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Selecting Path Models in SEM: A Comparison of
Model Selection Criteria

Li-Chung Lin, Po-Hsien Huang, and Li-Jen Weng
National Taiwan University

Model comparison is one useful approach in applications of structural equation modeling.
Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC) are commonly
used for selecting an optimal model from the alternatives. We conducted a comprehensive
evaluation of various model selection criteria, including AIC, BIC, and their extensions, in
selecting an optimal path model under a wide range of conditions over different compositions
of candidate set, distinct values of misspecified parameters, and diverse sample sizes. The chance
of selecting an optimal model rose as the values of misspecified parameters and sample sizes
increased. The relative performance of AIC and BIC type criteria depended on the magnitudes of
the parameter misspecified. The BIC family in general outperformed AIC counterparts unless
under small values of omitted parameters and sample sizes, where AIC performed better. Scaled
unit information prior BIC (SPBIC) and Haughton's BIC (HBIC) demonstrated the highest
accuracy ratios across most of the conditions investigated in this simulation.

Keywords: AIC, BIC, model comparison, model selection criterion, path model, structural
equation modeling

Structural equation modeling (SEM) has been a popular
statistical method in psychology and social sciences
research (Guo, Perron & Gillespie, 2009; Hershberger,
2003). Among the approaches adopted for this methodol-
ogy, model comparison is a highly useful strategy (Jöreskog,
1993; MacCallum, 1995, 2003). The review by MacCallum
and Austin (2000) indicated that 53% of SEM studies used
this strategy. With this strategy, alternative models based on
competing theories or conflicting findings are evaluated to
select an optimal model that balances the trade-off between
model goodness of fit and model complexity. However,
selecting an optimal model can be difficult in statistical
analysis (Bozdogan, 1987). As a result, model selection
criteria are frequently used to single out the best model

from the alternatives. Among the criteria being developed,
Akaike’s information criterion (AIC; Akaike, 1974) and the
Bayesian information criterion (BIC; Schwarz, 1978) are the
two most representative ones (see Shao, 1997).

BothAIC andBIC are formulated as the sum of negative log-
likelihood and a penalty term that increases with the number of
parameters in a given model. The negative log-likelihood repre-
sents the goodness of fit of a proposed model with a smaller
value signifying a better fit. The penalty term shows the com-
plexity of a model and the smaller it is, the more parsimonious a
model is. Thus a model with the minimal value of AIC or BIC
among all the competing models indicates an optimal balance
betweenmodel fit andmodel complexity and would be selected.
Although the two criteria are commonly used in choosing an
optimal structural equation model, studies examining their per-
formance seem limited and a comprehensive investigation on
the behaviors of various model selection criteria under a wide
range of conditions is called for (Bollen, Harden, Ray, &
Zavisca, 2014; Haughton, Oud, & Jansen, 1997; Homburg,
1991; Vrieze, 2012). This study therefore considers the factors
that have been shown to affect the performance of the model
selection criteria and includes several criteria beyond those
examined in prior SEM simulations. This article is organized
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as follows. AIC, BIC, and their extensions are briefly introduced
first. Existing simulation studies on the performance of model
selection criteria in SEM are then reviewed. It then depicts the
simulation design and summarizes the results. The discussion
and recommendations for applying the model selection criteria
are presented in the final section.

BRIEF DESCRIPTIONS OF AIC, BIC, AND THEIR
EXTENSIONS

This section introduces the theoretical bases of AIC, BIC,
and their extensions, including AIC3 (Sclove, 1987), con-
sistent AIC (CAIC; Bozdogan, 1987), consistent AIC with
Fisher information (CAICF; Bozdogan, 1987), adjusted BIC
(ABIC; Sclove, 1987), Haughton’s BIC (HBIC; Haughton,
1988), Kashyap’s BIC (KBIC; Kashyap, 1982), information
matrix-based Bayesian information criterion (IBIC; Bollen,
Ray, Zavisca, & Harden, 2012), and scaled unit information
prior BIC (SPBIC; Bollen et al., 2012). Even though these
criteria can be directly applied to SEM to select an optimal
model, to our knowledge, no studies have simultaneously
compared the behaviors of all these criteria in SEM and a
systematic investigation of their relative performances is
still needed (Dziak, Coffman, Lanza, & Li, 2012).

Both AIC and BIC were proposed under the framework
of maximum likelihood (ML) estimation. ML is also the
most commonly used estimation method in SEM applica-
tions (Jackson, Gillaspy, & Purc-Stephenson, 2009; Kline,
2011). In SEM, the p� p population covariance matrix Σ
among p observed variables is assumed to be a function of a
k-dimensional parameter vector θ embedded in the true
population model; that is, Σ ¼ Σ θð Þ. For a sample of N
observations randomly drawn from a multivariate normal
distribution with population covariance matrix Σ, the ML

estimator θ̂ could be obtained by maximizing the log-like-
lihood function,

logL θð Þ ¼ �N

2
p log 2πð Þ þ log Σ θð Þj j þ tr SΣ�1 θð Þ� �� �

;

(1)

where Σ θð Þj jis the determinant of Σ θð Þ, S is a consistent
estimate of Σ, and Σ�1 θð Þ is the inverse of Σ θð Þ.
Maximizing log L θð Þ is equivalent to minimizing the popu-
lar ML fitting function F S;Σ θð Þ½ � in SEM asymptotically,

F S;Σ θð Þ½ � ¼ log Σ θð Þj j þ tr SΣ�1 θð Þ� �� log Sj j � p: (2)

Under the null hypothesis Σ ¼ Σ θð Þ and multinormality,

T ¼ N � 1ð ÞF S;Σ θ̂
� �h i

is asymptotically distributed as a

chi-square distribution with p pþ 1ð Þ=2� k degrees of free-
dom to evaluate the plausibility of the proposed

k-dimensional model. When the model is not severely mis-
specified, T asymptotically follows a noncentral chi-square
distribution with p pþ 1ð Þ=2� k degrees of freedom and

noncentrality parameter N � 1ð ÞF Σ;Σ ~θ
� 	� �

with ~θ being

the value of θ minimizing F Σ;Σ θð Þ½ �. F Σ;Σ ~θ
� 	� �

, the mini-
mum function value of fitting the proposed model to Σ,
quantifies the error of approximation of the proposed
model to the population covariance matrix (Steiger,
Shapiro, & Browne, 1985).

In model selection, J models each with kj distinct para-
meters, denoted as Σ1 θ1ð Þ, Σ2 θ2ð Þ, …, ΣJ θJð Þ, are com-

pared. An ML estimate of θj, θ̂j, can be obtained via
minimizing the ML fitting function F S;Σj θj

� 	� �
. In this

study, a model is considered optimal among a set of alter-

natives if it attains the smallest F Σ;Σj
~θj
� 	� �

with the fewest

number of parameters. The quantity F Σ;Σj
~θj
� 	� �

signals the
extent of approximation error of model j in the population
and the number of parameters represents the degree of
simplicity of a given model. As a result, for the set of
models with the least degree of model errors in the popula-
tion, the most parsimonious model is considered the optimal
model in this study.

AIC was originally developed as an estimator for the
Kullback–Leibler (KL) information of a model under con-
sideration (Akaike, 1974), quantifying the discrepancy
between the model considered and the true model. Akaike
showed that selecting a model with minimum KL informa-
tion is equivalent to choosing a model that minimizes the
criterion

AICj ¼ �2log Lj θ̂j
� �

þ 2kj: (3)

The negative log-likelihood � 2log Lj θ̂j
� �

measures the
goodness of fit of model j to the data and 2kj can be taken
as a penalty term on the complexity of the considered
model. Adding parameters could improve model fit and

reduce the magnitude of � 2log Lj θ̂j
� �

. Yet at the same

time the value of AIC can be elevated due to the increase in
kj, especially when the added parameters do not provide
sufficient improvement in model fit. When the dimension-
ality of the true model is infinite and when the true model is
not in the candidate set, AIC is efficient in selecting a
model that yields a prediction error as small as the best
model asymptotically (Kuha, 2004; Shibata, 1976, 1983;
Vrieze, 2012).

Shortly after Akaike (1974), Schwarz (1978) reported an
alternative approach to model selection based on the
Bayesian framework, showing that finding a model with
the highest posterior probability is equivalent to maximizing
the marginal probability of data. The log of this marginal
probability for model j, log pj Dð Þ, can be approximated by
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the second-order Taylor series expansion. This approxima-
tion, when multiplied by −2, can be represented as

� 2log pj Dð Þ ¼ �2log Lj θ̂j
� �

� 2log pj θ̂j
� �

� kj log 2πð Þ þ kj log Nð Þ
þ log I θ̂j

� �


 


� O N�1
2

� �
; (4)

where pj θ̂j
� �

is the prior probability of θj assumed to be a

unit information prior, I θ̂j
� �

is the Fisher information

matrix under model j, and O N�1
2

� �
is the approximation

error. For details please refer to Haughton (1988) and
Raftery (1995). As the sample size approaches infinity, the

approximation is dominated by � 2log Lj θ̂j
� �

and

kj log Nð Þ. Schwarz therefore proposed a new criterion by
retaining these two terms as shown in the common form of
BIC,

BICj ¼ �2log Lj θ̂j
� �

þ kj log Nð Þ: (5)

Previous studies have shown that if the true model is of
finite dimension and is included in the candidate set, BIC is
consistent in the sense that it chooses the true model with a
probability of one as the sample size approaches infinity
(Haughton et al., 1997; Kuha, 2004; Nishii, 1984). Kass
(1993) showed that BIC can be seen as an approximation to
the log of a Bayes factor multiplied by 2. A Bayes factor,
signifying the degree of superiority of one model over the
other, is an effective index for comparing two candidate
models under a Bayesian framework (Kass & Raftery,
1995; Raftery, 1995). However, the computation of Bayes
factors is difficult because it requires the specification of the
prior distribution of θj. BIC, with no need to specify a prior
distribution, eases this difficulty and is thus regarded as a
convenient alternative for comparing models (Bollen et al.,
2012).

The negative log-likelihood � 2log Lj θ̂j
� �

can be
rewritten as N p log 2πð Þ þ log Sj j þ pf g þ N

N�1 Tj. Given a
data set, the first term is a constant and can be omitted.

Because Tj is commonly used in SEM, we replace �
2log Lj θ̂j

� �
by Tj in calculating AIC and BIC as

AICj ¼ Tj þ 2kj; (6)

and

BICj ¼ Tj þ kj log Nð Þ: (7)

After the development of AIC and BIC, their extensions
have been proposed based on different grounds to enhance
the chance of selecting an optimal model. These extensions

can also be written as a sum of Tj and a penalty term as
introduced in the following ections.

AIC-Related Adjustments
Three extensions of AIC are presented in Equations 8

through 10. Sclove (1987) suggested that a range of penalty
terms could be considered to expedite the search for optimal
models. For example, AIC3, replacing 2kj by 3kj in AIC,
considers a more stringent penalty than AIC. This adjusted
index was found to outperform AIC in selecting the correct
numbers of factors and latent classes (Dziak et al., 2012; Yang
& Yang, 2007). In the meantime, Bozdogan (1987) provided a
thorough theoretical account of AIC and analytically introduced
two consistent extensions based on the fundamental principles
of Akaike. The two extensions, CAIC and CAICF shown in
Equations 9 and 10, also penalize overparameterization more
stringently thanAIC.As can be seen, CAIC, although belonging
to the AIC family, resembles BIC. Bozdogan derived the
asymptotic properties of these two criteria and found both out-
performing AIC in selecting the true regression model.

AIC3j ¼ Tj þ 3kj (8)

CAICj ¼ Tj þ log Nð Þ þ 1½ �kj (9)

CAICFj ¼ Tj þ log Nð Þ þ 2½ �kj þ log I θ̂j
� �


 


 (10)

BIC-Related Adjustments
Equations 11 through 15 present five extensions of BIC

with θ�j being the prior mean of the model parameters under

model j and Io θ̂j
� �

being the observed information matrix

of θ̂j. Crediting to the work of Rissanen (1978) and Boekee
and Buss (1981), Sclove (1987) presented ABIC, an
adjusted BIC shown in Equation 11, based on the principle
of the shortest description length in selecting a model bal-
ancing model fit and complexity. The ABIC was also known
as the sample-size-adjusted BIC (e.g., Yang, 2006). Dziak
et al. (2012) and Yang (2006) found that ABIC performed
better than BIC in choosing the correct numbers of factors
and latent classes. Haughton (1988) extended the work of
Schwarz (1978) on linear models to curve models and
suggested an alternative consistent criterion for model selec-
tion by retaining the third term � kjlog 2πð Þ in Equation 4,
leading to the HBIC shown in Equation 12. HBIC reduces
the magnitude of penalty in BIC and improves the perfor-
mance of BIC in selecting an optimal confirmatory factor
analysis (CFA) model (Haughton et al., 1997).

ABICj ¼ Tj þ log
N þ 2

24

� �
kj (11)

HBICj ¼ Tj þ log
N

2π

� �
kj (12)
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KBICj ¼ Tj þ kj log Nð Þ þ log I θ̂j
� �


 


 (13)

IBICj ¼ Tj þ kj log
N

2π

� �
þ log I θ̂j

� �


 


 (14)

SPBICj ¼ Tj þ kj 1� log
kj

θ̂j � θ�j
� �T

Io θ̂j
� �

θ̂j � θ�j
� �

2
64

3
75

0
B@

1
CA

(15)

Kashyap (1982) and Bollen et al. (2012) proposed other
extensions that retained the additional terms in the asymp-
totic approximation of � 2logpj Dð Þ. Kashyap developed a
criterion KBIC as displayed in Equation 13 to select a time
series model with the minimum average probability of error

and argued that the fifth term log I θ̂j
� �


 


 in Equation 4

needed to be retained except at a very large N. Kashyap
noted that KBIC behaved the same as BIC asymptotically in
that both can select the true model if it is included in the
candidate set. Nevertheless, in the simulation of Bollen et al.
(2014), KBIC failed to improve the performance of BIC in
selecting the true structural equation model at sample sizes
smaller than 1,000.

Bollen et al. (2012) introduced two variants of BIC to
better approximate the Bayes factors for improving the
selection of optimal regression models. IBIC, as shown in
Equation 14, incorporates two additional terms, � kjlog 2πð Þ
and log I θ̂j

� �


 


, in Equation 4. SPBIC, as illustrated in

Equation 15, uses scaled unit information prior instead of
unit information prior as a response to the arguments of
Weakliem (1999). Weakliem contended that the assumption
of unit information prior of θj in deriving BIC was unrea-
listic and the penalty of BIC was so heavy that it tended to
select an oversimplified model. As a result, Bollen et al.
(2012) developed these two extensions to improve the per-
formance of BIC and showed that IBIC and SPBIC in
general had higher accuracy ratios in selecting the true
regression model than BIC in small samples.

The criteria briefly summarized consider different penalty
terms and might choose distinct models from a given set of
alternative models. A criterion with a larger penalty tends to
select a more parsimonious model than a criterion with a
smaller penalty. For example, a model with fewer para-
meters is likely to be selected by CAIC relative to AIC,
AIC3, BIC, HBIC, or ABIC. Yet the inclusion of the infor-
mation matrix in penalty makes it difficult to predict the
performances of CAICF, KBIC, IBIC, and SPBIC.
Simulation studies are thus needed to empirically examine
their behaviors. The next section reviews related prior simu-
lations to highlight the factors that could affect the perfor-
mance of model selection criteria in SEM. Improvements in
the research designs over past simulations were also noted

to bring forward the aspects considered in this study beyond
previous investigations.

SIMULATIONS ON MODEL SELECTION CRITERIA
IN SEM

Prior simulation studies assess the effects of sample size, the
composition of candidate sets, and the value of misspecified
parameters on the performance of model selection criteria in
SEM (Bollen et al., 2014; Haughton et al., 1997; Homburg,
1991; Vrieze, 2012). The composition of candidate sets can
be further classified along two dimensions: the inclusion or
exclusion of the true model, and the inclusion or exclusion
of overfitting models in which extra unneeded parameters
are added to the true model. Misspecified parameters are a
result of model misspecification. Two types of model mis-
specification have been examined in previous simulations.
Omitting necessary parameters from or adding unnecessary
parameters to the true population model constitutes the
common type of model misspecification simulated (Bollen
et al., 2014; Burnham & Anderson, 2004; Homburg, 1991;
Vrieze, 2012). These models involve a nested relationship
with the true model. Adding or releasing constraints on
model parameters, as in Haughton et al. (1997), can also
be classified into this category for the misspecified model
and the true population model displays a nested relationship.
The other type of misspecification involves specifying a
model with a different structure from the true model in
that the two models do not exhibit any nested relationship
(Bollen et al., 2014). Misspecified parameters resulting from
both types of model misspecification are considered in this
study.

In his pioneer work, Homburg (1991) examined the
chance of discovering the correct population models by
AIC, BIC, and cross-validation indexes (Cudeck & Brown,
1983) in sample sizes of 50 to 1,000. Data were generated
from two population structural models of 11 and 12 indica-
tors with standardized population structural coefficients ran-
ging from .28 to .55. The true model, overfitting models
with extra unneeded parameters, and models omitting neces-
sary parameters from the true model were included in the
candidate set. The probability of selecting the true model
over 10 replications by AIC and BIC improved as the
sample size increased up to 750 and leveled off, and BIC
performed the best in general. Homburg’s work provides
valuable insights into the behaviors of AIC and BIC in
SEM. However, two aspects of the study design could be
refined. First, more than 10 successful replications could be
conducted to enhance the reliability of the results. Second,
the condition in which the true model is not included in the
candidate set, a situation commonly encountered in reality
(Cudeck & Henly, 1991), should be considered to test the
generality of its findings. Haughton et al. (1997) and Bollen
et al. (2014) modified Homburg’s research design and
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considered the condition in which the true model was not in
the candidate sets, and the effect of values of misspecified
parameters was also touched on by Haughton et al.

Haughton et al. (1997) compared the performance of
AIC, CAIC, BIC, HBIC, BICR1, and several fit indexes
under different sample sizes, compositions of candidate
sets, and values of the misspecified residual variances.
Three orthogonal three-factor CFA models with two indica-
tors of equal loading and equal residual variance for each
factor were used to generate data at sample sizes of 100,
400, 1,000, and 6,000. The three true models differed in the
variation of the variance of measurement errors, showing
large (.25, .50, .75), intermediate, and small (.45, .50, .55)
differences in residual variances. Accordingly, constraining
all the residual variances to be equal signaled a greater
degree of model misspecification for the true model with
large difference in residual variances. Two simulations with
different compositions of candidate sets were conducted.
The first simulation included the true model, overfitting
models freeing the equality constraints on residual var-
iances, and models restricting all six residual variances to
be equal in the candidate set. The second simulation con-
tained only approximate models. The models fitted to the
data generated were the same as in the first experiment but
further constraining all the factor loadings to be equal. The
model with the smallest noncentrality parameter value and
the fewest number of parameters among the alternatives was
considered the best. The ratio of selecting the true or the
best model over 500 replications tended to improve with
increasing sample sizes and larger differences in residual
variances. Note that the comparison of the three true models
differing in variation of residual variances could be deemed
as an attempt to assess the effect of size of misspecified
parameters. In most conditions, HBIC performed the best
and AIC yielded a higher accuracy ratio than the remaining
model selection criteria under small variation of residual
variances except at N = 6,000. In general, fit indexes did
not perform as well as model selection criteria in selecting
an optimal model.

Haughton et al. (1997) furthered Homburg’s (1991) work
in considering candidate sets that excluded both the true
model and overfitting models, in comparing accuracy ratios
from different values of misspecified parameters, and in
examining more model selection criteria. The simulation
design in Haughton et al., in our opinion, could be modified
to strengthen the generalizability of the findings. First, mod-
els beyond orthogonal factors could be used to improve the

ecological validity of the simulated models for orthogonal
factors are uncommon in psychological research (Fabrigar,
Wegener, MacCallum, & Strahan, 1999). Moreover, because
each orthogonal factor had only two indicators, equality
constraints had to be imposed to ensure the identification
of the models being evaluated. The generalizability of the
findings hence might be limited. Second, nonnested models
could be included in a candidate set. All the candidate
models in Haughton et al. (1997) displayed a nested rela-
tionship to the true model with the misspecified models
either freeing parameters that were constrained to be equal
in the true model, or confining parameters of different
values in the true model to be equal. Third, a full range of
magnitudes of the misspecified parameters should better be
considered and manipulated explicitly. The values of mis-
specified parameters have been shown to affect the relative
performance of AIC and BIC. For example, Burnham and
Anderson (2004) showed that AIC outperformed BIC in
selecting the true regression model when the values of
omitted population parameters were small or moderate.
Vrieze (2012) also explored the effects of values of misspe-
cified parameters on the performance of AIC and BIC in
selecting the true orthogonal CFA model. Four sample sizes
from 500 to 5,000 and omitted population unstandardized
factor loadings ranging from 0 to .60 were considered.
Larger misspecified parameter values resulted in higher
accuracy ratios in selecting the true model, and the relative
performance of AIC or BIC was found to be contingent on
the value of the omitted parameters. AIC was more likely to
select the true model than BIC for small misspecified para-
meter values (lower than .30), whereas BIC performed
better than AIC as the value of omitted parameters increased
(larger than .40). The effect of the value of misspecified
parameters on model selection criteria is worthy of further
pursuit.

Bollen et al. (2014) sought to test the generality of the
findings from Homburg (1991) and Haughton et al. (1997)
by looking at larger structural equation models consisting of
9 and 15 observed variables with misspecified approxima-
tion models marked with minor to major deviation from the
true model. The performance of AIC, BIC, HBIC, SPBIC,
and various fit indexes under different sample sizes and
compositions of candidate sets were examined. The values
of population parameters were fixed and not manipulated.
Sample sizes in this study ranged from 100 to 5,000. The
population standardized loadings with all the observed and
latent variables set to unit variance were specified as .70 for
primary factor loadings and .21 for complex factor loadings,
and the standardized structural coefficients were set at .60.
Similar to Haughton et al. (1997), two simulations were
conducted with the true model included in (Part I) or
excluded from (Part II) the candidate set. Overfitting models
with extra unnecessary parameters were always included in
the candidate sets. The candidate models for Part I included
the true model, overfitting models, models with necessary

1Dudley and Haughton (1997) developed an adjustment of BIC, BICR,
by retaining the second term 2log pj θ̂j

� �
, the third term � kj log 2πð Þ, and

the fifth term log I θ̂j
� �


 


 in Equation 4. Haughton et al. (1997) indicated

that selecting a suitable prior distribution for θj was difficult and found
BICR to perform worse than BIC across all the simulation conditions. This
study therefore did not include BICR.
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parameters dropped, models with both added and dropped
parameters, and nonnested models of a different number
of factors and structures. The candidate models in Part II
were the same as those in Part I, except the true model
was excluded. For Part I, the accuracy ratios of model
selection criteria over 1,000 replication samples improved
as sample sizes increased up to 1,000 and leveled off.
SPBIC and HBIC performed the best among the criteria
evaluated, and model selection criteria outperformed fit
indexes. In Part II, BIC and its extensions tended to select
overfitting models as the sample size increased. For small
samples, the probability of selecting a model with omitted
parameters was higher for BIC and IBIC than for SPBIC
and HBIC.

Bollen et al. (2014) extended prior SEM simulations on
model selection criteria (Haughton et al., 1997; Homburg,
1991) by considering larger structural equation models and
a variety of alternative models. The generality of their find-
ings could have been enhanced if some candidate sets had
excluded overfitting models and if the values of the mis-
specified parameters could have covered a wider range.
Overfitting models with unnecessary parameters were
always included in the candidate sets of their simulations.
However, Chakrabarti and Ghosh (2011) showed in a
regression example that AIC outperformed BIC when the
candidate set included the true model and excluded over-
fitting models. Such a condition was not considered in
Bollen et al. (2014) and should be investigated to thor-
oughly understand the behaviors of AIC, BIC, and their
extensions. In addition, with the values of the misspecified
parameters fixed, the effects of parameter value on the
relative performances of the model selection criteria as
demonstrated in Vrieze (2012) were not examined either,
but merit further investigation to extend the generalizability
of their findings to models where the misspecified para-
meters are of diverse values.

This study hence attempts to improve the study design of
previous simulations in four aspects. First, four types of
candidate sets were constructed based on the simultaneous
consideration of two factors: (a) the inclusion or exclusion
of the true model, and (b) the inclusion or exclusion of
overfitting models. In light of the results of Chakrabarti
and Ghosh (2011), AIC and its extensions are expected to
have higher accuracy ratios than BIC and its family when
the candidate sets include the true model and exclude mod-
els adding unnecessary parameters. BIC and its extensions
are expected to perform better under the other three condi-
tions. Second, the effect of the values of misspecified para-
meters was examined by extending the work of Vrieze
(2012) to structural models. Based on the results reported
by Burnham and Anderson (2004) and Vrieze (2012), AIC
type criteria are anticipated to outperform BIC and its exten-
sions under small values of misspecified parameters,
whereas BIC type criteria are expected to perform better as
the values of misspecified parameters increase.

Third, this study considered AIC3, CAICF, and ABIC,
three measures not evaluated in prior SEM simulations.
These three criteria have been shown to improve the perfor-
mance of AIC and BIC in selecting the correct numbers of
factors (Dziak et al., 2012) and latent classes (Yang, 2006;
Yang & Yang, 2007), or the true regression model
(Bozdogan, 1987). In factor analysis and latent class mod-
els, AIC3 outperformed AIC in sample sizes larger than 100
(N ≥ 100 in Dziak et al., 2012, and N ≥ 200 in Yang &
Yang, 2007), and ABIC improved the performance of BIC,
particularly in small or moderate sample sizes (N ≤ 300 in
Dziak et al., 2012, and N ≤ 700 in Yang, 2006). CAICF was
also found to outperform AIC in selecting the true regres-
sion model for sample sizes larger than 100 and reduced the
probability of selecting an overfitting model at large sample
sizes (Bozdogan, 1987). If these three criteria could enhance
the chance of selecting an optimal exploratory factor model,
latent class model, and regression model over AIC and BIC,
a comprehensive evaluation of their performance in SEM is
warranted. Based on previous findings, AIC3 and CAICF
are expected to outperform AIC, except for small sample
sizes, and ABIC is expected to be superior to BIC in small
to moderate sample sizes.

Finally, path models were used in this study in respond-
ing to the urging of McDonald (2010) that measurement
model and path model should be sequentially and separately
evaluated in SEM applications. After reevaluating the
empirical uses of SEM in psychology journals, McDonald
and Ho (2002) raised the concern that model evaluation in
SEM could be distorted by fitting the full structural models
to the data because a good fit of a measurement model
might conceal the misfit of a path model. The need to
separately assess the measurement component and the path
component in a structural equation model was then advo-
cated. Nearly a decade later, O’Boyle and Williams (2011)
examined organizational research using latent variables and
found that in approximately half of the studies (47%) they
reviewed, a misfit of the relations among latent variables as
indicated by a path model was masked by a good fit of the
measurement model. In the meantime, McDonald (2010)
noted that despite their recommendation, most of the recent
SEM studies continued to ignore the problem they raised in
model evaluation. This negligence prompted him to restate
the importance of assessing the fit of a path model after
evaluating the fit of the measurement model. Note that most
prior simulations we reviewed (Bollen et al., 2014;
Haughton et al., 1997; Homburg, 1991; Vrieze, 2012) used
either measurement models or full structural models.
Whether model selection criteria can select an optimal
path model is still an open question. An investigation of
the performance of model selection criteria on path models
is hence called for so that McDonald and colleagues’ recom-
mendation can be followed when competing models are
compared. This study therefore employed path models in
the simulations to fill in the gap in the literature.
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In sum, this study expanded the design of previous
simulations to assess the performance of AIC, BIC, and
their extensions in selecting an optimal path model from
the candidate set. Model selection criteria beyond those
assessed in previous SEM simulations were examined,
including AIC3, CAICF, and ABIC. Factors shown to affect
the behaviors of the model selection criteria were simulta-
neously considered, including the sample size, the inclusion
or exclusion of true model in the candidate set, overfitting
models being among the alternatives or not, and the value of
misspecified population parameters. As a result, this study
can be expected to provide useful guidelines to facilitate
optimal model selection in SEM.

METHOD

Monte Carlo simulation was conducted to examine the
impact of the composition of the candidate set, the values
of misspecified population parameters, and the sample size
on the probability of selecting an optimal path model from a
candidate set by various model selection criteria. In light of
the importance of mediating variables in psychological stu-
dies (Baron & Kenny, 1986) and scientific research (Kenny,
2008), this study employed a mediation path model shown
in Figure 1a as the population model (M0). Considering the
statistical and practical significance of the parameters
(Paxton, Curran, Bollen, Kirby, & Chen, 2001), the values
of ϕ21, γ11, γ21, γ42, and β31 in population model M0 were
fixed at .40. The magnitudes of γ12, γ31, β21, and β41 were
varied to evaluate the influence of the sizes of misspecified
parameters on behaviors of the criteria. The sizes of residual

variances were deliberately chosen when necessary so that
all the observed variables had unit variances of 1.

Variables Manipulated in Simulations

Compositions of the candidate sets

Following the principle of constructing alternative mod-
els in Bollen et al. (2014), nine alternative path models
(M1–M9) in addition to the true model (M0) were specified,
as summarized in Table 1. Model M1 omitted one parameter
from M0. Models M2 and M3 added extra unnecessary
parameters to M0 that both had minimum function values
of zero as the true model and were thus regarded as over-
fitting models. Models M4 to M6 added one unneeded
parameter and omitted certain nonzero parameters in M0.
Models M7 to M9 represented models of different structural
relationships among the variables, as shown in Figure 1.

To fully represent the model comparison scenarios encoun-
tered in practice, four types of candidate sets were constructed
by simultaneously considering two factors: (a) the inclusion or
exclusion of the true model (T), and (b) the inclusion or
exclusion of overfitting models with extra unneeded para-
meters added to the true model (O). Models from M0 to M9

were deliberately chosen and assembled to form each type of
candidate set. Candidate Set 1, consisting of M0, M1, and M4

to M9, represented the condition in which the set included the
true model but excluded overfitting models. This condition
has not been studied in prior studies. Overfitting models M2

and M3 were added to Candidate Set 1 to form Candidate Set
2 to examine whether the true model could be selected over
overfitting models when present.

FIGURE 1 Path diagrams of true model M0 and nonnested candidate models M7–M9.

SELECTING PATH MODELS IN SEM 861



Both Candidate Sets 1 and 2 included the true model M0.
Yet in reality investigators seldom know what the popula-
tion true model is (Cudeck & Henly, 1991; McDonald,
2010). True model M0 was therefore removed from both
sets to form Candidate Sets 3 and 4. As a result, Candidate
Set 3, with both true and overfitting models excluded, could
be used to examine whether an approximate model with the
smallest F Σ;Σj

~θj
� 	� 	

, the minimum function value when
fitting a model to the population covariance, and the fewest
number of parameters could be selected. For this particular
composition of alternative models, model M1 was consid-
ered optimal. Candidate Set 4, composed of M1 to M9,
simulated the situation where all the models were approx-
imations and overfitting models were among the alterna-
tives. Model M2 was considered optimal for this set
because it fully explained the population covariance matrix
with the fewest number of parameters.

Values of misspecified parameters (V)

The parameter values of γ12, γ31, β21, and β41 in the true
model were systematically varied to explore the effect of the
size of misspecified parameters on the behaviors of model
selection criteria. The magnitudes of these four parameters
were assumed to be equal and set to vary from .1 to .5 at an
increment of .1. Table 1 displays the population minimum

function value F Σ;Σj
~θj
� 	� �

and the corresponding root
mean square error of approximation (RMSEA; Steiger &
Lind, 1980) at every level of misspecified parameter values
under each model. The RMSEAs indicated that the five
levels could represent minor to large degrees of model
misspecification except for M2, M3, and M9 (Browne &
Cudeck, 1992). This study extended the manipulation of
the size of omitted parameters in CFA models (Vrieze,
2012) to path models and considered a wider range of
misspecified parameter values than Homburg (1991) and
Bollen et al. (2014).

Sample sizes (N)

The likelihood of selecting an optimal model by model
selection criteria has been shown to improve as the sample
size increases (Bollen et al., 2014; Haughton et al., 1997;
Homburg, 1991; Vrieze, 2012). Previous simulations have
examined sample sizes between 100 and 6,000 and found
the accuracy ratios of model selection criteria for a sample
size of 750 to be similar to those for a sample size of 1,000
(Homburg, 1991) and likely to level off subsequently
(Bollen et al., 2014; Haughton et al., 1997; Vrieze, 2012).
This study therefore focused on sample sizes of less than
1,000 and considered six levels of sample size at 100, 200,
300, 400, 800, 1,000, and 2,000. This range of N appears to

TABLE 1
Characteristics of Candidate Models With Associated Population Minimum Function Value F ((Σ, Σ(~θj)) and RMSEAa at Five Values of

Misspecified Parameters

F ((Σ, Σ(~θj)) Under Values of Misspecified Parameters at

Model Description k Omitted Parameters Extra Parameters .1 .2 .3 .4 .5

Nested misspecified path models
M1 Omit 1 coefficient 14 γ31 0.01 0.04 0.10 0.20 0.38

(0.04) (0.08) (0.12) (0.17) (0.23)
M2 Add two coefficients 17 β32, β42 0.00 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00)
M3 Add three coefficients 18 γ41, γ22, γ32 0.00

(0.00)
0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

M4 Omit one coefficient and add
one coefficient

15 γ31 γ22 0.01 0.04 0.10 0.20 0.38
(0.04) (0.08) (0.13) (0.18) (0.25)

M5 Omit three coefficients and
add one coefficient

13 γ31, γ12, β41 γ41 0.03 0.13 0.30 0.58 1.06
(0.06) (0.13) (0.19) (0.27) (0.36)

M6 Omit four coefficients and
add one coefficient

Nonnested misspecified path
models

12 γ31, γ12, β21, β41 γ41 0.04 0.17 0.40 0.78 1.44
(0.07) (0.14) (0.21) (0.29) (0.40)

M7 Switch variables (x2 and y1) 16 β31 γ22, γ32 0.01 0.04 0.10 0.20 0.38
(0.05) (0.09) (0.14) (0.20) (0.28)

M8 Switch variables (x2 and y1) 14 γ31, γ12, β31 γ22, γ32 0.02 0.09 0.21 0.42 0.77
(0.05) (0.11) (0.17) (0.25) (0.33)

M9 Switch the variable x2 11 ϕ21, γ31, γ12, γ42, β21, β41 β42, β52, ζ55 0.38 0.53 0.77 1.15 1.79
(0.20) (0.23) (0.28) (0.34) (0.42)

Note. RMSEA = root mean square error of approximation; k = number of parameters.
aRMSEA is shown in parentheses.
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reflect the common sample sizes observed in empirical SEM
applications (Baumgartner & Homburg, 1996; Guo et al.,
2009; Shah & Goldstein, 2006).

Data Generation and Analysis

All the data were generated and analyzed using the sem
package version 3.1–1 (Fox, Nie, & Byrnes, 2013) in R.
Multivariate normal data were simulated according to the
true model with prespecified parameter values and sample
sizes. All 10 models (M0–M9) were then fitted to the gen-
erated data by the ML method. A data set that resulted in
nonconvergence or improper solutions in any of the 10
analyses was removed and replaced with additionally gen-
erated data until 1,000 data sets yielded proper solutions on
all 10 models. Model selection criteria AIC, BIC, and their
extensions, including AIC3, CAIC, CAICF, KBIC, IBIC,
HBIC, SPBIC, and ABIC, were calculated for each fitted
model based on the formula described previously. The com-
putation of SPBIC in this study followed the procedure in
Bollen et al. (2014). There were a total of 140 conditions (4
compositions of candidate set under two features � 5
values of omitting parameters � 7 sample sizes) in this
study. Under each one of the 140 conditions, whether a
model selection criterion selected the optimal model (M0

for Candidate Sets 1 and 2, M1 for Candidate Set 3, and M2

for Candidate Set 4) was recorded. When a criterion failed
to select the optimal model, the model it selected was also
documented. Four-way analysis of variance (ANOVA) was
conducted for each model selection criterion to examine the
influence of manipulated factors on its success (coded as 1)
or failure (coded as 0) in selecting an optimal model with

the effect size indicated by eta squared (η2 = SSeffect/SStotal).
Note that the composition of candidate sets was represented
by two factors in the ANOVAs: the inclusion or exclusion of
the true model in the set and the inclusion or exclusion of
overfitting models in the set. For each composition of can-
didate set, the percentage that every model selection criter-
ion selected the optimal model over 1,000 replications under
any combination of value of misspecified parameters and
sample size was calculated. These accuracy ratios were
further compared to reveal the relative performances of the
10 model selection criteria investigated.

RESULTS

All the analyses in the original 350,000 analyses (5 values
of misspecified parameters � 7 sample sizes � 10 models
� 1,000 data sets) reached converged solutions within 30
iterations. Only one improper solution was found for the
sample size of 100 paired with a misspecified parameter
value of .5. An additional data set was generated. The eta
squared presented in Table 2 indicated that the values of
misspecified parameter exerted the largest effect on whether
the optimal model could be selected by various model
selection criteria, followed by sample sizes and their inter-
action. As to be discussed, the large influences of the mag-
nitudes of misspecified parameters mainly resulted from the
poor performance of the criteria at small values of misspe-
cified parameters. Whether the candidate set contained true
or overfitting models did not exhibit substantial effects on
the performance of the criteria. However, to systematically
compare these findings to those from previous studies

TABLE 2
η2 for Each of the Model Selection Criterion at Manipulated Factors

AIC AIC3 CAIC CAICF BIC KBIC IBIC HBIC SPBIC ABIC

T 0.025 0.022 0.005 0.005 0.007 0.004 0.004 0.013 0.014 0.019
O 0.041 0.025 0.019 0.024 0.019 0.023 0.021 0.020 0.013 0.028
V 0.050 0.130 0.392 0.469 0.356 0.469 0.467 0.229 0.224 0.090
N 0.020 0.045 0.092 0.115 0.085 0.103 0.091 0.075 0.078 0.088
T × O 0.002 0.005 0.019 0.024 0.018 0.023 0.021 0.012 0.008 0.001
T × V 0.001 0.000 0.001 0.003 0.001 0.003 0.003 0.000 0.001 0.000
T × N 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.001
O × V 0.000 0.002 0.011 0.008 0.010 0.009 0.010 0.007 0.006 0.002
O × N 0.000 0.000 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.004
V × N 0.034 0.071 0.087 0.071 0.083 0.070 0.071 0.061 0.072 0.026
T × O × V 0.002 0.004 0.011 0.008 0.011 0.009 0.010 0.010 0.005 0.006
T × O × N 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.000 0.000 0.005
T × V × N 0.001 0.001 0.008 0.015 0.007 0.012 0.010 0.004 0.003 0.002
O × V × N 0.000 0.002 0.017 0.026 0.013 0.024 0.022 0.005 0.003 0.003
T × O × V × N 0.001 0.002 0.017 0.026 0.013 0.024 0.022 0.004 0.002 0.001

Note. η2 greater than .059 are shown in bold and η2 over .138 are further displayed in italics. AIC = Akaike’s information criterion; CAIC = consistent
Akaike’s information criterion; CAICF = consistent AIC with Fisher information; BIC = Bayesian information criterion; KBIC = Kashyap’s information
criterion; IBIC = information matrix-based criterion; HBIC = Haughton Bayesian information criterion; SPBIC = scaled unit information prior Bayesian
information criterion; ABIC = adjusted Bayesian information criterion; T = including or excluding the true model; O = including or excluding overfitting
models; V = values of misspecified population parameters.
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employing different setups of alternative models (Bollen
et al., 2014; Haughton et al., 1997; Homburg, 1991;
Vrieze, 2012), the results from every composition of candi-
date set are presented accordingly.

Figures 2 through 4 present the percentages at which
each model selection criterion selected the optimal model
in every type of candidate set, except Set 3. The figure for
Set 3 is presented online due to its similarity to Set 2 and
space limitations. The likelihood of selecting an optimal
model was shown to increase with higher values of misspe-
cified parameters and larger sample sizes, regardless of the
alternative models contained in the set across all the model
selection criteria evaluated. In agreement with previous
studies (Bollen et al., 2014; Haughton et al., 1997;
Homburg, 1991; Vrieze, 2012), the increase in the accuracy
ratio appeared trivial for sample sizes over 1,000.

Accuracy Ratios in Candidate Set 1 (M0, M1, M4–M9)

Candidate Set 1 included the true model but excluded over-
fitting models. This composition of alternative models has
not been investigated in prior SEM simulations. As shown
in Figure 2, the true model was consistently selected by all
the criteria, and the accuracy ratio approached 100% when
misspecified parameter values were .3 or larger. The overall
accuracy ratio tended to be higher than for the other three
types of candidate sets. If the true model was missed, overly
simple models, M1 and M6, were likely to be selected. As
expected, AIC type criteria outperformed their BIC counter-
parts, especially when small values of misspecified para-
meters were paired with small sample sizes. For smaller

values of misspecified parameters, AIC performed better
than its three variants, and ABIC performed the best
among BIC type criteria, followed closely by SPBIC and
HBIC. AIC3 and CAICF failed to bring forth enhancement
over AIC in this composition of candidate models, whereas
ABIC improved the performance of BIC across all sample
sizes and magnitudes of misspecified parameters. It is inter-
esting to note that AIC in general yielded the highest accu-
racy ratio among all the model selection criteria for this
composition of candidate models, followed by ABIC.

Accuracy Ratios in Candidate Set 2 (M0, M1–M9)

Both the true model and overfitting models were included in
Candidate Set 2. This composition has been studied in most
previous simulations, including Homburg (1991), Haughton
et al. (1997), Vrieze (2012), and Bollen et al. (2014). The
accuracy ratios of the examined model selection criteria
under this composition rose significantly as the value of
misspecified parameters increased and started to level off
as the value of misspecified parameters went beyond .3. BIC
type criteria in general showed a higher tendency toward
selecting the true model than AIC counterparts unless the
small misspecified parameter value of .1 was paired with
sample sizes less than 400, as displayed in Figure 3.
Overall, SPBIC, HBIC, BIC, and CAIC performed better
than the remaining criteria with relatively high accuracy
ratios unless at a small misspecified parameter value of .1.
Over parsimonious models M1 and M6 were likely to be
selected when the true model failed to be singled out.
Consistent with the previous findings (Dziak et al., 2012;

AIC   AIC3  CAIC  CAICF  BIC  KBIC  IBIC  HBIC  SPBIC  ABIC   

N = 100 N = 200 N = 300                N = 400    N = 800   N = 1000 N = 2000 

V = .1

V = .2

V = .3

V = .4

V = .5

FIGURE 2 Accuracy ratios of selecting the optimal model by each model selection criteria at various sample sizes (N) and values of misspecified
parameters (V): Candidate Set 1. AIC = Akaike’s information criterion; CAIC = consistent Akaike’s information criterion; CAICF = consistent AIC with Fisher
information; BIC = Bayesian information criterion; KBIC = Kashyap’s information criterion; IBIC = information matrix-based criterion; HBIC = Haughton
Bayesian information criterion; SPBIC = scaled unit information prior Bayesian information criterion; ABIC = adjusted Bayesian information criterion.
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Yang & Yang, 2007), AIC3 brought improvement over AIC.
Yet it failed to consistently select the true model, even for a
sample size of 2,000. As expected by Bozdogan (1987),
CAICF reduced the tendency to select an overfitting model
in large sample sizes. ABIC improved the performance of
BIC for N � 1,000 only when the misspecified parameter
value was as small as .1. Among the model selection criteria
examined, SPBIC and HBIC performed the best for
Candidate Set 2, followed by BIC and CAIC.

The simulation conditions in Homburg (1991) and in Part
I of Bollen et al. (2014) were similar to Candidate Set 2, but
with only moderate to large values of misspecified para-
meters. The superior performance of BIC type criteria over
the AIC family found in their studies was replicated. This
study also considered small values of misspecified para-
meters as in Vrieze (2012) and repeated the finding that
AIC type criteria outperformed BIC counterparts under
such conditions. Consistent with the report of Vrieze, the

  AIC   AIC3  CAIC  CAICF  BIC  KBIC  IBIC  HBIC  SPBIC  ABIC   

N = 100 N = 200 N = 300 N = 400 N = 800 N = 1000 N = 2000 

V = .1

V = .2

V = .3

V = .4

V = .5

FIGURE 3 Accuracy ratios of selecting the optimal model by each model selection criteria at various sample sizes (N) and values of misspecified
parameters (V): Candidate Set 2. AIC = Akaike’s information criterion; CAIC = consistent Akaike’s information criterion; CAICF = consistent AIC with Fisher
information; BIC = Bayesian information criterion; KBIC = Kashyap’s information criterion; IBIC = information matrix-based criterion; HBIC = Haughton
Bayesian information criterion; SPBIC = scaled unit information prior Bayesian information criterion; ABIC = adjusted Bayesian information criterion.

AIC   AIC3  CAIC  CAICF  BIC  KBIC  IBIC  HBIC  SPBIC  ABIC   

N = 100 N = 200 N = 300 N = 400 N = 800 N = 1000 N = 2000 

V =.1 

V =.2 

V =.3 

V = .4

V = .5

FIGURE 4 Accuracy ratios of selecting the optimal model by each model selection criteria at various sample sizes (N) and values of misspecified
parameters (V): Candidate Set 4. AIC = Akaike’s information criterion; CAIC = consistent Akaike’s information criterion; CAICF = consistent AIC with Fisher
information; BIC = Bayesian information criterion; KBIC = Kashyap’s information criterion; IBIC = information matrix-based criterion; HBIC = Haughton
Bayesian information criterion; SPBIC = scaled unit information prior Bayesian information criterion; ABIC = adjusted Bayesian information criterion.

SELECTING PATH MODELS IN SEM 865



relative performance of AIC and BIC type criteria in this
candidate set was found contingent on the magnitude of the
misspecified parameters. This phenomenon was not
revealed in previous SEM simulations on model selection
criteria in which small values of misspecified parameters
were not considered.

Accuracy Ratios in Candidate Set 3 (M1, M3–M9)

Candidate Set 3, excluding both the true model and the
overfitting models, consisted of approximate models only.
The second simulation in Haughton et al. (1997) was similar
to this set with true and overfitting models excluded.
However, nonnested models were not considered in their
study and were incorporated in Set 3. The results from Set 3
(see supplemental material) resembled those in Set 2 with
slightly higher accuracy ratios. The relative performance of
AIC and BIC type criteria was again shown to be condi-
tioned on the magnitude of misspecified parameters. BIC
type criteria, except for KBIC and IBIC, behaved similarly
and outperformed AIC counterparts for misspecified para-
meter values larger than .1. In contrast, AIC and AIC3
performed better than all the BIC type criteria except
ABIC at small values of the misspecified parameter. This
study examined more model selection criteria than
Haughton et al. and replicated their findings on the super-
iority of BIC type criteria over the AIC family when the
values of misspecified parameters were moderate to large.

Most BIC type criteria and the consistent versions of AIC
selected the optimal model at large samples, whereas AIC
and AIC3 might select overly complex models (M4 or M7)
even with a sample size of 2,000. As expected, AIC3
improved the performance of AIC at moderate to large
sample sizes. The behavior of CAICF, although better than
AIC at large samples as anticipated, appeared unstable and
varied widely across simulation conditions. ABIC, as in
Candidate Set 2, outperformed BIC only when sample
sizes smaller than 800 were paired with a small misspecified
parameter value of .1. For Candidate Set 3, across the 10
criteria evaluated, HBIC, SPBIC, BIC, and CAIC emerged
with better performance in most conditions, and AIC, AIC3,
and ABIC performed the worst.

Accuracy Ratios in Candidate Set 4 (M1–M9)

Candidate Set 4 included overfitting models but excluded the
true model. The composition of alternative models in Part II of
Bollen et al. (2014) was similar to this set, but it had values of
misspecified parameters that were moderate to large. As shown
in Figure 4, the overall likelihood of selecting the optimal model
in Set 4 (M2) was lower than in the other three candidate sets,
especially under small values of misspecified parameters, for
which nearly all the criteria failed to selectM2 unless under large
samples.When themisspecified parameter valuewas as small as
.1, a situation not considered in Bollen et al., AIC and AIC3

outperformed the BIC family and ABIC performed better than
the rest of the BIC type criteria. As the values of misspecified
parameters increased, BIC type criteria, except KBIC and IBIC,
tended to perform better than their AIC counterparts, a result
consistent with the finding in Part II of Bollen et al. (2014).
Similar to Candidate Sets 2 and 3, the moderating effect of the
magnitude of misspecified parameters on the relative perfor-
mance of AIC and BIC type criteria was again observed. Most
BIC type criteria and consistent versions of AIC selected the
optimal model for large sample sizes, whereas AIC and AIC3
were likely to favor overly complex models (M3). AIC3
improved the performance of AIC at moderate to large samples,
and CAICF outperformed AIC under large sample sizes. ABIC
improved the performance of BIC at a small misspecified para-
meter value of .1 across all the sample sizes. Overall, SPBIC,
HBIC, CAIC, and BIC had higher accuracy ratios than the other
criteria examined for Set 4 when neither the true model nor
overfitting models were among the alternatives.

Summary

The examined criteria performed the best in Candidate Set
1, followed by Sets 2 and 3, and had the lowest accuracy
ratios in Set 4. As expected, AIC type criteria outper-
formed BIC type criteria when the alternative models
included the true model and excluded overfitting models
as in Set 1, and BIC type criteria performed better under
the other three compositions of candidate models, except
for small values of misspecified parameters. Other than
Candidate Set 1, the relative performance of the criteria
in both families was contingent on the values of the mis-
specified parameters, as Vrieze (2012) demonstrated.
Consistent with the expectation, BIC type criteria showed
higher accuracy ratios than their AIC counterparts, unless
under small values of misspecified parameters where the
AIC family performed better. Three model selection criteria
—AIC3, CAICF, and ABIC—not considered in previous
simulations were examined in this study. As expected,
AIC3 and CAICF improved the performance of AIC for
moderate to large sample sizes in general. The expectation
that ABIC outperformed BIC for small to moderate sample
sizes was partly supported. ABIC did improve the perfor-
mance of BIC for small to moderate sample sizes in
Candidate Set 1. However, for the other three sets, the
better performance of ABIC was observed only for small
misspecified parameter values. Overall, among the model
selection criteria we evaluated, SPBIC and HBIC per-
formed the best across most conditions of this simulation
followed closely by BIC and CAIC.

DISCUSSION

This study extended previous simulations on the behaviors
of model selection criteria in SEM (Bollen et al., 2014;
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Haughton et al., 1997; Homburg, 1991; Vrieze, 2012) to
investigate the relative performances of AIC, BIC, and their
extensions in selecting an optimal path model in various
conditions. Different compositions of candidate sets, distinct
values of misspecified parameters, and diverse sample sizes
along with multiple criteria were considered. The relative
performances of the examined model selection criteria were
found to depend on the values of misspecified parameters in
most conditions, a finding revealed in Vrieze (2012), but not
in other studies. The findings also resembled those from
Burnham and Anderson (2004) on the regression model
that the misspecified parameter values influenced the rela-
tive performance of AIC and BIC. Except in Candidate Set
1 where the alternative models included the true population
model and excluded any overfitting models, for misspecified
parameters to be of moderate to large sizes as usually
considered in past simulations (Bollen et al., 2014;
Homburg, 1991), BIC type criteria, other than ABIC, out-
performed the AIC family. In contrast, AIC and AIC3
yielded higher accuracy ratios than the BIC counterparts
when the misspecified parameters were of small magni-
tudes. The superior performance of BIC type criteria
demonstrated in previous studies was perhaps due to the
neglect of small misspecified parameters in the simulation
designs. When alternative models do not substantially devi-
ate from the population model, BIC type criteria tend to
overpenalize model complexity and result in selecting over-
simplified models.

The composition of Candidate Set 1 has not been
investigated in previous simulations. It is worth noting
that the AIC family consistently performed better than
the BIC family under this set that included the true
model but excluded overfitting models. The other three
candidate sets have been examined in prior research
(Bollen et al., 2014; Haughton et al., 1997; Homburg,
1991; Vrieze, 2012) and we replicated previous findings
in these conditions in which the BIC type criteria out-
performed the AIC counterparts. Although the effects of
the candidate set composition were marginal in this
study, this study bridges the gap in the literature to
comprehensively consider possible compositions of can-
didate models and sheds light on the conditions in which
AIC type criteria might be preferred over the BIC
family. AIC has also been shown to yield higher accu-
racy ratios than BIC under small values of misspecified
parameters, as BIC tended to select an overly parsimo-
nious model due to its high magnitude of penalty. On the
other hand, except for Candidate Set 1, as the misspeci-
fied parameter values increased, BIC performed better
than AIC, and AIC had a tendency to select an overly
complex model due to its small size of penalty.

Most extensions of BIC were developed by considering
additional terms in � 2log pj Dð Þ beyond � 2log Lj θ̂j

� �
and

kj log Nð Þ. In contrast to Kashyap (1982) and Bollen et al.
(2012), this study did not find it beneficial to include the term

log I θ̂j
� �


 


. KBIC and IBIC performed poorly, as did the AIC

type criterion CAICF, which contains log I θ̂j
� �


 


 as well.

Adding the Fisher information matrix in the criteria tended
to severely penalize model complexity and resulted in select-
ing overparsimonious models. Based on the findings, model

selection criteria with log I θ̂j
� �


 


 were not recommended.

This study covers a variety of conditions. It is worth noting
that over all the scenarios, SPBIC and HBIC performed the
best, followed by BIC and CAIC. The superior performances
of SPBIC and HBIC were also recognized in the studies of
Haughton et al. (1997) and Bollen et al. (2014). Between the
best two, HBIC might be preferable to SPBIC for its simpli-
city in computation. When comparing several competing
models, researchers rarely know in advance the magnitudes
of the parameters that are possibly misspecified, and whether
the candidate set contains the true population model or any
overfitting models. In practice, using model selection criteria
that have been shown to yield high accuracy ratios in selecting
optimal models over diverse settings will reduce the chance of
making inappropriate inferences from the analyses.

The current simulations used path models instead of mea-
surement models or full structural equation models. Previous
studies on the performance of model selection criteria in
SEM employed either measurement models (Haughton
et al., 1997; Vrieze, 2012) or full structural equation models
(Bollen et al., 2014; Homburg, 1991). Path models were
deliberately chosen in this study to fill in the gap in the
literature and to respond to the recommendation of
McDonald and colleagues. McDonald and Ho (2002) and
McDonald (2010) advocated the separate assessment of mea-
surement models and path models to prevent the misfit of a
path model to be concealed by a good fit of a measurement
model. With HBIC standing out in the selection of measure-
ment models in Haughton et al. (1997), SPBIC and HBIC
surpassing other criteria in selecting full structural models in
Bollen et al. (2014), and these two criteria again performing
the best in selecting path models in our study, we recommend
SPBIC and HBIC for model comparison in SEM.

The generalizability of the results from this study is,
however, limited to the conditions simulated, as in most
Monte Carlo simulations. Future studies covering a wide
variety of conditions should be conducted to evaluate
whether these findings would generalize to other research
scenarios such as different sets of models or different dis-
tributions of observed variables. Even with limited general-
izability, we expand our study design beyond previous
research and provide useful suggestions on the choice of
model selection criteria for the future practice of model
comparison in SEM.
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