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摘要	

近年來機器學習引發了人工智慧	 (Artificial Intelligence, AI)	應用的新趨勢。

AI被應用於越來越複雜的任務和領域中。然而，大多數	AI 模型都在黑盒(Black 

box)中運行，導致人們難以理解或是分辨機器的運作以及決策過程。目前，可解

釋性人工智慧(Explainable Artificial Intelligence, XAI)，大多著重於底層演算法的

解釋，並且集中於解釋圖形識別的結果。針對終端使用者的 XAI 應用則較多專

注於支援醫療保健領域的人類決策，少有研究調查商業領域的	AI 應用程序如何

與解釋性技術相結合。本研究以商業應用上終端使用者為中心為實際業務領域中

運用 AI 技術提出了一個通用的解釋框架。該框架基於商業智慧(Business 

Intelligence, BI) 所開發，為終端使用者提供在機器學習不同階段的完整解釋。為

了實踐我們的框架，我們在一個航空公司行李重量預測案例上應用了這個解釋性

架構。最後，為衡量該框架實踐後的有效性，我們在 Amazon Mechanical Turk上

進行了實驗。我們的結果表明，使用解釋性框架的參與者對模型預測更有信心，

並且更信任系統，更願意採用系統提供的建議。我們的研究使企業能夠擴展他們

的商業智能，並結合這個解釋框架的不同階段，以提高機器學習技術在商業應用

中的透明度和可靠性。	

	

關鍵詞：人機互動、機器學習、資訊視覺化、可解釋性人工智慧、信任	
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Abstract 

Recently, machine learning has sparked a new trend in artificial intelligence (AI) 

applications. AI is applied to increasingly complex tasks and in many areas. Most AI 

models are running in a black box resulting in difficulty for understanding. From image 

recognition to sentiment analysis, XAI is used to support human decision-making in 

the healthcare domain, yet little research has been done to investigate how AI 

applications in the commercial domain can be integrated with explanatory techniques. 

This study proposes a generalized interpretative framework for end-user-centric 

applications in the business domain. The framework enables the provision of complete 

explanations to end users at different stages based on business intelligence. To validate 

our framework, we applied this explanatory framework in practice using an airline 

baggage weight prediction case. Finally, in order to measure the effectiveness of the 

framework in practice, we conducted an online experiment at Mturk. Our results show 

that participants who use the explanatory framework have more confidence in the 

model predictions, trust the system, and are more willing to adopt the recommendations 

provided by the system. Our research allows companies to extend their business 

intelligence and combine different stages of this explanatory framework to improve the 

transparency and reliability of machine learning technology in business applications. 

 

Keyword: Human computer interaction (HCI), machine learning, information 

visualization, trust, explainable artificial intelligence, XAI  
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Chapter 1 Introduction 

1-1 Background and Motivation 

In the past few decades, various developments have been made in the field of 

artificial intelligence (AI). AI is now gradually entering the mainstream and provides 

tremendous support for human decision-making. The effectiveness of AI is limited by 

the inability of machines to explain its process and results to human users in various 

situations (Doshi-Velez & Kim, 2017). In the medical field, physicians are not clear 

about how an AI model predicts diabetes (Krause et al., 2016). In the business field, 

humans do not understand how the stock AI agents work;  they often can only use 

historical back-testing to judge the pros and cons of the stock investment made by the 

agents (LeBaron, 2001). These AI applications may only be selected based on 

performance indicators, such as accuracy or precision, and not necessarily based on the 

interpretability. This is caused by the fact that we are using black-box models in AI.  

When facing a complicated black box model, some users might "over-reliance on 

automation" and abuse the results (Parasuraman & Riley, 1997), while some might 

underestimate the power of model and concern about obsolescence, so called 

"ignorance or underutilization of automation" (Parasuraman & Riley, 1997). Both 

abandonment and misuse can cause serious problems. In order to use and understand 

AI correctly, users must trust the system appropriately (Barredo Arrieta et al., 2020a). 

The prevailing belief is that explaining to users how the system works increases 

their trust in the system and reduces upset after seeing errors (Glass et al., 2008). 

Transparency and trust can be provided through verbal and visual means (Wang et al., 

2016). Currently, many existing studies have focused on explaining the underlying 

algorithms. The designer may assume that users understand the decision-making 

process, or users had sufficient knowledge of machine learning models. However, the 

end user may not have sufficient background to understand how the algorithm works. 
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The difference between the designer’s hypothesis and the user’s background may result 

in interpretive method not being able to effectively enhance the end user’s trust in 

machine learning (Wang et al., 2019). 

Many interpretive techniques focus on the interpretation of image recognition, 

such as the saliency map (Bach et al., 2015). These interpretation methods claim to have 

a good interpretation effect in many different fields (Ribeiro et al., 2016), but most of 

them only focus on the application in the medical field except for image recognition 

(Wang et al., 2019). These techniques are mostly designed for the machine learning 

developers. Despite of some techniques are end-user oriented, they are mostly used in 

the medical field for professionals (Vassiliades et al., 2021). We believe that there are 

many areas in the business domain where machine learning can bring value, but the 

lack of interpretation of predicted results may make it more difficult to apply the results 

in practice. Therefore, we apply explanatory techniques in the business domain and 

propose an explanatory framework based on BI. We explore whether this framework 

can enhance end-users' trust in the results of machine learning in the business domain 

and finally facilitate their decision making in the context of real business cases. 

 

1-2 Research question 

Some people refuse to use models to help them make decisions (Dawes, 1979; 

Dietvorst et al., 2015). There are several possible reasons for this situation: first, people 

may feel that they do not understand the model, including the information they rely on 

and how this information is used. For example, in a study on the use of machine learning 

in government departments, researchers noted that it was challenging to get 

organizations to accept the use of machine learning-based systems when the internal 

structure of the system could not be explained (Veale et al., 2018). Second, people may 

feel that the model does not use information in the right way or relies on incorrect input 
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information (Veale et al., 2018). Third, people may be concerned that the models are 

operating in an unjust manner (Rudin, 2019). These reasons may lead to increased 

concerns about the use of models. 

In previous approaches, interpretability techniques are mostly used in the fields of 

graphical recognition and medical interpretation. Business intelligence can provide 

different perspectives on complex data, including structured and unstructured data. The 

variety of data types can be used in different ways by different users such as sales, 

managers and employees. The combination of visual interaction systems and business 

model predictions can bring AI technology closer to the end-user, thereby improving 

overall operational efficiency and performance. 

Therefore, we investigate whether the application of XAI in the business world 

can enhance user trust in the model. In order to measure user trust we refer to the trust 

calibration study proposed by Wang (N. Wang et al., 2016) where explanation and 

transparency lead to increased trust and team performance. On the other hand, the Davis 

et al.(Davis et al., 2020) study suggests that the focus on trust is somewhat narrow, 

leading the research community to stray from tried and true empirical methods, so we 

added confidence indicators and user acceptance. We considered this element because 

confidence and trust are important factors in the willingness of users to accept and use 

the process output (Pieters, 2011). 

This study attempts to answer the following research questions: 

• RQ1. Does the use of the XAI framework in the business field allow end-users to 

follow the predictions of machine learning results? 

• RQ2. Does the application of XAI framework in the business field increase the 

confidence of users in adopting machine learning results? 

• RQ3. Does the application of XAI framework in the business field increase end-

users' trust in machine learning results? 
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In this study, we begin with a review of the existing literature on different XAI 

technologies and articles that combine human-computer interaction and trust. Next, we 

propose a business intelligence-based AI interpretability framework that provides 

explanations to end-users in the business domain. The framework organizes the way in 

which explanations are provided to end-users in the past, and we have divided the 

explanations into three parts that designers can follow to provide explanations to user. 

To evaluate the practical application of the explanatory framework proposed in 

this study in the business domain, we apply this framework to a real-world business 

data machine learning use case of predicting the weight of airline baggage to enable 

airlines to more accurately calculate fuel consumption and reduce the cost per flight. 

Finally, we deploy and conduct an online survey experiment at Amazon Mechanical 

Turk1 to evaluate the effectiveness of the framework in real-world applications. 

 

  

 
1  Amazon Mechanical Turk is a crowdsourcing Internet marketplace where individuals or 

businesses can recruit participants to perform tasks that computers are not able to do. 
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Chapter 2 Literature Review 

In this chapter, we review the existing literature from three aspects. In the section 

2-1, we present how business intelligence and decision support enable human 

understanding of analytics. In the section 2-2, we review the interpretability approach 

to AI and its advantages and limitations, and finally in the section 2-3, we focus on the 

interpretability of machine learning from the perspective of trust. 

 

2-1 Business Intelligence 

2-1-1 The Definition of Business Intelligence 

Business intelligence (BI) refers to the use of data exploration, cloud computing, 

data analysis, and other technologies to interpret past sales data, operating costs, 

depreciation and amortization, and sales revenue data, as well as to convert the data 

into information, which can be provided to management as a reference "wisdom" for 

decision-making and judgment (Sautto, 2014). The development of modern business 

intelligence began in the mid-1980s, and is a further extension of Decision Support 

Systems (DSS), with the purpose of assisting corporate management in making 

decisions (Power, 2002). According to David Loshin's definition of BI, BI processes, 

technologies, and tools need to convert data into information, information into 

knowledge, and then knowledge into action plans that can gain company benefits 

(Saxena & Srinivasan, 2013). Technologies of BI include data warehousing, enterprise 

analysis tools, and content/knowledge management. 

BI is arranged in the data warehouse for users to obtain real-time and dynamic high-

value information anytime and anywhere from the data warehouse through a variety of 

online query, analysis and processing tools, data mining, and decision support systems 

to improve corporate decision-making. It is a mechanism to improve quality, improve 

performance, and achieve the ultimate goal of an enterprise (Chaudhuri et al., 2011). 
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2-1-2 The Application of Business Intelligence 

BI is supported by a corporate portal on the front end and a complete information 

integration system on the back end of the enterprise, allowing everyone from decision 

makers to grassroots employees to access important reference data for improvement; 

and to save a lot of form processes and enhance internal operational processes; creating 

high productivity and competitiveness. Business intelligence is based on building a data 

warehouse, integrating different operating system databases, and after cleaning, 

extracting, converting, and loading data from different sources and types, in a uniform 

form, Organized arranged in the data warehouse, users can obtain real-time and 

dynamic high-value information anytime and anywhere from the data warehouse 

through a variety of online query, analysis and processing tools, data mining, and 

decision support systems to improve the enterprise a mechanism for the quality of 

decision-making, improving performance, and achieving the ultimate goal of the 

enterprise (Dresner, 2001). BI has functions such as data management, data analysis, 

knowledge discovery, and enterprise optimization. 

BI is an effective analysis mechanism that integrates the three elements of 

"management", "decision-making" and "information technology" (Gorchels, 2000). 

Companies must look at BI from a strategic perspective to understand its importance. 

In terms of application, BI has widely applied in the fields of customer relationship 

management, supply chain management, enterprise resource planning, or knowledge 

management that is well-known in the corporate world. It is the practical application of 

business intelligence (Shafiei & Sundaram, 2004). 

 

2-1-3 The Tool in Business Intelligence 

BI uses dashboards to compose data into charts and present the charts. While 

various charts are adopted in BI, this section focuses on the visualization tools for large 
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volumes of data. 

 Treemaps (Bruls et al., 2000). This method can be applied to large amounts of 

data to represent the data layers of each hierarchical structure in an iterative manner. 

Regardless of device resolution, analysts can always move to the next module to 

continue processing more detailed data at a lower level. Therefore, it can meet the large 

data volume standard. Since this method is based on the shape and volume estimates 

calculated based on one or more data factors, each time the data is changed, the image 

is completely redrawn for each currently visible hierarchical structure. Higher-level 

changes do not need to redraw the image because the analyst cannot see the data 

contained in it. 

 Circle Packing (Collins & Stephenson, 2003). This method is a variant of 

Treemaps that uses torus. The inclusion in each circle represents the composition in the 

hierarchy: each branch of the tree is represented as a circle, and its sub-branch is 

represented as an inner circle. The area of each circle can also be used to represent any 

other value, such as a number or file size. Color can also be used to assign categories 

or represent another variable with a different shade. The main advantage of this method 

is that by using the classic Treemaps, we may be able to place and perceive more objects. 

Compared with Treemaps, this method can have better spatial applications. 

 Sunburst (Cawthon & Moere, 2007). This illustrates the same type of data as the 

Treemaps. The highest level in the hierarchy is in the inner ring; the sub-levels are in 

the outer ring like the Treemaps. And because of this feature, you can use animation to 

modify the method to display data dynamics. It's easily perceptible by most humans. 

 Circular Network Diagram (Cawthon & Moere, 2007). Data objects are placed 

around a circle and linked by curves according to their relevance. Correlation is usually 

measured using different line widths or color saturations. 

 Parallel Coordinates (Inselberg & Dimsdale, 1990). The visual analysis of 
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histones will be extended to multiple data factors for different topics. All data factors 

to be analyzed are placed on one axis, and the relative value of the data object is placed 

on the other axis. Each data object consists of a series of linked wires that indicate its 

position in other objects. This method allows us to use only a thick line on the screen 

to represent a single data object, and this method can meet the large amount of data. 

 Streamgraph (Kosara, 2016). Streamgraph is a stacked surface diagram. A graph 

of displacement around the central axis, resulting in lowered and organic shapes. It 

shows the evolution of several groups of numerical variables. The area is usually 

displayed with the central axis as the center and the edges are rounded to create a flow 

shape. 

 

2-1-4 The Challenge of Business Intelligence 

BI is the "analytics role for decision makers", which allows decision makers to 

have a general understanding of a large amount of data obtained by the company 

through reports and charts, and then assists in decision making (Chen et al., 2012). 

Gartner has compiled a set of four categories of data analytics: descriptive analytics, 

diagnostic analytics, predictive analytics, and prescriptive analytics (Burton et al., 

2006). The first problem with BI is that it is still in the descriptive analytics, not in the 

diagnostic analytics (Deng & Chi, 2012). However, knowing what is happening is not 

very helpful for business decision making, it is more important to understand why it is 

happening. The second difficulty of BI: BI may not be real-time in its predictions and 

analysis of large amounts of data. The business world is highly competitive and there 

is no time for slow decisions. As today's business world becomes more competitive, 

companies need decision aids that can respond to market demands in real time. The 

next generation of analytics software with built-in algorithms has officially replaced BI, 

but users without a background in data analysis may not be able to turn algorithms into 
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analytical tools. To solve problems that BI has not been able to solve in the past, we 

have incorporated the concept of XAI into the BI process. In the next section, we 

introduce explainable AI and its potential to develop and bring value to the BI 

architecture. 

 

2-2 Explainable Artificial Intelligence (XAI) 

2-2-1 The Reasons of XAI 

The concept of XAI can be traced back to its first introduction by Swartout (1983) 

and Clancey (1983) in their expert system. It is gaining wide popularity in the field of 

ML interpretability in recent years (Carvalho et al., 2019). While AI is gradually 

entering the mainstream and provides tremendous support for human decision-making, 

the effectiveness of AI is limited by the inability of machines to explain its process and 

results to human users in various situations (Doshi-Velez & Kim, 2017).  

In solving prediction problems, data scientists tend to focus on accuracy metrics 

(e.g., RMSE, Recall, etc.). High-accuracy models are often too complex, especially 

deep neural networks, which are often considered as black boxes because of the 

multiple hidden layers and the large number of non-linear weights, making it almost 

difficult to understand the relationship between the input and the resultant output and 

the decision making of the algorithm. Although accuracy is important, these metrics 

only provide partial information about the model, and the correlation and hidden 

information in the data cannot be expressed with accuracy. If we want to extend AI 

technology to more domains, we must try to understand how models make decisions 

and promote public trust in them. The following summarizes a few reasons why models 

need to be explained: 

 Verification of the system. To confirm the operation of the model, we make 

assumptions about the training capability of the model when constructing the model. 
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For example, in a model that distinguishes between huskies and wolves, we expect that 

the model captures the facial features, contours, and body shapes of the animals in the 

picture. With the selection of training data, the model learned that as long as the 

background is white (snow), it is likely to be recognized as a wolf, otherwise, the 

background is not white, it is likely to be a husky. Before the explanation, even if the 

result is predicted correctly, we cannot know the relationship between model input and 

output. Sensitivity analysis and layer-wise relevance propagation (LRP) are commonly 

used explanation method which used heatmap to observe the correlation between each 

pixel and predicted result (Bach et al., 2015). These approaches are not limited to the 

model architecture, and can be presented in a visual way that is easy for humans to 

understand. 

 Improvement of the system. In order to improve the model, it is important to 

know the weaknesses of the model. The black box of the model makes the analysis 

more difficult. Through the explanation mechanism, it is possible to peek into the 

relationship between the predictions and the results of the model, making the 

relationship between them clear and making the potential risks of the model more 

visible, thus greatly increasing the possibility of avoiding errors and loopholes and 

improving the mastery of the model. In addition to avoiding potential risks, it is 

important to continuously improve its performance. Having good explanatory 

mechanisms, i.e., knowing the correlation between specific inputs and outputs, can 

provide direction in improving the models, even if they have the same performance, the 

features of interest vary between models (Lapuschkin et al., 2016). Through 

comparison, it is possible to identify the features that each model and architecture is 

good at or concerned with and to extract their strengths and exploit them. 

 Learning from the system. The AI system is trained with tens of millions of data, 

and it may observe potential data patterns that humans cannot find. When using an 
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interpretable AI system, we can try to get knowledge from the AI system to gain new 

insights. 

 Compliance to legislation. Many areas of our lives are gradually being affected 

by artificial intelligence systems. For example, in terms of law, the distribution of 

responsibilities when the system makes wrong decisions has recently received 

increasing attention. Since relying on black box models may not find appropriate 

answers to these legal questions, future artificial intelligence systems have to be easier 

to interpret. Individual rights may become the driving force behind the increasing 

emphasis on artificial intelligence interpretation in regulations. For example, the "right 

to explanation" promoted in the new EU regulation GDPR allows users to request an 

explanation of her or his own algorithmic decisions (Goodman & Flaxman, 2017). 

 

2-2-2 The Application of XAI 

In the previous section, we explored the benefits of XAI for various purposes, 

including validating systems, improving systems, making them easier to learn, and 

responding to regulations. In order to put the theory into practice, in this section, we 

present practical applications of XAI. We detail how interpretative methods have been 

proposed and applied in machine learning, as well as introduce interpretative algorithms 

proposed in past research, and illustrate the use of global and local interpretations. 

 Making a Model Transparent. The transparent model itself has some degree of 

interpretability. A model is considered to be transparent if the model itself is 

understandable (McGovern et al., 2019). It has the properties of algorithmic 

transparency, decomposability, and model ability. For example, Linear Regression 

solves prediction problems and binary or multivariate classification problems (Hoffrage 

& Gigerenzer, 1998). Decision trees is a very common and excellent supervised 

learning algorithm, where the rules of internal nodes are trained to become hierarchical 
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decision structures, making them easy to understand and highly interpretable (Quinlan, 

1987). Rule-based learning refers to generating rules to characterize each model of the 

data to be learned from. Rules can take the form of simple conditional if-then rules, so 

they give a more understandable model (Langley & Simon, 1995). 

 Increasing Post-hoc explainability. When Machine learning models cannot 

provide explanations transparently, individual methods must be devised to provide 

explanations for the models. The purpose of post-hoc explainability techniques is to 

convey understandable information about the developed model that generates its 

predictions for any input. According to Barredo et al., (Barredo Arrieta et al., 2020b) 

the post-hoc explainability can be categorized into Model Specific techniques designed 

for application to any type of ML model and Model Agonistic models designed for 

specific ML models. 

• Model-specific: The interpretation of a particular model is limited by the type of 

model. In order to obtain a specific type of interpretation method, only a specific 

model can be selected for the task. For example, if you want to obtain a tree-shaped 

decision diagram of a model task, you can only obtain it through a tree-shaped 

model. Such a restricted approach makes researchers turn their attention to 

unspecified model interpretation methods that can be applied to any model (Adadi 

& Berrada, 2018). 

• Model-agnostic: Model-agnostic is not limited to a specific model, that is, model 

prediction and interpretation are two different parts. This type of interpretation 

method mostly uses post-hoc interpretation to analyze the relationship between 

prediction and model.  

According to different interpretation mechanisms, it can be divided into four types: 

(1) Visual explanation: Visualizing the operation mode of the neural unit of the 

deep neural network model. 
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(2) Knowledge extraction, which transforms the internal representation of the 

model into an understandable form, observes the rules of the model’s task, in 

addition to clarifying the mode of operation of the model, it can also explore new 

model. 

(3) Feature relevance explanation: Change the input of features and the internal 

structure and parameters of the model, and observe the changes to the output 

results. 

(4) Example-based: Observe a single example and provide possible explanations 

for the operation of the model from the predicted results (Adadi & Berrada, 2018). 

Table 2-1 XAI methods category 

Methods category Explanation Definition Algorithm 

Global 

interpretability 

Global 

feature 

importance 

Describe the feature weights 

used by the model and show 

the visualization of the 

feature weights 

(Henelius et al., 2014; 

Lou et al., 2013; 

Nguyen et al., 2015) 

 

Local 

interpretability 

Local feature 

importance 

and saliency 

method 

Show how the features of the 

instance contribute to the 

prediction of the model, 

presented in graphics or text 

(Lundberg & Lee, 2017; 

Ribeiro et al., 2016; 

Simonyan et al., 2014) 

Inspect 

counterfactual 

Feature 

influence or 

relevance 

method 

Show how the prediction 

changes corresponding to 

changes of a feature and 

often in a visualization 

format 

(Adadi & Berrada, 

2018; Apley & Zhu, 

2020; Krause et al., 

2016) 

 

Example based Prototypical 

or 

representative 

examples 

Provide an example that is 

similar to the example and 

the record is the same as the 

forecast. 

(Bien & Tibshirani, 

2011; Koh & Liang, 

2017) 

 

 

 Enhancing Global interpretability. Global interpretability provides an 

explanation for the entire operation mode and logic of the model. It is usually used in 
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larger systems, such as weather operations, disease occurrences and other related 

factors that are very intricate and complex. A model that masters global weather 

conditions, with high probability It is better to grasp the overall situation and learn the 

patterns than just looking at a regional weather model. In order to have a more holistic 

perspective, the global interpretation model used to propose must be completely built 

under many restrictions, so it is limited by the trade-off between performance and 

interpretability. In practice, the realization of global interpretation is also more difficult. 

Global means a larger system, more variables and parameters, making it difficult to 

obtain an explanation that can fully describe the logic of the model operation. Therefore, 

local interpretation is a better way in reach in practice (Adadi & Berrada, 2018). 

 Enhancing Local Interpretability. Compared with the global explanation that 

explains the entire system, the regional explanation is a single predicted result, 

explaining the relationship between the result and the model. Interpretation methods 

include calculating the saliency map and heat map of the relationship between pixels 

and results; comparing the influence of different features on the model prediction 

results; observing the gradient trend between different labels, etc. 

• Local interpretable model-agnostic explanations (LIME)：LIME was proposed 

by Ribeiro et al. (2016) and it is Model agnostic. The assumption behind it is that 

we can basically understand some models as long as they are not too long and too 

complicated. For example, in image recognition, the linear regression model of 

super-pixel may be understandable (we accept the explanation that "a large 

number of pictures with certain characteristics is an image of something"); in text 

classification, bag- The linear regression model of of-words is understandable ("a 

lot of words containing certain keywords belong to a certain category"). LIME is 

trying to use this understandable model to locally fit the model and prediction 

results you want to explain. LIME can interpret its "black box" separately for any 
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given supervised learning model. Local interpretation means that LIME give a true 

local interpretation around or near the interpreted observations. LIME has a rich 

open-source API and can be used in R and Python, so it has a huge user base, with 

nearly 8k stars and 2k forks in its GitHub repository. 

• Shapley additive explanations (SHAP): The Shapley value was proposed by Lloyd 

Shapley, a professor at the University of California, Los Angeles, to solve the 

problem of contribution and income distribution in cooperative games. In N-

person cooperation, the contribution of individual members is different, and the 

income distribution should also be different, and the ideal ·distribution method is 

that the contribution and the income are equal. 

 

2-2-3 The Challenge of XAI  

In the field of machine learning, the more complex the model is, the more difficult 

it is to interpret. The rule usually states that the more accurate the model, the more 

complex the model, and the more difficult it is to interpret its output. As shown in Figure 

2-1. The simplest model is linear regression. In statistics, a linear regression is a type 

of regression analysis that models the relationship between one or more independent 

variables and a strain using a least squares function called a linear regression equation. 

The corresponding relationship makes the output result easy to interpret; the decision 

tree is composed of a decision diagram and possible results to create a plan to reach the 

goal. Decision tree is a special tree structure used to assist decision making. Each node 

of this structure can present decision-making results, and interpretation is relatively 

easy. 
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Figure 2-1. Machine Learning interpretability, "accuracy/interpretability" trade-off rule.  

 

In machine learning and deep learning, deep learning is an algorithm based on the 

representation of data for learning. Observations can be represented in a variety of ways, 

such as a vector of intensity values per pixel, or more abstractly as a series of edges, 

regions of a particular shape, and so on. And it is easier to learn tasks from real examples 

using some specific representations. The benefit of deep learning is to replace the 

manual acquisition of features with efficient algorithms for unsupervised or semi-

supervised feature learning and hierarchical feature extraction. Such algorithms often 

contain many hidden layers that are not easily understood by the user in the decision-

making process, and even with XAI methods, it is often possible to obtain only the 

weight of each feature on the output. These interpretations may provide explanations to 

model designers and further improve the models, but they may not be easily linked to 

the end-users. 

Although the authors of the XAI approach claim that these techniques can be 

applied in multiple domains, it still has limitations. As mentioned earlier, XAI method 

are mostly used for graph recognition and medical applications, but rarely for business 

intelligence. Business intelligence refers to the use of modern data warehousing 

technologies, online analytical processing technologies, data exploration, and data 
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presentation technologies for data analysis to realize business value. The concept of 

business intelligence was understood by the public after being popularized by Dresner 

Howard (2001). At that time, business intelligence was defined as a type of technology 

and its application consisting of data warehousing, query reports, data analysis, data 

exploration, data backup and recovery, etc., for the purpose of helping companies make 

decisions. 

 

2-3 Trust 

In this section, we discuss the trust of humans in machines. Trust plays an important 

role in the decision of end users to use automated systems. In the past, explanation 

mechanisms often mentioned how machine learning explained how to convince users 

of machine judgments. With the latest developments in the field of artificial intelligence, 

more and more decision-making tasks are entrusted to the system. This section cuts into 

the application of XAI in business intelligence from the perspective of trust. 

2-3-1 Trust in Computer Sciences 

A person's level of trust in someone or something can determine how well that 

person accepts things. Trust is the main reason for acceptance. Trust is important in 

many relationships, such as interactions between people. Trust can also define the way 

people interact with technology. Trust is an essential component of various human 

interactions (Groom & Nass, 2007), which enables people to act under uncertainty and 

risk of negative consequences. It enables people to act under uncertainty and risk of 

negative consequences. In real-world human-robot interactions with high risk and high 

uncertainty, distrust reduces people's willingness to accept robot-generated information 

and follow robot advice, thus limiting the potential benefits of robotic systems (Freedy 

et al., 2007). 

In computer science, trust is a widely used term whose definition varies between 
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researchers and applications. Trust is an important component of the Semantic Web 

vision, where new problems and applications of trust are being studied. This paper 

provides an overview of existing trust research in computer science and the Semantic 

Web. 

2-3-2 Measuring Human Computer Trust 

In general, trust is a complex concept that is somewhat related but not exactly 

similar to confidence. In the Madsen & Gregor (2000) study, human-computer trust is 

defined as the degree to which users have confidence in and are willing to act upon the 

recommendations, actions, and decisions of an artificial intelligence decision aid. This 

concept was modified from McAllister (1995) and was chosen as the clearest and most 

complete definition of the concept of Human Computer Trust. It includes users' 

confidence in the system and their willingness to act on the system's decisions and 

recommendations. 

The relationship between explainability and trust has been discussed in several 

recent papers (Lipton, 2018; Ribeiro et al., 2016). Related to our research, and the 

inspiration for our experimental design, Cai et al. (2019) ran a series of experiments 

with randomized human subjects and found that any of the different explanatory 

mechanisms had a significant increase in human trust, and that certain graphical 

elements did improve people's ability to detect when the model was wrong. 

For example, Yang et al. (Yang et al., 2020) investigated the effect of exemplar-

based machine learning classifier interpretation on appropriate trust for end users. The 

effects of spatial layout and visual representation were explored in a participant face-

to-face user study. Changes in user trust over time were also observed. Results show 

that each explanation increases user trust in the classifier, and that the combination of 

explanation, human, and classification algorithm yields better decisions than if the 

human and classification algorithm were separate. 
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The relationship between system performance and user trust in automated systems 

(Yu et al., 2016), ubiquitous computing systems (Kay et al., 2015), and recommender 

systems (Panniello et al., 2016) has been examined in several studies from the HCI 

community. 

Poursabzi Sandeh et al. (2021) used house price prediction as a background, and 

they conducted a joint experiment in which subjects were presented with randomly 

generated house features and asked each subject the total price of the object. These 

models differed in their stated accuracy, the size of the fictitious training dataset, the 

number of features, and several other attributes. The authors estimate the impact of each 

attribute by fitting hierarchical linear models and find that one is usually most 

concerned with the size of the training dataset, the origin of the algorithm, and the 

accuracy of the statements to trust the decision of the model less about the transparency 

of the model or the relevance of the training data. 

Zhang et al. (Zhang et al., 2020) conducted a case study of AI-assisted decision 

making where humans and AI alone have comparable performance and explored 

whether features revealing case-specific model information can calibrate trust and 

improve the joint performance of humans and AI, specifically they investigated the 

effect of displaying confidence scores and local explanations for specific predictions. 

They also highlight the use of local explanations in AI-assisted decision-making 

scenarios to calibrate human trust in AI. 

Based on a review of past literature, trust is an important factor in the effectiveness 

of human-computer interaction systems and frameworks, so our framework performs a 

comprehensive measure of its trust effectiveness. 
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Chapter 3 Research methodology 

Since there are few studies exploring the feasibility of XAI in the business field, 

in order to verify the effectiveness of the XAI method in the business field, we propose 

a design framework and present it in conjunction with business intelligence tools. Then, 

we use a set of business cases to apply machine learning techniques combined with an 

interpretation framework to provide the final result. Users use and discuss its effects. 

Whether the trust in machine learning can be improved through interpretation. 

3-1 Theoretical Background 

In the previous chapter, we discussed different interpretation methods and 

algorithms, which can provide different degrees of interpretation to the predicted results. 

This study starts by distinguishing the explanation needed by different users. Different 

groups of audiences seek different goals for interpretability in ML models. Two goals 

are intertwined: the need to understand the model and compliance. In the case of Data 

scientist and developers, the explanation is needed to ensure or improve the 

performance of the model, to do further research, or to propose new features (Barredo 

Arrieta et al., 2020b). Domain experts, such as medical doctors, need to trust the 

decision basis of the model itself to assist in further treatment. Finally, the users who 

are affected by the model decisions need to know where they stand in order to verify 

that future decisions are feasible. They are also the recipients of the explanatory 

framework proposed in this study. From an AI research perspective, the recent review 

by Nunes and Jannach summarizes several explanatory purposes (Nunes & Jannach, 

2017). Through transparent explanations, users can see some aspect of the internal state 

or function of an AI system. When using AI as a decision aid, users seek to use 

explanations to improve their decisions. In order to focus on enhancing the trust of end 

users, we looked at how to design XAI for users, as mentioned by Wang et al. (D. Wang 

et al., 2019) to discuss human decision-making with the user as the center. Liao et al. 
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(2020) through interviews with colleagues in different departments of IBM's views on 

XAI, sorted out the question users want to know about XAI. In a Microsoft paper 

proposed by Amershi et al. (2019) they offered 18 universal design guidelines for 

human-to-human interaction. And it has been verified in interactive application 

scenarios. They divided the design of interpretable AI into four sections, namely 

“Initially”, “During interaction”, “When wrong” and “Over time”. At the initial stage, 

users should clearly understand what the system can do, and know when the system 

might go wrong; during interaction, add time, contextually relevant and other elements; 

then you need to let users know when the system goes wrong through invocation, 

dismissal, correction, and Draw the appearance of the service has reduced the user's 

doubts; the last is to explain the timeout part, learn the user's behavior, and adopt the 

user's feedback. Putnam & Conati (2019) discussed when and whether it is necessary 

to explain its user modeling technology to students in the Intelligent Tutoring System 

(ITS). And believes that incorporating the interpretation into ITS is beneficial to the 

overall impact. 

Outside the ML field, Miller (2019) and others explored the space of user needs, 

using a problem-driven framework to explain. They proposed that the explanation is 

"the answer to the question". At the same time, they put forward the type of explanatory 

question and the reasoning that needs to be answered. 

Table 3-1 Type of explanatory question and the reasoning that needs to be answered by Tim Miller 

Question Reasoning Description 

What Associative Given the observed events, the reasons for which 

unobserved events may have occurred. 

How Interventionist Simulate the changes in the situation to see if the 

event is still occurring. 

Why Counterfactual Simulate other causes and see if the event still 

occurs. 
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3-2 Framework Development 

Inspired by the prior work, we use the framework proposed by Miller (2019) as the 

framework base, distinguished by “what”, “how” and “why” then combined with the 

results of Liao et al. (2020) interviews with end-users at IBM. The framework of this 

study is based on BI. It is a descriptive analysis that allows decision makers to have a 

general understanding of the data obtained through reports and charts to assist in 

decision making. (Chen et al., 2012).  We define the original explanation of BI as the 

What stage, and do the descriptive analysis, while the further model prediction results 

are presented in the "How" and "Why" stages by combining the explanatory algorithms. 

Based on the architecture proposed by Miller (2019), we divide what users want to 

know about What, How, Why, three directions: 

What: This stage represents descriptive analysis as in the original BI system, including 

input and output data, data type, appearance, selected data characteristics, data used by 

the system, etc. 

How: This stage represents how the model performs calculations and decisions and 

provides explanations in conjunction with the global interpreter. 

Why: This stage represents why this prediction result is calculated. The weights of the 

features affected in the Model calculation are presented. 

According to the study of user trust by Davis et al. (2020) and Yang et al. (2020), 

presenting the performance of the machine department or the confidence index can help 

improve the user's trust in the model, so we decided to add performance to the 

framework and put it in “How” stage. 

This explanatory framework covers multiple aspects of using machine learning 

models for prediction to help complex associations of data in the business domain. First, 

the pre-processing of data can be presented in the What stage, such as the type of data, 

composition, amount of data, and the selected features. In the model prediction stage, 
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users use the accuracy to judge the performance of the model based on their past 

experience, and we combine this stage to present the performance metrics. Finally, we 

produce the results, and we provide the reasons for the results through post hoc 

explanatory algorithms. From these three steps, we help the user to build a complete 

understanding rather than a single item of explanation. 

We then standardized the explanation content that users wanted to know based on 

the end-user interviews conducted by Liao et al. (2020). In the What stage, we divided 

the data input and output in order to make the user's clearer about the data type. In the 

How stage, to make users understand the system logic, we explain it through Global 

explanation. Also, according to the research of Zhang (2020), the accuracy can improve 

the user's trust, so the performance is included. Finally, to make users understand the 

output results, we provide explanations by post hoc. The discussion for each type of 

interpretability requirement is finally divided into five blocks to provide explanations 

to users, as shown in Table 3-3. 
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Table 3-2 Six different oriented explanations, and pre-set the problems that users may have. 

Category What user want to know How Tool 

What Input/data What kind of data does the system learn from? 

What are the sample-size? 

What data is the system NOT using? 

How much data is the system trained on? 

Shows the data composition, fields, quantity, selected 

features, and how much data to use for training. 

Histogram, Pie 

chart, 

Treemap, 

Circular 

packing Output What Kind of output does the system give? 

What is the scope of the system’s capability? 

Presents Numerical data, possible ranges, and values 

given in the past using average values. 

How Global 

explanation 

System overall logic? 

How does it weight different feature? 

What kind of the algorithm is used? 

Shows what kind of algorithm is used, the logic 

behind it (XGBoost), how he gives each feature 

weight, and uses LIME, SHAP and other explanatory 

techniques to present global feature importance 

PCA 

 

Performance How accurate are the predictions? 

How often does the system make mistake? 

In what situations is the system likely to be correct? 

What kind of mistakes if the system likely to make? 

Through the model accuracy (confidence level), the 

distance between the decision and the actual value. 

Confidence 

level, accuracy 

Why Local 

explanation 

What feature of this instance leads to the system’s prediction Use SHAP to present the contribution of each feature 

in the prediction result (Local interpretability) 

Tornado Plot, 

Saliency Map,  

Description 
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Input/data. The training data helps users to properly evaluate the motivation of 

using the model. Users can evaluate the model by querying sample size, potential bias, 

and whether data are missing. The presentation and transparency of the raw data allows 

users to better understand the limitations of the model. 

 Output. Understanding output is usually an overlooked aspect of XAI's 

algorithmic work, but we think we need to provide such an explanation. We describe 

the functional scope of system prediction, how the output data will affect other systems, 

etc., and finally through the past prediction methods The numerical value is compared 

to explain to the user. 

 Performance. Performance indicators are considered to be an effective tool for 

enhancing user trust in many studies (Yang et al., 2020; Zhang et al., 2020), and some 

studies believe that performance indicators may deter users. Some people also think 

that small differences between these indicators will not change the way users interact 

(Liao et al., 2020). We suppose that performance indicators can help users understand 

the limitations of AI and make it feasible to answer "whether performance is sufficient 

to meet the requirements of...". 

 How (Global). Provide a global explanation of how AI makes decisions, which 

can not only help users properly evaluate system functions, but also build a mental 

model to better interact with the system or improve the system. This type of demand is 

particularly prominent in: "Which of these attributes the company cares about is the 

most important...". In order to answer the How question, XAI algorithms usually use 

ranking features or decision trees. We remind users which models are used in this 

prediction and how their feature weights are adjusted. 

 Why (Local). Many current XAI algorithms focus on the "why" problem. We have 

noticed that the challenge of algorithm interpretation is that the comparison results are 

often not explicitly used in the model. These observations once again demonstrate the 
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benefits of interactive interpretation, allowing users to clearly refer to the comparison 

results and make follow-up comments. According to our constructed explanatory 

framework Table 3-3, we can see that SHAP can provide multiple presentations in the 

why stage and the application of the suite is more complete than other existing 

algorithms (Lundberg & Lee, 2017). Therefore, we choose to use SHAP for the local 

interpretation of the weights of each feature in the prediction results. 

This research proposes a framework based on BI combined with machine learning 

interpretation and integrates the information that end users want to know, so that data 

and training output results can be systematically presented according to needs at 

different stages. Next, we describe the interpretive tools that can be used in this 

interpretive framework, and we consolidate studies that apply these tools. We also detail 

the strengths and weaknesses of these methods and the contexts in which they are 

suitable for use. 

According to the classification of Vilone & Longo (2020) on the output format, 

visual explanation is probably the most natural way to communicate and is a very 

attractive way to explain. Visual explanation can also be used to illustrate the internal 

functions of a model through graphical tools. For example, heatmaps can be used to 

highlight specific areas of an image or specific words of text by using different colors, 

which mainly affect the reasoning process of the model. For humans, another intuitive 

form of interpretation is textual interpretation, i.e., natural language statements that can 

be expressed in writing or orally. Therefore, we divide the final presentation into 

graphical and textual interpretations. The following is a list of visualization techniques 

applied in different situations. Basic bar charts, pie charts can be used to present raw 

data, including discounted data with time series.  
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Table 3-3 Visualization of framework 
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(van Wijk et al, 1999)  ● ● ●           

(Robertson et al., 2008)       ●   ●     

(Borkin et al., 2013)  ● ●    ●   ●     

(Yur & Vasil, 2013) ●  ● ● ●     ●     

(Pandey et al., 2014) ●         ●    ● 

(Allen, 2018) ● ● ●           ● 

(Xia et al., 2020) ●             ● 

H
ow

 

(Yagoda & Gillan, 2012)             ● ● 

(Desai et al., 2013)             ● ● 

(Kim et al., 2019) ● ●            ● 

(Zhang et al., 2020)             ● ● 

(Yang et al., 2020)         ●    ● ● 

W
hy

 

(Ribeiro et al., 2016)         ●  ● ● ●  

(Lundberg & Lee, 2017)      ● ● ● ● ● ● ●   

(Bach et al., 2015)       ●     ●   

(Samek et al., 2017)       ●  ●   ●   

(J. Wang et al., 2018)       ●  ● ● ●    

(Alber et al., 2019)       ●  ●      

 

Graphical interpretation  

Histogram & Bar Chart (Pizer et al., 1987). The histogram mainly presents the results 

of data distribution, while the bar graph presents the size of each data group. The 

horizontal variables of the histogram are "numerical continuous variables", and the bar 

chart is "class-based discrete variables". As for the "spacing" of group distances, the 

histogram groups are connected together and there is no spacing between them; the bar 

chart has spaced between groups.  
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• Advantages: Can be used at any time. 

• Disadvantages: easy to lose information. 

Pie chart. A pie chart is a circular statistical chart divided into several sectors, used to 

describe the relative relationship between volume, frequency, or percentage. 

• Advantages: The pie chart can effectively display the information. Especially 

when you want to show the proportion of a large sector in the whole, rather than 

compare, this method is very effective. When the proportion of the pie chart 

reaches 25% or 50% of the parent body, the display purpose can be well achieved. 

• Disadvantages: It is difficult to compare different sector sizes in a pie chart, or to 

compare data between different pie charts. 

Tree Map (Bruls et al., 2000). This method can be applied to large amounts of data to 

represent the data layers of each hierarchical structure in an iterative manner. 

• Advantage: Since this method is based on shape and volume estimates calculated 

from one or more data factors, it is easy to meet a large number of data presentation 

standards. 

• Disadvantage: Every time the data changes, the image needs to be redrawn 

according to the structure. 

Circle packing (Collins & Stephenson, 2003). This method is a variant of Treemaps that 

uses torus.  

• Advantage: By using classic Treemaps, it is possible to place and perceive more 

objects. 

• Disadvantage: Same as tree map, every time the data changes, the image needs to 

be redrawn according to the structure. 

Sunburst (Cawthon & Moere, 2007). The sunburst chart can express the level and 

attribution relationship of the data on the basis of the pie chart showing the proportion 

relationship, and can clearly express the data with the parent-child hierarchical structure 
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type. 

• Advantages: It has the advantages of a pie chart, and it can clearly show the 

relationship between data levels. 

• Disadvantages: Not suitable for data display with too many data classifications, 

no negative values, and no zero values. 

Tornadoes Plot (Molnar, 2019). To present localized explanations, vertical bar graphs 

of tornadoes can be used for attribution lists (Ribeiro et al., 2016). A tornado diagram 

is a popular tool for describing the sensitivity of the result to changes in the selected 

variable. It shows the effect on the output of changing each input variable once and 

leaving all other input variables at their initial values.  

• Advantages: The tornado graph graphically shows the correlation between the 

changes in the model input and the distribution of the results. 

• Disadvantages: Overemphasized the extreme value of the change of sensitive 

elements, but may ignore the difference in the possibility of various extreme values. 

Saliency Map (Itti et al., 1998). A data visualization technology that displays the 

absolute amount of a phenomenon in the form of color in a two-dimensional space. The 

change of color may be through hue or intensity, to provide readers with obvious visual 

cues. 

• Advantage: Image prominence is an important visual feature of the image, which 

can reflect the importance of the human eye to each area of the image. 

• Disadvantage: susceptible to interference by noise. 

Waterfall Plot (Gillespie, 2012). A waterfall chart is a three-dimensional graph in which 

several curves of data, usually spectrums, are displayed simultaneously. 

• Advantage: This kind of chart uses the combination of absolute value and relative 

value, and is suitable for expressing the quantitative relationship between several 

specific values. 
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• Disadvantage: Since the vertical graph in the waterfall chart represents a single 

feature along the horizontal line, the waterfall chart is suitable for the presentation 

of fewer features.  

Scatter (Touchette et al., 1985). The scatter diagram is used to analyze the relationship 

between a pair of parameters, and the paired data is plotted on the X-Y diagram to find 

the relationship between the two. 

• Advantages: Intuitively reflect the data concentration situation, and assist in the 

fitting of discrete data linear regression and other curve predictive fits. 

• Disadvantages: less applicable scenarios. 

Partial Dependence (Friedman & Meulman, 2003). Partial dependence diagrams were 

proposed by Friedman (2001) to understand the relationship between a feature in the 

model and the mean of the predicted target y, assuming that each feature is independent 

and presented in a visualized manner. Partial dependence diagrams have been used to 

visualize the variation of feature attribution across feature values (Krause et al., 2016). 

The interpretation of images and graphics can use technologies such as saliency 

heatmaps or pixel analysis. These visualization technologies support comparative 

interpretation and counterfactual reasoning by comparing different attributes or 

understanding the relationship between factors. 

• Advantage: Partial dependence diagrams are easy to generate computationally and 

intuitive to understand. 

• Disadvantage: It can only present at most two features in relation to y at the same 

time, and more than three dimensions cannot be presented by current techniques. 

It also has a strong assumption of feature independence, which can lead to bias in 

the estimation process if there is correlation between features. 
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Textual interpretation 

Text Plot. The text plot is a combination of text and heatmap. Passing a single instance 

to the text map get the importance of each tag overlaid on the original text 

corresponding to the tag (Lundberg & Lee, 2017). In the context of SHAP, in the context 

of sentiment analysis models, red corresponds to more positive comments, and blue 

corresponds to more negative comments. The importance values returned for the text 

model are usually hierarchical and follow the structure of the text. Non-linear 

interactions between marker groups are usually saved and can be used in the drawing 

process. 

• Advantage: Use Heatmap feature to render on text, easy to understand. 

• Disadvantage: An area of input text needs to be segmented by a good interpreter, 

otherwise the text map is regarded as a unit. 

Confidence. According to Zhang et al., (Zhang et al., 2020) research results, showing 

confidence scores improves trust calibration and increases people's willingness to rely 

on AI predictions in high confidence situations. 

• Advantage: The confidence level and accuracy of the model can effectively 

enhance the trust of users. 

• Disadvantage: Under the explanation that only provides the confidence level, the 

user is not aware that it may cause the user to over-trust 

Text Description. Giving user feedback through text narration can enhance the user’s 

trust in the machine and provide a reference basis for the user’s judgment when the 

machine may have errors (Desai et al., 2013). 

• Advantage: Textual interpretation is an intuitive form of interpretation, which can 

be expressed in written or verbal natural language. 

• Disadvantage: Compared with other interpretability methods, text interpretation is 

less used. Structured plain text explanations may not be effective in enhancing 
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user confidence. 

3-3 Framework Evaluation 

To verify the feasibility and effectiveness of this explanatory framework, a case 

study of an airline company that applying machine learning to predict baggage weight 

would be used in this research. The case study would apply the explanatory framework 

to provide business intelligence-based explanations to end-users. Finally, we conducted 

a between-subject experiment to verify the effectiveness of the framework and whether 

user trust is enhanced by the explanation. The next two chapters introduce the case 

study and the experimental design respectively. 
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Chapter 4 Case Study 

4-1 Business Question 

Aircraft fuel consumption is an important issue in airline operations planning and 

analysis, according to the National Airspace System (NAS) (Wong et al., 2009). 

Although recent fuel prices represent only a small portion of aircraft operating costs 

(approximately 16-22%), they are still a significant expense for airlines and general 

aviation operators (Trani et al., 2004). The weight of cargo and baggage is one of the 

most important factors affecting fuel (Hong & Zhang, 2010), and the inability to 

effectively predict the weight of passengers' checked baggage in advance can lead to 

aircraft carrying excess fuel for this purpose. The current airline solution to this problem 

is to use historical data to obtain an average of checked baggage weights for the route 

to estimate the fuel for that flight.  

The flight control department prepares the flight plan according to the flight 

regulations, company policies, flight routes, weather conditions, destinations, standby 

stations, and the minimum amount of fuel required for the flight, etc. The weight of 

passengers, cargo, and passenger baggage are considered in Figure 4-2. Checked 

baggage is calculated based on one 20kg baggage per person, multiplied by the number 

of passengers booked on that flight. The weight of the passenger's checked baggage is 

added to the number and weight of the required luggage containers. The weight of the 

cargo is provided by the cargo handling unit at the airport. 

Based on this premise, this case tries to develop a suitable method for estimating 

passengers' checked baggage using an artificial neural network approach to improve 

the accuracy of business units in fuel calculation. 
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Figure 4-1 Flight weight composition 

4-2 Related Work 

This chapter examines past research on calculating or measuring the relationship 

between fuel and transportation in the transportation field and further examines the 

calculation of transportation fuel control in the aviation field. 

The problem of using operational data for statistical modeling of the cyber-

physical system was addressed in a case study of an aircraft engine in Gaussian et al 

(2017).  The data from flight data records are used to model the fuel flow rate. This 

study provides a fundamental understanding of aircraft fuel control and suggests 

different variables that affect fuel control. 

We also make reference to artificial neural network research in transportation 

management and fuel consumption. For example, a representative neural network 

model to aid fuel consumption was developed using data given in an aircraft 

performance manual (Trani et al., 2004). Using Data Envelopment Analysis (DEA) to 

investigate whether the high level of cargo operations of the world's major airlines 

would improve the operational efficiency of mixed passenger/cargo airlines (Hong & 

Zhang, 2010). Application of Machine Learning for Fuel Consumption Modelling of 
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Trucks by collecting various truck and road characteristics (Perrotta et al., 2017). This 

type of research helps us to understand the relevant features needed to model the fuel 

consumption prediction in flight. 

 

4-3 Dataset 

This case adopts the flight data set from an Asian airline company. There are four 

data resources, flight info with 6615 instances and 8 features (flight number, season, 

period, week, origin, destination, aircraft type, number of passengers per cabin); 

passenger flight details with 1,251,241 instances and 15 features (Nationality, ticket 

type, age, zodiac sign, employee, gender, travel area code, sector number, group travel, 

class of flight, seat type, transfer, membership, boarding); baggage details with 

1,057,197 instances and 4 features (Number of bags, weight, weight unit, weight limit); 

travel area with 1,412,877 instances and 4 features (Travel area serial number, travel 

subarea serial number, travel departure area, travel arrival area). 

 

4-4 Data Preprocessing 

Feature Selection 

The selection of the columns for flights can result in too few flights in some 

categories if there are too many variables in the relevant categories. After considering 

the number of data, we chose to include seasons and flights (different departure points 

are recorded as different flights) in the model. According to Rose et al. (2012) analyzed 

the effect of gender, age and class of passengers on airline selection. Therefore, for the 

passenger-related fields, we chose to differentiate by gender, age, and class of travel 

into male adult, female adult, male child, female child, and infant. 

The data we used in this case consists of takeoff and landing locations, seasons, 

aircraft type (wide-body or narrow-body), passenger age and passenger gender. We 
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have 6615 instance and selected 10 features for the training. In this study, the season, 

the aircraft type, male adult, female adult, male children, female children, infants, Cabin, 

departure, arrival are the characteristics of training data which are more associated with 

checked baggage weight (Jiang & Zheng, 2020; Nicolae et al., 2017). 

To avoid excessive cross joins of data tables to produce dimensionally large and 

sparse data sets. In this case study, the focus of the problem is on the total baggage 

weight of each "flight", so our final merged dataset focuses on the flight and records 

not only the basic information of the flight but also the composition of the passengers 

and the class and age of the passengers. We merge passenger flight detail with baggage 

detail by passenger_ID, and identify travel area information from travel area, and 

finally merge the data table with flight information by flight_ID. The information of 

individual flights and the composition of passengers, as well as the total weight of 

baggage for each flight were sorted out. 

 

 

Figure 4-2 Data consolidation 

 

Normalization 

Normalization is the scaling of data into a small, specific range. It is often used in 

certain comparisons and evaluations of metrics to remove the unit constraints of the 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i Univ

ers
i t

y

DOI:10.6814/NCCU202101328

 

 37 

data and convert them into pure values with no scale, so that metrics of different units 

or magnitudes can be compared and weighted. In this dataset, the normalization speeds 

up the gradient descent to find the optimal solution and improves the convergence speed 

of the model. The data is processed by min max normalization, which scales the data 

to the [0,1] interval, and the MinMaxScaler suite of scikit-learn is used. Finally, we cut 

the selected data into 5,292 training data (80% training data) and 1,323 test data (20% 

test data) by using train_test_split in scikit learn. 

 

4-5 Model Selection and Training 

In this section, we introduce the machine learning methods we use. We choose to 

use decision trees and regression trees because they can predict numerical data. We also 

use neural networks as one of the prediction models, and we find the best and most 

suitable model for this case among the three methods. 

Random Forest. The basic principle of Random Forest is to combine multiple CART 

trees, which are decision trees using the GINI algorithm, with randomly assigned 

training data to significantly improve the final computation. The use of random forests 

is mainly to deal with classification and regression problems and to improve the 

accuracy without increasing the computational power. Advantages include handling 

missing values and filling them, maintaining high accuracy even with large amounts of 

missing data, efficiently handling small amounts of data, being useful for data mining, 

detecting outliers, and data visualization. The drawback is that it is overfitting in some 

classification and regression problems with large noise. In short, Random Forest can be 

considered as an extension of Decision Tree. 

XGBoost. XGBoost is a gradient boosting decision tree that can be used for 

classification and regression problems. Gradient boosting corrects the residuals of all 

previous weak learners by adding new weak learners, and finally adding multiple 
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learners together for the final prediction. The performance is more accurate than single 

machine. It is called gradient due to the fact that gradient descent algorithm is used to 

minimize the loss while adding new models. 

Neural Network. Artificial Neural Network, in the field of machine learning and 

cognitive science, is a mathematical or computational model that mimics the structure 

and function of biological neural networks and is used to estimate or approximate 

functions. A neural network is a large number of artificial neurons linked together to 

perform computations. 

Then, we choose Root-Mean-Square Error (RMSE) as the criterion for evaluating 

the model, which is the square root of the ratio of the square of the deviation of the 

observed value from the true value to the number of observations. RMSE is very 

sensitive to very large or very small errors in a set of measurements. We also use R 

square as an index to evaluate the accuracy. R square is metric that tells us the 

proportion of the variance in the response variable of a regression model that can be 

explained by the predictor variables. Therefore, RMSE and R square can reflect the 

precision of the measurement very well. 

 

Table 4-1 Model RMSE and R square 

 MAE RMSE R Square 

Random Forest .035 .05126 .915 

XGBoost .034 .04761 .929 

Neural Network .0599 .0599 .816 

 

4-6 Explanation Framework Implementation 

Based on the previous framework design, we develop explainable business-

supported visualization systems to enhance end-user trust in machine learning. We aim 
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to explore how real users interact with explanations generated by models built on real 

datasets to understand any subtle differences in AI decisions. We use airline datasets to 

train multi-labeled gradient boosted trees (XGBoost). The explanation framework 

proposed in this study is used for explanation. We use advanced XAI tools, and the 

following introduce the different stages of machine learning for interpretation. 

 

 

Figure 4-3 The relationship between "data processing and prediction" and the explanatory 

framework. 

 

What. The input and output data are explained. First, in the input, we present the size, 

type, and dimension of the training data, and present them as pie charts, numbers, and 

text. A total of 6615 entities of numerical type and classification are used in this dataset. 

In addition to the data appearance, we also provide explanations for the selection of 

features. We present the correlation of features by correlation graph in Figure 4-4 to 

demonstrate the relevance of the selected elements to the prediction results. Then, in 

the interpretation of the output results, because of the uncertainty of commercial 

numerical data, we present them in the form of ranges. 

How. According to the proposed framework, the interpretation of the full domain 

informs the adjustment of the parameters of the user model. In this case, the passenger-

related fields are highly correlated with each other, but the explanatory power is slightly 

different. Therefore, we use Principal Component Analysis (PCA) to linearly combine 

the passenger-related variables to achieve dimensionality reduction, and implement 
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SciKit Learn, a powerful Python library containing many classical machine learning 

algorithms and datasets. This stage also provides the model performance scores, in this 

case the predicted result s are numerical data (luggage weight), so we use RMSE and 

MSE to determine the numerical scores produced. Finally, our RMSE in random forest 

is 0.052 with an accuracy of 91.5%, in XGBoost RMSE is 0.051 with an accuracy of 

91.7%, and in neural network MAE comes to 0.096 which is much higher than 

XGBoost and random forest. 

 

 

Figure 4-4 Correlation of selected feature. SHAP summary plot of a 23 feature XGBoost 

prediction model on baggage weight prediction. 

 

Why. At this stage, we use the state-of-the-art XAI explanatory tool SHAP for localized 

interpretation based on the interpretation framework and comparison table proposed in 

Chapter 3. SHAP has a solid theoretical foundation in game theory to come up with an 

explanation. It introduces a way to connect LIME and Shapley values so that we can 

have a good Kernel Explainer method to explain any model (Lundberg & Lee, 2017). 

We choose SHAP because it can be interpreted at the individual level and can also 

aggregate results to obtain local and global interpretations. Although LIME has the 

same post hoc interpretation feature, LIME generates interpretation based on 
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perturbation samples and does not have a native tree structure interpretation method. In 

this case we use a tree model for prediction with mainly numerical data, and SHAP has 

a fast implementation of a tree-based model called Tree Explainer. Fast computation 

helps SHAP become popular and well used (Lundberg & Lee, 2017). This property is 

compatible with the model we use (XGBoost) and is one of the main reasons why we 

chose this explanatory algorithm. The tornado plot in Figure 4-4 is used for visual 

presentation, providing end-users with an understanding of which characteristics are 

affected by the prediction results. In this case, our model not only considers flight 

origins as an important influence but also considers adult female passengers in the 

premium economy as an important influence. We combine the interpretation results of 

SHAP with text narratives to deliver more easy-to-understand information to users. 

This type of information is revealed to help business units add empirical judgment to 

their baggage weight calculations, effectively increasing their confidence in the 

prediction results. 
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Chapter 5 Experiment 

A between-subject experiment was conducted to verify that this explanatory 

framework is effective in enhancing users' trust in machine learning. The experiment 

was designed to simulate a business unit decision process in the business case. 

 

5-1 Task and material 

We design a baggage forecasting task based on a simulated airline business 

requirement scenario, where participants are asked to determine the accuracy of 

different forecasting methods based on some flight statistics and passenger data. The 

data used for this task is the aforementioned dataset, which contains 6615 entities, each 

described by 23 attributes. The total weight of checked baggage for these flights has 

been recorded as a whole value that are used to evaluate the basis of the participants' 

acceptance of the prediction. We intend to create a setup that is close to a real-world 

AI-assisted decision-making scenario. First of all, we provide the original calculation 

method of the airline as a reference basis. According to the original airline workflow, 

the calculation is (number of boarding passengers * average weight of checked baggage 

over the past passengers). The interface presents the raw data including the number of 

passengers on the flight, and flight information such as route, season, and aircraft type 

in Figure 5-1. The calculation results are also presented on the right side of the screen. 

 

Machine Learning Model 

We use 23 attributes as training features and as prediction features displayed to the 

participating profiles in the experiment. The model room is randomly assigned for 

training based on 80% of the original data set, and the remaining 20% of the test data 

is used for prediction in the experiment. The interface presents the prediction result 

values and basic information in Figure 5-1. 
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Machine Learning with XAI Framework 

We take the prediction results of the previous stage of machine learning 

predictions and add an explanatory framework in Figure 5-1. We present the 

information of different stages of machine learning to the end-user. The "What" stage 

presents the basic information, the data input, the selected features, and the data 

association. The "How" stage includes the accuracy of the prediction. Finally, in the 

"Why" stage, we present the contribution of each feature to the results through SHAP 

Value, and describe in words which factors mainly affect the prediction results. 

 

 

  

Figure 5-1 On the upper left, the traditional calculation method and presentation. Bottom left, 

machine learning prediction and presentation. On the right, machine learning prediction combined with 

explanatory framework. 

  

We conduct a between-subject experiment. This experiment aims to evaluate the 

effectiveness of the explanation framework through two tests: "ML prediction" and 
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"ML prediction with explanation framework". 

First, the experiment evaluates the increase of users' trust in the output of the system 

through numerical comparison. After seeing the predictions and explanations of the 

model, the experiment allows participants to manually enter numbers so that users can 

make more intuitive judgments, and record this value as a reference indicator of 

whether the user's conversion rate has increased. Participants first be informed of the 

results of the airline's traditional calculation methods and then are asked to give a fixed 

value. Next, the user refers to the explanation provided by the different conditions and 

give a value of his own decision. Each participant completed the prediction of 3 cases. 

After the experiment is completed, we ask users to do a trust evaluation question, collect 

whether the trust has been improved, and compare the contribution of different elements 

in the interpretation framework to the trust improvement trial user (Madsen & Gregor, 

2000). 

 

5-2 Participant and experiment procedure 

To assess the impact of the explanatory framework on human trust, we conducted 

experiments and trust surveys to deepen our understanding of the research questions. 

For this study, 524 participants were recruited on Amazon Mechanical Turk to conduct 

a quantitative study. In selecting participants, we restricted participants to those from 

English-speaking countries such as the United States, United Kingdom, Canada, India, 

and Australia, etc. This is to ensure that our results are conducted in an English-

speaking behavioral model. We also limit participants to those who have completed a 

certain number of HITs (Completed more than 10 hits and have not been rejected) in 

Mturk and have a "Master qualification" (Average approve rate > 90%) status to 

participate in our prediction tasks. The experiment continues to collect responses for 

one week. And our questionnaire was conducted using SurveyCake and deployed to 
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Mturk. On the Mturk page, we designed a link to our questionnaire and briefly 

explained the questionnaire case. The link was set as a fair random condition, and 

participants were assigned to one of the two conditions unknowingly. 

All participants conducted the experiment independently. Each participant 

received a flat payment of $0.10. The experiment was approved by specific questions 

and the correct completion code. 

 

The overview of our proposed experimental process: 

Step 1: Participant recruitment. We recruited 524 participants in Amazon Mechanical 

Turk. We removed technical questions or responses with short response times (response 

time < 120 seconds). We also designed a manipulation check question in the survey 

where we asked participants to answer the total number of passengers on the flight that 

could be found directly on the page, and eventually 13% of the results were removed 

from the record. All analysis were conducted on the remaining 453 participants. 

Participants were randomly assigned to examine either a model that explains the 

predictions through the XAI framework or a model that explains the predictions in 

general. All participants saw the same set of flights (i.e., the same eigenvalues). The 

models were constrained to make the same predictions for these flight baggage weights, 

so that participants saw the same model predictions regardless of the experimental 

condition to which they were assigned. In addition, the accuracy of the models is almost 

identical. Thus, the variation between experimental conditions is simply a difference in 

interpretation. This is a key feature of our experimental design that allows us to run 

tightly controlled experiments. 

 

Step 2: Preliminary survey. In this stage, our survey collected personal information of 

users, including age, gender, education level, and understanding of machine learning. 
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Step 3: Experiment. First, the participants were shown a detailed description, including 

the corresponding plain English description under the condition of a clear model. We 

provide basic judgment, such as the weight of the baggage may be affected by season, 

passenger gender, etc. And a linear calculation method has been provided to construct 

a basic knowledge of airline baggage calculation for the test subjects. Participants were 

asked to predict the baggage weight of the flights predicted by the model and were 

asked how confident they were in the prediction. The confidence score was assessed on 

a 7-point scale. Next, the model predicted weight of the baggage of the flight is 

displayed, and the participants determine the final baggage weight after seeing the 

model prediction. At the end of the test, users were asked to fill in their confidence in 

the model's predictions and their confidence in their own correct predictions. 

Confidence scores were also assessed on a seven-point scale. In order to ensure that 

participants understand these instructions, each participant conduct a training case 

before conducting the experiment, followed by three test cases at the end of the training. 

• User training. Since the participants may not be familiar with this task, we 

introduce the case scenario to the participants and allow them to make decisions 

from the perspective of an aviation practitioner in Figure 5-2. After explaining the 

usage scenario, the user was asked to perform a test case to ensure that the user 

was able to perform the experiment correctly. At the end of the training phase, the 

actual weight of the flight is displayed. 

• Testing. After completing the training, participants were asked to complete three 

weight prediction cases. In the testing phase, participants were presented with new 

flight information. All participants saw the same set of flight information, as 

random selection may generate additional noise and reduce the efficacy of the 

experiment, making it more difficult to detect differences between experimental 

conditions. 
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A B 

 C 

Figure 5-2 Experimental training description. 

Step 4: Posttest. Following the experiment, users were presented with a survey of five 

5-point Likert scale questions that they could choose to complete in Figure 5-3 Given 

previous evidence that AI explanations affect understanding and trust, these questions 

assessed the key dimensions of trust that are widely used in trust issues with respect to 

system understanding, the capability to assess the system, whether there is faith in the 
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system, reliability ,and the benevolence of the system. 

 

 

Figure 5-3 A 5-points Likert scale questions after experiment 

 

5-3 Measurement 

This study focuses on the XAI framework designed for end-users to enhance their 

trust in the machine learning results. To evaluate the effectiveness of the interpretive 

framework and to answer our research questions, we conducted a business case of 

airlines calculating baggage weight. Then we apply the explanatory framework from 

Chapter 3. We measured the participants' predicted weight values and analyzed the 

users' confidence in the explanatory framework. We considered this element because 

confidence and trust are important factors for users to accept and use the process output  

(Pieters, 2011).  Finally, the validity of the framework is evaluated by means of a 

questionnaire. 

Totally, we collected the deviations of participants' predictions from the model and 

asked the participants their confidence in the prediction results after each prediction. 

Then, we conducted a 5-point Likert scale based on the human-computer trust 

calculation proposed by Madsen & Gregor (Madsen & Gregor, 2000). Participants were 

asked to rate the understanding, confidence, reliability, strength of the model, and 
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benevolence of the model in Figure 5-3.  

Understandability means that a human supervisor or observer can form a mental 

model and predict the future behavior of the system. 

Capability of the system means that the system is considered to be able to perform the 

task accurately and correctly based on the input information. 

Reliability of the system, in the usual sense of repetitive, consistent functionality. 

Faith means that the user has confidence in the future capabilities of the system, even 

when it has not been tried. 

Benevolent means that the emergence of machines is just to do their own work, help 

humans, and be able to provide services that are approachable. 
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Chapter 6 Experiment Result 

An experiment of between subject analysis was conducted to test the hypotheses. 

We conducted a between-subject of two conditions. In total, 453 participants were 

conducted in our experiment of which 279 were male (61%), 71 were younger than 25 

years old, 213 were between 26 and 35 years old, and 167 were older than 36 years old. 

There are 386 people who have a basic understanding of machine learning. 

 

Table 6-1 Demographic characteristics of participant 

Category Number of respondents (%) 

Gender    

 
Male 279 61.8 

Female 172 37.9 

Refuse to answer 2 0.4 

Age    

 

Less than 20 3 0.6 

21-25 68 15.0 

26-30 107 23.6 

31-35 106 23.3 

36-40 53 11.6 

41-50 71 15.6 

More than 50 43 9.4 

Education Level    

 
High School 44 9.7 

Undergraduate 106 23.1 

Graduate 303 66.8 

ML Level    

 
Commonly 66 14.6 

Familiarly 136 30 

Masterly 250 55.3 

Country    

 

India 202 44.5 

United States 168 37 

Canada 22 4.8 

Other 61 13.4 
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Our proposed explanatory framework can be verified by analyzing this online 

questionnaire experiment. We also wanted to know the participants' understanding of 

this visualization framework, so we included open answers at the end of the 

questionnaire to collect participants' opinions and different views on this framework. 

After conducting the experiment, we compared the behavior of the participants under 

different conditions. The experiment is divided into basic model and XAI architecture 

model. To measure the participants' trust and confidence in the explanatory framework, 

we analyze it in three main sections. First, in deviation, we analyze the participants' 

weight prediction for each case. Then, we analyze the confidence scores of users in the 

model and the differences in confidence scores. Finally, we analyze the post-test of the 

experiment. We found significant differences in the responses of participants under 

different conditions. Our findings are as follows: 

Deviation. 

We define each participant's prediction bias as |w - wm|, which is the deviation of 

the participant's prediction of the final outcome after receiving the explanation, i.e., the 

absolute difference between the participant's predicted weight w and the number wm 

given by the model. Such a difference value can be used to assess whether users are 

more willing to accept the predictions given by the model according to Poursabzi-

Sangdeh et al. (Poursabzi-Sangdeh et al., 2021) research. To calculate the predicted 

weight difference, we used independent sample T-test for analysis. Figure 6-1 shows 

the final predicted weight w made by the participants of different conditions in the three 

cases, after seeing the predictions given by the model. Although participants that saw 

the XAI interpretation gave closer values, we did not find significant differences 

between predictions from the participants in the traditional condition and those in the 

detailed XAI mode condition (μbasic = 502.64 vs. μxai = 418.97, p = 0.075). The result 

may indicate that the subjects preferred to fill in the final predicted weight given by the 
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model in both explanatory frameworks. 

 

 

 

 
Figure 6-1 Density map of participants' prediction of weight in three cases. 

 

Table 6-2 chi-square tests of deviation in each case. 

Case Conditions Not Follow Follow P 

Case1 Basic 115 96 .051 

XAI 108 133 

Case2 Basic 103 108 .397 

XAI 108 133 

Case3 Basic 97 114 .221 

XAI 125 116 

 

To measure whether users follow the predicted values given by the model, we refer 

to the study by Zhang to determine whether users follow the predicted values of the 
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model in a categorical way (Zhang et al., 2020). We took the median weight response 

value of each case as an indicator of user acceptance and conducted chi-square tests. 

(Manikandan, 2011). The results show in Table 6-2 that there is no significant difference 

in the users' opinion on whether to follow the model results under different explanatory 

models. 

 

Prediction Confidence 

After the participants saw the model results and explanations, we collected the 

participants to understand their confidence in the correctness of each prediction. The 

data analysis was performed using generalized estimating equations (GEE) supported 

by SPSS software. GEE can appropriately specify repeated measures for multiple types 

of information, allowing us to define distributions and link functions to linearly model 

different types of outcome variables. 

To calculate the association of participants' confidence in the model under 

different explanatory frameworks, the participants' degree of machine learning may 

affect their confidence in the explanatory framework, so we also considered the 

participants' machine learning knowledge. In this calculation, the dependent variable is 

the participant's confidence score in the explanatory framework, within-subject is the 

classification by case, and the framework and the ML degree of the participant are the 

factors. 

 

Table 6-3 GEE model effect 

Source Wald Chi-Square df p 

Framework 19.850 1 <.001 

ML Level 87.874 2 <.001 

Framework * ML Level 2.862 2 .239 
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Table 6-4 Estimated Marginal Means of Frameworks 

Framework Mean Std. 

Basic 4.53 .068 

XAI 4.91 .055 

 

Table 6-5 GEE parameter estimates 

Parameter Wald Chi-Square Std Exp(B) p 

Basic 4.613 .0933 .808 .032 

XAI - - 1 - 

ML Level 1 (Commonly) 19.482 .1424 .533 <.001 

ML Level 2 (Familiarly) 27.118 .1055 .577 <.001 

ML Level 3 (Masterly) - - 1 - 

 

The result shows in Table 6-3. The model exists significant effects on both 

framework and machine learning level factor (p < .001). There was no significant 

difference in the interaction between the two factors (p = .239). Table 6-4 showed 

estimated marginal means of two explanation framework. The results show that XAI 

framework has a significantly higher confidence score compared to basic framework (p 

< .001). We conducted a within-subject experiment to investigate whether different 

machine learning levels of participants and explanation frameworks would affect users 

to evaluate confidence. We found differences in the explanatory framework and in the 

machine learning level of participants. Table 6-5 shows the parameter estimates for the 

two factors. Participants assigned to Basic had a 19.2 percentage point lower confidence 

score compared to those assigned to XAI. In terms of participant machine learning level, 

ML level 3 participants generally had higher confidence in the model than level 1 and 

level 2 participants. This result shows that not only the explanatory framework of the 

model has an impact on participants' confidence, but also the participants' own level of 

machine learning affects whether they have confidence in the model. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i Univ

ers
i t

y

DOI:10.6814/NCCU202101328

 

 55 

 

Confident Deviation.  

We used the change of confidence scores in each case to calculate the increase or 

decrease in user confidence. The first confidence score measures the confidence that 

the participant got the answer right before seeing the model prediction, and the second 

confidence score is the confidence that a participant gave the correct answer after seeing 

the model prediction. In order to confirm the change in user confidence scores, we 

performed a paired sample T-test for each of the two conditions. The paired-sample t-

test was used to compare the mean difference between the two "dependent samples". 

The results show that in Table 6-6, participants assigned to the XAI interpretation 

showed a significant increase in confidence scores, while participants assigned to the 

Basic interpretation showed a significant decrease in confidence in the correctness of 

the results. 

 

Table 6-6 Confident deviation. 

Conditions Pair Mean N Std. Deviation 

Basic 

Confident (C) 4.95 633 1.461 

Confident After (CA) 5.73 633 1.484 

CA-C -.216 Significant at p < .001 

XAI 

Confident (C) 4.95 723 1.275 

Confident After (CA) 5.16 723 1.407 

CA-C .203 Significant at p < .001 

 

Table 6-7 Estimated Marginal Means of two framework. 

Framework Mean Std. Error P 

Basic -.193 .060 < .001 

XAI .194 .063 < .001 
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Then, we evaluated the difference in confidence scores between groups by two-

way analysis of variance (ANOVA). ANOVA is used for analysis of variance with only 

one independent variable, and to compare whether there is a significant difference 

between groups. The results show that in Table 6-7, there is a significant difference 

between the two groups, with an increase in confidence in the XAI framework (p < .001) 

and a decrease in confidence in the Basic explanation (p < .001). Figure 6-2 shows that 

ML level 3 has the largest and most extreme change in participant confidence scores, 

but in fact, there is no significant difference in the interaction between the explanation 

framework and participant ML level (p = .629), as shown in Table 6-8. Additional 

findings in Table 6-9 we found that ML level 3 participants differed significantly from 

ML level 2 participants under the XAI explanation (Mean Difference = .243, p=.035). 

Table 6-10 presents the differences between participants with different levels of 

machine learning in the two conditions, and the results show that there are significant 

differences between ML level 3 participants in the two conditions. 

 

 
Figure 6-2 Estimated Marginal Means of Confident Deviation. 
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Table 6-8 Estimated Marginal Means of framework and ML level interaction. 

Framework ML Level Mean Std. 

Basic 1 -.140 .130 

 2 -.159 .101 

 3 -.279 .076 

XAI 1 .202 .151 

 2 .068 .094 

 3 .312 .068 

 

Table 6-9 Pairwise Comparisons of Confident Deviation by framework 

Framework ML Level(I) ML Level(J) Mean Difference(I-J) P 

Basic 3 1 -.138 .35 

  2 -.120 .34 

XAI 3 1 .110 .51 

  2 .243* .035 

 

Table 6-10 Pairwise Comparisons of Confident Deviation by Machine learning level 

ML Level Framework(I) Framework(J) Mean Difference(I-J) P 

1 XAI Basic .343 .086 

2 XAI Basic .227 .099 

3 XAI Basic .597* >.001 

 

Time. Time can be used as an indicator of how much time users spend on the 

explanation page to process messages and complete tasks. We collect the time 

participants spend on the entire questionnaire task. Compared to the basic condition, 

users who were given the XAI framework explanation spent more time. After running 

the significance test in Table 6-11, the results show that the XAI explanation makes 

users spend more time viewing the content on the page (μbasic=825.20 sec. vs. 

μxai=911.58 sec., p = .024). We also conducted a two-way ANOVA to assess whether 

there was a difference in the time spent on the test between participants of different ML 
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levels. The results showed that the ML level did not make a significant difference in the 

time difference (p = .481). 

 

Table 6-11 Statistical properties from two interpretation modes. 

 Basic XAI 

Average working time (sec.) 825.20 911.58* 

Std. Deviation 471.29 390.99 

Number of turkers 211 241 

*Significant at p < .05  

 

Table 6-12 Mann-Whitney U test of the post-test questionnaire 

 Conditions N Mean Rank Sum of Ranks 

Understand 
Basic 211 229.85 48498 

XAI 241 223.57 54880 

Capability* 
Basic 211 214.09 45174 

XAI 241 237.36 57204 

Reliability* 
Basic 211 214.18 45193 

XAI 241 237.28 57185 

Faith** 
Basic 211 203.88 43018.5 

XAI 241 246.30 59359.5 

Benevolent 
Basic 211 221.76 46791 

XAI 241 230.65 55587 

* Significant at p < .05, ** Significant at p < .001 

 

Posttest. After the experiment is over, users are asked to complete a 5-point Likert scale 

question survey. The distribution of groups in the posttest questionnaire of this study is 

unknown and may be non-constant. Therefore, we used the nonparametric statistics 

Mann-Whitney U test to conduct the analysis. The Mann-Whitney U test is used instead 

of the t-test to determine whether the means of the two independent normative 
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distributions are equal, and the U-test does not require the assumption of normative 

distribution and is suitable when the distribution of the clusters is unknown and not 

normative. In view of the previous evidence that AI interpretation affect understanding 

and trust, these questions assess the key dimensions of trust in Table 6-12. The results 

are shown as follow. 

• Understand. After seeing the model's prediction of weight, the participants of both 

explanatory methods considered that they could understand the operation of the 

system and that the system gave them sufficient explanation, and there was no 

significant difference in the two conditions (U=24719, p = .587). 

• Capability. In terms of system capability, if users see the explanation of the XAI 

architecture, they give a higher rating to the system capability (U=22808, p < .05). 

• Reliability. The reliability of the system is a repetitive and consistent function in 

the usual sense. Users who accept XAI interpretation under this questionnaire 

believe that the system provides more reliable services (U = 22827, p < .05). 

• Faith. Faith means that users have confidence in the future functions of the system, 

even if it has not been tried. In this test, participants who use XAI interpretation 

have a high level of confidence in the system (U = 20652.5, p < .001). 

• Benevolent. The benevolent machines were designed to do their job, to help people 

and to be approachable. In both cases, participants did not see a significant 

difference in the affinity of the system (U = 24425, p = .449). 

The results show that there is no significant difference between the two 

explanatory frameworks in terms of understanding and benevolent. In terms of 

system capability, reliability, and faith, the participants of XAI interpretation gave 

higher ratings and showed significant differences. 
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Chapter 7 Discussion 

The main objective of this study is to provide end-users of machine learning in the 

business domain with a systematic understanding of the results of AI and to increase 

their trust in it, thereby increasing the practical application of AI technology in the 

business domain. The results corresponding to the research questions are presented in 

order to achieve the research objectives. 

7-1 General Discussion 

 For research question 1, “Does the use of the XAI framework in the business field 

allow end-users to follow the predictions of machine learning results?”, previous 

studies have shown that case-specific confidence information can improve trust 

calibration in AI-assisted decision-making scenarios and allow users to accept the 

model's predictions (Zhang et al., 2020). To measure the conversion rate of users after 

seeing the model, we asked them to freely fill in the values they entered, unlike previous 

studies that used purely binary judgments, we asked users to fill in numbers. Some 

findings were obtained in our experimental results. Compared to the basic condition, 

users of the XAI framework did not change the final prediction significantly, although 

the weight of the final decision was more concentrated as can be seen in Figure 6-1. 

This result is consistent with the one presented by Poursabzi-Sangdeh et al. (Poursabzi-

Sangdeh et al., 2021). They conducted numerical predictions of housing prices and 

found no significant improvement in the extent to which participants followed the 

predictions of the clear model with fewer features compared to the predictions of the 

black box model with more features. Although there is a tendency for the XAI condition 

to be concentrated in the weight distribution graph, it is not significant in the statistical 

results. We speculate that the reason for this are as follows: the behavioral performance 

of the users basically uses the numbers calculated by the model, possibly because of 

the lack of prior knowledge and reference base. 
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Research question 2, “Does the application of XAI framework in the business field 

increase the confidence of users in adopting machine learning results?”, confidence is 

the self-assurance of the safety or security of the system without knowing the risks or 

considering alternatives. We considered this element because confidence and trust are 

important factors for users' willingness to accept and use the process output (Pieters, 

2011). We measured user confidence in two ways. First, we use a confidence score that 

asks users about the model. Second, we use the change in confidence score to measure 

whether users' confidence in the model increases or decreases. 

The results can prove that the participants in XAI explanatory framework have 

higher evaluation of the model and are more confident. In the results of confidence 

scores, we can see that user of the XAI framework generally have more confidence in 

the model. The XAI framework also shows a significant increase in confidence in the 

confidence change metric. An additional finding is that users with better knowledge of 

machine learning have significantly higher confidence deviation scores. These results 

are similar to the design recommendations made by Le Bras et al. (2018). In this paper 

on explaining models through Data driven, it is suggested that designers can present 

explanations through visualization because they find that explanations specific to the 

underlying data can increase participants' perception of the robustness of the process 

and understanding of the causes, as well as increase participants' competence and 

confidence in the process of model operation. As in our visualization approach 

proposed in the explanatory framework, we use not only graphics to convey 

information, but also text to explain each stage of the framework. 

In the participant section, although we provided end-user-based content, 

participants who were not in the relevant field (aviation knowledge) and were less 

familiar with machine learning took more time to understand the explanations. Their 

unfamiliarity with the explanations and related cases resulted in a lesser change in 
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confidence scores than the more advanced participants. This result is similar to 

Poursabzi-Sangdeh (Poursabzi-Sangdeh et al., 2021) and Zhang et al. (Zhang et al., 

2020) in those participant who are not experts in a particular domain may result in a 

smaller difference in their confidence scores. 

For research question 3, “Does the application of XAI framework in the business 

field increase end-users' trust in machine learning results?”, we conducted a posterior 

analysis on users' trust enhancement. We evaluated trust in five dimensions based on 

the human-computer interaction trust model proposed by Mayer et al. (1995). It was 

found that there was no significant difference in the understanding of the system 

between the users of the two explanations in the Understand category. This result can 

prove that the basic model, although it does not provide a complete explanation, still 

contains basic information about the type of input data, the composition of flights, the 

association graph between data, and the accuracy of the model. This information is 

useful in providing the user with a basic understanding of the model. The XAI 

framework provides more detailed information than the basic condition, with localized 

explanatory diagrams, textual descriptions of model training and feature selection. The 

participants were also able to understand the model operation, so there was no 

significant difference in the understanding. According to our open-ended question-and-

answer session at the end of the questionnaire, participant was asked to fill in how they 

assessed each metric in the trust score. Several basic condition participants reported 

that they understood what the system was doing and that users felt the system was not 

capable. The user responses were consistent with the statistical results of the post-test 

questionnaire. 

Among the three aspects of system capability, reliability, and confidence in the 

system, the participants assigned to the XAI interpretation gave significantly higher 

ratings to the system capability, reliability, and confidence compared to the Basic 
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condition. First, in the “what” section, our XAI framework integrates data integration 

based on business intelligence. Second, in the “how” section we described the system 

logic in words as well as the system performance, accuracy, etc. The participants' 

feedback indicated that this was a factor they trusted and considered the system 

powerful. Last but not least, in the “why” section we combine localized explanations 

with SHAP, presenting the most important factors in model training with tornado plot 

and weight lists, and then combine them with textual descriptions to provide 

explanations to users. 

Finally, there is no significant difference between the two conditions in the 

benevolent orientation. According to Cai et al. (Cai et al., 2019) the effect of the 

comparative explanation they used on the benevolence of the system was found. Users 

who saw the comparative explanation perceived the system to be more benevolent. 

Although the comparative explanation did not increase the perception of the system's 

capabilities, users may feel that the algorithm is at least making an effort. However, 

given the relatively small amount of effect, its practical significance may be limited. In 

this study, because the two explanations provided the same predicted results, for the 

participants the system provided explanations in different ways in the same situation 

without any significant difference. As a result, XAI users perceive the system to be 

more capable and reliable, and it provides XAI users with a higher level of confidence. 

Although the participants assigned to the XAI explanation had a high overall trust 

level, the participants assigned to the XAI model took longer time in the analysis of 

time. This may be due to the fact that we provide more information in the XAI 

explanation and the localized explanation of why may take time to understand for the 

end-user due to unfamiliarity. We designed textual explanations in the system to help 

users understand the information provided at each explanation stage. This is also 

consistent with our open-ended Q&A at the end, and user feedback to “The different 
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calculations provided by the system enhance confidence in the system, but are slightly 

more complicated.”. The XAI framework explanation provides more information, but 

also makes the system more complex and costly to learn. 

 

7-2 Limitation and Future Work 

One of limitation of our work is that our experiments focus on one type of 

stakeholder, using one type of model (XGBoost) in a specific domain (airline baggage 

weight calculation). Future extensions to other types of stakeholders, other types of 

models (e.g., rule based, deep neural networks), other tasks (e.g., classification), and 

other domains (e.g., medical diagnosis, credit risk assessment, judicial decisions, and 

bail) may lead to different results. 

Second, for the participants' understanding of the elements, although we made 

detailed explanations and test cases, and we also used operational checks to ensure that 

the users performed the experiments correctly. However, we could not be sure that users 

fully understood each element of the explanatory framework. This may lead to 

inaccurate judgments and poor results due to the participants' lack of understanding of 

the explanatory style or unfamiliarity with the cases. In future experiments, we can 

adjust the number of training sessions, measure the amount of time participants spend 

on the experiment under different conditions, or add an eye-tracking device to assess 

whether users are looking at specific areas and making questionnaires for different 

blocks or interviewing participants to collect their perceptions of the explanatory 

framework. Although we cannot currently assess users' understanding of individual 

elements, the overall explanatory framework has been shown in experiments to increase 

users' confidence in the model and trust in the system. This can bring real value to 

enterprises when they need to use machine learning models for prediction and 

classification. 
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Finally, our experiments were run without process measures as dependent variables, 

which limited our ability to reflect on the cognitive and meaning-making processes that 

might be at play. As an example, although we measured participants' confidence scores 

on the model, these scores were based on how they felt about the content of the 

explanatory framework. We cannot directly infer from these results whether 

participants understood why the model provided the content. Qualitative experiments 

such as interviews, thinking out loud, and process tracing designed to understand why 

people behave the way they do may help to examine the cognitive and meaning-making 

aspects of interpretability. 
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Chapter 8 Conclusion 

Given the widespread and increasing use of machine learning models, it is likely 

that people will collaborate with the models to make more and more decisions. When 

this happens, the need for interpretable models is likely to increase as well. Past 

research on XAI has mostly focused on algorithm-related (Ribeiro et al., 2016) or on 

the interpretation of image recognition, e.g., salient maps (Bach et al., 2015). Apart 

from image recognition, most of the research on end-users has focused only on medical 

applications (Wang et al., 2019) and these algorithms are mainly designed for machine 

learning developers (Vassiliades et al., 2021). We compile the explanatory algorithms 

developed in the past and propose an XAI framework for end-users based on business 

intelligence, applying this framework to business cases to break the dilemma that 

individual algorithms can solve specific problems. We believe that the integration of 

explanatory techniques in machine learning applications in the business domain can 

bring higher value to enterprises. 

Our study reviews the existing literature on different XAI technologies and studies 

that combine human-computer interaction and trust. We integrate different 

interpretative approaches proposed in the past and propose an AI interpretability 

framework based on business intelligence to provide explanations to end-users of 

business domain operations. The framework supports visualization on business data, 

presenting the feature values and performance of models, and finding the most 

impactful features using novel local feature importance metrics. The framework 

organizes the way explanations have been provided to end users in the past, and we aim 

to help developers build more user-centric, explainable AI-based systems. 

Next, to validate the proposed explanatory framework for practical application in 

the commercial domain, we applied the framework to a real-world commercial data 

machine learning use case for predicting airline baggage weight, enabling airlines to 
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more accurately calculate fuel consumption and reduce cost per flight, as well as for 

them to better communicate their models with stakeholders. This research focuses on a 

business intelligence-based interpretation approach, which emphasizes the integration 

of input data, machine learning models, and business processes. Enterprises can extend 

from the original business intelligence and combine this interpretation framework in 

different stages, for example, the original BI is explained in the “what” stage, and with 

the explanation of the “how” and “why” stages, there is an opportunity to enhance the 

reliability of machine learning technology in business applications. 

Our experimental results show that participants who use this explanatory 

framework are more confident in the model predictions and trust the system, and they 

are more willing to adopt the suggestions provided by the system. Participants 

perceived the system to be capable, but at the same time more complex and requiring 

more time to understand. Despite the integrated features and case studies of this XAI 

interpretation framework, there is still much work ahead to fully understand the 

machine learning models for end-users in different domains. 

In future research, the framework can be extended from different perspectives, for 

example, from the model developer, the domain expert, and the end-user, and the 

linkage of different users provides a more comprehensive explanation of the framework 

for a more compatible application in practice. Studying the use of AI by different users 

will ensure that AI approaches are implemented and used responsibly in organizations. 

Moreover, it will collectively facilitate the development of XAI in practical applications 

and in the business field. 
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