " (q0) — Gex)
< B (F*(q0) = Gea)
<
< Y5 (g0 — Gex)
< Vs

And as shown in Figure 2.1, because F'(z) is convex and increasing to 1 as z is increasing

to 1, the slope of secant line (F(qo) — ex)/(Go — Gew) = 73 is smaller than 1.

Lemma 2.2.3. If0 < qes, then F"(0) > e — 7Y, for all n, where vy = (Ger —

Yq < 1.

Proof. *.- F™(0) is increasing in n, and F' is convex.

F"(Gex) = F"(0) —_ F™(0) —qew _ Gea — F(0)
So,
ex F(0 S

Fn<0) — Gex > 4 q ( )(F 1(0) 7 Qem)
Vi 74(Fn71(0) - Qex)
> Y (F"2(0) = gea)
>
Z ’YZ(O - Qem)
> =74

Then , we have

Fn(o) Z Gex _’72

]

F(0))/qex and

Remark 2.2.4. For the Galton-Watson branching process { Z,, }n>o, if 1o > 0, then g, > 0.

17
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Chapter 3

Main results on occupied positions

3.1 Main theorems

In this section, we present the main results in this thesis. That is, under some proper
assumptions on the probability generating functions g, and g, of { \(n, 0) },,>0 and {\(n, n) }.,>0,
respectively, we can prove that the occupied positions eventually form an interval on the real
line.

Recall the following notations:
K, = inf{k : A(n,k) >0}, L, =inf{j: A(n,n—j) > 0},

K=1lm K,,and L = lim L,,.

n—00 n—oo

/

Theorem 3.1.1. Suppose ¢}(po) < q/p and g4(py) < p/q Then, almost surely, eventually,
{k:Xn,k) >0} = [K,,n— L]

Remark 3.1.2. Because K, and K take only integer values, we have K, = K eventually with
probability 1. Similarly, L,, = L eventually with probability 1.

So, our main result can be written as [K,n — L] is eventully occupied a.s..

3.2 Proofs of main theorems

In order to prove Theorem 3.1.1, we need the following lemmas.
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Lemma 3.2.1. Vp € (0,1), ifp > q > pF(p) orq > p > qF(q), then¥n > 2, 3k,, 0 < k, <n

such that pno > Dng > oo > Ppgn < oo < Pun—1 < Dnn and k, is increasing as n is

increasing.

Proof. We prove it by induction on n. First of all, for n = 2 by Lemma 2.1.1, we have

D00 = P(A(0,0) =0) = 0,because A\(0,0) = Zy =1
P10 = F(qpoo + ppo,-1) = F(p)

pL1 = F(gpo + ppoo) = F(q)

P2,0 = F(gpio +pp1,-1) = F(gF(p) + p)

2% = Flgpi1 +ppio) = F(qF(q) + pF(p))

P22 = F(gpiz +pp11) = Fq +pF(q)).

Suppose p > g > pF(p). Since F(z) < 1 forall z € [0, 1] and F is increasing function,
qF'(p) +p = qF(q) + pF(p), then pog = F(qF(p) +p) > F(qF(q) + pF(p)) = p21. And
by assumption ¢ > pF'(p), we have ¢ + pF(q) > pF(p) + qF(q), s0 p22 = F(q + pF(q)) >
F(qF(q) + pF(p)) = p2.1. Combining the above two inequalities together gives us that

D20 = P21 < Po2

which means it holds for n = 2, and ky = 1.

Similarly, if ¢ > p > ¢F(q), we have ¢ > ¢F(p) and F(q) > F(p). So prs = F(q +
pF(q)) > F(qF(q) + pF(p)) = p21. And by assumption ¢ > p > ¢F(q), we have pyy =
F(qF(p) + p) > F(pF(p) + qF(q)) = p2.1. Combining the above two inequalities together
also gives us that py g > pa1 < pao.

Suppose that it holds for n > 2.

19
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Then, forn + 1,

Pnt1,0 = F(qpno + ppn,—1)
Pnt1,1 = F(qpni1 + ppno)
Pn+1,kp—1 - F(qpn,k;n—l +ppn,kn—2)
D1,k = F(qpn g, + PPrjn—1)-

By induction hypothesis, we get qp, o0 + PPn,—1 = qPno + P = qPn1 + PPno = o =

4Dnkp—1 + PPrkn—2 = qPnk, + DPnk,—1. Since F is increasing, we have

Pn+1,0 > Pn+11 > .z Pnii.k, > P41k, -

On the other hand,
Prtintl = F(qpn 1 + pPnn)
Prn+in 3 F(qpn,n + ppn,n—l)
D1,k +2 = F(qpnkp+2 + PPnjey+1)
D1 kn+1 = F(qpnkp+1 + PPuk,)

SimﬂarlYa by indUCtion hypothesis, we get qpn,n—H +ppn,n =dq +ppn,n 2 qpn,n +ppn,n—1 2

s 2 qDnkp+2 T PP+l T PPrkn—2 = qPnkn+1 + DPnk,, hence

Prntintl = Pntln = oo = Prtlkn+2 = Dol kn1-

Now, we compare p, 1k, and ppi1 k.11

prn+1,kn 2 Pt kn+1 then

Pn+1,0 = - = Prtlkn = Prtlkntl < Pntlhnt2 S oo < Dnglntd-
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So, we set k,, 1 = k, + 1.

Otherwise, if ppy1k, < Pn+tik,+1, then

Pnt1,0 = oo = Prtlkn—1 = Prntlhn < Pntlknt+l < oo < Ppglntl

and set k.1 = k.

In either case, we can conclude that there exists &,, such that

Pni1,0 2 Pl = oo = Pnglknss < oo S Pntln S Potlntl

and clearly k11 > k.

Therefore, by induction, we get Vn > 2, pp,o > pp1 > oo = Pk < oo < P11 < Dnms

and k,, is increasing as 7 is increasing. [l

Lemma 3.2.2. Forany 6 € (0,1), 3 € (0,3), and v € (0,1) such that, for large n, and

0 < k < an, we have (2)9””“ <~7.

Proof. First, we know, for 0 < k < an < %n,

()= (L) = (g )

Also, for large n, by Stirling formula, we have

n o n!
<M”1) N [an]!(n — [an])!
a2y
V2ran(82)en/2mn — an (L= )n-on
1 1

V2r( — aan (a*(1 — a)d-a)

Q

Claim: oo — lasa — 0+.

N S
a®(l—a)

By the facts that log x is a continuous function at 1 and
lim loga® = lim aloga =0,
a—0+

a—0+

21

DOI:10.6814/NCCU202100827



we have

a® = lasa— 0+

and hense

a®(1—a)¥% 51 as a—0+.

Then we get — o — lasa — 0+.

1
(1-a)
Since 0 < 0 < 1,6~2 > 1 and hence &~ — 1 > 0. So, for any € € (0,6*% — 1), we have

that

0<(1+e)b2 <1

and 36 > 0s.t. Va € (0,6), =7 < L + €.

a®(l—a)

Therefore, for any given 6 € (0,1), for any ¢ € (0,672 —1), 30 > 0 and 3y, € ((1 +
€)02,1) s.t. Yo € (0, min{L,d})

N2 22 1
g1« = g3 a®(1 —a)d-)"

Therefore we can find v, < 1 s.t. (502) > ( ! ).

a%(1—a)(1-o)

Then, for large n

72 \n 1 " !
> /
(g(l_a)) = <aa<1 — a)(l_a)) 271'(]_ — Oé)Oén

()2 (1)

Note that g; and g, are probability generating functions and p, and p{ are extinction

So, for large n

n

Y2

Y

]

probabilities of {A\(n,0)} and {\(n,n)}, respectively.

Lemma 3.2.3. Suppose g, (po) < q/p and g(p}) < p/q, then 30 < p < 1 and a constant C s.t.
forn>20<k<k,

Pnk — dnk S Cpnu

where k,, is defined as in Lemma 3.2.1.
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Proof. Let

dn,k: = Pn,k — dnk-

Fork =0, d,0 = pno — qno = 0, and by the basic recursion,

dn+1,k = Prn+1k — Gn+1k
= F(qpns + pPng—1) — F(q@nx + PGnj—1)

= F'(2)(qdnx + pdyk—1), by the mean value theorem,

where qqn . + Pank-1 < 2 < qPug + PPpg-1-
Because p,, , 1s decreasing in k, VO < k < k,, and p,, ¢ 1s increasing in n, we have, for any

0<k<ky,,
2 < qPnjk + PPak-1 S qPuo + P < g M pro +p < gpo +p.
Also, F'(z) is increasing function for positive z, so we get that
dni1k < F'(qpo + p)(qdn g + pdp 1) < max{p, g} F'(qpo + p)(dnk — dnp—1)-
Similarly, for &, +1 < k < n,
2 < qPok + PPug-1 < q+PPun < q+p M poy < g+ ppy
and hence
dns1e < F'(q+ ppo) (qdn i + pdng—1) < max{p, ¢} F'(q + ppo)(dnse — dyj—1)-

Note that, since p, and pj, are the extionction probabilities and g; and ¢, are the probability

generating functions for {\(n,0)} and {\(n,n)}, respectively, we know that ¢](py) < 1 and

ga(pp) < 1.
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By assumptions and the fact that ¢} (z) = ¢F"(qz + p) and ¢5(z) = pF'(pz + q) , we have

0<m = max{p, ¢} max{F'(qpo + p), F'(ppy, + q)}
91 (po) gé(p{))} <1
q

= max{p, ¢} max{

)

p

Then we get that, for all £ < n,

For k = n+ 1, itis clear that d,, 11 j11 = Prrigs1 — Qnitprr < 1= (nJrl y

dn+1,k S 71 (qdn,k +pdn,k71)-

Next, we show the following:

doi < (Z)ﬁ’f, Vk <n, Vn.

We prove this inequality by induction on 7.
For n = 0, we know that do , = por — qox = 0.
Suppose d,x < (7)1 "

For n + 1, by the above argument, we have, for 0 < k < n,

IA

dpt1,k Y1 (qdn i + pdy g—1)

VAN
[
=)
—~
<)
Ry
> 3
S~
2
=5
Al
e
]
N
k.
[S—
~__
D)
=3
=
t

[\ [\ [
) ) )
—3 —3 —
| ORI
Bl Pl
¥ +
P C
A/ =
> 3
> 3
\I/\_/
_I_
/_\ﬁ
>
N
| 3 T
— |
~__
\_/}_‘
~

n+1) £n+1)7(n+1)'

So, by induction, we have d,, , < (Z)y?’k, Vk <n, Vn.

Then, by Lemma 3.2.2, we can find 0 < oy < 1/2, 99 < 1, and ng > 1, for all n > ng and

k < agn,

n n— n
dn,k S (k_>71 F S Yo -
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Now, consider for small n with n < ng, and take ay = n—lo, then k£ < nﬂo <1l,ie, k=0,

n n— n
dn,O S (0>71 0= 715

i.e., in this case, we can take v = 1.

and,

Leta = min{nl—o, oy} and v = max{vy,y2}. Thus, we find « > 0 and v < 1s.t. forall n
and for k£ < an, we have

dn,k S 7”

We also need to take care the case when an < k,,. For an < k < k,, we first compute the

upper bound of p,, j, and lower bound of ¢,, ;.

Prk = E(qpn—1, + PPn—1,4-1)
< F(pn-1-1), because p, k. is decreasing in k for k < k,,
< F*(pu—1p)
< F*(qo), because p,, o = qno is increasing in n and gy = nlggo In.0-

So, by Lemma 2.2.2, we have, for k > an,

Pn.k S Gex +7§ S Gex + "Y??m

By the similar way, we can get lower bound of g, .

Qn = F(qqn—1 + Pgn-1k-1)
> F(gn-1), because ¢, , is decreasing in k
> F™(qo.r)
= F™(0).

So, according whether the value of F'(0) is 0 or not, we have two cases.

If F(0) > 0, then ¢., > 0 and by Lemma 2.2.3, we have that ¢,, , > g... — 7;. Because F’
is convex, the slope of secant line (g., — £'(0))/ge. = 74 is smaller than 1, then p,,  — ¢y <
V5" + % <95 + s Let p = max{v,75, 1}, and C = 2.

On the other hand, if F(0) = my = 0, then ¢., = 0 and the lemma is also true when
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p = max{vy, 75}, that is, in this case, ¢, > F™(0) = 0 with v, = 0.

Summarizing the above, we get, for all k£ < k,,, there are constant C'and 0 < p < 1, s.t.

Pnk — dnk S Cpn

Now, we are ready to prove our main result, Theorem 3.1.1.

Recall that K, = inf{k : A(n, k) > 0}.

First, we prove the claim that 3K, < k < k,, s.t. A(n, k) = 0ifandonly if 30 < k < k,,
s.t. A(n, k) =0, AM(n,k —1) > 0.
(=) Suppose 3K, < k < k, : AX(n,k) = 0. Because K,, = inf{k : \(n,k) > 0}, by the
well-ordering principle, there exists a smallest number between K, and k,,, denote it by k, then
0<k<kyAn,k)=0,A(n,k—1)>0.
(<=)We prove it by contradiction. Suppose that VK, < k < k, : A(n,k) > 0, then, by
definition of K, A(n, k) = 0 for all k < K,. So, it is clear that there is no such 0 < k < k,, s.t.
A(n, k) =0, A(n,k — 1) > 0.

So, the claim holds.

Now, let A, = {IK,, < k < k,, : M(n, k) = 0}.

Then
P(A,) = P3K, <k <k,:An,k)=0)
= P(E0 <k <k,:An,k)=0, A(n,k—1) >0)
kn
< P(lJ{A k) = 0)} = {A(n,j) = 0,V) < k}))
k=0
k/'n
< Z(pn,k - qn,k)
k=0
< Cnp", by Lemma 3.2.3.
Then
ZP(An) < ZCnp" < 00.
n=0 n=0
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Thus, by Borel-Cantelli lemma, P(A,, i.0.) = 0, i.e., [K,,, k,] is a.s. eventully occupied.
Finally, we will show that the interval [k,,n — L,] is also a.s. eventually occupied.

Consider another branching random walk {(Z}, S*) },,>0, where Z* = Z,, for the branching

n? n
structure and for each individual 7 in {(Z7, S%) },,>0, the movement X:=1-X; So,if i| = n,

n=n

then we have

S;:n—S;.

Therefore, foreachn > 0and £ =0,1,2, ..., n,

A (n, k) = the number of individuals in the n-th generation of {(Z,S*)},>¢ at position k&
= An,n — k).
Hence,
L, = inf{j : A(n,n —j) > 0}

= inf{j : \*(n,j) >0} = K
and

Pk = P(X(n, k) = 0)
= P(A(n,n —k) =0)

~ Pnn—k-

So, by reversing the role of p and ¢ and by the similar lines of proofs, we have that there
exists a increasing sequence {k },>¢ s.t. the interval K, kY| is a.s. eventually occupied by
individuals in {(Z}, S})}n>0 and k& = n — k,,.

n=n

Since

B, = {3k € [kn,n — L], A(n, k) = 0}
— {3k sit. n—k € [Lp,n — k], A\(n, k) =0}
— {35 € [K;,, k), Mn, §) = 0}

n»''n

A
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It is clear, by the previous arguments, that P(A¥ i.0.) = 0.
So, P(B,, i.0.)=0,1i.e., [k,,n — L,]|is a.s. eventually occupied.
Therefore, we conclude that [K,,,n — L,] is a.s. eventually occupied and the proof of

Theorem 3.1.1 is complete.

Remark 3.2.4. If we consider the branching random walk in which each individual has
probability p to go the right by one step and, instead of staying in the same position, it has

probability q to go to the left by one step, then we can get a similar result. In this case, we let

ifX;=1

1, ifX:=0

and recall that X; is the movement of i and Sz is the position of i in the branching random walk
{(Z},8;) }n>o defined for Theorem 3.1.1. Let N (n, k) be the number of individuals in position

k at time n, and SEC be the position of iin the branching random walk with movement {Y;}. Then

S% =2k — n if and only if S; = k. So,
N (n, 2k —n) = X(n, k).

Thus, Theorem3.1.1 implies that, in this branching random walk, N (n,2k — n) > 0 for all
k€ [Kn,n— Ly

Note that, it is impossible for people to go to even position with odd steps, so the occupied
positions do not form an interval. In this case, we only can say that all occupied positions are

a.s. eventually contained in the interval [2K,, — n,n — 2L,].
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