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Postselection Inference in Structural Equation Modeling

Po-Hsien Huang

Department of Psychology, National Cheng Kung University

ABSTRACT
Most statistical inference methods were established under the assumption that the fitted
model is known in advance. In practice, however, researchers often obtain their final model
by some data-driven selection process. The selection process makes the finally fitted model
random, and it also influences the sampling distribution of the estimator. Therefore, imple-
menting naive inference methods may result in wrong conclusions—which is probably a
prime source of the reproducibility crisis in psychological science. The present study accom-
modates three valid state-of-the-art postselection inference methods for structural equation
modeling (SEM) from the statistical literature: data splitting (DS), postselection inference
(PoSI), and the polyhedral (PH) method. A simulation is conducted to compare the three
methods with the commonly used naive procedure under selection events made by L1-
penalized SEM. The results show that the naive method often yields incorrect inference, and
that the valid methods control the coverage rate in most cases with their own pros and
cons. Real world data examples show the practical use of the valid inference methods.
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Introduction

Model selection is a commonly used strategy for
structural equation modeling (SEM). It is often advo-
cated as a confirmatory method for multi-model infer-
ence, that is, drawing research conclusions based on
several pre-specified candidate models (e.g., Burnham
& Anderson, 2002; MacCallum & Austin, 2000).
Sometimes, model selection is conducted as an
exploratory method for searching a best-fitting model
(e.g., Chou & Bentler, 1990; MacCallum, 1986). For
example, an SEM user may initialize a tentative model
and then empirically improve it step by step according
to the statistical significance implied by Lagrange mul-
tipliers (Silvey, 1959) or Wald tests (Wald, 1943). The
exploratory case is sometimes called model generation
(e.g., J€oreskog, 1993).

Standard large sample theory is applicable for stat-
istical inference under the assumption that the consid-
ered model is fixed (not random). Regardless of the
model selection method, the selection process makes
the” fixed model” assumption invalid. This fact was
recognized by statisticians about five decades ago (e.g.,
Brown, 1967; Buehler & Feddersen, 1963). More
recently, Leeb and his colleagues demonstrated in a
series of works how the presence of model selection

destroys the asymptotic normality of the parameter
estimator (e.g., Kabaila & Leeb, 2006; Leeb &
P€otscher, 2003, 2005, 2006, 2008). Breiman (1992)
even declared it” a quiet scandal in the statistical
community” to perform statistical inference without
model selection. Nevertheless, making a valid postse-
lection inference is a notoriously difficult task (see
Leeb & P€otscher, 2006, for some negative results)—
that is why the issue of postselection inference is
still unresolved.

To demonstrate how model selection may invali-
date traditional inference, let us consider the following
example originally presented by Benjamini and
Yekutieli (2005). Let fTjg200j¼1 denote a set of 200 inde-
pendent test statistics, such that Tj � Nðhj; 1Þ: Given
a significance level a, we can construct a confidence
interval (CI) for hj by the following two-step proced-
ure: (1) evaluate test significance by comparing jTjj
with z1�a=2; where z1�a=2 stands for the 1�a=2 quan-
tile of the standard normal distribution (e.g.,
z1�:05=2 ¼ 1:96); (2) if jTjj � z1�a=2; set the CI as
Tj6z1�a=2; otherwise, regard hj as zero without pro-
viding any interval. This two-step procedure imitates
the common practice of reporting CIs for only those
parameters chosen by a model selection algorithm.
Benjamini and Yekutieli demonstrated a possible bad
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consequence of this via a simulation with a ¼ :05 and
a Monte Carlo error less than 0.01. With parameter
values hj ¼ 0, 0.5, 1, 2, and 4, the corresponding con-
ditional coverage rates were 0, 0.60, 0.84, 0.95, and
0.97. The rates for hj ¼ 0, 0.5, and 1 were smaller
than their nominal level 1�a ¼ 0:95: This simulation
indicates that this two-step procedure tends to con-
struct too narrow intervals when the parameter value
hj is small. Benjamini and Yekutieli further showed
that the use of Bonferroni adjustment cannot solve
this problem. Their adjusted procedure selected hj
only if jTjj � z1�a=ð2�200Þ; and constructed a Bonferroni
corrected interval by Tj6z1�a=ð2�200Þ: The correspond-
ing coverage rates became 0, 0.82, 0.97, 1, and 1, still
smaller than the nominal level .95 when hj ¼ 0
and 0.5.

In the previous example, Tj 6 z1�a=2 was con-
structed only for jTjj � z1�a=2; i.e., the statistical infer-
ence got conditioned on a selection event. The
selection event jTjj � z1�a=2 defines a restricted sam-
ple space fY : jTjj � z1�a=2g; where Y ¼ fyngNn¼1 is a
random sample. Despite that the interval Tj6z1�a=2 is
1�a level for the original or unrestricted sample space
fYg; the same might not be true for the restricted
sample space. Note that the event jTjj � z1�a=2 is not
uninformative. When Tj indicates the significance
level for testing a parameter hj, the event jTjj � z1�a=2

corresponds to a sample space that yields a larger esti-
mate for jhjj than the unrestricted sample space. The
naive construction of the above CI ignores both the
randomness introduced by the selection process and
the sample space restriction implied by the chosen
model. Consequently, if the true parameter value is
close to zero, the naive intervals for the selected
parameters are generally too narrow, and tend to indi-
cate significant results. The problem is not only statis-
tical but also substantive. The author believes that
ignoring the influence of model selection on statistical
inference is one of the potential sources for the repro-
ducibility crisis in psychological science (e.g., Open
Science Collaboration, 2015). Note that the term
“model selection” used here can stand for any formal
or even informal procedure for choosing an “optimal”
model, including the p-hacking techniques (Simmons,
Nelson, & Simonsohn, 2011).

The present article aims to review several state-of-
the-art valid postselection inference methods from the
statistical literature, and apply these methods to make
valid postselection inferences in SEM settings. Some
psychometric works recognized the negative impact of
model selection uncertainty (e.g., Lubke & Campbell,
2016; Lubke et al., 2017; Preacher & Merkle, 2012),

but they didn’t discuss how to make valid postselec-
tion inferences for individual parameters. We found
only Jin and Ankargren (2018) considering this issue
formally. Their study approaches the postselection
inference problem by the so-called frequentist model
averaging (FMA) technique (Hjort & Claeskens,
2003). This technique averages parameter estimates
from multiple candidate models to obtain correct
inference results.

Although, FMA can yield CIs with desired coverage
rates, our experiences reveal that most psychologists
make statistical inferences for parameters conditioned
on a single selected model. Such type of inference is
sometimes called conditional inference (e.g., Lee,
Sun, Sun, & Taylor, 2016; Leeb & P€otscher, 2006).
The current work focuses on valid methods under the
conditional inference framework.

The construction of valid postselection inference
methods is influenced by the choice of model selec-
tion algorithms. Different algorithms result in their
own selection events. Under SEM settings, exploratory
model selection algorithms include nested model com-
parison by sequential likelihood ratio tests (e.g.,
Steiger, Shapiro, & Browne, 1985), specification search
(e.g., Chou & Bentler, 1990; MacCallum, 1986), and
the recently developed penalized likelihood (PL)
approach (Huang, Chen, & Weng, 2017; Jacobucci,
Grimm, & McArdle, 2016).

In this article, we consider two algorithm-inde-
pendent methods to accomplish the same goal: the
data splitting (DS) method (Cox, 1975) and the post-
selection inference (PoSI) method (Berk, Brown, Buja,
Zhang, & Zhao, 2013). In principle, these two meth-
ods work with all the mentioned selection algorithms
for SEM. However, they tend to be conservative
because of their generality. They sometimes result in
too wide CIs.

According to recent advances in postselection infer-
ence—under LASSO (least absolute shrinkage and
selection operator; Tibshirani, 1996) or under L1-
penalized regression—an efficient polyhedral (PH)
method can be established to construct CIs (Lee et al.,
2016; Taylor & Robert, 2018). Remarkably, when the
sampling distribution of the L1-penalized estimator is
derived on the basis of the polyhedral lemma, exact
postselection inference can be obtained. Despite this
exactness, the PH method is algorithm-specific. It was
originally designed for the L1-penalized model. The
author thinks that it might be very challenging to
extend the PH method to other selection algorithms
for SEM. Therefore, the present study only considers
the inference issue after conducting an L1-penalized
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SEM, so that we can compare DS and PoSI with the
efficient PH method.

Like other classical subset methods (e.g., forward
selection), L1-penalization automatically generates a
set of candidate models with different degrees of com-
plexity—via sparse estimation (see Tibshirani, 1996).
After choosing an appropriate penalty level, an opti-
mal model can be determined. The solution path of
L1-penalized estimates across different penalty levels is
continuous—making it different from other classical
methods. Thus we can characterize the selection event
via a simple optimality condition. The PH method is
established by this good property.

This article is organized as follows. The next sec-
tion describes a statistical framework for postselection
inference. L1-penalized SEM and a motivating
example section introduces the L1-penalized SEM and
a motivating example. In Valid postselection inference
methods section, three valid postselection inference
methods, including DS, PoSI, and PH, are introduced.
Simulation study section presents a simulation study
to evaluate and compare the performance of the
reviewed inference methods. A real world data illus-
tration is provided. Finally, merits and limitations of
the current work are discussed.

Statistical framework for
postselection inference

Let y denote a P-dimensional random vector with a
mean vector l and a covariance matrix R. The popu-
lation moment vector is represented by s ¼ ðl; rÞ;
where r ¼ vechðRÞ is a PðP þ 1Þ=2-dimensional
covariance vector and vechð�Þ is an operator that
stacks the non-duplicated elements of a symmetric
matrix. We use sðhÞ ¼ ðlðhÞ; rðhÞÞ to denote an SEM
model for the population moment vector s ¼ ðl; rÞ;
where h is a Q-dimensional parameter vector with hq
being its qth component.

During model selection, both the sparsity pattern
and the numerical value of h should be estimated
using a sample data set. By the sparsity pattern of h,
we mean a representation that indicates which ele-
ments are nonzero in h. More specifically, let fMjgJj¼1

denote a set of candidate models. We assign each
model an index set indicating the nonzero elements of
h. Hence Mj must be a subset of f1; 2; :::;Qg: For
example, Mj ¼ f1; 2; 3g means that for the jth model
hq ¼ 0 for q> 3. The complexity of Mj is interpreted
through its cardinality jMjj; counting the elements
within. For the most exploratory case, we have J ¼ 2Q

candidate models, considering all possible sparsity pat-
terns of h1, h2,… , hQ.

Through a random sample and a model selection
procedure, an optimal model M̂ can be obtained. For
example, M̂ ¼ Mj means that the jth model is
regarded optimal according to the given data and the
selection algorithm. After obtaining M̂ ¼ M; the cor-
responding parameter estimate ĥM can also be
derived. For example, we may use maximum likeli-
hood (ML) to estimate hM; the model parameter
under the chosen model.

Note that in typical applications of SEM, it is not
necessary to consider all sparsity patterns for h.
Substantive theories can be used to exclude some pos-
sibilities. For example, in most cases, residual varian-
ces are considered nonzero for psychological test data.
Without loss of generality, we assume h ¼ ðw;/Þ for
some R-dimensional w and S-dimensional /: The sub-
vector w is formed by all the fixed nonzero and freely
estimated parameters across all candidate models. On
the other hand, the sparsity pattern of / is unknown
in advance. It should be determined by some model
selection procedure. Similarly, any parameter under a
specific model M can be partitioned as hM ¼
ðwM;/MÞ: Despite that w is always included in the
specified SEM model, its value still depends on the
selected model, and hence the subscript M for w can-
not be dropped.

The aim of postselection inference is to make a
valid statistical inference for hM̂ under M̂ ¼ M: The
first difficulty in postselection inference is to deter-
mine a target parameter, a population quantity that a
CI aims to cover. Let DðhÞ denote the ML fitting
function, which measures the discrepancy between
sðhÞ and s. Given a random sample Y ¼ fyngNn¼1; the
ML fitting function can be written as

D hð Þ ¼ tr SR hð Þ�1
� �

� log jSR hð Þ�1j�P þ m�l hð Þ� �T
R hð Þ�1

m�l hð Þ� �
;

(1)

where m is the sample mean vector and S is the sam-
ple covariance matrix. Berk et al. (2013) distinguished
two perspectives for defining a target parameter in a
model selection setting. According to the full model
view, we quantify the population value of hM̂ by

h� ¼ argminh2HE D hð Þ½ �; (2)

where H is the parameter space of h. An advantage of
using h� is model independence. Regardless of the
realization of M̂; the same target is inferred.
However, from the quasi-ML theory of White (1982),
we expect that h� is not the limit point of hM̂ for
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every realization of M̂: According to the submodel
view, we define the population target by

h�M ¼ argminh2HME D hð Þ½ �; (3)

where HM is the parameter space under the selected
model M: Clearly, h�M is just a quasi-true parameter
under M: Hence ĥM is statistically consistent to h�M
for every realization of M̂ (see White, 1982). Under
the submodel view, the target to be inferred changes
with the selected model. Berk et al. (2013) argued that
the submodel view corresponds to a more reasonable
target than the full model view. In fact, the validity of
inference methods described in the next section can
be only justified under the submodel view.

To better understand the concept of target parame-
ters, we present a linear regression example with three
covariates. Suppose that (1) the three covariates x1,
x2, and x3 are standardized with pairwise correlation
q ¼ 0:3; and (2) the response variable y is derived as
y ¼ b1x1 þ b2x2 þ b3x3 þ � with b1 ¼ 0:5 and b2 ¼
b3 ¼ 0; where � is a residual term with variance 0.75.
When the chosen model correctly identifies b1 as non-
zero (we call it a correct model), both the full model
view and the submodel view quantify the populations
of ðb1; b2; b3Þ as ð0:5; 0; 0Þ; consistently with the value
generating y. However, if only b2 is regarded nonzero
by the chosen model (we call it an incorrect model),
the targets yielded by the two perspectives are differ-
ent. The full model view still considers ð0:5; 0; 0Þ as
the population values of ðb1;b2;b3Þ; but the submodel
view quantifies the population targets as ð0; 0:15; 0Þ
after minimizing in Equation (3). Despite that
ð0; 0:15; 0Þ seems to be irrelevant to the generation of
y, the predicted value ŷ ¼ 0:15� x2 is still the best
approximation for y if only x2 is used for prediction.
Hence, even if a chosen model is incorrect, it is still
meaningful to make an inference for the correspond-
ing target quantified by the submodel view.

Our goal is to construct a valid 1�a level CI for
each nonzero component of hM after obtaining M̂ ¼
M: In particular, for each realization of M̂ and q 2
M̂; we hope to construct a random interval CM;q that
satisfies

P h�M;q 2 CM;qjM̂ ¼ M
� �

� 1�a; (4)

where h�M;q is the qth element of h�M: Three import-
ant things concerning Equation (4) should be noted.
(1) The coverage property is conditioned on the event
that a particular model M is selected. In other words,
the randomness of CM;q is restricted to the sample
space fYjM̂ ¼ Mg: Note that M̂ is a function of the
random data Y: (2) Only elements in M are possible

to be inferred. Hence, we cannot construct CI for a
parameter that is not chosen by the model selection
procedure. From Berk et al. (2013)’s perspective, a
non-chosen parameter is thought about as nonexistent
in the selected model. (3) Equation (4) states that the
conditional coverage rate of CM;q with respect to h�M;q
is at least 1�a: This statement is similar to the defin-
ition of the usual 1�a level CI (e.g., Casella & Berger,
2002), except that the coverage property is condi-
tioned on the selection event.

L1-penalized SEM and a motivating example

The current study only considers selection events
made by L1-penalization. In this section, the L1-penal-
ized SEM is briefly described, see Huang et al. (2017)
for further details. Additionally, we present a motivat-
ing example to show how the L1-penalized SEM is
conducted. This example will be also used in the next
section to demonstrate the use of valid postselection
inference methods.

The L1-penalized SEM is a method that simultan-
eously selects non-null parameters, and estimates their
values in an SEM model. The method is based
upon the following penalized likelihood (PL) objective
function

U h; kð Þ ¼ D hð Þ þ kjj/jj1; (5)

where k is a regularization parameter that controls the
penalty level, and jj � jj1 denotes the L1 norm of a vec-
tor, i.e., jj/jj1 ¼

PS
s¼1 j/sj: For a fixed k, a PL esti-

mate, denoted by ĥ 	 ĥMk ; is defined as a minimizer
of Uðh; kÞ: Because L1 penalty can result in a sparse
estimate (i.e., an estimate with some zero elements),
the corresponding model is presented as Mk ¼
fqjĥqðkÞ 6¼ 0g: Thereby Mk is the set containing the
indices of nonzero elements in ĥðkÞ:

Let Tk ¼ N �DðĥÞ denote the test statistic under
k. Given a set of penalty levels K ¼ fkjgJj¼1; an opti-
mal penalty level can be selected by finding a k̂ 2 K
that minimizes either the Akaike information criterion
(AIC; Akaike, 1974)

AICk ¼ Tk�2dfk; (6)

or the Bayesian information criterion (BIC; Schwarz,
1978)

BICk ¼ Tk� log Nð Þdfk; (7)

where dfk denotes the degrees of freedom for the
model determined by k. In most cases, the degrees of
freedom can be calculated by dfk ¼ PðP þ 3Þ=2�ek
with ek being the number of nonzero and estimated
elements in ĥ: It is well known that BIC results in
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consistent model selection while AIC has an overfit-
ting tendency (e.g., Bozdogan, 1987; Huang, 2017;
Huang et al., 2017). We may also consider other types
of information criteria (see Bollen, Harden, Ray, &
Zavisca, 2014; Lin, Huang, & Weng, 2017, for
reviews). For example, the Haughton’s BIC (HBIC;
Haughton, 1988) is defined as

HBICk ¼ Tk� log
N
2p

� �
dfk: (8)

Under classical model selection settings, some sim-
ulations showed the advantage of HBIC over AIC and
BIC in terms of choosing the true model (e.g., Bollen
et al., 2014; Haughton, Oud, & Jansen, 1997; Lin
et al., 2017).

After choosing k̂; the corresponding optimal model
is Mk̂ ¼ fqjĥqðk̂Þ 6¼ 0g; and the final PL estimate is
written as ĥM̂ 	 ĥMk̂

: Because the L1-penalized esti-
mator ĥM̂ is biased, we further calculate a debiased
version for ĥM̂ ; and use the debiased estimator ~hM̂ to
construct CIs. The simplest way to obtain ~hM̂ is to
calculate the unpenalized ML estimate under M̂ ¼
Mk̂ : Another way is to consider a one-step estimate
(e.g., van de Geer, B€uhlmann, Ritov, & Dezeure, 2014;
Zhang & Zhang, 2014) (see the Appendix for the der-
ivation). Theoretically, the one-step estimator has the
same asymptotic distribution as the corresponding
unpenalized ML estimator.

After obtaining a selected model, the naive method
uses the trivial CIs for each selected parameter. This
method assumes that the chosen model is predeter-
mined. Given M̂ ¼ M; the naive method constructs
the interval CN

M;q as

CN
M;q ¼ ~hM;q � z1�a=2 � ^s:e: ~hM;q

� �
; ~hM;q þ z1�a=2 � ^s:e: ~hM;q

� �h i
;

(9)

where za is the a-quantile of the standard normal dis-
tribution, and ^s:e:ð~hM;qÞ is an estimated standard
error for ~hM;q: The standard error ^s:e:ð~hM;qÞ can be
obtained by either inverting the Fisher information
matrix, or by using a sandwich formula (see Yuan &
Hayashi, 2006). According to the author’s experience,
only the naive method is used in SEM practice.
However, the naive method is generally incorrect
because it ignores model selection in the process of
data analysis. The naive CI might be too narrow, and
thus it tends to yield an empirical coverage rate
smaller than 1�a:

Now, we consider an example of L1-regularized fac-
tor analysis (e.g., Hirose & Yamamoto, 2015; Huang
et al., 2017). The data set—collected by Holzinger and
Swineford (1939)—contains the responses of 301

seventh- and eighth-grade students responding to 24
psychological tests, of which only the first 19 were
used for our analysis. These tests included visual per-
ception (y1), cubes (y2), paper form board (y3), flags
(y4), general information (y5), paragraph comprehen-
sion (y6), sentence completion (y7), word classification
(y8), word meaning (y9), addition (y10), code (y11),
counting groups of dots (y12), straight and curved capi-
tals (y13), word recognition (y14), number recognition
(y15), figure recognition (y16), object number (y17),
number-figure (y18), and figure-word (y19). These 19
tests were assumed to be indicators of four oblique
factors: spatial (f1), verbal (f2), speed (f3), and memory
(f4). The major indicators for f1, f2, f3, and f4 were
y1�y4; y5�y9; y10�y13; and y14�y19; respectively. The
loadings of the major indicators were specified as
freely estimated parameters. Other loadings were still
estimated, but penalized by an L1 regularizer. Because
the variances of the tests were quite different, they
needed to be standardized for further analysis. An
optimal penalty level was chosen from a candidate set
K ¼ fkjg100j¼1 ranging from 0.01 to 1.0. The construc-
tion of K was the same as that in our simulation (see
the section of simulation study).

Based on the value of AIC, an optimal penalty level
k̂ ¼ 0:089 was obtained. Under this penalty level, 29
of the 57 penalized loadings were identified as non-
zero. The central task of postselection inference is to
make statistical conclusions for these selected loadings,
as well as other freely estimated parameters. Figure 1
presents the confidence intervals for the selected load-
ings. These intervals were constructed by the com-
monly used naive method and the three postselection
inference methods that will be introduced in the next
section. For the zero loading estimates, no intervals
were provided. The naive intervals indicated that 12
selected loadings by L1 differed from zero signifi-
cantly. However, the naive method was usually too
liberal, as indicated by our simulation (see the section
of simulation study), and hence inferences based on
naive CIs could not be trusted.

Valid postselection inference methods

In this section, three valid postselection CI methods
are introduced: the data splitting, the postselection
inference, and the polyhedral method.

Data splitting

During data splitting (DS), a sample data set is split
into two disjoint parts. The first part is used to choose
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an optimal model, and the second part is used to con-
struct CIs conditioned on the chosen model (Cox,
1975). Technically, we split the sample data Y into YA

and YB; such that YA [ YB ¼ Y and YA \ YB ¼ ;:
An optimal model M̂ ¼ M is obtained from the
starting point YA: Then, CDS

M;q is constructed by
Equation (9) using ~hM;q and ^s:e:ð~hM;qÞ estimated by
an unpenalized ML through YB: Even though, DS
looks very simple, it results in valid CIs regardless of
the implemented selection procedure. The main draw-
back of DS is obvious: a smaller sample size of the

partitioned data makes the selection process unstable
and the CIs wider.

To apply the DS in our motivating example, we
splitted the original data set into two parts. Through
the first part of data, an optimal model Mk̂ was
chosen. Under Mk̂ ; 19 of the 57 penalized loading
estimates were identified as nonzero. Then we fitted
the chosen model to the second part of data with
unpenalized ML. The DS intervals for the chosen
loadings were simply the naive CI calculated by using
the second part of data. The result showed that only

Figure 1. Naive, data splitting (DS), postselection inference (PoSI), and polyhedral (PH) confidence intervals (a ¼ 0:05) for the first
19 psychological tests of Holzinger & Swineford (1939). The point estimates are represented by the points within the intervals.
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f1 ! y13; f1 ! y16; and f3 ! y17 were statistically sig-
nificant (see Figure 1).

Postselection inference

Postselection inference (PoSI) tries to find a multiplier
that can be legitimately used for each selected M
(Berk et al., 2013). Formally, the method searches for
a constant ka; such that

P max
M

max
q2M

j
~hM;q�h�M;q

^s:e: ~hM;q

� � j 
 ka

0
@

1
A � 1�a: (10)

After deriving ka; the PoSI interval CPoSI
M;q is con-

structed via

CPoSI
M;q ¼ ~hM;q � ka � ^s:e: ~hM;q

� �
; ~hM;q þ ka � ^s:e: ~hM;q

� �h i
:

(11)

The definition of ka in Equation (10) implies that
CPoSI
M;q satisfies the conditional coverage property in

Equation (4). An evident PoSI constant can be
obtained by Scheffe’s method: ka ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
v2S;1�a

q
; where

v2S;1�a is the 1�a-quantile of the v2 distribution with S
degrees of freedom.1 Scheffe’s PoSI constant is gener-
ally too large, and it makes for a conservative CI. For
linear regression problems, Berk et al. (2013) suggested
a numerical method to compute a better PoSI constant,
but this method is time consuming. For instance, sev-
eral examples in the R package PoSI (Buja & Zhang,
2017) require 10þ minutes to finish. In addition, the
development of the numerical method in Berk et al.
(2013) depends on the structure of the linear regression
problem. It might be difficult to extend the numerical
method to SEM cases. Therefore, the present study
simply uses Scheffe’s PoSI constants to construct CIs
for SEM model parameters.

To calculate the PoSI intervals for the selected
loadings, we first derived the Scheffe’s PoSI constant
by ka ¼

ffiffiffiffiffiffiffiffiffiffiffi
v257;:95

q
¼ 8:70: Then the PoSI intervals were

obtained by using Equation (11) with ka ¼ 8:70:
Figure 1 indicated that none of the selected loadings
were recognized as significant by PoSI. As we shall
see in the section of simulation study, PoSI generally
yields conservative inference results. When using R
package lslx to conduct L1-penalized SEM (Huang, in
press), PoSI intervals can be easily obtained by setting
inference¼“scheffe” in the summarize() method.

The polyhedral method

The polyhedral (PH) method derives the sampling
distribution of the one-step debiased estimate under
a selection event made by L1-penalization with a
fixed penalty level (Lee et al., 2016; Taylor & Robert,
2018). Because the sampling distribution is known,
the CIs for the selected parameters can be con-
structed. Details of the PH method can be found in
the Appendix. To describe the sampling distribution,
let #M denote a subvector of hM formed by
fhM;qgq2M; i.e., #M only includes the nonzero ele-
ments of hM: Furthermore, we use uM to denote a
subvector formed by the selected elements /M;

which implies that #M ¼ ðwM;uMÞ: Under a fixed
penalty level, the large sample distribution of the
one-step estimator ~#M equalsffiffiffiffi

N
p

~#M�#�
M

� �
�N 0; ĈM

	 

; (12)

being restricted to the event

sign ~uM �PMF̂ �1
M

0
k̂sM

� �� �� �
¼ ŝM; (13)

where ĈM is an estimated covariance matrix of ~#M;

F̂M is the observed Fisher information matrix with
respect to M; ŝM is the sign vector of ~uM; i.e., ŝM ¼
signð~uMÞ; and PM is a projection matrix that selects
rows corresponding to ~uM: According to the polyhe-
dral lemma, each element of ~#M is asymptotically dis-
tributed as a truncated normal variate. A PH interval
CPH
M;q can be obtained by inverting the cumulative dis-

tribution function of the corresponding truncated nor-
mal variate. Under linear regression and a fixed
penalty level, CPH

M;q is exact, which means that the
coverage rate of a PH interval is exactly 1�a: Under a
general L1-regularized estimation, CPH

M;q is only asymp-
totically exact. However, the validity of PH intervals is
only ensured for fixed penalties. The value of the
regularization parameter must be predetermined, and
it cannot be tuned by any data-driven method.
Nevertheless, existing simulation shows that CPH

M;q still
performs well when an optimal penalty level is chosen
post hoc (Taylor & Robert, 2018). Another drawback
of PH is that the truncated normal probability is hard
to evaluate. Occasionally, the PH method results in an
infinite interval. In our simulation, about 0.2% of the
PH intervals were infinite.

It might not be a trivial task to write a code for
calculating PH CIs. Fortunately, they can be also
obtained by using lslx package (with inference¼“poly-
hedral” in the summarize() method). For the motivat-
ing example, the PH CIs showed that only five
selected loadings were thought to be nonzero

1In linear regression problems with S covariates to be chosen, the
Scheffe’s PoSI constant is ka ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S� FS;N�S;1�a

p
; where FS;N�S;1�a is the

1�a-quantile of the F distribution with degrees of freedom S and N – S.
In SEM settings, we should consider S� FS;N�S;1�a with N ! 1; which
converges to v2S;1�a:
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statistically, including f1 ! y16; f1 ! y17; f2 ! y11; f2 !
y19; and f3 ! y17 (see Figure 1).

Simulation study

In this section, we compare the empirical performan-
ces of CN

M;q;C
DS
M;q;C

PoSI
M;q; and CPH

M;q: The simulation
evaluates the postselection CIs for path coefficients
with the help of the multiple indicators and multiple
causes (MIMIC) model (J€oreskog & Goldberger,
1975). Four factors are considered here: the size of the
models (small and large), the size of the non-null
effects (small, medium, and large), the sample sizes
(100, 200, 400, 600, and 800), and the type of selectors
(AIC, BIC, and HBIC).

The size of the models reflects different analytical
settings. Figure 2 shows the small size MIMIC
model, which includes six potential causes, five indi-
cators, and one latent factor. Only the first two
causes had non-null effects on the latent factor.
For the large size model, the true model specification
was similar to that of the small one, except that
(1) 12 potential causes were considered; and (2) the

first four causes were non-null. Because the success
of using information criteria for choosing relevant
features depends on the magnitude of non-null
effects (e.g., Lin et al., 2017; Vrieze, 2012), the
values of non-null effects were set as 0.1, 0.2, or
0.3 for representing the small, medium, or large
effect.2 For each combination of the model sizes and
the effect sizes, we generated data for sample sizes of
100, 200, 400, 600, and 800 from multivariate normal
distribution with the specified covariance matrix.

Each data set was analyzed under its corresponding
MIMIC model having all path coefficients estimated
with L1-penalization. For each analysis, the corre-
sponding optimal penalty level was selected from K ¼
fkjg60j¼1 by either AIC, BIC, or HBIC. Here, kj ¼
exp fbjg with bj being the jth element of B, a set of
equally spaced values between log ð0:01Þ and log ð0:60Þ:

Figure 2. The small MIMIC model for generating data. It includes five indicators (y1 – y5), one latent factors (f), and six potential
causes (x1 – x6). The non-null path coefficient is set to 0.1, 0.2, or 0.3, depending on the simulation condition. All factor loadings
and correlations among causes are set to 0.7 and 0.2, respectively. The values of residual variances are so chosen as to let the
observed variables and latent factors have unit variances.

2Despite that we used” large” to qualify the value of 0.3, a standardized
regression coefficient b ¼ 0:3 only represents a medium effect according
to Cohen (1992). Thus, the values of the non-null effects are considered
only small to medium. We just used the terms “small”, “medium”, and
“large” for convenience. When we adopted a large effect defined by
Cohen here (e.g., b ¼ 0:5), the resulting R2 became larger than one,
which is impossible.
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By the construction of K, the candidates for the tuning
parameters were in log-scale (see B€uhlmann & van de
Geer, 2011, p. 38). Our experiment indicated that (1)
k60 ¼ 0:60 was large enough to shrink all regression
coefficients to zero; (2) the grid formed by the elements
of K was dense enough to approximate the solution
paths of the PL estimates. After obtaining a selected
model, CN

M;q;C
DS
M;q; C

PoSI
M;q; and CPH

M;q were constructed
for each nonzero path coefficient. The significance level
a was set to 0.05. Except for CDS

M;q; all CIs were calcu-
lated based on the one-step estimator.

In summary, there were a total of 2� 3� 5� 3 ¼
90 conditions. For each condition, 2000 successful
replications were submitted for analysis. A replication
was considered successful if the PL estimate was
derived from a convergent optimization.3 The simula-
tions were conducted within the R environment (R
Core Team, 2018). Package lslx (Huang, in press) was
used to implement the L1-penalized SEM and the con-
sidered inference methods.

Two indices were used to evaluate the performance
of the considered intervals: coverage rate (CR) and
interval length (IL). For any single parameter hM;q;

the CR of CM;q was defined as the proportion of the
time that the interval contained the corresponding
population targets across all replications, given that
hM;q was selected. Here, the population target was the
quasi-true parameter under the chosen model (see
Equation (3)). In an ideal case, a valid method would
result in CIs with CRs equal to 1�a: If a method only
yields CRs larger than 1�a; it is still valid according
to the definition by Equation (4), and we would say
that the method constructed CIs with controlled CRs.
The IL of CM;q is the median of the length of all
intervals for hM;q: Among several valid methods, a
method is considered the most efficient if it results in
a CI with the narrowest IL. Because it is difficult to
present CR and IL for each model-dependent param-
eter,4 we only presented the average CR and the
median IL for two categories of parameters: nonzero
targets and zero targets. The nonzero targets are path
coefficients associated with non-null causes, while the
zero targets are coefficients for null causes under the

true model. In typical cases, the nonzero targets are
parameters that researchers are interested in.

According to the theory of these postselection infer-
ence methods, we expected that (1) the PH method
would perform the best with a controlled CR and a
relatively narrow IL. In addition, its performance would
improve with sample size; (2) both DS and PoSI could
control CR, but would tend to be conservative with
wide IL; (3) the naive method would generally yield a
too small CR by ignoring the presence of model selec-
tion, even if its IL was the narrowest.

Before presenting the CR and the IL results, we
examine the positive rates (PR) for selecting the non-
zero targets and the zero targets under each condition
(see Figure 3). The PR result shows that nonzero tar-
gets can be chosen consistently under large effect
sizes. For small and medium effects, PR increases with
sample size. However, BIC and HBIC could not prop-
erly select nonzero targets of value 0.1, even with a
sample size of 800. DS uses half of the sample data
for model selection. Hence, the half-data selection
result is not as good as the full-data result in terms of
the PR for nonzero targets. In general, our PR result
is consistent with the typical behavior of information
criteria found in SEM literature (e.g., Lin et al., 2017;
Vrieze, 2012).

Figures 4 and 5 show the CR and the IL results of
the simulation. In most conditions, the PH method
performed well with controlled CR and relatively nar-
row IL, but it could not control CR for zero targets
under BIC and HBIC combined with small effects.
The fact that the CR of PH intervals was not always
close to the nominal level 1�a ¼ 0:95 is probably due
to the randomness introduced by penalty level selec-
tion. It is worth noting that the IL of PH intervals for
nonzero targets was quite similar to the IL of those in
the naive method under medium and large effects.
This means that the efficiency loss of PH is negligible
for large nonzero targets. DS performed surprisingly
well. It yielded CR values very close to 0.95. The IL of
DS intervals was not the narrowest compared with
other valid methods, but DS performed reasonably
well and stable for both types of targets. PoSI could
also yield 1�a level CIs. However, the CR of PoSI
intervals was close to 1 across almost all conditions,
which shows that PoSI is too conservative. PoSI
produced the widest intervals. CR for the naive
method was only controlled for nonzero targets
under some AIC conditions. In general, the naive
method yielded too small CR, despite that its IL was
the smallest. The naive method performed worse for
zero targets under BIC/HBIC than under AIC.

3The five-number summary for the rates of convergent solutions was
27%, 93%, 100%, 100%, and 100%. We found that nonconvergent
solutions mainly occurred when both the model size and the number of
non-null effects were large and the sample size was 100. For other
conditions, the rate of convergent solutions exceeded 93%.
4Recall that the population target is model-dependent. Suppose that
there are Q potential causes. Without the duplicated cases, there are Q �
2Q�1 model-dependent parameters since: (1) Q path coefficients are
considered; and (2) each potential cause appears in 2Q�1

candidate models.
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Why? It is well known that BIC/HBIC favors a par-
simonious model because of its heavier penalty for
complexity (i.e., the term log ðNÞ for BIC in
Equation (7)). Any BIC/HBIC selected parameter
reduces the discrepancy function substantially,
which implies that the parameter appears” statistic-
ally significant”. As a result, the constructed CI for
a zero target also shifted from zero toward its par-
ameter estimate.

Example: psychological domain of
WHOQOL data

The example applies the inference methods to a
MIMIC model for exploring measurement invariance.
We adopted the data set from Chen and Yao (2015).
It contains the responses of 158 males and 240

females to six items from the Taiwan Version of
WHOQOL-BREF (World Health Organization Quality
of Life—Short Form; The WHOQOL Taiwan Group,
2005). The six items are positive feeling, spirit, think-
ing, body image, self-esteem, and negative feeling.
These items were used to measure the psychological
domain of QOL, using the five-point Likert type scale.
An L1-penalized MIMIC model was specified to probe
the intercept invariance across males and females. The
loading of positive feeling was fixed at 1 for scale set-
ting. Other loadings were freely estimated. The regres-
sion coefficients from gender to each item were set as
penalized parameters. Based on the value of AIC, full-
data selection chose k̂ ¼ 0:051 from the same K set
that we used in the previous example. The final model
indicated that only the regression coefficient for the
fifth item self-esteem was nonzero (b̂2 ¼ 0:138). From

Figure 3. Positive rates of full-data selection and half-data selection for nonzero and zero target parameters under AIC, BIC, and
HBIC selectors across effect sizes, model sizes, and sample sizes.
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the naive CI (CN ¼ ½0:009; 0:266�), the intercept of self-
esteem appeared non-invariant. However, from both
PoSI (CPoSI ¼ ½�0:096; 0:371�) and the polyhedral inter-
val (CPH ¼ ½�0:053; 0:266�), all intercepts appeared
invariant across males and females. The half-data

selection result made by AIC indicated that no penalized
coefficients were identified as nonzero (k̂ ¼ 1). Despite
the selection results yielded by full-data and half-data
procedures were different, the final conclusion about the
intercept invariance were the same.

Figure 4. Coverage rates of the naive, data splitting (DS), postselection inference (PoSI), and polyhedral (PH) confidence intervals
for nonzero and zero target parameters under AIC, BIC, and HBIC selectors across effect sizes, model sizes, and sample sizes. Note
that the y-axis is scaled by tanh�1:
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Discussion

The present study reviewed three valid postselection
inference methods, and applied them to structural
equation modeling (SEM). Therein, data splitting (DS)
and postselection inference (PoSI) were algorithm-
independent, while the polyhedral (PH) method was

originally designed for L1-penalized methods. A
numerical experiment was conducted to compare the
performances of the three valid methods with that of
the naive approach. As expected, the naive method
failed to construct valid intervals, and the three valid
methods worked under most simulated conditions

Figure 5. Length of naive, data splitting (DS), postselection inference (PoSI), and polyhedral (PH) confidence intervals for nonzero
and zero target parameters under AIC, BIC, and HBIC selectors across effect sizes, model sizes, and sample sizes.
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with their own pros and cons. Two real world data
examples showed that the valid methods can yield dif-
ferent conclusions from that of the naive method. In
general, the valid methods were more conservative to
protect the type I error rate.

The practical implications of the present study are
as follows. (1) The naive method should never be used
after model selection. Although the simulation showed
that the naive method sometimes produces good inter-
vals for nonzero targets, in general, its CR for zero tar-
gets is always too small. Therefore, the naive method
tends to obtain significant results for selected zero tar-
gets. It seems to the author that the wide use of the
naive method after model selection results in numerous
false positive findings in psychology, which is unfortu-
nate. (2) The DS method is generally recommended. It
is very simple, and it can yield reasonably good inter-
vals with excellent CR control. DS can also be used for
cross-validation (CV) (e.g., Camstra & Boomsma, 1992;
Cudeck & Browne, 1983; MacCallum, Roznowski, Mar,
& Reith, 1994). Although CV after model selection has
been advocated by some researchers (e.g., Browne,
2000; MacCallum, Roznowski, & Necowitz, 1992), its
use is only occasionally reported (Jackson, Gillaspy, &
Purc-Stephenson, 2009; MacCallum & Austin, 2000).
The existing CV methods in SEM are mainly used for
overall model evaluation, not for individual parameter
testing. The author would suggest the regular practice
of using DS for statistical inference after any type of
model selection. (3) The PH method should be imple-
mented with care. The simulations indicated that PH
performs well when AIC is used. In addition, PH
results in efficient intervals for medium and large non-
zero parameters, which are the targets that most studies
wish to discover. (4) The PoSI method with Scheffe’s
constant is only recommended if researchers tend to
take a conservative stance or the sample size is large.

Although the current article only considers model
selection via sparse estimation made by L1-penaliza-
tion—except for the polyhedral-related results—the
author believes that the findings can be generalized to
any data-driven method for model selection. The two
algorithm-independent methods can be applied to most
model selection procedures in SEM with only slight
adjustment. Of course, to enhance our understanding
of these postselection inference methods, future studies
can directly evaluate their performance under different
selection algorithms and simulated settings.

Recently, many L1-penalized estimation methods
have been developed in psychometrics (Chen, Liu, Xu,
& Ying, 2015; Hirose & Yamamoto, 2014, 2015;
Huang et al., 2017; Jacobucci et al., 2016; Sun, Chen,

Liu, Ying, & Xin, 2016; Trendafilov, Fontanella, &
Adachi, 2017; Tutz & Schauberger, 2015). However,
none of them considered the issue of statistical infer-
ence for individual parameters. In principle, the infer-
ence methods considered in the current study can be
directly applied to all of the above L1-penalized esti-
mation procedures. For L1-penalized SEM, the lslx
package (Huang, in press) can now run PoSI and PH
by specifying the inference argument. It is worth
incorporating the reviewed inference methods into
other related software implementations as well.

Although postselection inference is now an active
research topic in statistics, it is rarely discussed in
psychology. Not all existing methods can be extended
to SEM in a straightforward manner. Some unadopted
yet worthy methods include Tibshirani, Rinaldo,
Tibshirani, and Wasserman (2018)’s bootstrap
method, Charkhi and Claeskens (2018)’s AIC selector
specific method, and Meir and Drton (2017)’s meth-
ods using a postselection score function. Studies that
tried to improve or extend the reviewed inference
methods include a multisplit version of DS
(Meinshausen, Meier, & B€uhlmann, 2009), a more
accurate PH (Liu, Markovic, & Tibshirani, 2018), and
PH methods for sequential regression (Tibshirani,
Taylor, Lockhart, & Tibshirani, 2016).
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Appendix

Polyhedral method for SEM

The appendix describes how to apply the polyhedral (PH)
method to SEM with minimax concave penalty (MCP;
Zhang, 2010). Technical details of the PH method for
LASSO or for a more general L1-penalized likelihood can be
found in Lee et al. (2016) and Taylor and Robert (2018).
The functional form of MCP is

q jhqj; k
	 
 ¼ kjhqj�

h2q
2d

if jhqj 
 kd;

1
2
k2d if kd<jhqj;

8>><
>>: (14)

where d is a parameter to control the convexity level of
MCP. The L1 regularization can be seen as a special case of
MCP with a convexity parameter of infinity. The penalized
likelihood discrepancy with MCP can be written as

U h; kð Þ ¼ D hð Þ þ R /; kð Þ; (15)

where Rð/; kÞ ¼PS
s¼1 qðj/sj; kÞ is a penalty term based on

MCP. Recall that h is the model parameter partitioned into

ðw;/Þ; where w is freely estimated and / is penalized. Let
#M denote a subvector of hM formed by fhM;qgq2M: It is
assumed that #M can be written as #M ¼ ðwM;uMÞ: In
addition, uC

M can be used to represent the complement of
uM; i.e., the vector formed by fhM;qgq62M:

Suppose that ĥM is a minimizer for Equation (15), such
that M̂ ¼ M: The minimizer must satisfy the
Karush–Kuhn–Tucker (KKT) conditions

@D ĥM
	 


@#M
þ @R ĥM; k

	 

@#M

¼ 0;

@D ĥM
	 


@uC
M


 
 k:

(16)

The second inequality implies that each element on the
left-hand side should be less than or equal to k. Note that

in the case of L1 regularization, @RðĥM;kÞ
@#M

¼ ð0; ksMÞ
with ŝM ¼ signðûMÞ:

Let �#M denote the unpenalized ML estimator under M;

i.e., @Dð�#MÞ
@#M

¼ 0: For a fixed M; the asymptotic distribution

of �#M is ffiffiffiffi
N

p
�#M�#�

M
	 
�N 0; ĈM

	 

; (17)

where ĈM is an estimated covariance matrix of �#M (see
Yuan & Hayashi, 2006, for specific formulae). By
@Dð�hMÞ
@#M

� @DðĥMÞ
@#M

þ F̂Mð�#M�#̂MÞ; the one-step debiased

estimator can be defined as

~#M ¼ #̂M�F̂ �1
M

@D ĥM
	 


@#M
; (18)

where F̂M ¼ @2DðĥMÞ
@#M@#T

M
is the observed Fisher information

matrix under M (see van de Geer et al., 2014; Zhang &
Zhang, 2014). The one-step debiased estimator almost sol-
ves the likelihood equation of model M: If k is chosen,
such that #̂M is

ffiffiffiffi
N

p
consistent with #�

M (e.g., k / 1ffiffiffi
N

p ), the

large sample behavior of ~#M will be quite similar to that of
�#M: In fact, the asymptotic distribution of ~#M isffiffiffiffi

N
p

~#M�#�
M

� �
� N 0; ĈM

	 

; (19)

with the constraint

sign ~uM �PMF̂ �1
M

@R ĥM; k
	 

@#M

 !( )
¼ ŝM; (20)

where ŝM ¼ signð~uMÞ and PM is a projection matrix that
selects the rows corresponding to ~uM (see Taylor & Robert,
2018). The constraint in Equation (20) can be written in the
form of A~#M 
 b; i.e.,

0 �diag sMð Þ
	 


~#M 

0

PMF̂ �1
M

@R ĥM; k
	 

@#M

0
@

1
A: (21)

In other words, ~#M is asymptotically distributed as a
normal variate with mean vector #�

M and covariance matrix
1
N ĈM under the polyhedral constraint of A~#M 
 b:

Let g denote a vector and gT#�
M be a population target

to be inferred. Define c ¼ ĈMgðgT ĈMgÞ�1 and r ¼
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ðI�cgTÞ~#M: The polyhedral lemma (Lee et al., 2016) states
that for the random quantity gT~#M the conditioning set
can be written as

A~#M 
 b
� �

¼ V� rð Þ 
 gT~#M 
 Vþ rð Þ;V0 rð Þ � 0
n o

;

(22)

where

V� rð Þ ¼ max ij Acð Þi<0f g
bi� Arð Þi

Acð Þi
Vþ rð Þ ¼ min ij Acð Þi>0f g

bi� Arð Þi
Acð Þi

V0 rð Þ ¼ min ij Acð Þi¼0f g bi� Ayð Þi:

(23)

Note that gT~#M and ðV�ðrÞ;VþðrÞ;V0ðrÞÞ are statistically
independent. The polyhedral lemma further says that the
large sample distribution of gT~#M given A~#M 
 b and r is

gT~#Mj A~#M 
 b; r
� �

� FV
� rð Þ;Vþ rð Þ

gT#�
M ;1Ng

T ĈMg
tð Þ; (24)

i.e., a truncated normal with mean gT#�
M; variance

1
N g

T ĈMg; lower limit V�ðrÞ; and upper limit VþðrÞ: Here,

FL;Ul;r2ðtÞ denotes the cumulative distribution function of a
truncated normal variate T. Therefore, we can construct a
1�a CI for #�

M;q ¼ gT#�
M by setting CPH

M;q ¼ ½L;U�; such
that

FV
� rð Þ;Vþ rð Þ

L;1Ng
T ĈMg

gT#̂M
	 


¼ 1� a
2
; (25)

and

FV
� rð Þ;Vþ rð Þ

U;1Ng
T ĈMg

gT#̂M
	 


¼ a
2
: (26)

It should be noted that the constructed PH interval is
actually conditioned on the selection event M̂ ¼ M and
ŝ ¼ sM; where sM is the sign of #̂M: If we wish to condi-
tion on M̂ ¼ M; Lee et al. (2016) suggests using
[s½V�

s ðrÞ;Vþ
s ðrÞ�; the union of ½V�

s ðrÞ;Vþ
s ðrÞ� among

all possible signs of M: However, this union is difficult
to evaluate when the number of penalized parameters is
large. The current study simply calculated PH intervals
conditioned on both M̂ ¼ M and ŝ ¼ sM; which gener-
ally yields wider intervals (see Lee et al., 2016).
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