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中文摘要

該研究的目的是對股票的資料進行分類，以判斷在一段時間內的資料

為函數行為或隨機噪音。為了訓練該模型什麼是函數行為和什麼是隨機噪

音，我們用三種數學模型對股票資料進行了模擬，並利用訊號處理的技巧

從真實股票資料中找出建立數學模型所需要的參數。我們使用支持向量機

（SVM）和具有長期短期記憶（LSTM）的深度學習模型進行分類。我們的

結果表明，由我們的模擬數據訓練的模型使用在實際數據的預測結果，在

顯著水準 α = 0.05下，我們的分類在統計上有顯著差異。

關鍵字：預測模型、類神經網路、長短期記憶模型、機器學習、支持向量

機、總體經驗模態分解
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Abstract

The purpose of the study was to classify the stock price as functional behavior

or random noise in a fixed period. We simulated the data with three kinds of

mathematics models to train the model what is functional behavior or random

noise. The parameter of mathematics models calculated by the technique of signal

processing, such as EEMD.We use the support vector machine(SVM) and the deep

learning model with long short­term memory(LSTM) to classification. Our results

showed that our model trained by our simulated data used prediction results based

on actual data, which are statistically significantly different at the significance level

α = 0.05 for our classification.

Keywords: Forecastingmodel, Artificial Neural Network, Long­short termmemory,

Machine learning, Support vector machine, EEMD

iii



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202100699

Contents

致謝 i

中文摘要 ii

Abstract iii

Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1

2 Support Vector Machine 3

2.1 Hard margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Soft margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 The Dual Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Kernel Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Deep Learning and Neural Networks 9

3.1 Neuron and Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Activation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Gradient Descent and Back­propagation . . . . . . . . . . . . . . . . . . . . . 14

3.4.1 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.2 Back­propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202100699

3.5 Overfitting, Dropout and Batch Normalization . . . . . . . . . . . . . . . . . . 17

3.5.1 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.2 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5.3 Batch Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Recurrent Neural Networks 21

4.1 Simple Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Long Short Term Memory(LSTM) . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Data Simulation 27

5.1 Seasonal Movement Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Exponential Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Polynominal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Experience and Results 32

6.1 Data Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Predicted Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2.1 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2.2 SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3 Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.4 Test on real world data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Conclusion and Discussion 39

Appendix A 40

Bibliography 41



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202100699

List of Tables

2.1 Common kernel in SVM model . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 The table of variable of RNN structure . . . . . . . . . . . . . . . . . . . . . . 22

4.2 The table of pros and cons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 The Variable in LSTM model . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 The Process of EMD Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 The parameter of Seasonal Movement Model . . . . . . . . . . . . . . . . . . 30

5.3 The parameter of Exponential Model . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 The parameter of Polynominal Model . . . . . . . . . . . . . . . . . . . . . . 31

6.1 Architecture of LSTM model . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Architecture of SVM model . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3 Results of LSTM for our simulation data . . . . . . . . . . . . . . . . . . . . . 35

6.4 Results of SVM for our simulation data . . . . . . . . . . . . . . . . . . . . . 36



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202100699

List of Figures

3.1 A neuron in neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 The structure of neural networks . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Sigmoid function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Hyperbolic tangent function . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 ReLu function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.6 pReLu function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.7 The structure of neural networks . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.8 The structure of neural networks with dropout . . . . . . . . . . . . . . . . . . 19

4.1 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 The structure of LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1 Different efficient on gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Relationship between days and accuracy . . . . . . . . . . . . . . . . . . . . . 37



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202100699

Chapter 1

Introduction

In this drastically changing financial market, it is necessary to grasp the rapidly changing

trends. Therefore, many participants in the financial market want to find ways to predict

the financial market. Machine learning and deep learning approaches achieve unprecedented

performance on a broad range of problems. A support vector machine (SVM) is a machine

learning model that uses classification algorithms in binary classification. Additionally, the

SVM regard as a convex optimization problem, which can find the best hyperplane to classify

the data. Sequential deep learning models such as Recurrence Neural Network (RNN) and Long

Short TermMemory (LSTM) have proven very powerful for time series data. They have a good

performance in the time series classification. In particular, we focus on how to predict the

random components in stock price.

According to the Holt and Winter procedure, which describes that the time series is

composed of three aspects: level, trend, and seasonality [4], we simulate the data to train the

model that can classify random components on the data. Using three types of mathematical

models, namely the level, trend, and seasonality, simulate the stock price data. Moreover, we

assume that the stock price is a type of signal, then the techniques of signal processing such as

EEMD and HHT to decomposition the information of stock and get the seasonal of stock’s price.

In this thesis, we build a suitable model to classify the stock’s price as function type or

random noise in a fixed period. We use SVM and several deep learning models based on LSTM

structure. To ensure the model structure, we use grid search and k­folds cross­validation to

tune the hyperparameter of the model. To evaluate our model performance, we use our trained

model to judge real­world data and use the statistical hypothesis test to prove the classification

1
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is efficient on statistics. If we know stock’s price is a function type, then we have lots of

mathematics model can help us to invest. In contrast, we do not do any operation in this period.

2
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Chapter 2

Support Vector Machine

Artificial intelligence(AI) is an approach to make a computer think like a human. The

ultimate goal is that the machine is capable of exhibiting intelligence that surpasses the brightest

humans. Machine learning(ML) is a subset of AI that uses mathematical analysis and algorithms

to solve the problem. It not only process data but also uses data for learning and makes analysis

results more accurate. More generally, learning techniques are data­driven methods combining

statistics, probability, and optimization. When the model finishes training, it can help us solve

the problem. We will discuss Support Vector Machine (SVM), which is the most efficient

classification algorithm in the forthcoming sections.

Consider an input space X that is a subspace of RN , N ≥ 1, and the output or

target space Y , and let f : X → Y be the target function. The training dataset S =

{(x1, y1), (x2, y2), . . . , (xm, ym)} ∈ (X ×Y )m. The learning problem is referred to as a binary

classification problem, so Y = {−1,+1}. We want to find the hyperplane that separates the

training sample into two categories of positively (i.e. yi = 1) and negatively labeled points (i.e.

yi = −1). Any hyperplane can be written as

w · x+ b = 0 (2.0.1)

where w = (w1, · · · , wm) ∈ Rm is normal vector to the hyperplane, and x =

(x1, · · · , xm) ∈ Rm is a vector of data points.

Define the geometric margin ρh(x) of a classifier h : x → w · x + b at a point x is its

3
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Euclidean distance to the hyperplane w · x+ b = 0;

ρh(x) =
|w · x+ b|

∥w∥2
(2.0.2)

The geometric margin ρh of a linear classifier h for a sample S is the minimum geometric

margin over the points in the sample, ρh = mini=1,...,m ρh(xi), that is the distance between the

closest sample points and the hyperplane of linear classifier h. The SVM solution is to find the

maximum margin hyperplane, which is the safest choice.

2.1 Hard margin

In this case, the training set is linearly separable if all the points can be perfectly separates

into two groups. The requirement can be stated

yi(w · xi + b) ≥ 0,∀i

We derive the equations and optimization problem that define the SVM solution

maximize
w,b

ρh

subject to yi(w · xi + b) ≥ ρh, i = 1, . . . ,m.

(2.1.1)

Observe that the equations is invariant to multiplication of (w, b) by a positive scalar. Thus,

we can restrict ourselves to pair (w, b) scaled such that yi(w · xi + b) ≥ 1,∀i. Furthermore, the

optimization problem becomes:

maximize
w,b

1

∥w∥

subject to yi(w · xi + b) ≥ 1, i = 1, . . . ,m.

(2.1.2)

Since maximizing 1
∥w∥ is equivalent to minimizing

1
2
∥w∥2 , the pair (w, b) returned by SVM

in the hard margin case is a solution of the following convex optimization problem:

minimize
w,b

1

2
∥w∥2

subject to yi(w · xi + b) ≥ 1, i = 1, . . . ,m.

(2.1.3)

4
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Note that the optimization problem of above promise the solution is exist and unique ,

because it is convex programming. It is an important property that does not hold for all other

learning algorithms.

2.2 Soft margin

In real world, the training data is usually not linearly separable and we relax some

constraints, which implies that for any hyperplane w · x+ b = 0 , for some xi ∈ S:

yi[w · xi + b] ≱ 1 (2.2.1)

Therefore, the constraints in above need to modify. A relaxed version of these constrained

is that for some ξi ≥ 0,∀i = 1, · · · ,m such that

yi [w · xi + b] ≥ 1− ξi (2.2.2)

The variable ξi are known as slack variable and are commonly used in optimization problem

to define relaxed versions of constraints. If a vector xi with ξi ⪈ 0, then xi can view as an outlier.

If we omit outliers, the training data is linearly separable.

Hence, we can defind the general optimization problem of SVM in the soft margin case

where the parameter C ≥ 0 determined the trade­off between margin­maximization and the

minimization of the slack variables
∑m

i=0 ξ
p
i . We also said that C is a scalar regularization

hyperparameter.

The soft­margin SVM problem is written as:

min
w,b,ξ

1

2
∥w∥2 + C

m∑
i=1

ξpi

subject to yi (w · xi + b) ≥ 1− ξi ∧ ξi ≥ 0,∀i,

(2.2.3)

where ξ = (ξ1, . . . , ξm)
T . The parameter C is called hyper­parameter, that is defined by

user not by algorithm, typically determined via n­folds cross validation. This problem is also

convex, so it have same good property as hard margin case.

5
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2.3 The Dual Optimization Problem

For simplicity, we discuss hard margin case. We introduce Lagrange variable αi ≥ 0, i =

1, . . . ,m, associated to the m constraints. Denote α = (α1, . . . , αm)
T . Therefore, our problem

can be defined as the following:

L(w, b,α) =
1

2
∥w∥2 −

m∑
i=1

αi[yi(w · xi + b)− 1] (2.3.1)

where w ∈ Rn, b ∈ R, and α ∈ Rm
+

According to KKT condition, we setting the gradient of the Lagrangian and writting the

complementarity conditions:

∇wL = w−
m∑
i=1

αiyixi = 0 ⇒ w =
m∑
i=1

αiyixi (2.3.2)

∇bL = −
m∑
i=1

αiyi = 0 ⇒
m∑
i=1

αiyi = 0 (2.3.3)

∀i, αi[yi(w · xi + b)− 1] = 0 ⇒ αi = 0 ∨ yi(w · xi + b) = 1 (2.3.4)

By equation 2.3.2, the weight vector w is a linear combination of the training set. By the

complementarity conditions 2.3.4, if αi ̸= 0, then yi(w · xi + b) = 1 and the corresponding xi is

called support vector. Thus, support vectors lie on the marginal hyperplanes w · xi + b = ±1

To derive the dual form of the 2.1.3, we plug 2.3.2 and 2.3.4 into 2.3.1. This yield:

max
α

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj (xi · xj)

subject to: αi ≥ 0 ∧
m∑
i=1

αiyi = 0,∀i ∈ [m]

(2.3.5)

In general, the following inequlity always holds:

d∗ ≤ p∗

where p∗ is the the optimal value of the primal problem and q∗ is the optimal value of the dual

problem.

However, our problem is satisfies strong duallity property i.e. d∗ = p∗. Hence, the

6
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solution α of the dual problem 2.3.5 can be used directly determined the decision fumction,

using equation 2.3.2:

h(x) = sgn(w · x+ b) = sgn(
m∑
i=1

αiyi(xi · x) + b)

2.4 Kernel Method

We extend the SVMs algorithm with kernel method to solve the nonlinear problem. In

2.3.5, we also can be write

max
α

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjK(xi, xj)

subject to: αi ≥ 0 ∧
m∑
i=1

αiyi = 0,∀i ∈ [m]

(2.4.1)

,whereK(xi, xj) = xi · xj = ⟨xi, xj⟩ is the kernel function. In [21], a functionK : X ×X → R

can be defined as below:

K(x, x′) = ⟨Φ(x),Φ(x′)⟩ ,∀x, x′ ∈ X, (2.4.2)

for some mappingΦ : X → HwhereH is Hilbert space and it called a feature space. In general,

an inner product is commonly using for measuring the similarity between two vectors, because

any inner product induces ametric by its norm. K is often a similaritymeasure between elements

of the input space X . The following table is a common kernel in the SVM model [17] [21]:

Name Formula

Linear kernel K(x, y) = ⟨x, y⟩

Radial basis function (RBF) kernel K(x, y) = exp
(
−∥x−y∥2

2σ2

)
Polynomial kernel K(x, y) = (x · y + 1)h

Laplace RBF kernel K(x, y) = exp
(
−∥x−y∥

σ

)
Sigmoid kernel K(x, y) = tanh(αxTy + c)

Table 2.1: Common kernel in SVM model

An advantage is that we map the input space X to a high­dimensional space. So, we can

7
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find a linear classifier/hyperplane that can be perfectly separate in the high­dimensional space

H. The different kernel is to take data as transform to different feature space, and at the same

time, we may find the linear hyperplane to classify data correctly.

8
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Chapter 3

Deep Learning and Neural Networks

As was mentioned in the previous chapter, machine learning(ML) has occupied an

important position in computer science. Deep learning is a famous branch of machine learning

(ML) methods inspired by the biological neural networks [6]. The Deep learning architecture

commonly uses in the real world such as fully­connected neural networks (FCNN), recurrent

neural networks(RNN), and convolution neural networks. In facial expression recognition,

stock price prediction, and board game programs, deep learning has outstanding performance

than other ML models [5] [15]. However, this technology was proposed by David Rumelhart,

Geoffrey Hinton, and Ronald J. Williams in the 1980s with back­propagating technology [18],

but due to the limitation of computing resources and gradient vanish problem. In 2006, Hinton

proposed the Deep Boltzmann Machine (DBM) model to train the multi­layer neural networks

successfully [9]. In addition, Nvidia’s GPU technology innovation has made deep learning

technology regain attention in the world. For example, in 2012, a convolution neural network

(CNN) called AlexNet to win first place in the world­class competition of visual, that is

ImageNet Large Scale Visual Recognition Challenge(ILSVRC) 2012 recognition [15]. Since

then, deep convolutional neural networks (CNNs) have been used in competition. Finally, in

2015, the new structure, ResNet, can have a very deep network of up to 152 layers. This model’s

top­5 score, namely you check if the target label is one of your top 5 predictions, is beyond

human [8]. We introduce the relevant knowledge about the deep learning model below:

9
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3.1 Neuron and Neural Networks

Assume the X = {x1, x2, · · · , xN} is a feature space (or input space), xi,∀i is called a

feature, the target space(or output space) Y = {y1, · · · , yN}, and the element in Y is called

a label. For example, let N = 3, as shown in Figure 3.1, we give three random independent

weights w1, w2, w3 to x1, x2, x3. respectively, which would be adjusted while training in model.

For robustness, we add a bias b in the neuron, so we can write in mathematics: w1x1 + w2x2 +

w3x3 + b. Clearly, it is a linear transformation for x1, x2, x3, but in real world, the problem also

is a nonlinear problem. To deal this problem, we use a activation function ϕ to make the output

h i.e.

h = ϕ(
3∑

i=1

xiwi + b)

The neural network common structure is comprised of the input layer, hidden layer, and output

Input

x1

x2

x3

Neuron

ϕ

b

Output

h

w1

w2

w3

Figure 3.1: A neuron in neural networks

layer. A picture of the example showed in Figure 3.2. We focus on how to use input data through

lots of neural in the hidden layer to get the‘good’output (which will define in later). Building

the suitable hidden layer is a big topic in computer science, we need to decide howmany neurons

and layers are suitable, and the activation function. Finally, we use the loss function to evaluate

the model performance. We will explain all the detailed steps in the following chapter.

3.2 Activation Function

Activation function takes an important role in neural networks. If we do not use the

activation function, the network is only doing lots of linear transformations, and input and

output are still linear. In the real world, most situations are not able to predict linearly. The

main terminology for nonlinear functions is derivative and monotonic functions. Except for

10
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x1

x2

x3

x4

y

Hidden
layer

Input
layer

Output
layer

Figure 3.2: The structure of neural networks

the output layer, we select the same activation function for every neuron in hidden layers.

The different choices of activation function may cause different results. Here, we show some

common activation functions:

1. Sigmoid(or Logistic)

Equation:

Range: R → (0, 1), ϕ(x) =
1

1 + e−x

Graph:

Figure 3.3: Sigmoid function

11
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2. Hyperbolic tangent(tanh)

Range: R → (−1, 1), tanh(x) =
ex − e−x

ex + e−x
= 2ϕ(2x)− 1

Graph:

Figure 3.4: Hyperbolic tangent function

3. Rectified Linear Unit(ReLu) [1]

Range: R → (0,∞), relu(x) = max(0, x)

Graph:

Figure 3.5: ReLu function

12
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4. Parametric Rectified Linear Unit(pReLu) [7]

Range: R → R, pReLu(x) =


x, if x > 0

ax, if x ≤ 0

Graph:

Figure 3.6: pReLu function

3.3 Loss Function

Whenwe train the model, the problem that arises naturally howwe can know that the model

finishes training. Assume that the set of weight denoted by θ∗ = {wi,∀i} Our final goal is that

find the best set of weight, denoted by θ∗ such that the predicted target and real target very‘close’

.

Define L is a loss function: L : Y × Y ′ → R+, where Y is the set of true label and Y ′

is the set of predicted label. The function L measures the difference between a true label and a

predicted label or evaluates how our algorithms simulate our dataset. Denoted by f(xi; θ)means

the neural network predicted label with the weights θ and the data xi. Hence, our training goal

is to find the θ = θ∗ such that L(θ∗) is the minimum number overall sets. A common example

of loss function given below (Suppose we have N data):

13
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1. Mean Square Error (MSE)

Equation:

MSE(θ) =
1

N

N∑
i=1

∥yi − f(xi; θ)∥2

2. Mean absolute Error (MAE)

Equation:

MAE(θ) =
1

N

N∑
i=1

|yi − f(xi; θ)|

3. Binary Cross Entropy (BCE)

Equation:

BCE(θ) =
1

N

N∑
i=1

[yi(log(f(xi; θ))) + (1− yi)(1− log(f(xi; θ)))]

where each yi is binary

4. Categorical Cross Entropy (CCE)

Equation:

CCE(θ) =
1

N

c∑
j=1

N∑
i=1

yji(log(f(xji; θ)))

where each c is the total categories of label and each yji is integer, generally.

5. Kullback­Liebler Divergence

Equation:

DKL(P ||Q) = −
N∑
i=1

P (x) · log Q(x)

P (x)
=

N∑
i=1

P (x) · log P (x)

Q(x)

where P and Q are probability distribution

3.4 Gradient Descent and Back­propagation

3.4.1 Gradient Descent

For neural networks, we cannot directly calculate the best parameter θ, since the problem is

too many variables and complex. In general, the learning problem can regard as an optimization

14
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problem. Therefore, we use the gradient descent optimization algorithm to find the local

minimum, and weights are updated using the back­propagation of the error algorithm to train a

neural network. The idea of gradient descent is that we can find the (local) minimum value of

the plane along the opposite direction of the gradient, calculated by a current point. There are

three gradient descent algorithms, and the difference between them is how much data we use

to calculate the gradient of the objective function. They have a trade­off between the accuracy

of the parameter update and the processing time. In the neural networks model, the objective

function denoted by J(θ), θ is a parameter of themodel. Let η be the learning rate that determines

the size of the steps. The different η helps us to get the better minimum.

First, Batch Gradient descent algorithm is an iterative algorithm, we use full training

datasets to calculate the gradient at each step and update the parameter. i.e.

θ(t+1) = θ(t) −∇θJ(θ
(t))

For this method, if objective function J(θ) is a non­convex function, this method guarantees to

converge to the local minimum. Furthermore, the objective function is convex, it can find the

global minimum. However, the convergence rate is very slow in big datasets.

Secondly, Stochastic Gradient Descent (SGD) algorithm:

θ(t+1) = θ(t) − η · ∇θJ(θ;xi; yi)

Different from to batch gradient descent algorithm, SGD achieves a parameter update at each

training example. However, the loss function obtained in each iteration is not in the global

optimal direction. For a lot of interactions, it towards the global optimal solution. In particular,

the final result is often near the global optimal solution [2] [20]. The benefit is that computation

cost is lower than batch gradient descent and convergence rate is better than batch gradient

descent. It is worth noting that although this method converges is not the global minimum or

local minimum, it is enough in many cases. In fact, for some conditions, the SGD can almost

converge in local minimum or global minimum. [3]

Finally, the mini­batch gradient descent algorithms is written as

θ(t+1) = θ(t) − η · ∇θJ(θ;x(i:i+n);y(i:i+n)
)

15
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This algorithm combines the advantages of the above two methods(Batch normalization and

SGD), it updates the parameter for every mini­batch of training example. In the real world,

we always use mini­batch gradient descent algorithm to solve the problems. The batch sizes

between 50 and 512 are commonly used.

3.4.2 Back­propagation

Now, we can use a gradient descent algorithm to find the minimum objective function.

However, calculating the gradient efficiency is a big topic in artificial neural networks. For

example, We construct the neural network model (see Figure 3.7)

x1

x2

x3

a
(2)
1

a
(2)
2

a
(2)
3

a
(3)
2

hw,b(x)

Figure 3.7: The structure of neural networks

We know:

a
(2)
1 = ϕ

(
w

(1)
11 x1 + w

(1)
12 x2 + w

(1)
13 x3 + b

(1)
1

)
a
(2)
2 = ϕ

(
w

(1)
21 x1 + w

(1)
22 x2 + w

(1)
23 x3 + b

(1)
2

)
a
(2)
3 = ϕ

(
w

(1)
31 x1 + w

(1)
32 x2 + w

(1)
33 x3 + b

(1)
3

)
hW,b(x) = a

(3)
2 = ϕ

(
w

(2)
11 a

(2)
1 + w

(2)
12 a

(2)
2 + w

(2)
13 a

(2)
3 + b

(2)
1

)
where wij is weight between two adjacent layers of neurons and ϕ is an any activation

function. For simplicity, our objective function is J(θ) = (w11, · · · , w33) Now, we use gradient

descent algorithm to optimize. We need to find ∇J = ∂J
∂w11

e11 + · · · + ∂J
∂wmn

emn where eij is

standard orthonormal basis. In our example, J = (w11, w12, w13) and∇J = ∂J
∂w11

e11+ ∂J
∂w12

e12+
∂J

∂w13
e13. Calculate directly:
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∂J

∂w11

=
∂a

(3)
2

∂w11

=
∂ϕ
(
w

(2)
11 a

(2)
1 + w

(2)
12 a

(2)
2 + w

(2)
13 a

(2)
3 + b

(2)
1

)
∂w11

=
∂ϕ
(
w

(2)
11 ϕ

(
w

(1)
11 x1 + w

(1)
12 x2 + w

(1)
13 x3 + b

(1)
1

)
+ w

(2)
12 a

(2)
2 + w

(2)
13 a

(2)
3 + b

(2)
1

)
∂w11

However, it is to difficult to calculate. We can use the skill of mathematical, called chain

rule i.e. Consider z = f(u, v), where u = g(t), and v = h(t), g and h is differentiate then

dz

dt
=

∂z

∂u

du

dt
+

∂z

∂v

dv

dt

Using this skill, we can calculate gradient by

∂J

∂w11

=
∂a

(3)
2

∂w11

=
∂a

(3)
2

∂x1

∂x1

∂w11

+
∂a

(3)
2

∂x2

∂x2

∂w11

+
∂a

(3)
2

∂x3

∂x3

∂w11

By performing back­propagation, we can get the gradients of the loss function concerning

all the inputs and weights of the networks. The benefit is that reduces the computational cost.

This algorithm is a powerful and massive speedup of billion times.

3.5 Overfitting, Dropout and Batch Normalization

3.5.1 Overfitting

Whenever we discuss model prediction, it is important to understand prediction errors(bias

and variance). It is the best way to understand the problem of overfitting is to express it in terms

of bias and variance.

17
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Assume that X = {X1, · · · , XN} is the data. The labels Y = {y1, · · · , yN} are labels are

corresponding with X . Given f is some fixed but unknown function for X , then we can write:

Y = f(X) + ϵ

where ϵ is random error term with E(ϵ) = 0, V ar(ϵ) = σ. Clearly, we can get where So, the

expected square error at a point x is The error(x) can be further decomposed as [14]

Error(x) = (E[f̂(x)]− f(x))2 + E
[
(f̂(x)− E[f̂(x)])2

]
+ σ2 (3.5.1)

= Bias 2 + Variance + Irreducible Error (3.5.2)

Irreducible error is the error that cannot be improved by a better model. The error that occurs

when trying to approximate the behavior of training data, called bias. If you train on a different

training, then the variance captures how much your classifier changes set. In Equation 3.5.2, it

is a trade­off between bias and variance. The overfitting happens when a lot of noise is captured

and fitted in the model. It happens when we train our model much over a noisy dataset, these

models have low bias and high variance. In other words, overfitting is means the model is too

complex and has a large number of parameters. For example, on Cartesian coordinate system

, we have 10 points (1, 1), (2, 2), · · · , (10, 10). We use the Lagrange interpolation to fit points

with a polynomial of order 9. However, we know these points are on y = x. The Lagrange

interpolation is trying too hard to fit these points and ends up missing the structure of the dataset.

3.5.2 Dropout

To reduce the overfitting, we develop lots of techniques such as regularization and dropout.

Regularization methods like Lasso and Ridge reduce overfitting of the objective function. Since

we add penalty term in the loss function and the additional term controls the function such the

coefficient does not take extreme values. On the other hand, Dropouts modify the network itself.

Formally, we express the dropout neural networks model [22].

Suppose a neural network with N hidden layers. Let z(l)k denote the k­th neuron of inputs

at layer l, and g(l) be the vector of outputs at layer l. W (l)
k and b(l)k denote the k­th neuron of the

weights and biases at layer l.

18
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We assume the standard neural networks as follows:

z
(l+1)
k = w(l+1)

k g(l) + b
(l+1)
k

g
(l)
i = ϕ

(
z
(l)
k

)
where ϕ is any activation function With dropout,

r
(l)
j ∼ Bernoulli(p)

g̃(l) = r(l) ∗ g(l)

z
(l+1)
k = w(l+1)

k g̃l + b
(l+1)
k

y
(l+1)
k = ϕ

(
z
(l+1)
k

)
The dropout is that the probability of each neuron being dropout is p during training in

each iteration. When we drop out different neurons, see Figure 3.8, it is equivalent to training

a new different neural network. Hence, the dropout procedure is like ensemble learning. The

different neural networks will overfit different parts. We train multiple different neural networks

and average their weight to reduce the effect of overfitting.

x1

x2

x3

x4

y

Hidden
layer

Input
layer

Output
layer

Figure 3.8: The structure of neural networks with dropout
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3.5.3 Batch Normalization

We know that normalizing the input data can speed up learning, we consider is that doing

the same thing for hidden layers should also get similar effect. Suppose training data and testing

data are independent and identically distributed, then the performance of neural networks can

be promised. If not, it means the change in the distribution of the input variables present in the

training and the test data, called covariate shift. Hence, we use batch normalization to solve the

problems [13]. In batch normalization, when we use a stochastic gradient algorithm (SGD) with

mini­batch to do forward propagation, we calculate the mean and variance to every batch, and

the resulting normalized the mini­batch have mean zero and unit variance.

Suppose values of x over a mini batch B = {x1, · · · , xm}

µB =
1

m

m∑
i=1

xi

σ2
B =

1

m

m∑
i=1

(xi −muB)
2

x̂i =
xi − µB√
σ2
B + ϵ

zi = γx̂i + β ≡ BNγ,β(xi)

where ϵ > 0 to avoid denominator is zero. Finally, we use γ and β to do scale and shift,

respectively, and they avoid all the data is mean zero and unit variance to the activation function.
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Chapter 4

Recurrent Neural Networks

As mentioned in the last chapter, deep learning is similar to a function. For the traditional

neural networks, we usually assume that all inputs (and output) are independent of each other.

However, for lots of cases, this assumption is not suitable. For instance, if you want to predict

the stock price, then you better know the data of previous days. In previous cases, the output

depends on the previous states. The Recurrence Neural Network (RNN) is a good choice to

handle the problem [19]. An RNN model is named recurrence since they do identical work for

every element for the sequence. In other words, it also means RNN structure has a memory to

remember all information. Hence, the RNNmodel can make a good prediction about sequential

data. For example, Given an input sequence x = (x1, · · · , xN) to predict the output sequence

y = (y1, · · · , yM). For example, We use ten days of stock data to predict the next ten days of

stock data. Then xi, yi ∈ R+, i = 1, 2, · · · , 10. The length of the sequence can be any positive

integer and N may not equalM .

4.1 Simple Recurrent Neural Network

In recent years, researchers have developed many different types of RNN to solve some

defects of the original RNN model. The simplest recurrent neural network, called simple RNN,

is the basic of Long­Short Term Memory (LSTM). Simple­RNN has a feedforward layer and a

feedback layer like Back­propagation. But Simple­RNN introduces a cycling mechanism based

on time (state). The simple RNN structure is shown as Figure 4.1. The hidden layer h has looped

back to itself, allowing information to pass from the current time step to the next time step.
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ht−1 ht ht+1=h

ŷt−1

xt−1

ŷt

xt

ŷt+1

xt+1

ŷ

x

Figure 4.1: Recurrent Neural Network

In mathematics, the following equations define the Simple RNN at time t:

yt = f (ht; θ)

ht = g (ht−1, xt; θ)

Variable Definition

yt the output of the Simple RNN at time t

xt the input to the Simple RNN at time t

ht the state of the hidden layer(s) at time t

θ the parameters of model (which is the weights and biases for the network).

f, g an arbitrary activation function such as Sigmoid and ReLu

Table 4.1: The table of variable of RNN structure

The first equation means that given θ, the output at time t depends only on the currently

hidden stateht, which is the same as a traditional neural network. The second equation means

that, given θ,

the current hidden state ht is depends on the previous hidden states ht−1 and the current

input xt.

The equation shows that the Simple RNN can remember the previous information ht−1 by

past computations to influence the present computations ht.

The pros and cons of a Simple RNN architecture in the table below:
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Advantage Drawbacks

1. Possibility deal with input of any
length

2. Computation takes into historical
information

3. The dimension of input and output can
be different

1. Computing slow

2. Gradient vanishing

Table 4.2: The table of pros and cons

4.2 Long Short Term Memory(LSTM)

As was mentioned in the previous section, the (simple) neural networks can deal with

sequential data. However, the model has a big disadvantage: gradient vanish problem, that

is for long input­output sequence, RNN has trouble modeling long­term dependencies has less

influence on the subsequent decision­making. When the time sequence is more, the influence

of the previous information is almost close to zero. The reason is that when we calculate the

global gradient that uses the back­propagation algorithm, we need to multiply and summation

lots of local gradients with the chain rule. Since each layer and time step are have a gradient, we

multiply lots of partial derivatives. When the number of layers of the neural network increases,

we need to calculate a lot of gradients. If the values of these gradients are almost less than 1,

the gradient calculated by the back­propagation algorithm will become 0. It causes learning to

become very slow.

In recent years, the most commonly used structure of RNN is Long Short Term Memory

(LSTM). The advantage of LSTM has been able to deal with the gradient vanishing/exploding

problem [10].

The important setting to LSTM is the cell state Ct, Ct−1, crossing the horizontal line at the

top of the Figure 4.2. It extends along the entire chain, with only some minor numerical changes

and the information hardly changes. We can remove or add information to the cell state, which

structure is called gates. In LSTM, we have three kinds of gate, input gate, forget gate, and

output gate. We will show the detail of LSTM in the following.
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× +

× ×

Tanh

Ct−1

Cell state

Ht−1

Hidden state

xtInput

Ct

Cell state

Ht

Hidden state

HtOutput

Figure 4.2: The structure of LSTM

Variable Definition

xt Input vector

Ht−1 Previous cell output

ct−1 Previous cell state

Ht Current cell output

ct Current cell state

Wf Weights vector of forget gate

Wc Weight vector of candidate

Wi Weight vector of input gate

Wo Weight vector of output gate

σ(·) Sigmoid function

Table 4.3: The Variable in LSTM model

• Forget gate

In an LSTM model, we use a sigmoid layer, called the forget gate to decide what

information we will remember or forget the information from the previous time. We

follow the formula:

ft = σ(Wf · [Ht−1, xt] + bf )

where σ(·) is sigmoid function. The value of ft is between 0 and 1 in the cell state Ct−1.
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The value of ft is 1 which represents remember to this while a 0 represents forget to this.

• Input gate

We decide that new information whether saving in the cell state and divide it into two

parts. First, the sigmoid layer, called the input gate, determined which value will update.

it = σ(Wi · [Ht−1, xt] + bi)

Next, a hyperbolic tangent layer generates a vector of new candidate values, C̃t, that may

update to the cell state. Finally, we combine them to create an update to the cell state.

c̃t = tanh(WC · [Ht−1, xt] + bc)

• Update cell state

We multiply the old state Ct−1 by ft, forgetting the things we determined to forget earlier.

Then we add it ∗ c̃t, which is a new candidate value, rescaled by how much we decided

to update each state value.

Ct = ft ∗ Ct−1 + it ∗ C̃t

• Output gate

The output gate determined the next hidden state and output, and its value based on the

previous cell state. First, we put the current input and the previous hidden state into a

sigmoid function. It can be represented as:

ot = σ(Wo · [Ht−1, xt] + b0)

Next, we adjust the cell state Ct through hyperbolic tangent function which can scale the

value to be between ­1 and 1 and multiply it by the output gate value ot. Hence, the new

hidden state is

Ht = ot ∗ tanh(Ct)

Finally, we show that the gradient of the loss function gk for time step k of the form:
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∂fk
∂W

=
∂gk
∂Hk

∂Hk

∂ck
· · · ∂c2

∂c1

∂c1
∂W

=
∂gk
∂Hk

∂Hk

∂Ck

(
k∏

t=2

∂ct
∂ct−1

)
∂c1
∂W

We focus on
∏k

t=2
∂Ct

∂ct−1
, recall that in LSTM, ct = ft ∗ ct−1 + it ∗ c̃t. Then

∂ct
∂Ct−1

=
∂

∂ct−1

[ct−1 ∗ ft + c̃t ∗ it]

=
∂

∂ct−1

[ct−1 ∗ ft] +
∂

∂ct−1

[c̃t ∗ it]

=
∂ft
∂ct−1

· ct−1 +
∂ct−1

∂ct−1

· ft +
∂it
∂ct−1

· c̃t +
∂c̃t
∂ct−1

· it

= At +Bt + Ct +Dt

whereAt, Ct, Dt are the product of activation functions andBt = ft. (The detail calculation

process in Appendix) Hence, using suitable parameter updates of the forget gate, then the

gradient contains the forget gate vector of activation function, which makes the network better

control the gradients values at each time step. On the other hand, the gradient of cell state consist

of functionAt, Bt, Ct ,andDt. This can better balance gradient values during back­propagation.
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Chapter 5

Data Simulation

In traditional, the stock’s price is treated as the time series data. Many people use the

method of time series to predicet the stock’s price such as ARIMA model and least squares

regression. However, Winter and Holt describe that the time series is composed of three aspects:

level, trend, and seasonality [4].

We assume that the stock’s price is signal, so we use lots of techniques of signal processing

to simulate data and we treat it as a wave. In physics, the wave can be superimposed on the

same phase, so it can be used for signal decomposition. Therefore, we assume that the stock

price is composed of the functional part and random noise, in particular, the functional part

consists of three types of mathematics models, which are seasonal movement model(model 1),

exponential model(model 2), and polynomial model(model 3). Model 1 represents seasonality,

model 2 represents a trend, and model 3 represents a level.

The training data from parameters obtained from the observed Dow Jones Industrial (DJ)

index price from 2019­01­02 to 2020­10­02. The mean value of the DJ index price is 26269.8

and the standard deviation is 1798.336. The functional model is described as:

w1 ·Model 1+ w2 ·Model 2+ w3 ·Model 3

, where w1 + w2 + w3 = 1, w1, w2, w3 ∈ [0, 1].

Then, we mix the functional model and random noise by different weights controlled by α.

It is described as:

α · Functional model+ (1− α) · random noise
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, where α ∈ {0, 0.05, 0.10, · · · , 0.95, 1}. We simulate 10000 replicates, each of which has a

length of 30 data points (days). We introduce the individual functional model as follows:

5.1 Seasonal Movement Model

The stock price is a complex time­series data, they have different oscillatory modes and

they are non­linear and non­stationary. Hence, we do the signal decomposition to get the

characteristic of data. The traditional methods, such as Fourier transformation and discrete

wavelet transformation, need to suppose data is linear and stationary. In contrast to traditional

methods, namely Hilbert­Huang Transform (HHT) [12], is a famousmethod that implemented to

data that is non­stationary and non­linear, in particular using on the stock price. The main idea is

that decompose the signal into lots of components, which complete and nearly orthogonal basis

for the original signal, and obtain instantaneous frequency data. These components are called

intrinsic mode functions (IMF).

The empirical mode decomposition (EMD) method and Hilbert transformation compose

the HHT. The EMD is a procedure to transfer data into a collection of IMFs and the result can

be applied to the Hilbert spectral analysis. The main advantage is that we do don assume any

assumption on the signals. For example, using discrete wavelet transform, we need to assume

the basis for the transformation. An IMF satisfies two properties that mean zero and only one

extreme between zero crossings. The method of decomposes the signal into IMFs called the

sifting process. The sifting process, that is method of decomposing the signal into IMFs, that

describes as below:

1. Define the local maximum and minimum in the test data.

2. To connect all the local maximum, Using cubic spline line as the upper envelope.

3. We repeat the procedure for the local minima to produce the lower envelope.

Now, m1 refers to the mean of the upper and lower envelopes and data refers to X(t). Define

h1 is written as

h1 := |X(t)−m1|

Next, h1 is seen as data and m11 is the mean of h1 ’s upper and lower envelope, in the second
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IMF 1 IMF 2 · · · IMF n

X(t) X(t)− c1 = r1 · · · rn−2 − cn−1 = rn−1

0 X(t)−m1 = h1 r1 −m2 = h2 · · · rn−1 −mn = hn

1 h1 −m11 = h11 h2 −m21 = h21 · · · hn −mn1 = hn1

2 h11 −m12 = h12 h21 −m22 = h22 · · · hn1 −mn2 = hn2

· · · · · · · · · · · · · · ·

k h1(k−1) −m1k = h1k h2(k−1) −m2k = h2k · · · hn(k−1) −mnk = hnk

IMF h1k = c1 h2k = c2 · · · hnk = cn

Table 5.1: The Process of EMD Process

sifting process. Therefore, define h11 is written as

h11 := |h1 −m11|

Repeating the k times until h1k is an IMF, i.e.

h1(k−1) −m1k = h1k

Hence, h1k is called the first IMF component of the data c1 = h1k. We separate it from the data

X(t)− c1 = r1. The process is repeated for all subsequence rl and the result is

rn−1 − cn = rn

Formally, we represent the EMD process in Table 5.1 (repeat k times).

When the residue, named rn is a monotonic function from which no IMF can be extracted,

the sifting process stops. We can induce that

X(t) =
n∑

j=1

cj + rn

where rn is called trend function.

We get k IMF functions. However, they have no meaning. Hence, so we use Hilbert

transformation to make it meaningful.
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In the EMD process, the mode mixing problem happens commonly. A mode mixing

problem in an IMF either comprises signals of widely disparate scales, or the same scale resides

in different IMF components. To solve the problem, Wu and Huang present a modified EMD

method, called Ensemble EMD (EEMD) [25]. The main idea is that we add white noise of finite

amplitude into data before EMD process. Wu and Huang (2005) state‘White noise is necessary

to force the ensemble to exhaust all possible solutions in the sifting process, thus making the

different scale signals to collate in the proper intrinsic mode functions (IMF) dictated by the

dyadic filter banks’[25].

The seasonal model is A1 · sin(w1t) +A2 · sin(w2t), and we apply the EEMD and HHT to

estimate the mean period.

Parameter Values

A1 1120.882

A2 856.7009

w1 0.049

w2 0.053

Table 5.2: The parameter of Seasonal Movement Model

5.2 Exponential Model

The exponential model represents a slope in long term, written as B exp(at). Based on

theory of stock market and martingale, the data of stock price have heavy autocorrelation.

We do the log transformationn before using the ordinary least squares (OLS) to estimate the

parameter(See Table 5.3). The log transformation make the increment independent and break its

self­correlation to conform to the assumption of regression (residual independence assumption).

The exponential model’s coefficient B has a half chance of being positive or negative.

Estimate Std. error t­value Pr(> |t|)

(Intercept) 1.016e+01 6.685e­03 1520.29 < 2e­16 ***

t 4.885e­05 2.670e­05 1.83 0.0679

Table 5.3: The parameter of Exponential Model
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5.3 Polynominal Model

The polynominal model is X1 · t3 + X2 · t2 + X3 · t. This model represents the

higher­order curvature change concept. We use ordinary least squares (OLS) to estimate the

coefficients X1, X2, X3 (See Table 5.4). When we simulate data, to increase the data diversity,

the polynomial model’s coefficient is drawn in a normal distribution with mean of estimate value

and a variance of standard error.

Estimate Std. error t­value Pr(> |t|)

(Intercept) 2.322e+04 3.098e+02 74.950 < 2e­16 ***

X1 4.565e­04 4.869e­05 9.374 < 2e­16 ***

X2 ­3.227e­01 3.244e­02 ­9.946 < 2e­16 ***

X3 6.435e+01 6.119e+00 10.517 < 2e­16 ***

Table 5.4: The parameter of Polynominal Model
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Chapter 6

Experience and Results

In this chapter, we predict the randomness component of stock data with LSTM and SVM

models. Our final goal is to predict the rise and fall of stocks at a fixed time. When we know

the period is functional, we can use a mathematical model to predict the trend of the sequence.

On the contrary, we do not do any operation in this period, when the period is noise.

6.1 Data Transformation

Before we use machine learning and deep learning algorithms, the crucial works is data

transformation. Generally, the commonly used techniques are Feature scaling. The main

advantage of scaling is to avoid the large number ranges dominating those in smaller number

ranges. Another advantage is converged faster when doing gradient descent. [24]. The

commonly used techniques of data transformation as follows:

1. Normalization

x(i)
norm =

x(i) − xmin
xmax − xmin

In general, we scale data to [0, 1] or [−1, 1]

2. Z­Score Standardization

x
(i)
std =

x(i) − µx

σx

The mean of the attribute becomes zero and the resultant distribution has a unit standard

deviation.
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Name LSTM D/BN FC D/BN

A 32 BN 32 BN

B 32 0.25 32 0.25

C 32 BN 16 BN

D 32 16

E 32

Table 6.1: Architecture of LSTM model

6.2 Predicted Model

6.2.1 LSTM

In our LSTM model, we design different structure for model(See Table6.1). We add a

special layer, batch normalization or dropout layer, between two dense layers to avoid over­

fitting. Besides, we use an orthogonal matrix as an initial matrix to obtain better performance.

The orthogonal matrix has a good mathematical property such that efficiency reduces the

gradient vanish and gradient exploding problem [8] [23].

In the Table 6.1, the LSTM column means the units of LSTM. In D/BN columns, the

number represents dropout rate and BN means we use batch normalization instead of dropout.

In all fully connected layers, we use pRelu as the activation function. The loss function that uses

cross­entropy with the optimizer is SGD. We set the hyperparameters of the SGD ­ learning rate

as 0.1, weight decay is 10−6, and momentum 0.9. We set the batch size for 128 and trained 1000

epochs.

6.2.2 SVM

We follow the step in this paper [11]. We use soft­margin SVM model with RBF kernel

K(x, y) = e−γ∥x−y∥ where γ = 1
2σ2 , which is a Gaussian function and linear kernel K(x, y) =

⟨xi, xj⟩. We determine the penalty coefficient C and the coefficient of RBF kernel γ. C is the

parameter for the soft margin objective function. Small C ignores the outliers in the training

data. The model chooses a large margin separating hyperplane. Since the penalty will cause

the smaller­margin hyperplane like the hard­margin case, large C minimizes the number of

misclassified samples. The penalty is different for all misclassified examples. It is proportional
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to the distance from the decision boundary. The gamma parameter is the inverse of the standard

deviation of the RBF kernel, i.e. Gaussian function, which measures the similarity between two

points. When gamma is very small, i.e. a large variance of Gaussian function, then the similarity

radius is large. It means the model can not capture the complexity or‘shape’of the data. But,

for gamma is large i.e. a low variance of Gaussian function, the points are very close to each

other.

(a) Large gamma (b) Low gamma

Figure 6.1: Different efficient on gamma

Using grid­search and k­folds cross­validation to tune the best hyperparameters, C and γ.

The parameter of model is shown as Table 6.2. Finally, we ensure the hyperparameters, using

whole data sets to train the model.

6.3 Model Performance

We use the simulated data (in chapter 6) to train our model, and we predict test data in

one period(we choose 30 days to be one period) is random data or functional data. The model

prediction is +1, which means that this sequence is functional. On the contrary, the model

prediction is 0, which means that this sequence is random noise. Therefore, the model should

evaluate its accuracy. The formula to calculate accuracy described below:

accuracy =
tp+ tn

tp+ tn+ fp+ fn
,

where

tp = Number of true positive values

tn = Number of true negative values
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Name kernel C γ

1 rbf 1 10

2 rdf 1 1

3 rbf 1 0.1

4 rbf 10 10

5 rbf 10 1

6 rdf 10 0.1

7 rbf 100 10

8 rdf 100 1

9 rbf 100 0.1

10 linear 1

11 linear 10

12 linear 100

Table 6.2: Architecture of SVM model

fp = Number of false positive values

fn = Number of false negative values

Accuracy is a measure of correctly predicted total observations. We use cross­validation

to calculate the average accuracy and standard deviation. The result is provided in the tables

below (Table 6.3 and 6.4):

Model Accuracy Standard Deviation

Model A 84.49% 6.14%

Model B 82.54% 15.35%

Model C 80.66% 9.91%

Model D 71.29% 21.44%

Model E 71.70% 21.58%

Table 6.3: Results of LSTM for our simulation data
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Model Accuracy Standard Deviation

Model 1 98.2% 0.25%

Model 2 97.7% 0.25%

Model 3 95.8% 0.5%

Model 4 98.7% 0.20%

Model 5 98.5% 0.20%

Model 6 97.4% 0.30%

Model 7 98.6% 0.25%

Model 8 98.5% 0.25%

Model 9 98.3% 0.25%

Model 10 96.2% 0.4%

Model 11 96.8% 0.4%

Model 12 96.8% 0.4%

Table 6.4: Results of SVM for our simulation data

In Table 6.3, the performance of the batch normalization layer is stabler than the dropout

layer (see model A and model B). The number of neurons in a fully connected layer does not

affect the accuracy and standard deviation(seeModel A andModel C). The fully connected layer

after the LSTM layer is necessary(see Model A and Model E) because the accuracy has dropped

significantly, besides the standard deviation has also become larger. However, the standard

deviations of all models are too large. This phenomenon indicates that the model is not stable,

and it is easy to encounter problems in practical applications.

In Table 6.4, the performance of the RBF kernel is better than the linear kernel. The C and

γ in Model 1 ∼ 10 do not affect the accuracy and standard deviation. In particular, the standard

deviation of all models is smaller than 1 percent, which represents the models are stable.

Additionaly, we focus on the relationship between the stock length of time price and

accuracy. Hence, we use the different time period to train the SVMmodel, the result is provided

below:

As shown in Figure 6.2, the accuracy decreases with the length of the period of training

data. It is also worth noting that we use seven days to train models and predict, and the accuracy

is 78%. However, the training days are less than five days, and the accuracy dramatically
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Figure 6.2: Relationship between days and accuracy

decreases. From our perspective, the figure means that we need at least one weak data and

find the behavior for the stock market.

6.4 Test on real world data

Finally, we use the closing price of the Dow Jones Industrial Average(DWJ) between

2001.01.02 to 2020.04.30 to be testing data. We split the data every 30 days (non­overlapping).

We classify each data as the functional type or noise by our model; to verify whether our

classification is reasonable, we use the moving average to eliminate the noise and make the

function more apparently [16]. To find the distance of original data and the extracted data from

the moving average, we calculate the moving average of each data (windows size = 5) and then

calculate the original data and the absolute error of the moving average. Finally, the mean of

the absolute error of the function type (µ1) and the absolute error of the random noise type (µ2).

Doing a paired sample t­test, the statistical hypothesis is
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H0 : µ1 − µ2 = 0

H1 : µ1 − µ2 ̸= 0

The p­value is less than 0.001, so we reject null hypothesis (H0) at a confidence level of

95%. Therefore, the classification of SVM model is statistic significant.
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Chapter 7

Conclusion and Discussion

In our assumption, we hope the stock’s data is a signal, use the techniques of signal

processing to simulate the new dataset. Based on the simulated dataset, we build two models,

LSTM and SVM. In LSTM models, the batch normalization layer is a better choice than

the dropout layer. The models have high accuracy but not stable (high standard deviation).

Though the LSTM can reduce the overfitting and gradient vanish/exploding problem, the LSTM

structure is too complex for this problem.

On the other hand, the SVM model has higher accuracy than LSTM, and the standard

deviation is much low. Since the SVM algorithms are a convex programming problem, we can

find the global minimum implies the model is stable. Hence, we use the SVMmodel to observe

the relationship between the stock length of time price and accuracy.

Furthermore, we use the DWJ data to validate our classification is whether statistic

significant. The result shows that our classification model can classify correctly. On the other

hand, this result said that the stock’s price can regard as a signal. Therefore, we use techniques

of data processing is make sense.

Based on our model, we can devise a new strategy for doing stock portfolio management,

trading stock, and develop a mathematical model to predict the stock trend when the period is

functional. In future work, we can conduct simulated trading on the period, which is a function

type, calculate the return on investment, and compare it with the other trading strategies.

39



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202100699

Appendix A

The derivatives of the ∂ct
∂ct−1

in 4.2

∂ft
∂ct−1

· ct−1 =
∂

∂ct−1

[σ (Wf · [Ht−1, xt])] · ct−1

= σ′ (Wf · [ht−1, xt]) ·Wf ·
∂Ht

∂ct−1

· ct−1

= σ′ (Wf · [Ht−1, xt]) ·Wf · ot−1 tanh′ (ct−1) · ct−1

∂it
∂ct−1

· c̃t =
∂

∂ct−1

[σ (Wi · [Ht−1, xt])] · c̃t

= σ′ (Wc · [Ht−1, xt]) ·Wc ·
∂Ht

∂ct−1

· c̃t

= σ′ (Wc · [Ht−1, xt]) ·Wc · ot−1 tanh′ (ct−1) · c̃t
∂c̃t
∂ct−1

· it =
∂

∂ct−1

[σ (Wc · [Ht−1, xt])] · it =

= σ′ (Wc · [ht−1, xt]) ·Wc ·
∂Ht

∂ct−1

· it =

= σ′ (Wc · [ht−1, xt]) ·Wc · ot−1 tanh′ (ct−1) · it

Then,

∂ct
∂ct−1

= σ′ (Wf · [Ht−1, xt]) ·Wf · ot−1 tanh′ (ct−1) · ct−1

+ ft

+ σ′ (Wi · [Ht−1, xt]) ·Wi · ot−1 tanh′ (ct−1) · c̃t

+ σ′ (Wc · [Ht−1, xt]) ·Wc · ot−1 tanh′ (ct−1) · it
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