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A PENALIZED LIKELIHOOD METHOD FOR STRUCTURAL EQUATION MODELING
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A penalized likelihood (PL) method for structural equation modeling (SEM) was proposed as a
methodology for exploring the underlying relations among both observed and latent variables. Compared
to the usual likelihood method, PL includes a penalty term to control the complexity of the hypothesized
model. When the penalty level is appropriately chosen, the PL can yield an SEM model that balances
the model goodness-of-fit and model complexity. In addition, the PL results in a sparse estimate that
enhances the interpretability of the final model. The proposed method is especially useful when limited
substantive knowledge is available for model specifications. The PL method can be also understood as
a methodology that links the traditional SEM to the exploratory SEM (Asparouhov & Muthén in Struct
Equ Model Multidiscipl J 16:397–438, 2009). An expectation-conditional maximization algorithm was
developed to maximize the PL criterion. The asymptotic properties of the proposed PL were also derived.
The performance of PL was evaluated through a numerical experiment, and two real data illustrations were
presented to demonstrate its utility in psychological research.

Key words: structural equation modeling, penalized likelihood, ECM algorithm, oracle property, model
selection, factor analysis model.

1. Introduction

Structural equationmodeling (SEM) is a statisticalmethod that is aimed toward explaining the
moments among observable variables. The application of SEM involves a confirmatory testing of
models proposed by researchers based on available theories. However, because of the complexity
of human behavior, nearly all SEM models are subject to misspecification (Browne & Cudeck,
1993;MacCallum, 2003). Previous studies have shown that amisfit SEMmodelmay lead to biased
parameter estimates (Kaplan, 1988; Yuan, Marshall, & Bentler, 2003), incorrect standard errors
(Arminger & Schoenberg, 1989; Yuan & Hayashi, 2006), and hence mistaken conclusions about
psychological phenomena. Yet, in practice, an exploratory process seems to be an inevitable task
for deriving a relatively plausible SEMmodel, especially when the development of the substantive
theory is still in its infancy.

Exploratory structural equation modeling (ESEM; Asparouhov & Muthén, 2009) is now a
major exploratory methodology for SEM. The ESEM replaces the confirmatory factor analysis
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(CFA; Jöreskog, 1969) measurement model in SEM with the exploratory factor analysis (EFA)
model. Hence, the misfit caused by omitting nonzero loadings can be avoided. Several novel
applications of the ESEM have been demonstrated (see Marsh, Morin, Parker, & Kaur, 2014 for
a review). However, the ESEM cannot be utilized without drawbacks. Because the ESEM must
freely estimate the entire loading matrix, prior knowledge of null relations among measurements
and factors cannot be imposed, which attenuates the theory-driven nature of SEMmethodology. In
addition, compared to the usual SEM that assumes a sparse loading matrix (i.e., a loading matrix
with many zero elements), the ESEM results in a dense loading matrix that generally includes
unnecessary parameters. Previous studies have shown that SEM models with unnecessary model
complexity yield less efficient estimators (Bentler & Mooijaart, 1989) and exhibit relatively low
generalizability (Browne & Cudeck, 1989; Cudeck & Browne, 1983; Preacher, 2006). Also, a
dense loading matrix is less interpretable than a sparse one (Trendafilov & Adachi, 2015).

Considering the potential limitations of ESEM, the current study proposes a penalized like-
lihood (PL) approach for SEM as a new methodology. Over the past 15 years, PL has become a
popular method for statistical learning problems (see Bühlmann& van de Geer, 2011; Hastie, Tib-
shirani, & Friedman, 2009; Hastie, Tibshirani, &Wainwright, 2015 for reviews). Compared to the
usual likelihood, the PL estimation criterion includes a penalty term to control the complexity of
the hypothesized model. As the penalty level is chosen appropriately, PL can lead to a final model
that balances the tradeoff between the model goodness-of-fit and model complexity (e.g., Hoerl
& Kennard, 1970). Hence, the final model is relatively generalizable to other samples according
to the rationale of a bias-variance tradeoff. By implementing sparsity-inducing penalties, PL can
yield sparse estimates (i.e., estimates with elements that are exactly zero), which not only reduces
the model complexity but also enhances the interpretability of estimation results. Furthermore,
under the family of generalized linear models (GLM), theoretical results indicate that PL has the
capacity to consistently identify all relevant and irrelevant covariates (Fan&Li, 2001). The result-
ing estimator possesses the so-called oracle property, i.e., it performs as well as if the researcher
has known the true sparsity pattern of the parameters in advance. Finally, the PL estimation is
proven to be an effective method for handling the problem of P > N , where P is the number of
variables, and N is the sample size (e.g., Fan& Lv, 2011; Fan& Peng, 2004; Kwon&Kim, 2012).

Under the proposed PL, an SEM model is formulated with a confirmatory part and an
exploratory part. The confirmatory part includes the functional form of the specified model and
the theory-derived free and fixed parameters. The exploratory part, wherein a set of penalized
parameters are specified to represent the ambiguous relations, is data-driven yet with model com-
plexity controlled by the penalty term. Hence, the proposed PL is not a pure exploratory method.
We call it a semi-confirmatory approach because the PL for SEM can embrace both existing theo-
ries and ambiguous relations that await further exploration. The PL then yields relatively efficient
and interpretable sparse parameter estimates (e.g., loadings and path coefficients). A final SEM
model with possibly high generalizability can be achieved through the choice of penalty level.
As we shall see in Sect. 5, under suitable conditions the PL for SEM could result in an oracle
estimator, i.e., an estimator that possesses the oracle property.

Severalworks have applied the ideaof penalization toSEMor related latent variablemodeling.
Jung (2012) applied the �2 penalty to SEM to improve the small sample performance of two-stage
least squares estimation. Ning and Georgiou (2011) and Choi, Zou, and Oehlert (2011) imple-
mented the �1 penalty in an orthogonalEFA to obtain a sparse loadingmatrix. Subsequently,Hirose
and Yamamoto (2014, 2015) considered more general concave penalties in an EFA, also for the
purpose of obtaining a sparse loadingsmatrix. Under the generalized linearmixedmodel (GLMM)
framework, severalworks have proposed PLmethods for selecting nonzero fixed effects (Fan&Li,
2012, Groll &Tutz, 2014; Schelldorfer, Bühlmann,& van deGeer, 2011) or both fixed and random
effects (Ibrahim, Zhu, Garcia, & Guo, 2011). Although the GLMM is quite flexible, and SEM can
be formulated within it (e.g., Ibrahim et al., 2011), these PLmethods cannot be used to explore the
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directional relations among latent variables. PL has also been applied to many other psychometric
models, including principal component analysis (Zou, Hastie, & Tibshirani, 2006; Trendafilov &
Adachi, 2015), the Rasch model (Tutz & Schauberger, 2015), and the cognitive diagnostic model
(Chen, Liu, Xu, & Ying, 2015). However, none of these studies developed a general PL method
for SEM. Our work concerns a PL method with several state-of-the-art penalties for a wide class
of SEM models. The proposed PL can be used to simultaneously identify the sparsity patterns
of many parameter matrices under an SEM framework, including the factor loading matrix, path
coefficient matrix, and covariance matrices of latent variables and measurement errors.

This article is organized as follows: Sect. 2 presents the proposed PL for SEM. In Sect. 3,
an algorithm for optimizing the PL criterion is described. Section 4 discusses several practical
issues when implementing the PL. In Sect. 5, the asymptotic properties of the PL are derived.
Section 6 presents two real data illustrations. A numerical experiment is presented in Sect. 7.
Finally, merits, limitations, and further directions concerning this study are discussed.

2. A PL Method for SEM

Let Y denote a P-dimensional observable random vector with element Yp(p = 1, 2, . . . , P).
The measurement part of SEM describes the relationships between the manifest variables and the
latent variables

Y = ν + �η + ε, (1)

where ν is a P-dimensional intercept vectorwith element νp; η is anM-dimensional latent variable
vector with element ηm(m = 1, 2, . . . , M);� is a P × M factor loading matrix with element
λpm , and ε is a P-dimensional measurement error vector with element εp. The structural part of
SEM describes the hypothesized relationships among latent variables

η = α + Bη + ζ, (2)

where α is an M-dimensional intercept vector with element αm;B is an M × M path coefficient
matrix with element βmk(βmm = 0), and ζ is an M-dimensional residual vector with element ζm .
It is assumed that

1. ε has a zero mean and positive definite covariance matrix �.
2. ζ has a zero mean and positive definite covariance matrix �.
3. ε and ζ are uncorrelated.

Under these assumptions, the model-implied mean and covariance of Y are

μ(θ) = ν + �(IM − B)−1α, (3)

�(θ) = �(IM − B)−1�(IM − B)−1T�T + �, (4)

respectively, where θ ∈ � is a Q-dimensional parameter vector with element θq ,� ⊂ RQ being
a parameter space, and IM is the M × M identity matrix. The parameter vector θ only contains
the unknown parameters in ν,�,�, α,B, and �.

Consider a random sample YN = {Yn}Nn=1, the maximum likelihood (ML) estimation finds
an estimate θ̂ that maximizes the log-likelihood function

L(θ) = 1

N

N∑

n=1

logϕθ (Yn), (5)
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Figure 1.
Path diagrams for two possible model specifications under the proposed penalized likelihood method. Left A specification
for a factor analysis model with three latent factors and nine indicators. Right A specification for a full SEM model with
five exogenous latent variables and two endogenous latent variables. Arrows with solid and broken lines represent freely
estimated and penalized parameters, respectively.

where ϕθ (y) is the normal density, withmean and covariance as parameterized by θ in Eqs. (3) and
(4), i.e., logϕθ (y) = − 1

2 log |�(θ)|− 1
2 (y−μ(θ))T�(θ)−1(y−μ(θ)). The log-likelihood function

is established under theworking assumption that the response variable Y has amultivariate normal
distribution with the specifiedmoment structure. In the current study, we consider the PL criterion

U(θ, γ ) = L(θ) − R(θ, γ ), (6)

where R(θ, γ ) = ∑Q
q=1 cqρ

(∣∣θq
∣∣ , γ

)
is a penalty term with a penalty function ρ(t, γ ), a set of

penalization indicators
{
cq
}Q
q=1, and a regularization parameter γ . A parameter with cq = 0 is

freely estimated, and cq = 1 allows θq to be explored. The confirmatory part of the hypothesized
model includes the functional forms of moment structures, freely estimated parameters, and fixed
parameters. The exploratory part is formed by the parameters being penalized. By implementing
sparsity-inducing penalties, non-null relationships in the exploratory part can be selected. Because
the variance of an exogenous variable should be larger than zero, the proposed method requires cq
to be zero if θq is a diagonal element of� or�. Each component in U(θ, γ ) plays a different role:
L(θ) measures the goodness-of-fit;R(θ, γ ) measures the complexity, and γ controls the tradeoff
between the previous two components. A PL estimator θ̂ = θ̂ (γ ) is defined as a local maximizer
of U(θ, γ ). Note that different values of γ yield different estimates even under the same data. An
optimal value of γ can be determined based on model selection criteria (see Sect. 4).

Figure 1 illustrates two possible model specifications under the PL framework. Example 1 is
an oblique three factor model with nine observed variables (left side of Fig. 1). Each variable is
assumed to be mainly a measure of some latent factor (see the arrows with solid lines in Fig. 1).
However, the PL specification does not exclude the possibility of cross loadings. All other loadings
are estimated with penalization (see the arrows with broken lines in Fig. 1). The resulting penalty
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term isR(θ, γ ) =∑(p,m)∈C ρ
(∣∣λpm

∣∣ , γ
)
, where C is a two-dimensional index set that indicates

which loadings are to be penalized.
Example 2 is a full SEM model (right side of Fig. 1). Five exogenous (η1, η2, . . . , η5) and

two endogenous (η5 and η6) latent variables are considered. For simplicity, the observed variables
are omitted. The measurement part is assumed to be a seven-factor model without cross loadings.
For the structural part, prior knowledge states that the exogenous factors are all correlated and
that η6 is influenced by η1, η2, and η4 but not η3 and η5. No theory is available to specify the exact
relationships among η1, η2, . . . , η5 and η7. Hence, these effects were set as penalized parameters.
The corresponding penalty term is simplyR(θ, γ ) =∑5

m=1 ρ (|β7m | , γ ).
Many penalty functions have been proposed in the literature (see Hastie, Tibshirani, &Wain-

wright, 2015). �2 is the most well-known penalty function with the form

ρ�2(t, γ ) = γ t2. (7)

In linear regression, �2 can be used to handle the problem of not full rank design matrix (Hoerl
& Kennard, 1970). Another important penalty function is the �1 penalty,

ρ�1(t, γ ) = γ t. (8)

A linear regression with �1, also called the lasso (least absolute shrinkage and selection operator;
Tibshirani, 1996), is now a popular method due to its ability to produce sparse estimates. It can be
shown thatmaximizing the PL criterionwith �1 is equivalent to solving the problemofmaximizing
L(θ) subject to

∑Q
q=1

∣∣θq
∣∣ ≤ K , where K is a positive number depending on γ . Geometrically,

∑Q
q=1

∣∣θq
∣∣ ≤ K forms a rhomboid in a Q-dimensional space. The maximizer of U(θ, γ ) is the

first place where the contours of L(θ) touch the rhomboid. Because the rhomboid has corners on
the axes, a sparse estimate arises when the maximizer is located at a corner (Tibshirani, 1996).

Under the �1 penalty, the tasks of parameter estimation and variable selection can be simul-
taneously achieved. However, �1 is only consistent for variable selection under certain restricted
conditions (see Zhao & Yu, 2006; Zou, 2006). To overcome this problem, several nonconvex
penalties have been proposed. Of these, SCAD (smoothly clipped absolute deviation; Fan & Li,
2001) and MCP (minimax concave penalty; Zhang, 2010) are the two most well known. The
functional forms of SCAD and MCP are

ρSC AD(t, γ ) =

⎧
⎪⎨

⎪⎩

γ t if t ≤ γ

− t2+γ 2−2γ δt
2(δ−1) if γ < t ≤ γ δ

γ 2
(
δ2−1

)

2(δ−1) if γ δ < t

, (9)

ρMCP (t, γ ) =
{

γ t − t2
2δ if t ≤ γ δ

1
2γ

2δ if γ δ < t
, (10)

respectively. Here, δ is a parameter that controls the convexity of either SCAD or MCP (δ > 2
for SCAD and δ > 1 for MCP). As δ → ∞ both SCAD and MCP become �1. On the other hand,
a small δ makes them behave similarly to the best subset selection method. In the GLM family,
the theoretical results indicate that SCAD and MCP can both yield oracle estimators, even under
the case of P > N (Fan & Li, 2001; Kwon & Kim, 2012; Zhang, 2010).

It is worth noting that the PL estimation can be understood as a Bayesian maximum of a
posteriori (MAP) method. �2 and �1 represent Gaussian and Laplace priors, respectively, and
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both SCAD and MCP comprise some improper priors (for further discussion, see Meng, 2008;
Strawderman, Wells, & Schifano, 2013).

Because a PL with the �2 penalty cannot select nonzero parameters though sparse estimation,
the proposed PL method emphasizes �1, SCAD, and MCP. In the latter paragraph, “PL-A” is used
to indicate a PL method that uses A as a penalty function.

Remark 1. We have mentioned that the exploratory part contains all the ambiguous relations that
await further exploration. Although the term “ambiguous relations” is used, in both Examples 1
and 2, the directionality of these relations is clearly specified. When the PL is implemented as
an exploratory method, we recommend formulating all the relationships as clearly as possible.
PL users should determine whether a relationship between two variables is directional or sim-
ply correlated. If the relation is directional, it should be determined which direction is sensible
according to the available substantive theories. Blindly using PL is dangerous because it could
result in many equivalent models. Under such cases, no theory is available to justify the use of
PL, and the resulting model might be nonsense. PL users should avoid such practices.

Remark 2. It is worth noting that for any SEM model, if we replace all the zero loadings with
penalized parameters, the PL with a small γ can yield an ESEM-like estimate (see Hirose &
Yamamoto, 2015 for such a result in an EFA case). On the other hand, a very large γ results in
an exactly traditional SEM result. Therefore, the proposed PL can be seen as a methodology that
links the traditional SEM to the ESEM. In theory, through choosing γ , the PL has the capacity to
obtain an optimal model on the continuum from the traditional SEM to the ESEM.

3. An ECM Algorithm for Optimizing the PL Criterion

In this section, an expectation-conditional maximization (ECM) algorithm (Meng & Rubin,
1993) formaximizing thePLcriterion is proposed.The expectation–maximization (EM)algorithm
(Dempster, Laird, & Rubin, 1977) is a popular method by which to obtain estimates in many PL
applicationswith latent variables (e.g., Choi, Zou,&Oehlert, 2011; Garcia, Ibrahim,&Zhu, 2010;
Hirose&Yamamoto, 2014; 2015; Ibrahim,Zhu,Garcia,&Guo, 2011). TheEMalgorithm includes
two steps: the E-step calculates the conditional expectation of the complete data likelihood given
the observed data, and the M-step maximizes the derived conditional expectation. ECM extends
EM by replacing the M-step with several conditional maximizations, called CM-steps. As shown
below, each CM-step in the proposed algorithm involves only a maximizer with a closed form
expression.

Before introducing the proposed algorithm, some notations must be defined. Let A denote
a P × M matrix with apm being its (p,m) element. We use A[p, ], A[,m], and A[p,m] to
denote the pth row, the mth column, and the (p,m) element of matrix A, respectively. Similarly,
A[−p, ], A[,−m], and A[−p,−m] denote the submatrices of A with its pth row, mth column,
and both deleted. If A−1 exists, a pm is defined as the (p,m) element of A−1. Also, b[p] is used
to denote the pth element in vector b.

Instead of maximizing the PL criterion directly, the proposed ECM alternatively considers
the complete data PL criterion
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UC (θ, γ ) ∝ −1

2
log |�| − 1

2N

N∑

n=1

εTn �−1εn − 1

2
log |�| − 1

2N

N∑

n=1

ζT
n �−1ζn − R(θ, γ ),

(11)

where εn = Yn − ν − �ηn and ζn = ηn − α − Bηn . Compared to the PL criterion in Eq. (6),
which is constructed only based on the marginal normality of Y , the complete data PL treats the
latent factor η as observable and is established under the joint normality assumption of Y and η

with the relationships defined in Eqs. (1) and (2) (see Appendix A). Note that the normality of Y
and η is merely a working assumption. The ECM algorithm can still find a local maximizer when
this assumption fails.

The E-step of ECM calculates the conditional expectation of UC (θ, γ )

M(θ |θ̂ (t)) = E[UC (θ, γ )|YN , θ̂ (t)], (12)

where θ̂ (t) = θ̂ (t)(γ ) is the estimate at iteration t under the penalty level γ . Define e(t+1)
V =

E

[
1
N

∑N
n=1 Vn

∣∣∣YN , θ̂ (t)
]
and C (t+1)

VW = E

[
1
N

∑N
n=1 VnW

T
n

∣∣∣YN , θ̂ (t)
]
for any random vectors

Vn and Wn . By the functional form of UC (θ, γ ), it suffices to calculate eY , e(t+1)
η ,CYY ,C (t+1)

Yη ,

and C (t+1)
ηη to obtain M

(
θ | θ̂ (t)

)
(see Appendix A).

After obtaining M
(
θ | θ̂ (t)

)
, the qth CM-step increases the value of M

(
θ | θ̂ (t)

)
through

maximizing M
(
θ | θ̂ (t)

)
under the restriction gq(θ) = gq

(
θ̂

(
t+ q−1

Q

))
, where gq(θ) =

(
θ1, . . . , θq−1, θq+1, . . . , θQ

)
and θ̂

(
t+ q−1

Q

)

is a maximizer ofM
(
θ | θ̂ (t)

)
at the (q − 1)th CM-

step. Hence, each CM-step increases the value ofM
(
θ | θ̂ (t)

)
in each coordinate. The main idea

here is similar to that of the coordinate descent method, which is now the major method for maxi-
mizing PL in regressions (e.g., Breheny, &Huang, 2011; Friedman, Hastie, Höfling, & Tibshirani,
2007; Mazumder & Friedman, 2011).

SEM considers two types of parameters: regression-type coefficients and variance and covari-
ance parameters. Regression-type coefficients include the parameters in �,B, ν, and α, and the
variance and covariance parameters include the parameters in � and �. For the regression-type
coefficients, the estimates under γ = 0 can be updated through

λ̂
(t+1)
pj = 1

C (t+1)
ηη [ j, j]

⎡

⎣
(
C (t+1)
Yη [p, j] − ν̂(t∗)

p e(t)
η [ j] − �̂(t∗)[p,− j]C (t+1)

ηη [− j, j]
)

+
∑

p′ 
=p

ψ̂ pp′(t∗)

ψ̂ pp(t∗)

(
C (t+1)
Yη [p′, j] − ν̂

(t∗)

p′ e(t+1)
η [ j] − �̂(t∗)[p′, ]C (t+1)

ηη [, j]
)
⎤

⎦ , (13)

β̂
(t+1)
mj = 1

C (t+1)
ηη [ j, j]

⎡

⎣
(
C (t+1)

ηη [m, j] − α̂(t∗)
m e(t+1)

η [ j] − B̂(t∗)[m,− j]C (t+1)
ηη [− j, j]

)

+
∑

m′ 
=m

φ̂mm′(t∗)

φ̂mm(t∗)

(
C (t+1)

ηη [m′, j] − α̂m′(t∗)e(t+1)
η [ j] − B̂(t∗)[m′, ]C (t+1)

ηη [, j]
)
⎤

⎦ ,
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Table 1.

Shrinkage formulae for λ̂
(t+1)
pj (γ ), β̂

(t+1)
mj (γ ), ν̂

(t+1)
p (γ ), α̂

(t+1)
m (γ ), ψ̂

(t+1)
pj (γ ), and φ̂

(t+1)
mj (γ ) with selected penalty

functions.

Penalty function Shrinkage formula

�1 S
(
θ̂
(t+1)
q , w

(t∗)
q

)

SCAD

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S
(
θ̂
(t+1)
q , w

(t∗)
q γ

)
if
∣∣∣θ̂ (t+1)
q

∣∣∣ ≤ γ
(
1 + w

(t∗)
q

)

S
(
θ̂

(t+1)
q ,w

(t∗)
q γ δ

/
(δ−1)

)

1−w
(t∗)
q

/
(δ−1)

if γ
(
1 + w

(t∗)
q

)
<

∣∣∣θ̂ (t+1)
q

∣∣∣ ≤ γ δ

θ̂
(t+1)
q if γ δ <

∣∣∣θ̂ (t+1)
q

∣∣∣

MCP

⎧
⎪⎨

⎪⎩

S
(
θ̂

(t+1)
q ,w

(t∗)
q γ

)

1−w
(t∗)
q δ

if
∣∣∣θ̂ (t+1)
q

∣∣∣ ≤ γ δ

θ̂
(t+1)
q if γ δ <

∣∣∣θ̂ (t+1)
q

∣∣∣

θ̂
(t+1)
q = θ̂

(t+1)
q (0);w

(t∗)
q = cq

ψ̂ pp(t∗)C(t)
ηη [ j, j] if θq = λpj ; w

(t∗)
q = cq

φ̂mm(t∗)C(t)
ηη [ j, j] if θq = βmj ; w

(t∗)
q =

cq

ψ̂ pp(t∗) if θq = νp; w
(t∗)
q = cq

φ̂mm(t∗) if θq = αm; w
(t∗)
q = cq

ˆ̃
ψ2(t∗)

p v
(t∗)
l( j)l( j)(p)

if θq = ψpj ;w
(t∗)
q =

cq
ˆ̃
φ2(t∗)
m v

(t∗)
l( j)l( j)(m)

if θq = φmj ; S(θ, γ ) = sign(θ)max {|θ | − γ, 0}.

(14)

ν̂(t+1)
p = eY [p] − �̂(t∗)[p, ]e(t+1)

η +
∑

p′ 
=p

ψ̂ pp′(t∗)

ψ̂ pp(t∗)

(
eY [p′ ] − ν̂

(t∗)

p′ − �̂(t∗)[p′, ]e(t+1)
η

)
,

(15)

α̂(t+1)
m = e(t+1)

η [m] − B̂(t∗)[m, ]e(t+1)
η

+
∑

m′ 
=m

φ̂mm′(t∗)

φ̂mm(t∗)

(
e(t+1)
η [m′] − α̂

(t∗)

m′ − B̂(t∗)[m′, ]e(t+1)
η

)
, (16)

where θ̂ (t∗) = θ̂

(
t+ q−1

Q

)

stands for the newly updated estimate (seeAppendixB for the derivation).
When γ > 0, the CM-steps for updating λ̂

(t+1)
pj (γ ), β̂

(t+1)
mj (γ ), ν̂

(t+1)
p (γ ), and α̂

(t+1)
m (γ ) involve

shrinkage steps, and the shrinkage functions depend on the choice of penalties. These shrinkage
formulae are given in Table 1. Any fixed coefficient is kept at the pre-specified value in each
iteration. For the variance and covariance parameters, the CM-steps are derived based on the
iterative conditional fitting method (ICF; Chaudhuri, Drton, & Richardson, 2007). Compared to
Newton-type methods, the ICF can ensure the semi-positive definiteness of �̂ and �̂. We extend
the original ICF method by allowing the covariance parameters to be penalized (see Appendix C
for the details).

In summary, the proposed ECM algorithm can be briefly described as

1. Initialize eY = 1
N

∑N
n=1 Yn,CYY = 1

N

∑N
n=1 YnY

T
n , and θ̂ (t) ∈ � such that �

(
θ̂ (t)
)
is

positive definite with t = 0.
2. Compute e(t+1)

η ,C (t+1)
Yη , and C (t+1)

ηη according to Appendix A.
3. For q = 1, 2, . . . , Q
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(a) If θq is a regression-type coefficient, compute θ̂
(t+1)
q by Eqs. (13)–(16) and the

shrinkage formulae in Table 1.
(b) Otherwise, compute θ̂

(t+1)
q by the regularized ICF method described in Appendix

C and the shrinkage formulae in Table 1.

4. Repeat 2 and 3 until
∑Q

q=1

(
θ̂

(t−1)
q − θ̂

(t)
q

)2 /∑Q
q=1

(
θ̂

(t)
q

)2
< ε for some small ε > 0.

4. Practical Considerations in Implementing PL

In this section, we discuss several practical considerations when implementing PL. The first
issue is related to the scale setting of the latent variables. After adding a penalty, the invariance
property of ML no longer holds (e.g., PL analysis results based on covariance and correlation are
not equivalent). Moreover, the scale of variables affects the shrinkage level directly (see Table 1).
In SEM, the scale of latent variables is often set by fixing the values of certain factor loadings
or factor variances. We suggest fixing the scaling loadings deliberately such that all the latent
variables have variances of around one. Approximate unit variance can be achieved using a two-
step method by first running a measurement model restricting φ2

m = 1 for every m and then
conducting PL with scaling loadings fixed at the corresponding estimates obtained in step one.

The second consideration concerns model identifiability. If the specified model τ(θ) =(
μ(θ)T, vech (�(θ))T

)T
is locally identified around θ , PL can yield a locally unique estimate

in a neighborhood of θ , where vech (·) is an operator that stacks nonduplicated elements of a
symmetric matrix. However, even when τ(θ) is not identified, it is still possible to obtain a locally
unique PL estimate because the penalty term introduces additional constraints. Motivated by the
results of McDonald (1982) and Shapiro and Browne (1983), one possible way for checking
the local identifiability of τ(θ) under the restriction of the penalty term is to examine whether
∂τ(θ̂)

∂θTÂ(γ )

is of full column rank, where θÂ(γ )
is the subvector of θ formed by

{
θq
}
q∈Â(γ )

, and

Â(γ ) =
{
q| θ̂q 
= 0

}
is the support of θ̂ .

The third practical consideration involves the selection of an optimal regularization param-

eter γ . Let D(θ̂) denote the sample discrepancy evaluated at θ̂ , i.e., D(θ̂) = DML

(
τ(θ̂), t

)
=

− log
∣∣∣�(θ̂)

−1
S
∣∣∣ + tr

(
�(θ̂)

−1
S
)

− P +
(
Ȳ − μ(θ̂)

)T
�(θ)−1

(
Ȳ − μ(θ̂)

)
, where t =

(
vech(S)T, Ȳ T

)T
with S = 1

N

∑N
n=1

(
Yn − Ȳ

) (
Yn − Ȳ

)T
and Ȳ = 1

N

∑N
n=1 Yn . The Akaike

information criterion (AIC; Akaike, 1974) and the Bayesian information criterion (BIC; Schwarz,
1978) are two commonly used selectors,1 defined as

AIC(γ ) = D(θ̂) + 2

N
e(γ ), (17)

BIC(γ ) = D(θ̂) + log N

N
e(γ ), (18)

where e(γ ) is the number of nonzero estimated parameters in θ̂ = θ̂ (γ ). Given a candidate set
� = {γl}Ll=0 with 0 = γ0 < γ1 < . . . < γL , an optimal γ can be determined through selecting

1In the statistical learning literature, cross validation (CV;Stone, 1974) is another commonly usedmethod for choosing
regularization parameters. Since CV generally cannot yield a consistent selection result for the true model, we do not
consider it here. However, interested users could still use CV for selecting γ , especially when the primary goal of analysis
is to find a model for predicting sample moments.
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a γ̂ that minimizes AIC or BIC on �. A method to construct � is to choose L and γL first and
then set γl = l

L γL . We may simply choose a γL such that all penalized parameters are estimated
as zero. According to the updating formula in Table 1, γL = 1 is large enough if both manifest
and latent variables are standardized. Using the continuity of PL criterion, both {AIC(γ )}γ∈�

and {BIC(γ )}γ∈� can be computed efficiently if θ̂ (γl) is used as a warm start for calculating

θ̂ (γl−1) (see Friedman et al., 2007). When there are multiple minima on �, the largest minimizer
is selected according to the principle of Occam’s razor. If SCAD or MCP is used, an optimal pair
of (γ, δ) can be determined with a similar strategy.

Model evaluation is the forth issue of practical concern. We suggest using goodness-of-fit
indices for such purposes. Let d f (γ̂ ) = P(P + 3)

/
2 − e(γ̂ ) be the degrees of freedom of

the final model, respectively, for the SEM framework presented in Sect. 2. When appropriate,

these quantities, μ
(
θ̂ (γ̂ )

)
, �
(
θ̂ (γ̂ )

)
, and d f (γ̂ ), can be substituted into an existing formula to

calculate fit indices for assessing model-data fit. Yet, the validity of this tentative approach calls
for a thorough investigation.

The final consideration concerns statistical inference. Inference in PL is generally difficult
because of the difficulty of post-model-selection inference (e.g., Leeb & Pötscher, 2006). The
theorems derived in the next section show that a heuristic estimator for the covariance matrix of

θ̂Â(γ )
is V̂

(
θ̂Â(γ )

)
= 1

N F̂−1
Â(γ )

ĤÂ(γ )
F̂−1
Â(γ )

, where ĤÂ(γ )
= 1

N

∑N
n=1

∂ logϕ
θ̂
(yn)

∂θÂ(γ )

∂ logϕ
θ̂
(yn)

∂θTÂ(γ )

, and

F̂Â(γ )
= − ∂2L(θ̂)

∂θÂ(γ )
∂θTÂ(γ )

. The square root of the diagonal of V̂
(
θ̂Â(γ )

)
provides a standard error

estimate. However, the method does not give standard errors for parameters shrunk to zero. The
empirical performance of the standard error formula thus requires further evaluation.

5. Asymptotic Properties of the PL Method

In this section, asymptotic properties of the PL method for SEM are derived. Three theorems
are presented. Theorems 1 and 2 concern the oracle property of the PL estimator, and Theorem 3
describes the asymptotic behavior of AIC and BIC with regard to choosing the regularization
parameter. The big picture here is that under suitable conditions, PL with SCAD/MCP and BIC
selector could result in an oracle estimator asymptotically.

Before presenting the derived theorems, some notations are introduced. For a vector x ∈
RP , ‖x‖0 is used to denote the �0 norm of x , i.e., ‖x‖0 = ∑P

p=1 1
{
xp 
= 0

}
, where 1 {·} is

an indicator function. For a square matrix A ∈ RP×P , ωmin(A) is used to denote the smallest
eigenvalue of A. Given an index set J ⊂ {1, 2, . . . , P} , xJ is defined as the |J |-dimensional
vector formed by

{
xp
}
p∈J , and AJ is the |J | × |J | matrix formed by

{
app′

}
p,p′∈J , where |J |

is the number of elements in J .
To derive the asymptotic properties of the PL method, the following regularity conditions are

assumed:

Condition A. YN = {Yn}Nn=1 is a random sample from some distribution F that satisfies (1)
E(Y ) = μ∗; (2) Var(Y ) = �∗ � 0; i.e., �∗ is positive definite; (3) there exists an ε > 0 such

that E

(∣∣Yp
∣∣4+ε

)
< ∞ for all p.

Condition B. For each θ ∈ � and any combination of q, q ′, and q ′′(q, q ′, q ′′ = 1, 2, . . . , Q),
∂3τ(θ)

∂θq∂θq′∂θq′′ exists.

Condition C. There exists a quasi-true parameter θ∗∈ � such that (1) θ∗ ∈ argmaxθ∈�E (L(θ));
(2) ‖θ∗‖0 < ‖θ‖0 for any θ ∈ argmaxθ∈�E (L(θ)), but θ 
= θ∗; (3) θ∗ is the unique maximizer
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of E (L(θ)) on �A∗ , where A∗ =
{
q| θ∗

q 
= 0
}
is the support of θ∗;�A∗ = �∩

(∏Q
q=1 Xq

)

is the restricted parameter space with Xq = R if q ∈ A∗, and Xq = {0} otherwise; (4) there
exists a neighborhood of θ∗ on �A∗ , denoted by �A∗(θ∗) and a constant κ1 > 0 such that

ωmin (FA∗(θ)) > κ1 for all θ ∈ �A∗(θ∗), where FA∗(θ) = E

(
− ∂2L(θ)

∂θA∗∂θTA∗

)
.

Condition D. For each combination ofq, q ′, andq ′′, there exists an F-integrable random function

Kqq ′q ′′(y) such that
∣∣∣ ∂3 logϕθ (y)
∂θq∂θq′∂θq′′

∣∣∣ < Kqq ′q ′′(y) for all y and θ in the neighborhood of θ∗.

Condition E. The penalty term R(θ, γ ) = ∑Q
q=1 cqρ

(∣∣θq
∣∣ , γ

)
satisfies (1) cq = 1 if θ∗

q = 0;

(2) ρ(t, γ ) is increasing and concave in t > 0; (3) ∂ρ(t,γ )
∂t is continuous in both t and γ ; (4)

∂ρ(0+,γ )
∂t = γ ; (5) ∂ρ(t,γ )

∂t = 0 if t > δγ .

Condition F. θ∗ is the unique maximizer of E (L(θ)) on �, and there exists a neighborhood of
θ∗ on �, denoted by �(θ∗), and a constant κ2 > 0 such that ωmin (F(θ)) ≥ κ2 for all θ ∈ �(θ∗),
where F(θ) = E

(
− ∂2L(θ)

∂θ∂θT

)
.

Conditions A, B, and D are standard (e.g., Browne, 1984). Condition C requires the exis-
tence and the uniqueness of a quasi-true parameter θ∗ on a restricted parameter space �A∗ even
when τ(θ) is not identifiable on the entire parameter space �. However, the positive definiteness
of FA∗(θ) on �A∗(θ∗) implies that τ(θ) should be at least locally identified on �A∗ . Condi-
tion E requires that the penalization indicators must be one for all estimated true-zero parameters.
Condition E also restricts the shape of the penalty function. Both SCAD and MCP satisfy these
properties, but �1 does not. Finally, Condition F is a restricted version of Condition C and is
required to establish a global theoretical result.

Theorem 1. (Local oracle property) If ConditionsA–E are true, γ satisfies γ → 0, and
√
Nγ →

∞ as N → ∞, then there exists a strictly local maximizer of U(θ, γ ), denoted by θ̂ = θ̂ (γ ), such
that

(a) limN→∞P

(
Â(γ ) = A∗

)
= 1;

(b)
√
N
(
θ̂A∗ − θ∗

A∗
)

−→D N
(
0,F∗

A∗
−1H∗

A∗F∗
A∗

−1
)
, where F∗

A∗ = E

(
− ∂2L(θ∗)

∂θA∗∂θTA∗

)

and H∗
A∗ = E

(
1
N

∑N
n=1

∂ logϕθ∗ (Yn)
∂θA∗

∂ logϕθ∗ (Yn)
∂θTA∗

)
.

All the proofs of derived theorems can be found in the online supplemental materials. Part (a)
of Theorem 1 states that the PL method has the potential to correctly identify zero and nonzero
model parameters. Hence, it is possible to obtain an estimation result that performs as well as if
the sparsity pattern is known in advance, as part (b) shows. Because Theorem 1 does not require
Condition F to hold, it could still be true when the specified model is not identifiable on the entire
parameter space.

Theorem 1 only ensures that asymptotically, there exists a local maximizer θ̂ such that the
oracle property is satisfied. In practice, choosing such a local maximizer is difficult. Hence, it
is hoped that a global result can be derived so that the obtained PL estimator is assuredly an
oracle estimator. To derive such a global result, Condition F, which ensures the uniqueness of the
quasi-true parameter on the whole parameter space, is required.

Theorem 2. (Global oracle property)UnderConditionsA–F, γ satisfies γ → 0 and
√
Nγ → ∞

as N → ∞. Asymptotically, there exists a unique global maximizer of U(θ, γ ), denoted by θ̂ ,
such that



340 PSYCHOMETRIKA

(a) limN→∞P

(
Â(γ ) = A∗

)
= 1;

(b)
√
N
(
θ̂A∗ − θ∗

A∗
)

−→D N
(
0,F∗

A∗
−1H∗

A∗F∗
A∗

−1
)
.

If Y is normally distributed and τ(θ) is correctly specified, the information equality holds
(i.e., F∗

A∗
−1 = H∗

A∗) and Theorem 2 reduces to Corollary 1 below. The main implication of
Corollary 1 is that the PL estimator can achieve the Cramér–Rao lower bound, even when the true
sparsity pattern is unknown beforehand. Furthermore, Corollary 1 implies that the test statistic
N · D(θ̂) is asymptotically distributed as a Chi-square random variable. Therefore, it is easy to
construct an asymptotic 1 − α level test for examining the null hypothesis τ = τ(θ) versus the
alternative τ 
= τ(θ). The asymptotic χ2 distribution of the test statistic can be also used to justify
the application of the goodness-of-fit indices described in Sect. 4.

Corollary 1. Under Conditions A–F and γ satisfies γ → 0 and
√
Nγ → ∞ as N → ∞. If

the density of Y is actually ϕθ (y), then asymptotically, there exists a unique global maximizer of
U(θ, γ ), denoted by θ̂ , such that

(a) limN→∞P

(
Â(γ ) = A∗

)
= 1;

(b)
√
N
(
θ̂A∗ − θ∗

A∗
)

−→D N
(
0,F∗

A∗
−1
)
;

(c) N · D(θ̂) −→D χ2
d f ∗ , where d f ∗ = P(P + 3)

/
2 − |A∗|.

Next, the asymptotic properties of AIC and BIC are derived under the proposed PL. Given a
model τ(θ), for any index setA ⊂ {1, 2, . . . , Q}, theminimumdiscrepancy function (MDF) value

of τ(θ) on �A is defined as D∗
A = minθ∈�ADML (τ (θ), τ ∗), where τ ∗ =

(
vech (�∗)T, μ∗T

)T
.

Hence, by examining the values of D∗
A and D∗

A′ , the correctness of τ(θ) restricted on �A and
�A′ can be compared. According to the definition of A∗,D∗

A∗≤D∗
A for any A ⊂ {1, 2, . . . , Q}.

If some A satisfies D∗
A∗ = D∗

A, Condition C indicates that A∗ must be more parsimonious than
A, i.e., |A∗| < |A|. Given a random sampleYN , the set of regularization parameters is partitioned
into three subsets

�∗ =
{
γ |D∗

Â(γ )
= D∗

A∗ , |Â(γ )| = ∣∣A∗∣∣
}

, (19)

�+ =
{
γ |D∗

Â(γ )
= D∗

A∗ , |Â(γ )| >
∣∣A∗∣∣

}
, (20)

�− =
{
γ |D∗

Â(γ )
> D∗

A∗
}

. (21)

The subset �∗ contains all the values of γ where the optimal model A∗ is attained. On the
other hand, �+ and �− are formed by γ such that the corresponding models are overfitted and
underfitted, respectively. Note that Â(γ )with γ ∈ �+ may not be really “overfitting” in the usual
sense. An overfitting model is generally used to refer to a model that explains the phenomenon
perfectly but contains unnecessary parameters. However, “overfitting” here is merely used to
emphasize that Â(γ ) contains unnecessary parameters because it is possible that D∗

Â(γ )
> 0.

Theorem 3. Let γ̂ AIC and γ̂ BIC denote the selection results based on AIC and BIC, respectively.
Under Conditions A–F, we have

(a) limN→∞P
(
γ̂ AIC ∈ �−) = 0 and limN→∞P

(
γ̂ AIC ∈ �+) > 0;

(b) limN→∞P
(
γ̂ BIC ∈ �∗) = 1.
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Theorems 3 shows that asymptotically, both AIC and BIC select a model that attains the
smallest MDF value D∗

A∗ . However, only BIC yields a consistent selection result with respect to
A∗. AIC may suffer from the problem of overfitting. Of course, if �+ is empty, AIC can also
select the quasi-true model with the probability one. The derived results are consistent with the
typical behavior of AIC and BIC in parametric regression models (e.g., Zhang, Li, & Tsai, 2012;
Shao, 1997).

6. Real Data Illustrations

6.1. Real Data Illustration 1: Nine Psychological Tests

The nine psychological tests adopted from Holzinger and Swineford (1939) are often used to
demonstrate factor analysis methods (e.g., Jöreskog, 1969; Rosseel, 2012). This data set contains
the responses of 301 seventh and eighth grade students on ninemental tests. These tests are thought
of as measuring three correlated abilities: visualization (tests 1, 2, 3), verbal intelligence (tests
4, 5, 6), and speed (tests 7, 8, 9). Under the CFA framework, all of the tests are assumed to be
pure measures, and the associated measurement errors are uncorrelated. The left part of Table 2
presents the corresponding ML estimation result. The overall pattern of parameter estimates is
reasonable; however, the goodness-of-fit indices show that the model does not fit the data well
(χ2 = 85.30; d f = 24; p < .001;RMSEA = 0.092;CFI = 0.930;NNFI = 0.896).

One possible cause of this misfit is that some tests are not pure measures. Nevertheless, it is
difficult to specify the correct sparsity pattern of a loading matrix a priori. In such circumstances,
PL is a plausible method by which to explore the underlying loading pattern. When using PL, the
model is specified according to Example 1 in Sect. 2. The SCAD is utilized. Based on the value

of BIC(γ ),
(
γ̂ , δ̂

)
= (0.1, 2.5) is selected from � × � = {.01, .02, . . . , .20} × {2.5, 3.5, 4.5}.

The central part of Table 2 shows the final PL estimation result. Three penalized loadings are
identified as nonzero (λ̂71, λ̂91, and λ̂12). By using the standard error formula described in Sect. 4,
all of the nonzero estimates are significantly different from zero at the 0.05 level. The smallest

singular value of
∂τ
(
θ̂ (γ̂ )

)

∂θTÂ(γ̂ )

is 0.15, indicating that the final model is locally identified. Goodness-

of-fit indices show that the final model fits the data relatively well compared to the CFA result
(χ2 = 35.53; d f (γ̂ ) = 21; p = .006;RMSEA = 0.048;CFI = 0.984;NNFI = 0.972).

An oblique EFA model is also used to fit the data. The right part of Table 2 shows the ML
estimation result with a promax rotation (power= 4). The estimated loadingmatrix is quite similar
to the PL solution. Goodness-of-fit measures show that the EFA model also performs better than
the CFA model (χ2 = 22.41; d f = 12; p = .033;RMSEA = 0.055;CFI = 0.987;NNFI =
0.963). However, the EFA model contains many nearly zero factor loadings, which means that
the model is unnecessarily complex. As a result, the EFA model performs slightly worse than the
PL on RMSEA and NNFI. It shows that a complex model does not always outperform a simple
one if the considered fit index takes into account the issue of model complexity.

6.2. Real Data Illustration 2: Five Facets of Mindfulness and the Negative/Positive Affect

Chang, Lin, and Huang (2010) collected responses from 231 undergraduate students on the
Five Facets Mindfulness Questionnaire (FFMQ; Baer, Smith, Hopkins, Krietemeyer, & Toney,
2006) and Positive and Negative Affect Schedule (PANAS; Watson, Clark, & Tellegen, 1988).
The FFMQ is designed to measure five facets of mindfulness: acting with awareness (AA), non-
judgment (NJ), describing (DE), non-reactivity (NR), and observing (OB). PANAS measures the
levels of positive affect (PA) and negative affect (NA) of an individual, respectively. In this illus-
tration, the question “how do the five facets of mindfulness predict an individual’s PA and NA?”
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Figure 2.
Final path coefficient estimates for the structural model of real data illustration 2. AA acting with awareness, NJ non-
judgment, DE describing, NR non-reactivity, OB observing, NA negative affect, PA positive affect. ∗ p < .05;∗∗ p <

.01;∗∗∗ p < .001.

is investigated. Because the main purpose of the data analysis is to understand the relationships
among latent variables, 21 parcels from the original items are formed. The measurement model is
specified according to the relationships between the parcels and the latent constructs. Each factor
is measured using three indicators. The loading of the first indicator for each factor is fixed. The
fixed values are .941, .890, .906, .803, .757, .857, and .832, respectively. For the structural model,
based on the empirical results of Baer et al. (2006), NA is expected to be influenced byAA,NJ, and
NR, forming the confirmatory part of the structural model. However, the relationships between
the five facets of mindfulness and the PA are unclear. Hence, these effects are set as penalized
parameters. The model specification of the structural part is the same as that of Example 2 in
Sect. 2.

Figure 2 shows the path coefficient estimates in the structural model of Illustration 2.

MCP is used as the penalty function, and
(
γ̂ , δ̂

)
= (.1, 1.5) is chosen from � × � =

{.01, .02, . . . , .20} × {1.5, 2.5, 3.5} according to the value of BIC(γ ). The final model is locally

identified because the smallest singular value of
∂τ
(
θ̂ (γ̂ )

)

∂θTÂ(γ̂ )

is 0.34. Goodness-of-fit indices
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indicate that the final model fitted the data reasonably (χ2 = 289.09; d f (γ̂ ) = 173;RMSEA(γ̂ )

= 0.054;CFI(γ̂ ) = 0.961;NNFI(γ̂ ) = 0.953). For the confirmatory part, AA, NJ, and NR were
shown to have negative effects on an individual’s negative affect, as expected. For the exploratory
part, only DE, NR, and OB were shown to have positive effects on individual PA.

7. Numerical Experiment

In this section, a numerical experiment was conducted to evaluate the performance of the PL
method. Two different types of models were considered: an oblique factor analysis model and a
complete SEM model. The simulations were conducted in an exploratory manner to assess the
effectiveness of PL in recovering the underlying structure. Two questions were to be addressed
in the simulation. First, how well does the PL estimator perform compared to the non-oracle ML
(NML) and the oracle ML (OML) estimators? Second, how often does the PL method select the
true model? The NML treats all the penalized parameters in PL as free parameters, and the OML
is the usual ML estimation under the true model. Because the NML tends to yield a relatively
unstable estimator, comparing the PL estimator with the NML estimator shows how PL improves
the quality of estimation by controlling model complexity. On the other hand, the OML yields
an oracle estimator that can be taken as a golden standard. Based on the theory of PL in Sect. 5,
we expected that (a) the PL estimators will generally outperform the NML estimator, (b) the
estimators from PL with SCAD/MCP and BIC, the so-called oracle PL, will perform similarly to
theOMLunder large samples, and (c) the oracle PLwill select the truemodelwith high probability
asymptotically.

For each model, normally distributed data under the true covariance structure were generated
with sample sizes being 100, 200, 400, 800, or 1600 and 500 converged replications that were
included under each condition. All the simulations were conducted in R (R Core Team, 2016)
with the lsl package used for PL analysis (Huang, 2015).

Model 1 is an oblique factor analysis model with 20 indicators and 4 common factors. The
true relationship among the indicators and factors is given in Fig. 3. The measurement error
covariance matrix was set as a diagonal matrix such that each indicator had unit variance. Each
data set was analyzed through PL with �1/SCAD/MCP, NML, and OML. The three methods
estimated the loading matrix � in different ways. For the PL method, loadings in the “indepen-
dent cluster” part, including

{
λpm

∣∣ p = 5(m − 1) + k,m = 1, . . . , 4, k = 1, . . . , 5
}
, were freely

estimated, but loadings in the “non-independent cluster” part were set as penalized parameters.

An optimal pair
(
γ̂ , δ̂

)
was chosen from � × � through the value of AIC and BIC, where

� = {.01, .02, . . . , .30} and� = {2.2, 2.6, 3.0} for SCAD, and� = {1.2, 1.6, 2.0} for MCP. For
the NMLmethod, an initial loading matrix was freely estimated and was then obliquely rotated to
a partially specified target (Browne, 1972) by assuming the “non-independent cluster” part should
be as small as possible. Finally, the OML only estimated the true nonzero parameters.

Model 2 is an SEM model with 27 manifest and 9 latent variables. The true measurement
model was specified as

� = I9 ⊗
⎡

⎣
0.80
0.75
0.70

⎤

⎦ , � = I9 ⊗
⎡

⎣
.36 0 0
0 .4375 0
0 0 .51

⎤

⎦ . (22)

The nonzero parameters in the path coefficient matrix B were β21 = β32 = β54 = β65 = β87 =
β98 = 0.35 and β41 = β74 = β52 = β85 = β63 = β96 = 0.45. The residual covariance
matrix � was chosen such that all the latent variables had unit variances. When a data set is
analyzed through a PL method, all coefficients in the lower triangular of B are estimated with �1,
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Figure 3.
Path diagram for the true model of model 1 in the numerical experiment: an oblique factor analysis model. For simplicity,
only values of factor correlations and loadings associated with the first factor are presented. Values of other factor loadings
are set in a similar way.

SCAD, or MCP. An optimal pair
(
γ̂ , δ̂

)
was chosen from � × � using AIC and BIC, where � =

{.01, .02, . . . , .30} and � = {2.2, 2.6, 3.0} for SCAD, and � = {1.2, 1.6, 2.0} for MCP. NML
freely estimates all the lower diagonal paths, andOMLestimates the true nonzero parameters only.

The performance of the proposed PL was evaluated with five criteria. First, the overall esti-
mation quality was assessed by the estimated mean squared error (MSE), defined as

M̂SE(θ̂) = 1

R

R∑

r=1

(
θ̂ (r)(γ̂ ) − θ∗)T (θ̂ (r)(γ̂ ) − θ∗), (23)

where θ̂ (r)(γ̂ ) =
(
θ̂

(r)
1 (γ̂ ), . . . , θ̂

(r)
Q (γ̂ )

)T
denoted the final estimate in the r th replication; θ∗

was the true parameter, and R = 500 was the number of replications. Second, the degree of bias
of an estimator was evaluated by the estimated squared bias (SB)
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Table 3.
Performances of PL, NML, and OML in Model 1: a factor analysis model.

PL-�1 PL-SCAD PL-MCP NML OML
AIC BIC AIC BIC AIC BIC

PCTM
N = 100 0.000 0.008 0.008 0.016 0.034 0.074 – –
N = 200 0.000 0.022 0.122 0.188 0.122 0.544 – –
N = 400 0.002 0.034 0.436 0.726 0.164 0.896 – –
N = 800 0.000 0.082 0.542 0.968 0.228 0.952 – –
N = 1600 0.000 0.044 0.520 0.986 0.308 0.968 – –

TDR
N = 100 1.000 1.000 1.000 1.000 1.000 1.000 – –
N = 200 1.000 1.000 1.000 1.000 1.000 1.000 – –
N = 400 1.000 1.000 1.000 1.000 1.000 1.000 – –
N = 800 1.000 1.000 1.000 1.000 1.000 1.000 – –
N = 1600 1.000 1.000 1.000 1.000 1.000 1.000 – –

FDR
N = 100 0.274 0.116 0.160 0.091 0.163 0.054 – –
N = 200 0.272 0.084 0.084 0.034 0.141 0.014 – –
N = 400 0.270 0.073 0.057 0.007 0.124 0.003 – –
N = 800 0.280 0.062 0.049 0.001 0.105 0.001 – –
N = 1600 0.289 0.066 0.043 0.000 0.075 0.001 – –

MSE
N = 100 0.805 0.965 0.580 0.627 0.651 0.508 0.696 0.471
N = 200 0.400 0.524 0.249 0.262 0.294 0.228 0.440 0.223
N = 400 0.209 0.282 0.118 0.116 0.140 0.112 0.330 0.110
N = 800 0.110 0.163 0.060 0.058 0.069 0.058 0.273 0.057
N = 1600 0.058 0.094 0.030 0.029 0.034 0.029 0.249 0.029

SB
N = 100 0.277 0.477 0.012 0.049 0.006 0.002 0.169 0.002
N = 200 0.149 0.300 0.003 0.008 0.003 0.001 0.194 0.001
N = 400 0.083 0.174 0.001 0.001 0.001 0.000 0.209 0.000
N = 800 0.043 0.106 0.000 0.000 0.001 0.000 0.214 0.000
N = 1600 0.024 0.065 0.000 0.000 0.001 0.000 0.219 0.000

PL penalized likelihood, NML non-oracle maximum likelihood, OML oracle maximum likelihood, AIC
Akaike information criterion,BICBayesian information criterion,PCTM proportion choosing the truemodel,
TDR true discovery rate, FDR false discovery rate, MSE mean squared errors, SB squared bias, N sample
size.

ŜB(θ̂) =
( ¯̂
θ − θ∗)T ( ¯̂

θ − θ∗) , (24)

where ¯̂
θ = 1

R

∑R
r=1 θ̂ (r)(γ̂ ) represented the empirical mean of θ̂ (γ̂ ). The third criterion, the

proportion choosing the true model (PCTM), assessed selection consistency via the proportion
of the true model that was chosen over the replications. The chance of correctly identifying the
true nonzero parameters was the fourth criterion as evaluated by the estimated true discovery rate
(TDR),

T̂DR(θ̂) = 1

R

R∑

r=1

∑
q∈B 1

{
θ̂

(r)
q (γ̂ ) 
= 0

}

|B| , (25)
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Table 4.
Performances of PL, NML, and OML in Model 2: An SEM Model.

PL-�1 PL-SCAD PL-MCP NML OML
AIC BIC AIC BIC AIC BIC

PCTM
N = 100 0.000 0.000 0.044 0.114 0.038 0.180 – –
N = 200 0.000 0.000 0.264 0.574 0.072 0.538 – –
N = 400 0.000 0.002 0.346 0.918 0.060 0.772 – –
N = 800 0.000 0.000 0.378 0.950 0.092 0.816 – –
N = 1600 0.000 0.000 0.358 0.960 0.100 0.870 – –

TDR
N = 100 0.997 0.995 0.964 0.953 0.962 0.939 – –
N = 200 1.000 1.000 0.995 0.992 0.994 0.988 – –
N = 400 1.000 1.000 1.000 1.000 1.000 0.999 – –
N = 800 1.000 1.000 1.000 1.000 1.000 1.000 – –
N = 1600 1.000 1.000 1.000 1.000 1.000 1.000 – –

FDR
N = 100 0.511 0.342 0.236 0.101 0.197 0.073 – –
N = 200 0.504 0.329 0.163 0.031 0.164 0.033 – –
N = 400 0.490 0.308 0.142 0.006 0.159 0.013 – –
N = 800 0.492 0.311 0.126 0.003 0.139 0.009 – –
N = 1600 0.498 0.305 0.134 0.002 0.147 0.006 – –

MSE
N = 100 1.099 1.104 1.305 1.161 1.296 1.151 2.053 0.725
N = 200 0.549 0.561 0.531 0.441 0.565 0.462 0.883 0.363
N = 400 0.267 0.279 0.244 0.184 0.268 0.195 0.418 0.177
N = 800 0.135 0.145 0.118 0.091 0.128 0.094 0.199 0.088
N = 1600 0.068 0.074 0.058 0.045 0.064 0.046 0.099 0.044

SB
N = 100 0.114 0.243 0.017 0.025 0.022 0.028 0.029 0.002
N = 200 0.067 0.141 0.004 0.003 0.005 0.004 0.007 0.001
N = 400 0.033 0.075 0.001 0.000 0.002 0.000 0.002 0.000
N = 800 0.020 0.043 0.001 0.000 0.001 0.000 0.002 0.000
N = 1600 0.010 0.023 0.000 0.000 0.001 0.000 0.001 0.000

PL penalized likelihood, NML non-oracle maximum likelihood, OML oracle maximum likelihood, AIC
Akaike information criterion,BICBayesian information criterion,PCTM proportion choosing the truemodel,
TDR true discovery rate, FDR false discovery rate, MSE mean squared errors, SB squared bias, N sample
size.

where B =
{
q| θ∗

q 
= 0, cq = 1
}
, and |B| was the size of B. Lastly, the degree to which the

true-zero parameters were incorrectly identified as nonzero was examined by the estimated false
discovery rate (FDR)

F̂DR(θ̂) = 1

R

R∑

r=1

∑
q∈Bc 1

{
θ̂

(r)
q (γ̂ ) 
= 0

}

|Bc| , (26)

where Bc =
{
q| θ∗

q = 0, cq = 1
}
.



348 PSYCHOMETRIKA

Tables 3 and 4 show the simulation results for models 1 and 2, respectively. The relative
performance of the different PL implementations, NML, and OML, were similar across the two
models. The OML estimator performed the best, with the lowest MSE and SB, and the NML
estimator performed the worst, with a relatively large MSE. The PL estimators uniformly outper-
formed the NML estimator, supporting our expectations (a). Within the class of PL estimators,
the estimators under the oracle PL performed better than those under �1 or AIC. Especially, under
relatively large sample sizes (N ≥ 800), the oracle PL estimators performed similarly to those of
the OML estimator, confirming our expectations (b). The PCTM showed that the oracle PL was
more likely to select the true model than the PL using �1 or AIC. The high PCTM of the oracle
PL under large sample sizes supported our expectations (c). If the oracle PL did not select the true
model, the TDR of nearly one showed that it tended to choose relatively complex models. How-
ever, the selected models were not very complex because most FDRs were still low. For example,
FDRs were all less than 0.05 if the sample size was at least moderate (N ≥ 200). Therefore, the
model selected by the oracle PL was usually close to the true model.

Remark 3. Note that the performance ofNMLcanbe improvedbyhard-thresholding small param-
eter estimates or using model modification indices. However, in contrast to the hard-threshold or
the modification method, PL can result in a continuous estimator by continuous thresholding.
Theoretically, a continuous estimation is expected to be relatively stable than a noncontinuous
one (see Breiman, 1996; Fan & Li, 2001). We generally recommend using continuous methods
whenever they are available.

8. Conclusion and Future Direction

A penalized likelihood method for structural equation modeling is proposed in the present
study.Themajor advantage of thePLmethod lies in its capacity to incorporate the confirmatory and
the exploratory elements in amodel, allowing for a simultaneous consideration of existing theories
and ambiguous inter-variable relations that await exploration. The proposedmethod can be applied
to a wide class of SEM models to efficiently reach an optimal model. The derived theorems
show that the PL can asymptotically yield an oracle estimator. The numerical experiment further
confirms such theoretical results. The better performance of PL over NML across all the sample
sizes also demonstrates the benefit of controlling model complexity in an exploratory analysis.
This preliminary evidence suggests that when uncertainty in relationships among variables exists,
the PL method provides an option for conducting SEM.

The present study develops an ECM algorithm for optimizing the PL criteria. The ECM
extends the algorithms of Choi, Zou, and Oehlert (2011) and Hirose and Yamamoto (2014, 2015)
for EFA in the sense that the current algorithm allows structural parameters and covariances to
be penalized. Because SEM can be formulated under GLMM or a regression with incomplete
data, the ECM can be also seen as a variant of the algorithms developed by Garcia, Ibrahim, Zhu
(2010) and Ibrahim, Zhu, Garcia, and Guo (2011) by considering SEM-specific parameters to be
penalized. Nevertheless, the algorithms of Ibrahim and his colleagues could be more general in
the sense that they consider any type of response belonging to an exponential family. In the future,
it would be worth to generalizing our algorithm to SEM with more flexible response variables.

The novel PL method for SEM presented in this study is not without limitations. Future
research in several directions can further our understanding of PL and provide improvements
over the current development. First, the standard errors and goodness-of-fit indices under PL
are proposed without numerical evaluation. Although both of them were used in our real data
illustrations, further studies are required to examine their empirical performances. Second, our
numerical experiment only considers relatively standard conditions. Future simulations can be
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extended to evaluate the PL under more realistic settings, such as non-normal data (e.g., Micceri,
1989), candidate setswithout containing the truemodel (e.g., Cudeck&Henly, 1991), the presence
of small parameters (e.g., Vrieze, 2012), and the case of P > N . Third, the PL method was not
compared with model modification methods (e.g., Chou & Bentler, 1990; MacCallum, 1986).
Future studies can be designed to compare these methods in order to understand their relative
advantages and disadvantages. Finally, the present PL considers only linear SEM. In reality, the
relationships among observed variables and latent variables might be nonlinear (e.g., Lee & Zhu,
2002). Developing PLmethods for more complex SEM situations could enhance the applicability
of the framework proposed herein.

Appendix A: The E-Step of the ECM Algorithm

Under the normal assumption of ε and ζ and the model defined in Eqs. (1) and (2), the joint
distribution of Y and η is

(
Y
η

)
∼ N

[(
μ

κ

)
,

(
� ��T

�� �

)]
,

where � = ���T + �;� = (IM −B)−1�(IM −B)−1T ;μ = ν + �κ , and κ = (IM −B)−1α.
Therefore, the complete data log-likelihood in Eq. (11) can be obtained using the distribution of
Y given η and the distribution of η, or equivalently, the distribution of ζ .
To derive the expression for the E-step, the conditional moments of the latent factor given the data
are necessary. The joint normality of Y and η implies that the conditional mean and variance of
η given Y are

E (η| Y ) = κ + ��T�−1(Y − μ),

Var (η| Y ) = � − ��T�−1��.

Hence, we have

e(t+1)
η = J (t) + K (t)eY ,

C (t+1)
Yη = eY J

(t)T + CYY K
(t)T ,

C (t+1)
ηη = �̂(t) − �̂(t)�̂(t)T�̂(t)−1

�̂(t)�̂(t) + J (t) J (t)T + J (t)eTY K
(t)T

+K (t)eY J
(t)T + K (t)CYY K

(t)T ,

where J (t) = κ̂ (t) − �̂(t)�̂(t)T�̂(t)−1
μ̂(t) and K (t) = �̂(t)�̂(t)T�̂(t)−1

. The derivation of C (t+1)
ηη is

based on the identity Var (η| Y ) = E
(
ηηT

∣∣ Y
)− E (η| Y ) E

(
ηT
∣∣ Y
)
.

Appendix B: The CM-Steps for Regression-Type Coefficients

Consider the updating scheme for λpj . If
∣∣λpj

∣∣ > 0, the first partial derivative of M
(
θ | θ̂ (t)

)

with respect to λpj is

∂M
(

θ | θ̂ (t)
)

∂λpj
= ψ pp

(
C(t+1)
Yη

[p, j] − νpe
(t+1)
η [ j] − λpjC

(t+1)
ηη [ j, j] − �[p, − j]C(t+1)

ηη [− j, j]
)
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+
∑

p′ 
=p

ψ pp
′ (

C(t+1)
Yη

[p′
, j] − νp′e(t+1)

η [ j]−�[p′
, ]C(t+1)

ηη [, j]
)

− cq
∂ρ
(∣∣λpj

∣∣ , γ
)

∂t
sign

(
λpj
)
,

where cq is the penalization indicator for λpj , and sign(t) = 1 {t > 0} − 1 {t < 0}. With other

parameters fixed at their newly updated values, the maximizer λ̂
(t+1)
pj (γ ) > 0 should satisfy

λ̂
(t+1)
pj (γ ) + w(t∗)

q

∂ρ(|λ̂(t+1)
pj |, γ )

∂t
sign

(
λ̂

(t+1)
pj (γ )

)
= λ̂

(t+1)
pj ,

where w
(t∗)
q = cq

ψ̂ pp(t∗)C(t)
ηη [ j, j] and λ̂

(t+1)
pj = λ̂

(t+1)
pj (0) with the expression

λ̂
(t+1)
pj = 1

C (t)
ηη [ j, j]

⎡

⎣

⎛

⎝C (t+1)
Yη [p, j] − ν̂(t∗)

p e(t+1)
η [ j] − �̂(t∗)[p,− j]C (t+1)

ηη [− j, j]
⎞

⎠

+
∑

p′ 
=p

ψ̂ pp′(t∗)

ψ̂ pp(t∗)

(
C (t+1)
Yη [p′, j] − ν̂

(t∗)

p′ e(t+1)
η [ j] − �̂(t∗)[p′, ]C (t+1)

ηη [, j]
)
⎤

⎦ .

The �1 penalty yields an updating scheme satisfying

λ̂
(t+1)
pj (γ ) = λ̂

(t+1)
pj − w(t∗)

q γ sign
(
λ̂

(t+1)
pj (γ )

)
.

Hence, the solution is the soft-thresholding rule

λ̂
(t+1)
pj (γ ) = S

(
λ̂

(t+1)
pj , w(t∗)

q γ
)

,

where S(θ, γ ) = sign(θ)max {|θ | − γ, 0} (see Donoho & Johnstone, 1994). For the SCAD and
the MCP, the updating schemes are relatively complex. The SCAD gives the updating rule

λ̂
(t+1)
pj (γ ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S
(
λ̂

(t+1)
pj , w

(t∗)
q γ

)
if λ̂

(t+1)
pj ≤ γ

(
1 + w

(t∗)
q

)
,

S
(
λ̂

(t+1)
pj ,w

(t∗)
q γ δ

/
(δ−1)

)

1−w
(t∗)
q

/
(δ−1)

if γ
(
1 + w

(t∗)
q

)
< λ̂

(t+1)
pj ≤ γ δ,

λ̂
(t+1)
pj if γ δ < λ̂

(t+1)
pj .

The solution form can be obtained by setting the first derivative to be zero. The domain for each
solution form can be solved based on the continuity of the derivative. Similarly, the MCP yields

λ̂
(t+1)
pj (γ ) =

⎧
⎪⎨

⎪⎩

S
(
λ̂

(t+1)
pj ,w

(t∗)
q γ

)

1−w
(t∗)
q

/
δ

if λ̂
(t+1)
pj ≤ γ δ,

λ̂
(t+1)
pj if γ δ < λ̂

(t+1)
pj .

The CM-step for βmj , νp, or αm is almost the same as this for λpj and can be found in Table 1.
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Appendix C: The CM-Steps for Variance and Covariance Parameters

Consider the CM-steps for parameters in �. Let sp(p) = {
k| ψpk 
= 0, k∈ {1, 2, . . . , P} \p}

denote the set of spouses of p and ε−p = (
ε1, . . . , εp−1, εp+1, . . . , εP

)T. Given p and
j ∈ sp(p), the factorization P (ε) = P

(
εp
∣∣ ε−p

)
P
(
ε−p
)

shows that the conditional
maximization of ψpj only involves the conditional distribution of εp, a normal distribu-
tion with mean

∑
k∈sp(p) ψpk ε̃l(k)(p) and variance ψ̃2

p, where ε̃l(k)(p) is the l(k)th element

of � [−p,−p]−1ε−p, l(k) is the column index of ψpk in �[p,−p], and ψ̃2
p = ψ2

p −
�[p,−p]� [−p,−p]−1� [−p, p]. By taking a derivative, ∂M(θ |θ̂ (t))

∂ψpj
= 1

ψ̃2
p(

u(t∗)
l( j)(p) − ψpjv

(t∗)
l( j)l( j)(p) −∑k∈sp(p)\ j ψpkv

(t∗)
l( j)l(k)(p)

)
− cq

∂ρ(|ψpj |,γ )
∂t sign

(
ψpj
)
, where

u(t∗)
l( j)(p) is the l( j)th element of �̂(t∗) [−p,−p]−1 C (t+1)

εε [−p, p] , v(t∗)
jk (p) is the (l( j), l(k))

element of �̂(t∗) [−p,−p]
−1

C (t+1)
εε [−p,−p] �̂(t∗) [−p,−p]

−1
, and

C (t+1)
εε = CYY − eY ν̂(t∗)T − C (t+1)

Yη �̂(t∗)T − ν̂(t∗)eTY + ν̂(t∗)ν̂(t∗)T + ν̂(t∗)e(t+1)T
η �̂(t∗)T

−�̂(t∗)C (t+1)T

Yη + �̂(t∗)e(t+1)
η ν̂(t∗)T + �̂(t∗)C (t+1)

ηη �̂(t∗)T .

Hence, under γ = 0, ψpj can be updated by

ψ̂
(t+1)
pj =

⎛

⎝u(t∗)
l( j)(p) −

∑

k∈sp(p)\ j
ψ̂

(t∗)
pk v

(t∗)
l( j)l(k)(p)

⎞

⎠/v
(t∗)
l( j)l( j)(p).

If γ > 0, ψ̂(t+1)
pj (γ ) can be obtained through the shrinkage formula in Table 1 with w

(t∗)
q =

cq
ˆ̃
ψ2(t∗)

p v
(t∗)
l( j)l( j)(p)

. Using a similar technique, we obtain

ˆ̃
ψ2(t+1)

p =
⎛

⎝C (t+1)
εε [p, p] − 2

∑

k∈sp(p)
ψ̂

(t∗)
pk u(t∗)

l(k)(p) +
∑

k∈sp(p)

∑

j∈sp(p)
ψ̂

(t∗)
pk ψ̂

(t∗)
pj v

(t∗)
l(k)l( j)(p)

⎞

⎠ ,

and then

ψ̂2(t+1)

p = ˆ̃
ψ2(t+1)

p + �̂(t∗)[p,−p]�̂(t∗) [−p,−p]
−1

�̂(t∗) [−p, p] .

The CM-steps for parameters in � can be derived similarly by replacing ε,�, and C (t+1)
εε with

ζ,�, and C (t+1)
ζ ζ respectively, where
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C (t+1)
ζ ζ = C (t+1)

ηη − e(t+1)
η α̂(t∗)T − C (t+1)

ηη B̂(t∗)T − α̂(t∗)e(t)T
η + α̂(t∗)α̂(t∗)T

+ α̂(t∗)e(t+1)T
η B̂(t∗)T − B̂(t∗)C (t+1)

ηη + B̂(t∗)e(t+1)
η α̂(t∗)T + B̂(t∗)C (t+1)

ηη B̂(t∗)T .
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