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In the past two decades, statistical modelling with sparsity has become an active research

topic in the fields of statistics and machine learning. Recently, Huang, Chen and Weng

(2017, Psychometrika, 82, 329) and Jacobucci, Grimm, and McArdle (2016, Structural

Equation Modeling: A Multidisciplinary Journal, 23, 555) both proposed sparse estimation

methods for structural equation modelling (SEM). These methods, however, are

restricted to performing single-group analysis. The aim of the present work is to establish

a penalized likelihood (PL) method for multi-group SEM. Our proposed method

decomposes each group model parameter into a common reference component and a

group-specific increment component. By penalizing the increment components, the

heterogeneity of parameter values across the population can be explored since the null

group-specific effects areexpected todiminish.Wedevelopedanexpectation-conditional

maximizationalgorithm tooptimize thePLcriteria.Anumerical experiment and a real data

example are presented to demonstrate the potential utility of the proposed method.

1. Introduction

After Tibshirani (1996) introduced L1-penalized regression, the so-called least absolute
shrinkage and selection operator (LASSO), statistical modelling with sparsity became an

active research topic in the fields of statistics and machine learning (see B€uhlmann & van

de Geer, 2011; Fan & Lv, 2010; Wellner & Zhang, 2012; for reviews). By adding a sparsity-

inducing penalty (e.g., the L1, penalty) in the estimation criterion (e.g., a likelihood

function), the resulting penalized (or regularized) estimate can have elements that are

exactly zero. Through the sparsity pattern of the estimate, the relationships between the

variables considered can be easily probed. Hence, the estimation results from sparse

modelling have useful interpretations. Penalized estimators can outperform their
unpenalized counterparts in terms of mean squared error (e.g., Knight & Fu, 2000) and

achieve variable selection consistency under suitable conditions (e.g., Fan & Li, 2001;

Zhao & Yu, 2006; Zou, 2006). Sparse modelling has been thought of as an effective

approach to learning association patterns among a large number of variables (see Hastie,

Tibshirani, & Wainwright, 2015, for a review).

Recently, the idea of sparse modelling was introduced to the field of psychometrics

(e.g., Chen, Liu, Xu, & Ying, 2015; Hirose & Yamamoto, 2014, 2015; Huang, Chen, &

Weng, 2017; Jacobucci, Grimm, & McArdle, 2016; Tutz & Schauberger, 2015; Zou, Choi,
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& Oehlert, 2011). In particular, Huang et al. (2017) and Jacobucci et al. (2016) both

proposed sparse estimation methods for structural equation modelling (SEM). The two

methods are conceptually similar, along with their pros and cons. Under the ‘all ymodel’

without covariates (Muth�en, 1984),Huang et al. (2017) established a penalized likelihood
(PL)method. They designed an algorithm for optimizing thePL criterionwith L1, smoothly

clipped absolute deviation (SCAD; Fan & Li, 2001), and minimax concave penalty (MCP;

Zhang, 2010). They also described the asymptotic properties of the PL estimator. The R

package lsl was written to implement Huang et al.’s PL method. On the other hand,

Jacobucci et al. (2016) considered a methodology based on a general L1/L2-regularized

fitting function under the reticular action model (RAM) formulation (McArdle &

McDonald, 1984). The R package regsem implements Jacobucci et al.’s regularization

method. Under these two sparse estimation methods, users can flexibly specify model
parameters to be penalized and then obtain a final sparse estimate by choosing the penalty

level. From the viewpoint of modelling capacity, the method of Jacobucci et al. is broad

since it adopts the RAM formulation and allows other regularized estimation criteria

beyond PL (e.g., regularized least squares criterion). However, Jacobucci et al. did not

propose an appropriate algorithm to optimize the regularized criterion. Their solution

relies on general-purpose optimization routines in R. Because any L1-regularized criterion

is non-differentiable, in general, Jacobucci et al.’ method cannot efficiently find a local

maximizer, especially when the model is relatively complex.
Although the existing penalization or regularization methods make a good starting

point for sparse estimation in SEM, they are restricted to the case of single-group analysis.

In psychological studies, understanding the heterogeneity of relationships among

variables when varying the population is a crucial question. Heterogeneity is often

studied throughmulti-group SEM (MGSEM; J€oreskog, 1971; S€orbom, 1974). By comparing

the test statistics and the goodness-of-fit indices of models under different parameter

constraints, the potential heterogeneity across groups can be evaluated. An important

application of MGSEM is to examine the factorial invariance of psychological measure-
ments (Meredith, 1993). In that case, researchers should specify a series of models

reflecting different degrees of invariance and then chose an optimal one based on the chi-

squared difference test or other fit indices (see Millsap, 2011, for a review). In our

experience, MGSEM for examining heterogeneity is often conducted in an exploratory

manner.MGSEMusersmay try a variety ofmodelswith different constraints to identify the

potential heterogeneity of effects. Because sparse estimation is an efficientway to explore

the sparsity pattern, establishing a PL method for MGSEM could be helpful if the

heterogeneity across groups can be represented by a sparsity pattern of parameters.
The aim of the present work is to establish a PL method for MGSEM. In particular, the

proposed method decomposes each groupmodel parameter into a reference component

and an increment component. The reference component is common across groups,while

the increment component reflects group-specific effects. The exact meaning of the two

components depends on the form of parameter constraints (see Section 2). By penalizing

the increment components, the heterogeneity of parameter values across populations can

be explored since the null group-specific effects diminish. Therefore, under the proposed

method, it is not necessary to specify a priori a set of candidate models with different
heterogeneity patterns. The PLwill ‘automatically learn’ a heterogeneity pattern based on

the given data and the chosen penalty level.

This paper is organized as follows. Section 2 introduces the MGSEM formulation to

establish our method. In Section 3 the proposed PL method is presented. Section 4

describes an algorithm for optimizing the PL criterion. In Sections 5 and 6 a numerical
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experiment and a real data illustration for exploring partial invariance are discussed.

Finally, the merits and limitations of the current work are discussed.

Before describing the proposed method, some notation is introduced (see also Huang

et al., 2017). Given aP-dimensional vector x, we use x[j] to denote the jth coordinate of x.
LetA be aP 9 Mmatrixwith elementsapm.A[ j,],A[,k], andA[ j, k] are used to denote the

jth row, the kth column, and the ( j, k)th element of A. Similarly, A[–j,], A[, –k], and A[–j,
–k] respectively represent the submatrices ofAwithA[ j,],A[,k], and bothA[ j,] andA[,k]

deleted. When A
�1 exists, ajk denotes the ( j, k)th element of A�1.

2. Multi-group structural equation modelling formulation

The proposed PLmethod is established using the following RAM formulation for MGSEM.

For group g, let gg denote a (P + M)-dimensional random vector with elements ggi. We

partition gg into two parts, vg and fg, where vg is a P-dimensional random vector of the

observed variables and fg is an M-dimensional random vector of the latent factors. The

MGSEM model incorporates the following linear equation for gg:

gg ¼ ag þ Bggg þ fg; ð1Þ

where ag is the (P + M)-dimensional intercept vector, Bg is the (P + M) 9 (P + M)

regression coefficientmatrix, and fg is the (P + M)-dimensional random residual vectorwith

mean zero and covariance matrix Φg. Since gg = (vg, fg), equation (1) can be rewritten as

�
vg
fg

�
¼
�
aðvÞg

aðf Þg

�
þ
�
B
ðvvÞ
g B

ðvf Þ
g

B
ðfvÞ
g B

ðff Þ
g

��
vg
fg

�
þ
�
eg
dg

�
; ð2Þ

whereaðvÞg andaðf Þg denote the intercepts of vg and fg respectively, andB
ðvvÞ
g , B

ðvf Þ
g , B

ðfvÞ
g , and

B
ðff Þ
g are the regression coefficient matrices that describe different relations among those

observed variables and latent factors. In particular, B
ðvf Þ
g is aP 9 M loadingmatrix in factor

analysis and B
ðff Þ
g is an M 9 M path coefficients matrix among the latent variables. The

covariance matrix of fg can be also partitioned into

Ug ¼
UðeeÞ

g UðedÞ
g

UðdeÞ
g UðddÞ

g

 !
:

In almost all SEM applications, UðdeÞ
g ¼ UðedÞ

g

T
is set to zero to avoid the identifiability

problem.

Let I denote an identity matrix of appropriate size. Under the existence of (I � Bg)
�1,

the model-implied mean vector and the covariance matrix of gg are

lðgÞg ðhgÞ ¼ ðI� BgÞ�1ag ð3Þ

and

Penalized likelihood for MGSEM 501



RðggÞ
g ðhgÞ ¼ ðI� BgÞ�1UgðI� BgÞ�1T ; ð4Þ

respectively. For group g, hg denotes a Qg-dimensional model parameter vector with

elements hgq. The model parameter vector hg contains all unknown and all constrained
non-zero parameters from the model parameter matrices, including ag, Bg, and Φg. When

collecting these model parameters into hg, we utilize a slightly different parameterization

for /gjj, the diagonal elements of Ug, from the usual SEM. Instead of using /gjj, the

conditional variance parameters φgjj are considered:

ugjj ¼ /gjj � Ug½j;�j�Ug½�j;�j��1Ug½�j; j�:

If fgj is uncorrelated with all other fgi (i 6¼ j), we have φgjj = /gjj. Under this

parameterization, penalized covariance coefficients can be easily optimized by amodified

iterative conditional fitting method (Chaudhuri, Drton, & Richardson, 2007).

The current framework assumes that the model structures for the G groups are all

identical, that is, lðgÞg ð�Þ ¼ lðgÞð�Þ andRðggÞ
g ð�Þ ¼ RðggÞð�Þ. As a result, the dimensions of h1,

h2, . . ., hG are all equal to Q, while h1q, h2q, . . ., hGq represent the same element of a given

model parameter matrix. For each g and q, our method reparameterizes hgq as a sum of a

reference component hq and an increment component hgq, that is, hgq ¼ hq þ hgq. Thus
we can represent the three parameter matrices as ag ¼ aþ ag;Bg ¼ Bþ Bg and

Ug ¼ Uþ Ug.
1 By the fact that hgq ¼ hq if and only if hgq ¼ 0 for all g, any model

parameter is homogeneous across the G populations when all corresponding increment

components are zero. Therefore, the heterogeneity patterns can be efficiently identified if

we develop a sparse estimation method for the increment components.
Let h ¼ ðh1; h2; . . .; hQÞ and hg ¼ ðhg1; hg2; . . .; hgQÞ be the vector of all reference

components and the vector of all increment components for group g, respectively. Our

parameterization implies that hg ¼ hþ hg. We use h ¼ fh; h1; h2; . . .; hGg to denote the

whole parameter vector of dimension Q+ = (G + 1)Q. To determine the meaning of the

reference components and the increment components, we must restrict enough

elements in h to be zero. Let the parameter hgq denote the qth parameter in group g. If

its reference component hq equals zero, then each increment component is equal to its

corresponding group parameter, hgq ¼ hgq. On the other hand, if an increment
component hjq equals zero, then the corresponding reference component is equal to

the model parameter of group j, hq ¼ hjq, and the increment component of group g

(g 6¼ j) now represents the difference in the model parameter between group g and j,

hgq ¼ hgq � hjq. By examining the sparsity of hgq, the heterogeneity between groups g and

j canbe easily identified. In theproposedmethod, the latter type of parameter constraint is

generally adopted.

For example, suppose that bðvf Þ1pm and bðvf Þ2pm represent the factor loadings from themth

factor to the pth observed variable of group 1 and 2, respectively. Our parameterization

implies that bðvf Þ1pm ¼ bðvf Þ
pm

þ bðvf Þ
1pm

and bðvf Þ2pm ¼ bðvf Þ
pm

þ bðvf Þ
2pm

. Here, bðvf Þ
pm

is the reference

component of the parameter considered, and bðvf Þ
1pm

along with bðvf Þ
2pm

denote the

corresponding increment components. If bðvf Þ
1pm

¼ 0, we have bðvf Þ1pm ¼ bðvf Þ
pm

and

1 In the current framework, /
jj
, the jth diagonal element of U, is restricted to be zero and hence /gjj , the jth

diagonal element of Ug, can simply be set to Ugjj.
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bðvf Þ
2pm

¼ bðvf Þ2pm � bðvf Þ1pm. Hence, b
ðvf Þ
2pm

¼ 0 implies that bðvf Þ2pm ¼ bðvf Þ1pm, that is, the loading

parameter is invariant across the two groups. The proposed PL can treat bðvf Þ
2pm

as a

penalized parameter to explore the group heterogeneity of this loading. Heterogeneity is

found if the PL estimate of bðvf Þ
2pm

does not equal zero.

Because vg can be written as vg ¼ GðvÞgg for an appropriate selection matrix G
(v),

the model-implied mean and covariance structure of vg, simply denoted by l(hg) and
RðhgÞ, are G

(v) l(g) (hg) and GðvÞRðggÞðhgÞGðvÞT , respectively. In SEM applications, l(hg)
and RðhgÞ are the quantities we wish to evaluate.

3. A penalized likelihood method for multi-group structural

equation modelling

Let V ¼ ffvgngNg

n¼1gGg¼1 denote a random sample from the given G populations, where Ng

denotes the sample size of group g. In our PL method, we consider maximizing the PL

criterion

Uðh; kÞ ¼ LðhÞ � Rðh; kÞ; ð5Þ

under a simple constraint of CðhÞ ¼ 0, where LðhÞ is the normal log-likelihood function,

Rðh; kÞ is a penalty term, and k is a regularization parameter. Specifically, the form of the

log-likelihood function is

LðhÞ ¼ � 1

2

XG
g¼1

wg log
��RðhgÞ��þ tr RðhgÞ�1

Sg
� �� �

� 1

2

XG
g¼1

wgðmg � lðhgÞÞTRðhgÞ�1ðmg � lðhgÞÞ;
ð6Þ

where mg ¼ 1
Ng

PNg

n¼1 vgn, Sg ¼ 1
Ng

PNg

n¼1ðvgn �mgÞðvgn �mgÞT , and wg ¼ Ng

Nþ
, with

Nþ ¼PG
g¼1 Ng. The penalty term is the sum of individual penalty functions with the

structure

Rðh;kÞ ¼
XQ
q¼1

ch
q
q
��hq��; k� �þXG

g¼1

XQ
q¼1

ch
gq
q
��hgq��; k	 


; ð7Þ

where q(|ϑ|, k) is a non-negative penalty function for parameter ϑ and cϑ is the penalty

indicator for ϑ. To obtain a sparse estimate, three types of penalty function are considered:

L1, SCAD (Fan&Li, 2001), andMCP (Zhang, 2010). The formsof the three functions canbe

found in Table 1. The value of penalty indicator is either 1 or 0. If its value is 1, the

corresponding parameter is a penalized parameter; otherwise the parameter is freely

estimated without penalty. In the current work, only a conditional variance parameter

falls beyond the above two categories, that is, it can only be set as a freely estimated
parameter with the identification constraint u

jj
¼ 0 for each reference component.

The constraint function CðhÞ ¼ 0 restricts some elements of h to have fixed specified

values. For model identification, two types of constraints must be imposed: (1) we should

choose an indicator for any given latent factor and fix the value of the corresponding

loading for scale setting; (2) constrain enough elements in h to zero to be able to determine

the meaning of the reference components and increment components.
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Consider an example of a one-factor model of two groups. If we hope to understand

whether a set of loadings fbðvf Þgp1 gPp¼1 is invariant between two groups, then we (1) restrict

bðvf Þ111 ¼ bðvf Þ211 ¼ 1 andbðvf Þ
111

¼ bðvf Þ
211

¼ 0 for scale setting; (2) constrainbðvf Þ
1p1

¼ 0, forp = 2, 3,

. . ., P, to determine the meaning of the reference components; (3) set the penalty term to

Rðh; kÞ ¼PP
p¼2 cbðvf Þ

2p1

q
���bðvf Þ

2p1

��; k�. The heterogeneity of these loadings can be identified by
examining the sparsity pattern of the PL estimates for fbðvf Þ

2p1
gPp¼2. Note that the choice of

measurement for scale setting is crucial. When the chosen measurement is not invariant,

the proposed method may fail (see also Johnson, Meade, & DuVernet, 2009).

A PL estimate of h under k, denoted by ĥ � ĥðkÞ, is defined as a local maximizer for
Uðh; kÞ. Note that different values of k may result in different PL estimates since ĥ is a

function of k. In practice, an optimal value of k can be chosen from a pre-specified

candidate setK ¼ fk1; k2; . . .; kJgvia theAkaike informationcriterion (AIC;Akaike, 1974),

AIC ðkÞ ¼ DðĥÞ þ 2

Nþ
eðkÞ; ð8Þ

or via the Bayesian information criterion (BIC; Schwarz, 1978),

BIC ðkÞ ¼ DðĥÞ þ logðNþÞ
Nþ

eðkÞ; ð9Þ
where DðhÞ is the maximum likelihood (ML) discrepancy function defined as

DðhÞ ¼
XG
g¼1

wg tr SgRðhgÞ�1
� �� log

��SgRðhgÞ�1
��� P

� �
þ
XG
g¼1

wgðmg � lðhgÞÞTRðhgÞ�1ðmg � lðhgÞÞ
ð10Þ

and e(k) denotes the number of effectiveparameters. In the current framework, e(k) is just
the number of distinct non-zero elements in the PL estimator ĥ under penalty level k. It has

Table 1. Mathematical expressions for L1, SCAD and MCP

Penalty function Mathematical expressions

L1 qL1ð
��0��; kÞ ¼ k

��0��
SCAD

qSCADðj0j; kÞ ¼

kj0j if j0j � k

� j0j2þk2�2kdj0j
2ðd�1Þ if k\j0j � kd

k2ðd2�1Þ
2ðd�1Þ if kd\j0j

8>>>><>>>>:
MCP qMCPðj0j; kÞ ¼

kj0j � 02

2d if j0j � kd

1
2
k2d if kd\j0j

8<:
Note. ϑ is a real-valued model parameter. k is a non-negative regularization parameter. d is a shape
parameter specific to SCADandMCP. The lower bounds of d for SCADandMCPdependonboth data

and model.
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been shown that the BIC can yield a consistent selection result for the quasi-truemodel. In

contrast, the AIC can only choose a model that attains minimum ML discrepancy with

respect to the givenK (Huang et al., 2017). If SCAD or MCP is implemented, it is possible

to simultaneously choose k and d from K� D with D ¼ d1; d2; . . . ; dK .
Let k̂ be the selected value of the regularization parameter. The final PL estimate for the

parameter vector is denoted by ĥðk̂Þ. We may then obtain ĥgðk̂Þ, the estimated parameter

vector for group g, via ĥðk̂Þ þ ĥgðk̂Þ. The final PL estimates for the three parameter

matrices can be obtained in a similar manner.

After obtaining the final PL estimate, the model-implied covariance and mean for each

group canbe derived via R̂g ¼ R
�
ĥgðk̂Þ

�
and l̂g ¼ l

�
ĥgðk̂Þ

�
. Hence, the appropriateness of

the final model can be evaluated by examining the discrepancy between fR̂g; l̂ggGg¼1 and

fSg;mggGg¼1. Goodness-of-fit indices can be calculated in a similar manner. For example,

the multi-group version of the root mean square error of approximation (RMSEA; Steiger,
1998) can be calculated as

RMSEA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G�max

D ĥðk̂Þ
	 

df ðk̂Þ � 1

Nþ
; 0

8<:
9=;

vuuut ; ð11Þ

where df ðk̂Þ denotes the degrees of freedom under penalty level k̂,

df ðk̂Þ ¼ GPðPþ 3Þ
2

� eðk̂Þ:

4. An expectation-conditional maximization algorithm

In this section we describe an expectation-conditional maximization (ECM) algorithm

(Meng & Rubin, 1993) to optimize the PL criterion. The ECM algorithm is an iterative

method composed of one E-step and several CM-steps. It is a variant of the expectation-

maximization (EM) algorithm (Dempster, Laird, &Rubin, 1977) and has beenused to solve

the PL problem (Huang et al., 2017). At each iteration of the ECM algorithm, an updated

PL estimate, denoted by ĥðtÞ � ĥðtÞðkÞ, is calculated. The iteration continues until����ĥðtþ1Þ � ĥðtÞ
����\� for some required � > 0.

4.1. E-step

The E-step calculates Mðh��ĥðtÞÞ ¼ E½UCðh; kÞ��V; ĥðtÞ�, the conditional expectation of the

complete-data PL given the random sample V and the current parameter estimate ĥðtÞ,
where UCðh; kÞ is the PL criterion that treats latent factors as observable but missing. The

complete-data PL can be written as

UCðh; kÞ ¼ � 1

2

XG
g¼1

wg log
��Ug

��þ 1

Ng

XNg

n¼1

fTgnU
�1
g fgn

" #
�Rðh; kÞ; ð12Þ

where fgn ¼ ggn � ag � Bgggn. Given two sets of random samples fvgngNg

n¼1 and

fwgngNg

n¼1, we define e
ðvÞ
g

ðtÞ ¼ E
�

1
Ng

PNg

n¼1 vgnjV; ĥðtÞ
�
and C

ðvwÞ
g

ðtÞ ¼ E
�

1
Ng

PNg

n¼1 vgnw
T
gnjV;

ĥðtÞ
�
:
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By the functional form of UCðh; kÞ and by our parameterization, it suffices to

calculate e
ðgÞ
g � e

ðgÞ
g

ðtÞ
and C

ðggÞ
g � C

ðggÞ
g

ðtÞ
to obtain MðhjĥðtÞÞ (see Appendix A for the

derivation).

4.2. CM-steps

To perform CM at iteration step t + 1 for hq or hgq, we try to find ĥðtþ1Þ
q � ĥðtþ1Þ

q ðkÞ and
ĥ
ðtþ1Þ
gq � ĥ

ðtþ1Þ
gq ðkÞ, the term that maximizes Mðh��ĥðtÞÞ with all other parameters fixed at

their updated values. With no penalty (k = 0), the formula for each ĥ
ðtþ1Þ
q ð0Þ and for each

ĥ
ðtþ1Þ
gq ð0Þ canbe found in Table 2 (see Appendix B for the derivation). If the penalty level is

not zero, a shrinkage step for ĥ
ðtþ1Þ
q ð0Þ and ĥ

ðtþ1Þ
gq ð0Þ is necessary to obtain ĥðtþ1Þ

q ðkÞ and
ĥ
ðtþ1Þ
gq ðkÞ. The shrinkage formulae can be found in Table 3 (see also Huang et al., 2017). If

the value of a parameter is constrained, it should remain fixed at each iteration step.

5. Numerical experiment

In this section, a numerical experiment is conducted to evaluate the performance of the

proposed PL method for identifying the pattern of partial factorial invariance. Within a

two-group factor analysis model, the mean and covariance structures for the measure-
ment vg (g = 1, 2) are

lðhgÞ ¼ aðvÞg þ Bðvf Þ
g aðf Þg ð13Þ

and

RðhgÞ ¼ Bðvf Þ
g UðddÞ

g Bðvf Þ
g

T þ UðeeÞ
g ; ð14Þ

respectively. Ameasurement vg is said to satisfy the so-calledweak factorial invariance (or

metric invariance) condition if B
ðvf Þ
g ¼ Bðvf Þ (Widaman & Reise, 1997). When both

aðvÞg ¼ aðvÞ and B
ðvf Þ
g ¼ Bðvf Þ hold, we say that the measurement vg satisfies the strong

factorial invariance (or scalar invariance) condition (Meredith, 1993). Under strong

factorial invariance, the observeddifferences in test scores across groups canbe attributed

to differences in the latent attributes. If strong factorial invariance is violated, we may try

to identify the measurements or items that are not invariant across groups. The condition
of partial factorial invariance applies to this case (Byrne, Shavelson, & Muth�en, 1989).
Because previous simulations mainly focused on the examination of weak factorial

invariance (e.g., French & Finch, 2006; Meade & Bauer, 2007; Yoon &Millsap, 2007), our

numerical experiment also considers that case only, that is, only the heterogeneity of

factor loadings across groups is explored.

In the current simulation, the size of differences across groups (null, small, medium,

and large) and the sample sizes (200, 400, 600, 800, and 1,000) are manipulated. The

population model for data generation is a single-factor model with 12measured variables.
The parameter values are assumed to be invariant across groups except for loadings and

measurement error variances. In all conditions, the loading matrix and the error

covariance matrix for group 1 are set up as
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B
ðvf Þ
1 ¼ ð1 1ÞT � ð:8 :7 :6 :6 :7 :8ÞT ;

UðeeÞ
1 ¼ diagð1; 1Þ � diagð:36; :51; :64; :64; :51; :36Þ;

respectively, where⊗ denotes the Kronecker product. The loading matrix and the error

covariance matrix for group 2 in each condition are set up as

Null :B
ðvf Þ
2 ¼ ð1 1ÞT � ð:8 :7 :6 :6 :7 :8ÞT ;

UðeeÞ
2 ¼ diagð1; 1Þ � diagð:36; :51; :64; :64; :51; :36Þ;

Small :B
ðvf Þ
2 ¼ ð1 1ÞT � ð:8 :7 :5 :5 :6 :7ÞT ;

UðeeÞ
2 ¼ diagð1; 1Þ � diagð:36; :51; :75; :75; :64; :51Þ;

Medium :B
ðvf Þ
2 ¼ ð1 1ÞT � ð:8 :7 :4 :4 :5 :6ÞT ;

UðeeÞ
2 ¼ diagð1; 1Þ � diagð:36; :51; :84; :84; :75; :64Þ;

Large :B
ðvf Þ
2 ¼ ð1 1ÞT � ð:8 :7 :3 :3 :4 :5ÞT ;

UðeeÞ
2 ¼ diagð1; 1Þ � diagð:36; :51; :91; :91; :84; :75Þ:

Across the two groups, the intercept terms are all set to 0 and the factor variances are
assumed to be 1. Each data set is generated from themultivariate normal distributionwith

zero mean and the corresponding covariance structure. The simulation is conducted in

the R environment (R Core Team, 2017). The code is available from the author on request.

When implementing the proposed PL, the intercept and the variance parameters are all

freely estimated without assuming invariance. The loadings are estimated as follows: (1)

set the loading for the first measurement at .8 for scaling; (2) specify the remaining

reference components as free parameters; (3) restrict the remaining increment

components of group 1 to fixed zero parameters; (4) treat the remaining increment
components of group 2 as penalized parameters. Hence, the heterogeneity of loadings

across groups can be probed by examining the sparsity pattern of the increment

Table 3. Updating formulae for the model parameter under penalty

Penalty Final updating formula with shrinkage

L1 0̂ðtþ1ÞðkÞ ¼ S
�
0̂ðtþ1Þ; c0w

ðtþ1Þ
0 k

�

SCAD 0̂ðtþ1ÞðkÞ ¼
S
�
0̂ðtþ1Þ; c0w

ðtþ1Þ
0 k

�
if
��0̂ðtþ1Þ��� k

�
1þ c0w

ðtþ1Þ
0

�
S
�
0̂ðtþ1Þ; c0w

ðtþ1Þ
0 kd
d�1

��
1� w

ðtþ1Þ
0 c0

d�1

��1
if k
�
1þ c0w

ðtþ1Þ
0

�
\
��0̂ðtþ1Þ��� kd

0̂ðtþ1Þ if kd\
��0̂ðtþ1Þ��

8>><>>:
MCP 0̂ðtþ1ÞðkÞ ¼ S

�
0̂ðtþ1Þ; c0w

ðtþ1Þ
0 k

��
1� w

ðtþ1Þ
0 c0

d

��1
if
��0̂ðtþ1Þ��� kd

0̂ðtþ1Þ if kd\
��0̂ðtþ1Þ��

(

Note. 0̂ðtþ1Þ is the updated value of parameter ϑ at iteration t + 1with nopenalty (k = 0or cϑ = 0). cϑ
is the penalty indicator of parameter ϑ. wðtþ1Þ

0 is the working weight of ϑ at iteration t + 1. Detailed

formulae for both 0̂ðtþ1Þ and w
ðtþ1Þ
0 can be found in Table 2. S(ϑ, k) = sign (ϑ) max {|ϑ|�k, 0} is the

soft-threshold operator.
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component estimates from group 2. Because L1 can be seen as a special case of SCAD and

MCP with infinite d, and the theoretical properties and the empirical performances of

SCAD and MCP are similar (Huang et al., 2017), only MCP is implemented for the current

simulation. For each replication, an optimal pair of k and d is chosen based on the value of
the AIC or BIC from Λ 9 D, where K ¼ f:01; :02; . . .; :60g and D = {1.5, 2.5, 3.5, ∞}.
The number of successful replications under each condition is set to 500. A replication is

said to be successful if the ECM algorithm converges for each considered pair of k and d
below � = 10�6 within t < 1,000 iterations.

To evaluate the performance of the proposed method, five criteria are considered:

mean squared error (MSE), squared bias (SB), proportion choosing the true model

(PCTM), true positive rate (TPR), and false positive rate (FPR). The MSE is estimated by

dMSE ¼ 1

500

X500
r¼1

�
ĥðrÞ � h	

�T ðĥðrÞ � h	Þ; ð15Þ

where ĥðrÞ is the PL estimate in replication r and h* is the true parameter value. The SB is

estimated by

cSB ¼ ð�̂h� h	ÞT ð�̂h� h	Þ; ð16Þ

with
�̂h ¼ 1

500

P500
r¼1 ĥ

ðrÞ. The PCTM is the proportion of occasions where the heterogeneity

pattern is correctly identified, that is, all of the true non-zero and zero increment

components are correctly identified. The TPR is the chance of correctly identifying the

true non-zero increments of loadings. The FPR is the chance of incorrectly identifying the

true zero increments of loadings.

Based on the theoretical and empirical results of Huang et al. (2017), we expected the
following: (1) theMSE and SB of the PL estimator decrease as the sample size increases; (2)

the PCTM, TPR, and FPR improve as the sample size increases; (3) the PCTM based on the

BIC tends to 1 when the sample size is large; (4) the previous consistency result does not

hold for the AIC. The simulation results are presented in Figure 1. Our expectations were

well supported except for the consistency of the BIC. Although the BIC could

asymptotically identify all zero and non-zero increment components of the loadings

under the null effect condition aswell as under themedium and large effect conditions, its

PCTM was very low when the effect size was small. A previous study has also found that
the empirical performance of the BIC in selecting the true model can be quite bad if the

non-zero parameter is small (Vrieze, 2012). To compare the performances of the AIC and

BIC in terms of model selection, we found that the BIC is mostly better than the AIC,

especially in the null-effect condition. However, under non-null cases the AIC could

outperform the BIC if either the effect size or the sample size was small. Even if the PCTM

based on the AIC does not approach 1, the AIC still yields high TPR and low FPR. In

general, our observations about the behaviour of the AIC andBICwere consistentwith the

existing simulation results (e.g., Haughton, Oud, & Jansen, 1997; Huang, 2017; Vrieze,
2012).

In summary, if the heterogeneity is null or moderate to large, the BIC can perfectly

identify the true patterns under large sample sizes. Otherwise, the AIC could still be used

to identify most of the zero and non-zero components. Despite this, the AIC seldom

identifies the true model in a null condition. Hence, under small sample sizes, neither BIC

nor AIC could generally yield correct selection results.
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6. Real data illustration: Exploring the pattern of partial factorial

invariance

In this section the proposed method is applied to explore the pattern of partial factorial

invariance for the data of Holzinger and Swineford (1939). The data set includes the

responses of 301 junior high school students from the PasteurHigh School (N1 = 156) and

the Grant-White High School (N2 = 145) on 24 psychological tests. In the following

analysis, only the first 19 tests are considered, including visual perception (v1), cubes (v2),

paper formboard (v3), flags (v4), general information (v5), paragraph comprehension (v6),

sentence completion (v7), word classification (v8), word meaning (v9), addition (v10),

code (v11), counting groups of dots (v12), straight and curved capitals (v13), word
recognition (v14), number recognition (v15), figure recognition (v16), object number (v17),

number-figure (v18), and figure-word (v19). These 19 variables are thought to mainly

reflect four correlated latent constructs: spatial ( f1; v1, . . ., v4), verbal ( f2; v5, . . ., v9),
speed ( f3; v10, . . ., v13), and memory ( f4; v14, . . ., v19). However, some studies argue that

the independent cluster structure (i.e., each variable is only influenced by one factor)may

not be appropriate for explaining the data set (e.g., Muth�en & Asparouhov, 2012). Hence,

when implementing our PL, the whole loading matrix is estimated except for v1, v9, v12,

v14. They are assumed to be anchor measures with homogeneous fixed loadings – to
remove the rotational indeterminacy. Our analysis result also shows that – although the

independent cluster structure can fit the data acceptably – some of the indicators are

clearly not pure measures.

We first present the results using the traditional approach for examining strong factorial

invariance. The traditionalmethod assumes an independent cluster structure for the loading

matrix with an uncorrelated error structure. The analysis was conducted using the

measurementInvariance function of the R package semTools (semTools Contrib-

utors, 2016). Under no homogeneous constraints on loadings and intercepts did the multi-
group factor analysis model fit the data acceptably (v2 = 475.30, df = 292, RMSEA = .065).
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Figure 1. Mean squared error (MSE), squared bias (SB), proportion choosing the true model

(PCTM), true positive rate (TPR), and false positive rate (FPR) for multi-group factor analysis via

penalized likelihood with minimax concave penalty across four sizes of differences.
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When the loadings across groups were constrained to be equal, the chi-squared difference

test indicated no significance (v2 = 493.24, df = 307, RMSEA = .063, Δv2 = 17.94,

p = .266). Hence, weak factorial invariance is satisfied. After further imposing constraints

on the intercepts, a significant difference was observed (v2 = 611.53, df = 322,
RMSEA = .077, Δv2 = 118.291, p ≤ .001), implying that the strong factorial invariance

condition is invalid and some intercepts are not invariant across the two schools.

We now implement the proposed PL to explore the pattern of partial factorial

invariance. The Pasteur school is set as the reference group (i.e., B
ðvf Þ
1 ¼ 0, aðvÞ1 ¼ 0, and

aðf Þ1 ¼ 0). The latent mean of the Pasteur school is also restricted to zero (i.e., aðf Þ ¼ 0). To

explore the sparsity pattern of the loading matrix, we estimate all the reference

components of loadings that are not in the independent cluster part, with penalization.

The increment components corresponding to the loadings and intercepts of non-anchor
measurements are all estimated with penalization, including elements in B

ðvf Þ
2 and aðvÞ2 .

The measurement errors are assumed to be uncorrelated. To dismiss the scaling effect on

variables, we standardized each variable by the pooled means and standard deviations.

The MCP penalty was utilized and optimal pairs of ðk; dÞ were selected from

K� D ¼ f:01; :02; :::; :40g � f2; 3; 4; 5g via both BIC and AIC.

The final PL estimates for loadings and intercepts are presented in Table 4 (BIC

solution) and Table 5 (AIC solution). The final model with the BIC fits the data well

(v2 = 372.757, df = 300, RMSEA = .040). We can observe that PL yields a sparse loading

Table 4. The final penalized likelihood (PL) estimate under the BIC selector (k̂ ¼ :13, d̂ ¼ 3) for the

data taken from Holzinger and Swineford (1939)

Pasteur school Grant-white school

Intercept f1 f2 f3 f4 Intercept f1 f2 f3 f4

v1 �.04 1 0 0 0 �.04 1 0 0 0
v2 �.02 .63 �.02 .63

v3 �.03 .66 �.03 .66

v4 .21a .85 �.30a .85

v5 �.29a 1.02 �.15 �.20a 1.02 �.15

v6 �.25 .98 �.25 .98

v7 �.26 �.10 1.10 �.10 �.26 �.10 1.10 �.10

v8 �.32a .03 .83 .03 �.09a .03 .83 .03

v9 �.25 0 1 0 0 �.25 0 1 0 0

v10 .19a �.40 1.22 .03a �.40 1.22

v11 .04 .13 .91 .12 .04 .13 .91 .12

v12 .09 0 0 1 0 .09 0 0 1 0
v13 .04 .39 .74 .04 .39 .74

v14 �.07 0 0 0 1 �.07 0 0 0 1
v15 .02a �.07 .87 �.11a �.07 .87

v16 �.05 .40 .67 �.05 .40 .67

v17 .19a �.29 .44 .87 �.22a �.29 .44 .87

v18 �.02 .34 .64 �.02 .34 .64

v19 �.28a .22 .54 .26a .22 .54

Note. Parameters fixed for identification are bold. Blank table cells indicate a corresponding

estimate of zero.
aA non-invariant corresponding parameter across the groups.
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matrix for both groups. Many non-zero ‘cross-loadings’ show that some of the indicators

are not puremeasures. The zero increment loadingmatrix indicates that theweak factorial

invariance condition is satisfied. However, the intercepts of v4, v5, v8, v10, v15, v17, and v19
are shown to be not invariant across the two groups. The strong factorial invariance

condition is invalid. The AIC selector yields an excellent-fitting model (v2 = 274.525,

df =268, RMSEA = .012). Compared to the BIC, the AIC identifies many more non-zero

‘cross-loadings’ as well as heterogeneous loadings and intercepts, which is consistent

with our observation in the simulation. About a quarter of loadings and three-quarters of
intercepts are identified as heterogeneous. Although the results using the BIC and AIC are

different, the intercepts of v4, v5, v8, v10, v15, v17, and v19 are consistently recognized as

non-invariant.

In summary, the PL method with the BIC selector yielded the same conclusion as the

traditional approach for Holzinger’s data, that is, the weak factorial invariance was

satisfied but the strong factorial invariance was not. The benefit of using the PL method is

that it can further obtain the pattern of partial invariance. Once the non-invariant

measurements or items are identified, one may delete or reserve these indicators by
evaluating the potential consequence of partial invariance in selection according to the

approach ofMillsap andKwok (2004). On the other hand, the result using theAIC showed

that most measurements were not invariant. It is difficult to say whether the BIC or AIC

Table 5. The final penalized likelihood (PL) estimate under the AIC selector (k̂ ¼ :07, d̂ ¼ 3) for the

Data taken from Holzinger and Swineford (1939)

Pasteur school Grant-white school

Intercept f1 f2 f3 f4 Intercept f1 f2 f3 f4

v1 .01 1 0 0 0 .01 1 0 0 0
v2 �.09a .69 �.05 �.05 �.03 .13a .69 �.05 �.05 �.03

v3 �.01 .68 �.38 �.01 .68 .14

v4 .21a 1.19 �.37 �.26a .75 .08

v5 �.31a �.08 1.02 �.20 �.07a �.08 1.02 .23a �.20

v6 �.22 .98 �.22 .98

v7 �.25a �.18 1.21a �.08a �.10 �.17a �.18 1.03a .16a �.10

v8 �.33a .02 .78 .03a .02 .78 .26a

v9 �.22 0 1 0 0 �.22 0 1 0 0

v10 .23a �.50 .26 .98 .25 �.31a �.50 .26 .98 .25

v11 .04a .27 .72 .31 �.14a .27 .72 .31

v12 .06 0 0 1 0 .06 0 0 1 0
v13 .02 .41 .67 .02 .41 .09a .67

v14 �.11 0 0 0 1 �.11 0 0 0 1
v15 .07a .13 �.28a .88 �.24a .13 �.08a .88

v16 �.08a .52 �.11 .29a .69 �.01a .52 �.11 �.11a .69

v17 .19a �.23 .55a .85a �.43a �.23 .24a 1.14a

v18 �.01 .24 .70 �.01 .42a �.21a .24 .70

v19 �.27a .12 .40a .54 .19a .12 .09a .54

Note. Parameters fixed for identification are bold. Blank table cells indicate a corresponding

estimate of zero.
aA non-invariant corresponding parameter across the groups.
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result is more accurate here because the sample sizes for both schools are small. From our

personal viewpoint, the conservative BIC solution is preferred due to the exploratory

nature of the current examination.

7. Discussion

In this study a penalized likelihood method for multi-group structural equation modelling

has been established. The proposed method extends the work of Huang et al. (2017) and

Jacobucci et al. (2016) in the sense that several samples can be simultaneously compared.

ThroughourPLmethod, theheterogeneitypatternof amoment structure acrossgroupscan
be identified efficiently. Our numerical experiment and real data example both show that

the PL for MGSEM can be used to efficiently explore the pattern of partial factorial

invariance as well. This application is in concert with the approaches of Tutz and

Schauberger (2015) and Magis, Tuerlinckx, and De Boeck (2015) for differential item

functioning,which aims toexamine the invarianceof intercepts of binarymeasurements via

penalty. On the other hand, the current method only considers continuousmeasurements.

Despite this, it can be further used to explore the invariance of factor loadings.

It is worth contrasting the proposed method for measurement invariance with the
alignment method developed by Asparouhov and Muth�en (2014). The alignment method

is accomplished by simultaneously minimizing a fitting function for multi-group factor

analysis and a cost function to evaluate thedegree of non-invariance. Hence, the alignment

method can be also understood as a PL method with a ‘saturated’ penalty level and a

specific form of penalty term – the sums of component loss functions (Jennrich, 2006)

based on pairwise differences among loadings and intercepts. Future studies can

incorporate this typeof penalty term todevelop sparse estimationprocedures forMGSEM.

Despite the contributions of the present work, there are still limitations that call for
further studies. First, the diagonal elements of Φg are not allowed to be penalized and

hence the heterogeneity of variance parameters across groups cannot be explored via

penalty. This restriction is due to the ECM algorithm, not to PL. One possible way to

remove this limitation is to consider Newton-type algorithms for replacing the ECM

algorithm (e.g., Friedman, Hastie, & Tibshirani, 2010).

Second, our proposed method can be only applied to deal with continuous data. In

psychological research, polytomous data are often encountered because of the

widespread use of Likert-type scales. A tentative way to handle polytomous data is to
replace the covariance matrix in equation (6) by an estimated polychoric correlation

matrix. However, it is worth developing a more direct PL method to incorporate the

discrete nature of response variables (e.g., Katsikatsou, Moustaki, Yang-Wallentin, &

J~Aureskog, 2012; Muth�en, 1984).
Third, although our simulation and real data example demonstrated the potential

utility of PL for examining measurement invariance, a thorough evaluation is required.

Previous studies have shown that many factorsmay influence the performance of existing

approaches for measurement invariance (e.g., French & Finch, 2006; Kaplan, 1989;
Meade& Bauer, 2007), such as the number of factors, the ratios of numbers of variables to

factors, and the value of factor loading. Future studies can systematically vary these factors

to understand the behavior of PL in a broad variety of settings. Also, it would be interesting

to compare our PL with specification search regarding partial invariance (e.g., Jung &

Yoon, 2016, 2017; Millsap & Kwok, 2004).

Finally, the current work does not propose any formal inference procedure, such as

hypothesis testing or confidence interval. It is known that making valid inferences after
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model selection (or choosing a penalty level) is a challenging task (Leeb & P€otscher, 2006;
P€otscher, 1991). Recently, some encouraging results under lasso regression have been

reported (e.g., Lee, Sun, Sun, & Taylor, 2016; Tibshirani, Taylor, Lockhart, & Tibshirani,

2016). Valid post-selection inference procedures in SEM are awaiting further development.
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Appendix A: Derivation of E-step

Let âg, B̂g, and Ûg represent the estimates for the parameter matrices of the group g at
iteration step t. The correspondingmodel-impliedmean vector and covariance matrix are

denoted by l̂ðgÞg ¼ ðI� B̂gÞ�1âg and R̂
ðggÞ
g ¼ ðI� B̂gÞ�1ÛgðI� B̂gÞ�1T , respectively. By the

working assumption
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Therefore, e
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g and C
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. The derivation of C

ðggÞ
g is based

on the formula Var½gg

��vg� ¼ E½ggg
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��vg� � E½gg

��vg�E½gT
g

��vg�. Note that e
ðvÞ
g and C

ðvvÞ
g are

simply mg and Sg þmgm
T
g respectively, because vg is observable.

When deriving the CM-steps for the covariance parameters, C
ðffÞ
g is also necessary. Its

formula is

CðffÞ
g ¼CðggÞ

g � eðgÞg âTg � CðggÞ
g B̂T

g � âge
ðgÞ
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Appendix B: Derivation of CM-step

Regression coefficients and intercepts
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If b
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is not penalized, b̂ðtþ1Þ
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After some calculation, the first term becomes
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g ½; k��:
To estimate aj and agj, the first terms of

oMðh��ĥðtÞÞ
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G

g¼1
wg/g

jj eðgÞg ½ j� � aj � agj � Bg½ j; �eðgÞg

h i
þ R

G

g¼1
wg R

i6¼j
/g

ji eðgÞg ½i� � ai � agi � Bg½i; �eðgÞg

h i
and

wg/g
jj eðgÞg ½ j� � aj � agj � Bg½ j; �eðgÞg

h i
þwg R

i 6¼j
/ji
g eðgÞg ½i� � ai � agi � Bg½i; �eðgÞg

h i
;

respectively. The formulae for âðtþ1Þ
j and âðtþ1Þ

g j are

âðtþ1Þ
j ¼ 1

RG
g¼1wg/̂g

jj

�
�
R
G

g¼1
wg/̂g

jjðeðgÞg ½ j�� âgj� B̂g½ j; �eðgÞg Þþ R
G

g¼1
wg R

i 6¼j
/̂ ji
g

�
eðgÞg ½i�� âgi� B̂g½i; �eðgÞg

�

and
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âðtþ1Þ
gj ¼ 1

wg/̂g
jj

�
�
wg/̂g

jjðeðgÞg ½ j� � âj � B̂g½ j; �eðgÞg Þ þwg R
i6¼j

/̂g
ji
�
eðgÞg ½i� � âgi � B̂g½i; �eðgÞg

�
;

respectively.

Covariance and variance parameters

According to our previously defined notation, fg½�j� ¼ ðfg1; . . .; fg;j�1; fg;jþ1; . . .; fgðPþMÞÞ
is a subvector of fg after dropping fgj. By the factorization rule of the density function, we
havePðfÞ ¼ Pðfgj

��fg½�j�ÞPðfg½�j�Þ. Hence, to estimate /gjk, onlyPðfgj
��fg½�j�Þ is needed.

Given j 6¼ k, the normal working assumption for fg implies that

fgj
��fg½�j� 
N Ug½ j;�j�fg½�j�;ugjj

	 

;

and hence

oMðh��ĥðtÞÞ
o/

jk

¼ o
o/

jk

E � 1

2
R
G

g¼1

wg

Ng

R
Ng

n¼1

1

ug jj

fgnj � R
i 6¼j
ð/

ji
þ /

g ji
Þ~fðjÞgnli

� �2��V; ĥðtÞ" #

þ o
o/

jk

c/
jk
qð��/

jk

��; kÞ;
where~fð jÞgnli

is the li thelementofUg½�j;�j��1fgn½�j�, li is thecolumn indexof/g ji inUg½ j;�j�,
and ug jj ¼ /g jj � Ug½ j;�j�Ug½�j;�j��1Ug½�j; j�. The first term can be rewritten as

E � 1

2
R
G

g¼1

wg

Ng

1

ug jj

R
Ng

n¼1

o
o/

jk

fgnj � R
i 6¼j
ð/

ji
þ /

g ji
Þ~fð jÞgnli

� �2��V; ĥðtÞ" #

¼ R
G

g¼1

wg

ug jj

E
1

Ng

R
Ng

n¼1

~fð jÞgnlk
fgnj � R

i 6¼j
ð/

ji
þ /

g ji
Þ~fð jÞgnli

� ���V; ĥðtÞ� 
¼ R

G

g¼1

wg

ug jj

Cð~fð jÞfÞ
g ½lk; j� � R

i6¼j
ð/

ji
þ /

gji
ÞCð~fð jÞ~fð jÞÞ

g ½lk; li�
� 

;

where

Cð~fð jÞfÞ
g ¼ Ug½�j;�j��1

CðffÞ
g ½�j; �

and

Cð~fð jÞ~fð jÞÞ
g ¼ Ug½�j;�j��1

CðffÞ
g ½�j;�j�Ug½�j;�j��1:

With no penalty for /
jk
, /̂ðtþ1Þ

jk
should satisfy
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R
G

g¼1

wg

ugjj

"
Cð~fð jÞfÞ
g ½lk; j� � /̂ðtþ1Þ

jk
Cð~fð jÞ~fð jÞÞ
g ½lk; lk�

� Û
�
j;�ð j; kÞ�Cð~fð jÞ~fð jÞÞ

g ½�lk; lk� � Ûg½ j;�j�Cð~fð jÞ~fð jÞÞ
g ½; lk�

#
¼ 0:

The solution is

/̂ðtþ1Þ
jk

¼ 1

RG
g¼1

wg

ûgjj
C
ð~fð jÞ~fð jÞÞ
g ½lk; lk�

� R
G

g¼1

wg

ugjj

Cð~fð jÞfÞ
g ½lk; j�� Û

�
j;�ð j;kÞ�Cð~fð jÞ~fð jÞÞ

g ½�lk; lk�� Ûg½ j;�j�Cð~fð jÞ~fð jÞÞ
g ½; lk�

	 
" #
:

Whenprocessing theCM-step for/
gjk

(j 6¼ k), the first termof
oMðh

��ĥðtÞÞ
o/

gjk

can be simplified to

E � 1

2

wg

Ng

1

ug jj

R
Ng

n¼1

o
o/

g jk

fgnj � R
i 6¼j
ð/

ji
þ /

g ji
Þ~fð jÞgnli

� �2��V; ĥðtÞ" #

¼ wg

ug jj

E
1

Ng

R
Ng

n¼1

~fð jÞgnlk
fgnj � R

i6¼j
ð/

ji
þ /

g ji
Þ~fð jÞgnli

� ���V; ĥðtÞ� 
¼ wg

ug jj

Cð~fð jÞfÞ
g ½lk; j� � R

i6¼j
ð/

ji
þ /

g ji
ÞCð~fð jÞ~fð jÞÞ

g ½lk; li�
� 

:

When /
gjk

is not penalized, /̂ðtþ1Þ
gjk

is the solution of the equation

wg

ûg jj

�
Cð~fð jÞfÞ
g ½lk; j� � Û½j;�j�C~fð jÞ~fð jÞ

g ½; lk�

� /̂
ðtþ1Þ
gjk

Cð~fð jÞ~fð jÞÞ
g ½lk; lk� � Ûg

�
j;�ðj; kÞ�Cð~fð jÞ~fð jÞÞ

g ½�lk; lk�

¼ 0:

The solution is

/̂
ðtþ1Þ
g jk

¼ 1

C
ð~fð jÞ~fð jÞÞ
g ½lk; lk�

� Cð~fð jÞfÞ
g ½lk; j� � Û½ j;�j�Cð~fð jÞ~fð jÞÞ

g ½; lk� � Ûg

�
j;�ð j; kÞ�Cð~fð jÞ~fð jÞÞ

g ½�lk; lk�
h i

:

Because the conditional variance is not allowed to be penalized in the current

framework, we can only derive ûðtþ1Þ
gjj

under the constraint u
jj
¼ 0. The first derivative of

Mðh��ĥðtÞÞ with respect to u
gjj

equals
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oM�
h
��ĥðtÞ�

ou
g jj

¼ o
ou

g jj

E �wg

2
logu

g jj
� 1

2

wg

Ng

R
Ng

n¼1

1

u
g jj

fgnj � R
i6¼j

/g ji
~fð jÞgnli

� �2��V; ĥðtÞ" #

¼ � wg

2u
g jj

þ wg

2u2
g jj

E
1

Ng

R
Ng

n¼1

�
fgnj � Ug½ j;�j�~fð jÞgn

�2��V; ĥðtÞ� 
¼ � wg

2u
g jj

þ wg

2u2
g jj

�
CðffÞ
g ½ j; j� � 2Ug½ j;�j�Cð~fð jÞfÞ

g ½; j�

þ Ug½ j;�j�Cð~fð jÞ~fð jÞÞ
g Ug½�j; j��;

which implies that

ûðtþ1Þ
g jj

¼ CðffÞ
g ½ j; j� � 2Ûg½ j;�j�Cð~fð jÞfÞ

g ½; j� þ Ûg½ j;�j�Cð~fð jÞ~fð jÞÞ
g Ûg½�j; j�:
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