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Abstract

The genome-wide chromosomal contact by Hi-C can be used to investigate the
higher-level organization of chromosomes, such as compartments or topologically associating
domains (TAD). Hi-C data revealed two compartments, A and B, based on principal
component analysis (PCA) of Hi-C maps in mammals. TAD or compartment can be
considered as a segmentation of the genome. Generally, we use genome segmentation for
data compression and sort out different modifications in different cell types. We compared the
PCA results in various resolutions to determine the difference and introduced the ChIP-Seq
data for further analysis. We also introduce other methods to do clustering, which are the
Louvain and Leiden methods. They can not only compare with the result of PCA but also
figure out the correlation of networks. Furthermore, we can segment the genome based on

integrated ChIP-Seq and Hi-C information using adding function and network fusion.

Keywords: Genome segmentation, Hi-C, ChIP-Seq
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1.

Introduction

1.1. High-throughput Chromatin Conformation Capture (Hi-C)
Hi-C is a method based on Chromosome conformation capture(3C), and it
uses massively parallel sequencing to follow the purification of ligation products.
Unlike other methods based on 3C, all possible pairwise interactions genome-wide
between fragments are tested (Lieberman-Aiden E et al. 2009). The workflow of Hi-C

is in Figure 1.

Cross-link DNA  Cut with Fill ends Ligate Purify and Sequence using
restriction and mark with shear DNA; paired ends
Hindlll enzyme biotin Nhel pull down
A biotin

f” s, =

\i \ﬂ (4 =5

'*-.

(1) (2) 3) (4) () (6)

Figure 1. Overview of Hi-C technology procedure. (1) Sticking two pieces of DNA
together using an enzyme. (2) Using restriction enzymes to cut DNA pieces. (3) Using
the biotin to label and mark the DNA segments. (4) Combining DNA segments. (5)
DNA is purified and sheared. Biotin junctions are isolated. (6) Using paired-end

sequencing to obtain the interactions (Adapted from Van Berkum et al., 2010).

1.2. Chromatin immunoprecipitation sequence (ChIP-Seq)

ChIP-Seq is a method that can analyze genome-wide DNAS’ interactions of
protein. It combines chromatin immunoprecipitation with sequencing to become a
practical method that identifies binding sites of proteins. The workflow of ChIP-Seq
is in Figure 2.
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Figure 2. ChIP-Sequencing workflow. The interactions between the protein and
chromatin are crosslinked in the first. Next, distinguish the genome-wide sites with a
factor or modification with specific DNA fragments co-immunoprecipitated and

sequenced (Adapted from Illumina et al., 2007).

1.3. ChromHMM
ChromHMM is a helpful tool that is based on ChIP-Seq data to characterize

chromatin states. There are several specific histone modifications within genomic
regions. We can get chromatin state segments using ChromHMM. First, we choose
the data with the filename extension of *.bed’ or ‘.bam’. Second, we convert the input

file to model learning by typing the command BinarizeBed or BinarizeBam for BAM
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or BED formats, respectively. Last, we can learn chromatin state models to generate
the segment of chromatin by the command LearnModel. After using the ChromHMM
command, it will automatically output the file as a website. If the visualization of the
output file is needed, use the IGV website to get the visualization figures.

1.4. Similarity Network Fusion (SNF)

Similarity Network Fusion (SNF) is a method that can fuse two similarity
networks, making the information from different data types shared (Bo Wang et al.,
2014). SNF combines two networks into one network, showing every aspect of the
data. Also, SNF provides a way that can integrate different data types. We can use the
SNF method in five steps. First, we collect two or more original data from various
data types. Second, we need to transform the original data into similarity matrices.
Third, the similarity matrices are transferred into similarity networks. Fourth, we can
calculate by nonlinear method and do iterations to update the networks. Finally, we
can get the fused network after iterations. SNFtool (Bo Wang et al., 2014) is applied
to combine networks quickly. We compile SNFfool from the source of the package.

1.5. Integration of different types of data

In the past, different genome-wide sequencing information, Hi-C, RNA-Seq,
and ChIP-Seq, was integrated into several ways.

First, the Hi-C data and RNA-seq data are integrated for observing the variety
during mammalian spermatogenesis. The TAD boundaries are also checked by
combining the value CTCF of ChIP-Seq data. The ChIP-Seq data provided the
information of CTCF, when the information of TAD and CTCF values are checked
together, they become the integration of two data. The integration finally implies that
TAD maintenance may be related to the stages of mitosis or meiosis (Luo et al.,
2020).

Also, the accessibility of the chromatin is related to CTCF binding, using the
Hi-C data, ChIP-Seq data and RNA-Seq to check the value individually to get the
integration, and the integration of data implies that CTCF bindings are accessible in
T-cell but inaccessible in T-ALL (Kloetgen et al., 2020).

The transcription factor binding sites in 3D space are identified by the Hi-C
data and ChIP-Seq data, which is decided by whether the gene is nearby or not near
the ChIP-Seq peak. When these two data are checked together, the integration of data
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is produced. The integration method also characterizes the chromatin linkage (Lan et

al., 2012).
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2. Methods

2.1. Overview

We use Hi-C datasets in two cell lines: GM06990 (Lieberman-Aiden et al.,
2009) and GM12878 (Rao et al., 2014). First, we need an input of a sparse matrix or
matrix. Second, we do the KR normalization processing and then get the correlation
matrix of the matrix. Then, we perform the PCA method on the Hi-C correlation
matrix and use the eigenvector of the first principal component to decide whether a
genome region is compartment 4 or B based on its value as positive or negative
respectively.

In addition, we use ChIP-Seq data and Hi-C data to be networks. We use the
Louvain and the Leiden algorithms to cluster Hi-C and ChIP-Seq networks,
respectively. Plus, we introduce the adding function and the SNF method to combine
Hi-C and ChIP-Seq networks. Finally, we use the Louvain and Leiden methods to

cluster the fused network. The workflow of our process is in Figure 3.

Input:
Hi-C, ChIP-Seq
Hi-C
._.-f""gparse matrix Rao et al.(2014) matrix Lieber et al.(2009)
get a nxn matrix using Use is.matrix to confirm the input is ChlP-Seq
sparseMatrix & as.matrix a n x n matrix

Quantify ChIP-Seq peak:
Combine 11 targets & Divide bins

KR normalization:

i i Use KRnorm
;. Hi-C matrix
Correlation matrix | get the correlation of bins using cor
Get the eiger!vector: Network | Netm{orlf trfansfortn .
Use PCA to get the eigenvalue of 1% Similarity 1, Similarity 2, Similarity 3
eigenvector
Combine Hi-C & ChIP-Seq networks:
Use ggplot to draw A/B adding function
compartments SNF
A: eigenvalue>0, B: eigenvalue<0
Cluster network:
Cluster Louvain
Leiden
5
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Figure 3. The workflow of our process. We use the PCA method to divide the
correlation matrix of Hi-C datasets into compartments 4 and B. We also transform the
Hi-C and ChIP-Seq correlation matrix to networks. Then, we use two ways, adding
function and SNF method, to combine those two networks into one. Finally, we use
Louvain and Leiden methods to cluster Hi-C, ChIP-Seq and fused networks
individually.
2.2. Data Sets
2.2.1. Hi-C

We chose two datasets to analyze. The first dataset, whose cell line is
GM06990, was produced in 2009, Aiden2009 (Lieberman-Aiden et al., 2009). It is
publically available at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18199. We use the
GSE18199 binned heatmaps and choose 100KB and 1MB resolution.

The second dataset, whose cell line is GM 12878, was produced in 2014,
Ra02014 (Rao et al., 2014). It is publically available at

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63. We use the

GSE63525 combined_intrachromosal contact_matrices and choose 25KB, 10K B,

and 1KB resolution.
2.2.2. ChIP-Seq
We download ENCODE Histone ChIP-Seq of cell line GM 12878 with

genome version hgl19. It is publically available at
https://www.encodeproject.org/experiments/ ENCSR057BWO/. We analyze 11 targets
which are H3K36me3 » H3K27me3 » H3K9me3 * H4K20mel * H2AFZ -~ H3K27ac
* H3K4mel * H3K4me2 » H3K4me3 * H3K79me2 and H3K9ac.

2.3. Hi-C Contact Matrix preprocessing

There are usually two types of raw Hi-C data, so the initial process converts
raw Hi-C data to a n x n matrix.

1) Typical contact matrix: The matrix preprocessing varies from data to data. If
the input data is a n x n list, using the ‘matrix’ function to convert it to a
matrix (Lieberman-Aiden et al., 2009). When we are sure that it is a matrix
format, we finish the matrix preprocessing.

2) Sparse matrix: Input Hi-C map could be a sparse matrix (Rao et al., 2014). We
use the function ‘sparsematrix’ in the library(matrix) to get the data and the
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‘as.matrix’ process to convert the sparse matrix to a typical matrix. The header
option should be turned on during parse if the file’s first row is a header.

2.3.1. Khnight-Ruiz (KR) normalization processing
We usually use Hi-C data by using the Observed/Expected file to deal with the
Hi-C bias. But, unfortunately, there is no corresponding Observed/Expected file in
Rao2014 released data (Rao et al, 2014), so we perform the following KR
normalization steps according to the procedure (Rao et al., 2014).
The format of the RAWobserved file is as following:
.RAWobserved: locil loci2 rawScore (1)

The index of the observed score is defined as dividing the specified resolution (i.e.,
25000) and then plus one to the locil and locil (equation 2).

index1 = locil/resolution+1
index2 = loci2/resolution+1 2)

Then, we can extract the KR normalized score KR1 and KR2 from .KRnorm file

using above index1 and index2, respectively (equation 3).

KR1 = entry[index]1 |
KR2 = entry[index2] 3)

We can calculate a score,,, as rawScore (the third line) in RAWobserved to be
divided by the product of KR1 and KR2 (equation 4).

score, ., = rawScore/(KR1*KR2) 4)

The index of the expected score, index,,,.,, is defined as equation (5). Then, we can

extract an expected SCOIe, SCOr€, e USING INdeX ., to access the KRexpected file

(equation 6). Finally, a normalized score is defined as the ratio between score and

obser

SCOFe oypec; (€quation 7).

index gy, = (loci2 - locil)/resolutiont1 (5)
SCOVe gypoer = entry[indexexpect] (6)
normalized SCOTe = SCOre o,/ SCOTe oy (7)

2.4. ChIP-Seq binning

We analyzed 11 ChIP-Seq targets, which are H3K36me3 * H3K27me3 *
H3K9me3 * H4K20mel * H2AFZ ~ H3K27ac * H3K4mel * H3K4me2 - H3K4me3
* H3K79me2 and H3K9ac. We chose the ‘bed’ filename extension and split every
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target by chromosome. Taking chromosome 14 as an example, we split 11 targets into
several bins at 25KB resolution. We define bins to start at 0 and increase by 25000.
Since the data could begin with one bin and end at another bin, we deal with this
situation using the weighted average (Figure 4). Bin location is the bin size we
defined. Overlap length is the segment in which the bin overlaps the ChIP-Seq peak.
The number above represents the overlap length of each element. We calculated the
peak score of the bin by the product of length and score of every segment and divided
the result by 25k to get the final score. Taking bin830 (bin location = 20750k) as an
example, its overlap lengths of ChIP-Seq peak100 and peak101 are 5000 and 10000,
respectively. Therefore, its peak score is 80 (= (5000%100+10000*150)/25000).
Hence, when we got the score of bins of eleven targets, we could merge them into a

matrix where row and column represent bin instance and ChIP-Seq peak score,

respectively.
20735000  Score: 100 20755000 20765000 Score: 150 20785000
ChIP-Seq peak : : : :
Peak100 Peakl101
Bin location : : : :
bin829(20725000) bin830(20750000) bin831(20775000) bin832(20800000)
Overlap length Im #wl
Score: 80
Peak score 1

Figure 4. Quantify the ChIP-Seq of the bin using a weighted average. ChIP-Seq peak

is the simulation of the ‘.bed’ data with start, end, and score.

However, the result of the ChIP-Seq binning has an NA value, so we remove
NA. Also, we find the value of the ChIP-Seq binning removed NA has a gap between
them, so we use the scale function to normalize the value.

2.5. Correlation Matrix

We calculate the correlation of the normalized data in both Hi-C data and
ChIP-Seq data.

In Hi-C data, we obtain more precise information. During this phase, we need
to check the variance not equal to 0 by column using which and apply function in R at
first, then using the Pearson correlation to calculate for all variables. However, there

is a problem with the result after operating the steps above. After removing the

DOI:10.6814/NCCU202101389



columns whose variance is equal to 0, the bin index of the raw data would be reset
and started by 1. Hence, we need to recover the bin index manually to make sure the
bin index and the correlation value of the bins.

In ChIP-Seq data, we have already got the score of every bin we set up in 11
ChIP-Seq targets. We need to merge 11 marks to one matrix and then calculate the
correlation matrix by row, representing the correlation of every bin in terms of the
ChIP-Seq pattern.

2.6. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) effectively reduces dataset dimensions
while keeping spatial characteristics as much as possible. We can use the PCA method
to get the eigenvectors of the correlation matrix from the above section. Then, we can
specify the 4 or B compartment of the genome region based on the sign of its
eigenvalue, positive for 4 and negative for B. 4 compartment is usually gene-rich and
transcriptionally active. In contrast, the B compartment is usually gene-poor and
transcriptionally silent (Lieberman-Aiden et al., 2009).

In the past, the input correlation matrix was in 100KB resolution, whose file
size is around one hundred kilobytes (KB), the speed of running PCA is in a minute
(Lieberman-Aiden et al., 2009). However, the input of a 25KB resolution matrix is
around three gigabytes (GB), then the speed of running PCA is over hours. As a
result, it can get a more precise contact pattern of chromosomes (Rao et al., 2014).

2.7. Network transform

1) Hi-C to a network:
We use data in three resolutions: 100KB and 1MB of Aiden2009, and 25KB of

Rao2014. We transform a correlation matrix as a network graph in which a node is a
bin of the matrix, and an edge weight is a similarity between two end bins. We
calculate similarity in three ways:
a) Hi-C network similarity 1: We use Hi-C normalized contact score to be
an edge weight.
b) Hi-C network similarity 2: We use the correlation of two bins as their
connected edge weight.
¢) Hi-C network similarity 3: The network degree might be negative since
the correlation value ranges from -1 to 1. Because of the difficulty of

the analysis, we introduce the weighted correlation network analysis to
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solve the problem. We use signed similarity to transform the

correlation value:

Sf.;g"ed = 0.5+0.5cor(x;, x;)

where x; and x; represent nodes in the network. Due to the

transformation of the signed similarity, the correlation value will be
positive, which corresponds to the network input should be positive of
the Louvain method. When using the weighted correlation network
analysis, the origin correlation value is between -1 and 1, and the new
correlation value is between 0 and 1. If the new correlation value is
between 0 and 0.5, then it is negative originally. If the new correlation
value is between 0.5 and 1, then it is positive originally. Using the
value 0.5, we can shift the correlation value to get all positive values to
do the next step.

2) ChIP-Seq to a network:
After getting the signed similarity correlation value matrix, we model every

bin to be a node and the correlation value to be edge weight.
2.8. Hi-C and ChIP-Seq Network fusion

Some existing methods can develop genome segmentation by DNA
interaction. The Hi-C data are analyzed by the PCA method, and then the
eigenvectors of the first principle component are defined as compartment 4 and B,
where the value of the A loci is more significant than 0. Otherwise, it is B
(Lieberman-Aiden et al., 2009). The ChIP-Seq data are analyzed by the hidden
Markov model (HMM) and are captured nucleosome-level information and identified
domain-level states (Eugenio Marco et al., 2017). Markov Clustering implements the
Hi-C data in human cells to segregate the regions into more detailed clusters inside
the affluent areas (Lin Liu et al., 2012). Developing genome segmentation usually
uses Hi-C data or ChIP-Seq data. What we want to do is use both of them to get more
precise segments. We will try to combine these two different data types by the adding
function and SNF.

The adding function would add two matrices, X and Y, together to be a matrix
Z, thatis, Z;; = X;; , Y;; whichis Z;;, X;

i 1], i,j° )
column of matrices X, Y and Z.

and Y;; are scores in the ith row and jth

10
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We can use the SNF method to combine ChIP-Seq and Hi-C data (Bo Wang et
al., 2014). During the step that changes the matrix, the processed Hi-C and ChIP-Seq
data belong to the signed similarity correlation matrix. We take the /-signed similarity
correlation value to be the distance matrix of two datasets. Also, the parameters of the
function affinityMatrix we chose are the default, which is followed by empirical rule.
After getting the distance matrix, we can use the function affinityMatrix to construct a
similarity network. Next, when we successfully acquire the similarity networks by
Hi-C and ChIP-Seq data, we can use the function SNF to get the fused similarity
network representing the combination of Hi-C and ChIP-Seq information.

2.9. Network clustering

After network transform or fusion, we use the Louvain method in Python and
Leiden in Java to cluster networks.

2.9.1. Louvain method

The Louvain method is a powerful method of community detection. It is the
optimization of modularity. It decomposes the network into subunits or communities;
the more closely connected parts can be regarded as a community and the relatively
sparse connection between communities. The Louvain method assumes every node to
be a community at first. Then, it calculates the maximum modularity of each node and
its neighboring nodes. Then the following step measures the modularity of adding the
node to the community of its adjacent nodes. Finally, it chooses the node that
maximizes the modularity value and joins its community until no more changes occur
(Blondel et al., 2008). We have compared another popular clustering algorithm, smart
local moving (SLM) (Waltman et al., 2013), with Louvain. We find that Louvain

gives better results and is easier to implement.

We use the best partition function from the Python package community for
the Louvain algorithm (Python-louvain, 2010). The parameter resolution (default = 1)
affects the number of the recovered clusters. When the resolution is smaller, every
group recovers minor data points, getting more clusters. On the contrary, when the
resolution is larger, every cluster recovers massive data points, resulting in fewer
clusters. We adjust resolution when the number of groups is too big. Therefore, we
expect the result of the Louvain method is around two, which might correlate with

two compartments of the PCA method.

11
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2.9.2. Leiden method

The Leiden method is more efficient than the Louvain method for community
detection (Traag et al., 2019). It improves the disadvantages of the Louvain method.
For example, two nodes in the same cluster may not have an edge between them, and
the accuracy of community detection may have limitations. Furthermore, the runtime
of the Leiden method is faster than the Louvain method.

We apply this method using the Java package nl.cwts.networkanalysis from
the Github resource (CWTSLeiden, 2020). After compiling the resource in Github, we
can get the RunNetworkClustering tool to apply the Leiden method to our data. The
resolution dominates the fineness of the clustering, which means it controls the
communities detected. When the resolution is smaller, it results in fewer clusters. On
the contrary, when the resolution is larger, it causes more clusters. We usually use the
default resolution (default = 1), which can provide better clustering results. We expect
the result of the Leiden method is around two, which might correlate with two

compartments of the PCA method.

12
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3. Results

3.1. A/B compartment reproducibility

3.1.1. KR normalization effect

Using the data given by the paper (Lieberman-Aiden et al., 2009), we try to
figure out whether the result will be different with or without KR normalization. First,
we use the eigenvectors given by the paper to draw the reference (Figure 5a). We find
that it is sure that the way to mark the diagram will get the same chart (Figure 5c,
Lieberman-Aiden et al., 2009). Then we use the contact matrix given by the article to
draw two graphs. Figures 5b and 5c show without and with KR normalization,
respectively. We conclude that we need to do KR normalization to get the same graph
as the paper. We also use the KR normalization and get the A/B compartment in
100KB of Aiden2009 (Figure 5d) and 25KB of Rao2014 (Figure 6), finding that the

KR normalization is essential to reproduce a similar segment in different resolutions.

13
DOI:10.6814/NCCU202101389



0.5~

0.0~

0.05-

10"

PC1

i

-10-

n
'

PC1
=

in
d

(a)

(b)
H.,.J "-'.,.-'-- MLlmlin o o
(i:) 2.5

1y '||"\“|'|||H‘

(d)

14

ml Il

LI“ i

enrid

DOI:10.6814/NCCU202101389



Figure 5. The result of applying PCA on chromosome 14 of Aiden2009. (a) The
eigenvectors are given by the paper (Lieberman-Aiden et al., 2009) in 1MB
resolution. (b) We apply PCA on non-normalized data to get the eigenvector in IMB
resolution. (c) We use PCA on KR normalization data in 1MB resolution. (d) We

apply PCA on KR normalization data in 100KB resolution.
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Figure 6. We apply PCA on KR normalization data in the 25KB resolution of
Rao2014.

3.1.2. The resolution influence the runtime
After testing two different datasets, we record the file size and runtime (Table
1). At high resolution, which is 1KB, the file size sparse matrix is too big to become a
matrix. At low resolution, which is 1MB, the file size of the matrix is relatively small,

and its runtime is relatively fast.

15
DOI:10.6814/NCCU202101389



Table 1. The results of runtime at different resolutions and datasets. The sparse/matrix

represents the file size of the sparse matrix and matrix separately.

Data set Lieber et al.(2009) Rao et al.(2014)

Resolution IMB 100KB 25KB 10KB 1KB
sparse/ NA/164K NA/6.18M 133M/107M 317M/418M 1.3G/run out
matrix of memory

Runtime(s) 6.44 13.74 150.37 2875.39 NA

3.1.3. The explanation proportion of PCA

We usually use the PCA method to find “an index™ to represent the dataset, so
we only keep the first principle component. We calculate the variance by the first
principle component and then define its proportion as the variance divided by the sum
of variance. Thus, we calculate the cumulative ratio of the first £ principal
components, representing the percentage of the whole data explained based on the
first £ components. For & = 1, it will help us determine whether only using the first
principal component is suitable or not. The variance of the first principle component
at 100KB and 1MB resolutions are higher than other principle components of
Aiden2009 (Figure 7). We find that the first principal component at 1MB resolution
can explain 54% of the whole dataset (Figure 7a). However, the first principal
component at 100KB can explain only around 5% of the entire dataset (Figure 7b).
Also, the first principal component of Rao2014 at 25KB can explain 44% of the
whole dataset (Figure 7c¢). The accurate number of the cumulative proportion in
different resolutions is in Table 2.

Table 2. The cumulative proportion of PCl in resolutions: 1MB, 100KB of
Aiden2009, and 25KB of Rao2014.

Data set Lieber et al.(2009) Rao et al.(2014)
Resolution IMB 100KB 25KB
Cumulative prop.(%) 53.96 4.78 43.76
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Figure 7. The cumulative proportion of the first principle component at 1IMB (a) and
100KB (b) resolution of Aiden2009 and 25KB (c) resolution of Rao2014. We draw
the variance and principal component figures on the left and the cumulative

proportion and principal component on the right.
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3.2. Hi-C network cluster
3.2.1. Louvain cluster of Hi-C network

We find that the best partition is given by the default parameter, which is one.
After clustering the datasets, we get two clusters of Aiden2009 (Figure 8b, 8c). Also,
we get three groups of 0,1,2 of Rao2014 (Figure 8e). During this phase, the raw
dataset of Rao2014 has some NA value, so the figure of the result has some blank. We
observe the eigenvalue result of PCA, then adjust the clusters. If the result of the
Louvain method is equal to two, then we keep the result (Figure 8b, 8c). If the result
of the Louvain method is around two but not identical to two, we merge the cluster to
compare with the result of the PCA method (Figure 8d). We combine the cluster 0 and
2 to be one cluster and keep the cluster 1 (Figure 8¢). We finally get a similar trend of
the PCA method (Figure 8).
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Figure 8. Hi-C networkg;,,; using the Louvain method on chromosome 14 in different
resolutions compared with the PCA method result. (a) The paper gives the
eigenvectors in 1MB resolution (Lieberman-Aiden et al., 2009). (b) We use the
Louvain method in the IMB resolution of Aiden2009. (c) We use the Louvain method
in the 100KB resolution of Aiden2009. (d) The Juicer gives the eigenvectors of
Rao2014. (e) We use the Louvain method in the 25KB resolution of Rao2014. We
adjust the clusters to be two clusters to compare with the eigenvalues of the

eigenvectors.

We are also interested in the matrix of the input. We test three situations using
the Louvain method to determine the matrix. The first matrix is the normalized matrix
after doing matrix preprocessing (Figure 9a), the second matrix is the correlation
matrix of the normalized matrix after doing matrix preprocessing (Figure 9b), and the
last matrix is the signed similarity correlation matrix of the normalized matrix after
doing matrix preprocessing (Figure 9¢). We find that the trends of these third matrices
are similar, and all of them are grouped in 3 clusters. After testing the different input
matrices, we can choose the signed similarity correlation matrix of the normalized

matrix after doing matrix preprocessing to compare with the ChIP-Seq data.
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Figure 9. Hi-C network using the Louvain method on chromosome 14 by different
input matrices. (a) We use the Louvain method in 25KB resolution of the datasets of
normalized input data of Rao2014. (b) We use the Louvain method in 25KB
resolution of the datasets of correlation of normalized input data of Rao2014. (c) We
use the Louvain method in 25KB resolution of the datasets of signed similarity

correlation of normalized input data of Rao2014.
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Moreover, we test the Louvain method by giving different parameters

resolution (Table 2 Louvain Hi-C).

Table 3. The numbers of the cluster in different resolutions using the Louvain and

Leiden method in the 25KB resolution of Rao2014.

Resolutions

methods 1 2 5 10 15 20 25 30 40 50

Louvain
HiC .networksim1 3 1 1 1 1 1 1 1 1 1
HiC .networksim? 3 1 1 1 1 1 1 1 1 1
HiC.networksim3 3 1 1 1 1 1 1 1 1 |
ChIP-Seq.network 4 1 1 1 1 1 1 1 1 |
ChIP-Seq.network + remNA 4 1 1 1 1 1 1 1 1 |
ChIP-Seq.network + remNA + scale 4 | 1 1 1 1 1 1 1 1
Fusion.network adding 3 1 1 1 1 1 1 1 1 1
Fusion.network adding + remNA 3 1 1 1 1 1 1 1 1 1
Fusion.network SNF 3223 6 1 1 1 1 1 1 1 |

Leiden
HiC .networksim1 791 1167 2938 4050 4203 4234 4249 4260 4274 4282
HiC.networksim? 4 1135 2441 2621 2678 2694 2702 2706 2712 2713
HiC .networksim3 4 2718 2725 2725 2725 2725 2725 2725 2725 2725
ChIP-Seq.network 4 3914 4292 4292 4292 4292 4292 4292 4292 4292
ChIP-Seq.network + remNA 4 3875 4254 4254 4254 4254 4254 4254 4254 4254
ChIP-Seq.network + remINA + scale 4 3418 3869 4120 4241 4254 4254 4254 4254 4254
Fusion.network adding 3 4068 4292 4292 4292 4292 4292 4292 4292 4292
Fusion.network adding + remNA 3 4030 4254 4254 4254 4254 4254 4254 4254 4254
Fusion.network SNF 3 3001 4158 4283 4291 4292 4292 4292 4292 4292

3.2.2. Cluster Hi-C data by Leiden

We use the Hi-C data network to be input and use the Leiden method in Java.

We find that the best partition is given by the parameter resolution, which is one.

After clustering the datasets, we get four clusters of 0,1,2 and 3 of the datasets in

Rao2014 (Figure 10b). First, we observe the eigenvalue result of PCA, then adjust the

clusters. Finally, we merge the group to compare with the result of the PCA method

(Figure 10). We combine the cluster 1, 2 and 3 to represent positive value, keeping the

cluster 0 representing negative value.
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Figure 10. Hi-C datasets using the Leiden method on chromosome 14. (a) The Juicer
gives the eigenvectors of the datasets of Rao2014. (b) We use the Leiden method in
the 25KB resolution of Rao2014.

Moreover, we test the Leiden method by giving different parameters resolution
(Table 3 Leiden Hi-C).

Also, we compare the Louvain and Leiden methods with their runtime in
different situations (Table 4). We choose the parameter resolution, which results in the
number of clusters closed to two, and records two methods’ runtime. We find that
although the result of the Louvain and Leiden are pretty similar, the runtime of the

Leiden method is relatively shorter than the Louvain method.
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Table 4. The runtime of using the Lovain and Leiden method in second.

methods Louvain Leiden
HiC.networksim1 37 2
HiC.networksim2 25 2
HiC.networksim3 20 1
ChIP-Seq.network 451 6
Chip-seq.network + remNA 362 5
Chip-seq.network + remNA + scale 216 4
Fusion.network adding 289 4
Fusion.network adding + remNA 460 4
Fusion.network SNF 220 4

3.2.3. The consistency between network cluster and PCA

decomposition

We use Pearson Correlation to check the consistency between PCA
decomposition (HiCmatrix, Figure 11~12) and network clusters generated by the
Louvain and Leiden method. If the number of groups is larger than two, we combine
them into two sets and compare the consistency. First, we compare the result of the
Louvain method, and we use three different inputs, which are normalized matrix
(HiCnetworksim1, Figure 11), the correlation matrix of the normalized matrix
(HiCnetworksim2, Figure 11), and the signed similarity of the correlation matrix of
the normalized matrix (HiCnetworksim3, Figure 11). We find that the signed
similarity of the correlation matrix of the normalized matrix is slightly less than the
normalized matrix, but its correlation is still higher than 0.85.

Next, we test the Leiden method in two network similarities: the correlation
matrix of the normalized matrix (HiCnetworksim2, Figure 12) and the signed
similarity of the correlation matrix of the normalized matrix (HiCnetworksim3, Figure
12). While network similarity 1 would come out huge clusters (791 clusters), so we
do not include it into consistency checking. However, we find that the signed
similarity of the correlation matrix of the normalized matrix using the Leiden method

is slightly higher than the Louvain method.
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Figure 11. The cluster correlation of different Hi-C networks using the Louvain

method.
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Figure 12. The cluster correlation of different Hi-C networks using the Leiden

method.

3.3. ChIP-Seq data
3.3.1. Cluster ChIP-Seq data by Louvain

We use the ChIP-Seq data network to be input and use the Louvain method in
the Python package community. We find that the best partition is given by the default
parameter, which is one. We check whether clusters of Louvain are consistent with
ChIP-Seq pattern, that is, activation or repression marks (Table 5) are grouped
together or not based on the Louvain clusters. We use pheatmap (R library) to analyze
the ChIP-Seq network cluster. We find that active marks and the repression targets
group together separately (Figure 13a). We find that removing NA is similar to one of
the original networks, making sense (Figure 13b). Finally, we find that scaling is a bit

weird which combines activation targets and repression targets together (Figure 13c¢).
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Table 5. The role in transcription of the histone modification.

Modification Role in transcription Modification site
Acetylation Activation H3(K9, K14, K18, K56).
H4(K5, K8, K12, K16).
H2B(K6, K7, K16, K17).
Methylation Activation H3(K4dme2, Kdme3,
K36me3, K79me3)
Methylation Repression H3(K9me3, K27me3)
and H4(K20me3)
Phosphorylation Activation H3(S10)
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Figure 13. The pheatmap results of the ChIP-Seq network using the Louvain method.
(a) ChIP-Seq network. (b) ChIP-Seq network removes NA. (c) ChIP-Seq network

removes NA and uses scale, where A and B correspond to A/B compartments.

Since the ChIP-Seq patterns make sense, we combine the clusters into two
clusters according to the pheatmap result (Figure 13). The inputs ChIP-Seq network
and ChIP-Seq removed NA combine cluster 1 and 3 to be positive, and cluster 0 and 2
to be negative (Figure 14b~c). The input ChIP-Seq network removed NA and used
scale to combine cluster 2 and 3 to be positive, and cluster 0 and 1 to be negative

(Figure 14d). We find that they have a similar trend to the PCA method. Moreover,

we test the Louvain method by giving different parameters resolution ( Louvain ->

ChIP-Seq, Table 3).
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Figure 14. ChIP-Seq data using the Louvain method on chromosome 14 in 25KB
resolution. (a) The eigenvectors are given by the Juicer (Eigenvector, 2017). (b) The
combined clusters of the ChIP-Seq network. (c) The combined clusters of the

ChIP-Seq network removed NA. (d) The combined clusters of the ChIP-Seq network

removed NA and used scale.

3.3.2. Cluster ChIP-Seq network by Leiden

We use the ChIP-Seq data network to be input and use the Leiden method in
Java. We find that the best partition is given by the parameter resolution, which is one.
We also use the pheatmap function to figure out whether the result of clusters using
the Leiden method makes sense or not. We also tested three inputs: ChIP-Seq
network, ChIP-Seq network removed NA, and ChIP-Seq network removed NA and
used scale (Figure 15). We find that the active targets are together, and the marks in
repression are also together in Figure 15a. Finally, the result is weird and combines

activation targets and repression targets together (Figure 15c).

31
DOI:10.6814/NCCU202101389



1142, B: 043

(a) A

uaplan

H3K27me3_Rep

Hakome3_Rep

H3K3Bme3_Act

H3K27ac

H3KTEme2_Act

H3K4me3_Act

H3K4me2_Act

ChiP-Seq

:0+3

B

1142,

(b) A

uapla

H3K2Tme3_Rep

Halame3_Rep

H3K36me3_Act

H3K79me2_Act

H3K4med_Act

H3K4me2_Act

_Seq

ChlIP.

1 0+1

B

243,

(c) A

uspiE

H3Kdme3d_Act

H3KAme2_Act

H3KTIme2_Act

HAKZ20me1

H3K9me3_Rep

H3K27me3_Rep

H3K36me3_Act

ChiP-Seq

32

10.6814/NCCU202101389

.

DOI



Figure 15. The pheatmap results of the ChIP-Seq network using the Leiden method.
(a) ChIP-Seq network. (b) ChIP-Seq network removes NA. (c) ChIP-Seq network

removes NA and uses scale, where A and B correspond to A/B compartments.

Since the ChIP-Seq patterns make sense, we combine the clusters into two
clusters according to the pheatmap result (Figure 15). The inputs ChIP-Seq network
and ChIP-Seq removed NA combine cluster 1 and 2 to be positive, and cluster 0 and 3
to be negative (Figure 16b~c). The input ChIP-Seq network removed NA and used
scale to combine cluster 2 and 3 to be positive, and cluster 0 and 1 to be negative

(Figure 16d). We find that they have a similar trend to the PCA method.
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Figure 16. ChIP-Seq datasets using the Leiden method on chromosome 14. (a) The
eigenvectors are given by the Juicer (Eigenvector, 2017). (b) The combined clusters
of the ChIP-Seq network. (c) The combined clusters of the ChIP-Seq network
removed NA. (d) The combined clusters of the ChIP-Seq network removed NA and

used scale.

We also compare the cluster correlation of ChIP-Seq data using the Louvain
and Leiden method. We find that the PCA and ChIP-Seq data with around 0.45
(Figure 17) is lower than the correlation of the PCA and Hi-C data, whose values are
about 0.85 (Figure 11~12). Since the correlation is lower, it means that ChIP-Seq data
capture some different information from Hi-C data.
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Figure 17. The correlation of the ChIP-Seq cluster results after doing the Louvain and
Leiden method.

Moreover, we test the Leiden method by giving different parameters resolution

(Table 3 Leiden ChIP-Seq).
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3.3.3. Further analysis of the A/B compartment

Although we can reproduce the A/B compartment by combining the result of
the Louvain or Leiden method to two clusters (Figure 11~12), we are also interested
in whether the clusters could be segmented better. The A/B compartment can be
further segmented into more subcompartments (Rao et al., 2014). Although the
runtime of the Leiden method is relatively shorter than the Louvain method (Table 4),
we find that the result using the Louvain method of Aclust to H3K27me3 and
H3K9me3 is more suitable (Figure 18). As a result, We use our pheatmap result of the
ChIP-Seq network removed NA using the Louvain method (Figure 13b) to compare
with the subcompartments (Figure 19). The ChIP-Seq data patterns show that our
clusters 0, 1, 2, 3 can correspond to subcompartment B1, A1, B4, A2 separately. As a

result, we offer consequences where using the Louvain method to cluster can be more

accurate than only segmenting to the A/B compartment.
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Figure 18. The Aclust of the ChIP-Seq network removes NA. We use log distance to

show the clusters of the Louvain (a) and Leiden (b) clearer.
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Figure 19. Six contact patterns of ChIP-Seq data (Adapted from Rao et al., 2014).

1.8

3.4. Correlation of Hi-C clusters and ChIP-Seq clusters

We get clusters individually when we finish doing the Louvain method on the
Hi-C network and ChIP-Seq network. We can use the Pearson correlation value to
figure out the similarity of our results. The results of the Pearson correlations of Hi-C
clusters using the Louvain method by three different input methods are higher than
0.86 (Figure 20HiC). Hence, we are sure that we can reproduce the A and B
compartments. On the other hand, the Pearson correlations of ChIP-Seq sets using the
Louvain method by three different input methods results are relatively low (Figure
20ChIPSeq). Although the value of ChIP-Seq is not that high, it represents ChIP-Seq
data and Hi-C datasets provide different information. Therefore, we can try to fuse

two datasets which are Hi-C and ChIP-Seq.
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Figure 20. The correlation of cluster results after doing the Louvain method. We
compare the eigenvector given by Juicer and Hi-C data using PCA method in 25KB
resolution to the result of Hi-C data using three different input methods and ChIP-Seq

data using three other input methods.

We also use the Pearson correlation value to determine the similarity of the
results using the Leiden method. As a result, the numerical distribution of the Pearson

correlation value is similar to the result of the Louvain method (Figure 21).
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Figure 21. The correlation of cluster results after doing the Leiden method.

3.5. Combination of ChIP-Seq and Hi-C

After analyzing the Hi-C datasets and ChIP-Seq data of Rao2014, we wonder
whether the information combined by these two datasets are better segments or not.
Hence, we first add these two datasets together, and then use the Louvain and Leiden
method to cluster. Next, we use the SNF method and still use the Louvain and Leiden
method to compare with the way we only add together.

We use the Louvain method to compare the figures, which are only ChIP-Seq
data and only Hi-C data (Figure 22). We use Juicebox software to visualize our result
of the Louvain method. The first track (PCA.published) is the eigenvectors produced
by Juicer. The second track (ChIP-Seq.network) results from the Louvain clustering
method of ChIP-Seq data. The third track (HiC.network;, ;) results from the Louvain
method of Rao2014. The fourth track (Fusion SNF) results from the Louvain method
of SNF of ChIP-Seq and Hi-C, grouping into six clusters. Finally, the last track
(Fusion_adding) results from the Louvain method of ChIP-Seq and Hi-C data added

together, set into three groups.
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Figure 22. Genome segmentation based on PCA of HiC matrix, ChIP-Seq, Hi-C and

fusion networks using the Louvain method on chromosome 14:50MB~62MB in

25KB resolution of Rao2014 where white indicates missing data (NA) in

HiC.network.

We also use the Leiden method to compare the figures, only ChIP-Seq data
and Hi-C data (Figure 23). The second track (ChIP-Seq.network) results from the

Leiden clustering method of ChIP-Seq data. The third track (HiC.networksim3)

results from the Leiden method of Rao2014. The fourth track (Fusion SNF) results

from the Leiden method of SNF of ChIP-Seq and Hi-C, grouping into three clusters.
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Finally, the last track (Fusion adding) results from the Leiden method of ChIP-Seq
and Hi-C data were added together, set into three groups.
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Figure 23. Genome segmentation based on PCA of HiC matrix, ChIP-Seq, Hi-C and
fusion networks using the Leiden method on chromosome 14:50MB~62MB in 25KB

resolution of Rao2014 where white indicates missing data (NA) in HiC.network.

After acquiring the result of the Louvain and Leiden method, we find that the
the eigenvectors produced by Juicer only produce the information of A/B
compartments, and the ChIP-Seq network produce too fragmented, and the Hi-C
network is similar to eigenvectors but not that precise. Our result of adding function
performs the segments which are almost affected by the ChIP-Seq data, and the result

of SNF performs the balanced result which contains the precision of Hi-C data and
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also more information from ChIP-Seq data. Hence, using our SNF method can get a
compromise of the Hi-C data and ChIP-Seq data.

We also test the Louvain and Leiden methods by giving different parameters

resolution for two fusion networks (Fusion.network, Table 3).
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4. Discussion and Conclusion

We provide a platform that clusters Hi-C and ChIP-Seq individually. In this
platform, we can use Hi-C datasets to reproduce the result of compartments A and B.
Furthermore, we can use ChIP-Seq data to classify the role in transcription, which
belongs to activation or repression. On top of that, we merge two different data types
to get more information to receive more references to segment the genome better.

We try to figure out the clusters produced by the SNF method corresponding
to which targets in ChIP-Seq, which means the combined groups are classified as

activation or repression. Hence, the result of the SNF method needs more analysis.
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