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摘 要   

Hi-C  的 全 基 因 組 染 色 體 接 觸 可 用 於 研 究 染 色 體 的 更 高 級 別 組 織 ， 例 如 隔 室 或 拓 

撲 關 聯 域。 根 據 哺 乳 動 物  Hi-C  圖 的 主 成 分 分 析 可 得 到 數 據 中 兩 個 區 室  A  和  B  。  TAD  或 隔 

室 可 被 視 為 基 因 組 的 分 段。 通 常 我 們 會 使 用 基 因 體 分 割 進 行 數 據 壓 縮 ， 並 在 不 同 細 胞 

類 型 中 整 理 出 不 同 的 修 飾。 我 們 比 較 了 不 同 解 析 度 下 的  PCA  結 果 以 找 出 差 異 ， 然 後 引 

入  ChIP-Seq  數 據 進 行 進 一 步 分 析。 我 們 還 引 進 了 其 他 兩 種 進 行 聚 類 的 方 法 ，  Louvain  和 

Leiden  。 它 們 不 僅 可 以 與  PCA  的 結 果 進 行 比 較 ， 還 可 以 計 算 出 網 路 的 相 關 性。 此 外 ， 

我 們 可 以 基 於 結 合  ChIP-Seq  和  Hi-C  的 資 訊 使 用 兩 者 相 加 及 網 路 融 合 來 分 割 基 因 組。   

 

關 鍵 字 ： 基 因 體 分 割、  Hi-C  、  ChIP-Seq   
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Abstract   
The  genome-wide  chromosomal  contact  by  Hi-C  can  be  used  to  investigate  the              

higher-level  organization  of  chromosomes,  such  as  compartments  or  topologically  associating            

domains  (TAD).  Hi-C  data  revealed  two  compartments,  A  and  B,  based  on  principal               

component  analysis  (PCA)  of  Hi-C  maps  in  mammals.  TAD  or  compartment  can  be               

considered  as  a  segmentation  of  the  genome.  Generally,  we  use  genome  segmentation  for               

data  compression  and  sort  out  different  modifications  in  different  cell  types.  We  compared  the                

PCA  results  in  various  resolutions  to  determine  the  difference  and  introduced  the  ChIP-Seq               

data  for  further  analysis.  We  also  introduce  other  methods  to  do  clustering,  which  are  the                 

Louvain  and  Leiden  methods.  They  can  not  only  compare  with  the  result  of  PCA  but  also                  

figure  out  the  correlation  of  networks.  Furthermore,  we  can  segment  the  genome  based  on                

integrated   ChIP-Seq   and   Hi-C   information   using   adding   function   and   network   fusion.   

  

Keywords:   Genome   segmentation,   Hi-C,   ChIP-Seq     
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1. Introduction   
1.1. High-throughput   Chromatin   Conformation   Capture   (Hi-C)   

Hi-C  is  a  method  based  on  Chromosome  conformation  capture(3C),  and  it             

uses  massively  parallel  sequencing  to  follow  the  purification  of  ligation  products.             

Unlike  other  methods  based  on  3C,  all  possible  pairwise  interactions  genome-wide             

between  fragments  are  tested  (Lieberman-Aiden  E  et  al.  2009).  The  workflow  of  Hi-C               

is   in   Figure   1.   

Figure  1.   Overview  of  Hi-C  technology  procedure.  (1)  Sticking  two  pieces  of  DNA               

together  using  an  enzyme.  (2)  Using  restriction  enzymes  to  cut  DNA  pieces.  (3)  Using                

the  biotin  to  label  and  mark  the  DNA  segments.  (4)  Combining  DNA  segments.  (5)                

DNA  is  purified  and  sheared.  Biotin  junctions  are  isolated.  (6)  Using  paired-end              

sequencing   to   obtain   the   interactions   (Adapted   from   Van   Berkum   et   al.,   2010).     

  

1.2. Chromatin   immunoprecipitation   sequence   (ChIP-Seq)     

ChIP-Seq  is  a  method  that  can  analyze  genome-wide  DNAs’  interactions  of             

protein.  It  combines  chromatin  immunoprecipitation  with  sequencing  to  become  a            

practical  method  that  identifies  binding  sites  of  proteins.  The  workflow  of  ChIP-Seq              

is   in   Figure   2.   
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Figure  2.  ChIP-Sequencing  workflow.  The  interactions  between  the  protein  and            

chromatin  are  crosslinked  in  the  first.  Next,  distinguish  the  genome-wide  sites  with  a               

factor  or  modification  with  specific  DNA  fragments  co-immunoprecipitated  and           

sequenced   (Adapted   from   Illumina   et   al.,   2007).     

  

1.3. ChromHMM   

ChromHMM  is  a  helpful  tool  that  is  based  on  ChIP-Seq  data  to  characterize               

chromatin  states.  There  are  several  specific  histone  modifications  within  genomic            

regions.  We  can  get  chromatin  state  segments  using  ChromHMM.  First,  we  choose              

the  data  with  the  filename  extension  of  ‘ .bed ’  or  ‘ .bam ’.  Second,  we  convert  the  input                 

file  to  model  learning  by  typing  the  command   BinarizeBed   or   BinarizeBam   for  BAM               
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or  BED  formats,  respectively.  Last,  we  can  learn  chromatin  state  models  to  generate               

the  segment  of  chromatin  by  the  command   LearnModel .  After  using  the  ChromHMM              

command,  it  will  automatically  output  the  file  as  a  website.  If  the  visualization  of  the                 

output   file   is   needed,   use   the   IGV   website   to   get   the   visualization   figures.   

1.4. Similarity   Network   Fusion   (SNF)   
Similarity  Network  Fusion  (SNF)  is  a  method  that  can  fuse  two  similarity              

networks,  making  the  information  from  different  data  types  shared  (Bo  Wang  et  al.,               

2014).  SNF  combines  two  networks  into  one  network,  showing  every  aspect  of  the               

data.  Also,  SNF  provides  a  way  that  can  integrate  different  data  types.  We  can  use  the                  

SNF  method  in  five  steps.  First,  we  collect  two  or  more  original  data  from  various                 

data  types.  Second,  we  need  to  transform  the  original  data  into  similarity  matrices.               

Third,  the  similarity  matrices  are  transferred  into  similarity  networks.  Fourth,  we  can              

calculate  by  nonlinear  method  and  do  iterations  to  update  the  networks.  Finally,  we               

can  get  the  fused  network  after  iterations.   SNFtool  (Bo  Wang  et  al.,  2014)  is  applied                 

to   combine   networks   quickly.   We   compile    SNFtool    from   the   source   of   the   package.   

1.5. Integration   of   different   types   of   data   
In  the  past,  different  genome-wide  sequencing  information,  Hi-C,  RNA-Seq,           

and   ChIP-Seq,   was   integrated   into   several   ways.     

First,  the  Hi-C  data  and  RNA-seq  data  are  integrated  for  observing  the  variety               

during  mammalian  spermatogenesis.  The  TAD  boundaries  are  also  checked  by            

combining  the  value  CTCF  of  ChIP-Seq  data.  The  ChIP-Seq  data  provided  the              

information  of  CTCF,  when  the  information  of  TAD  and  CTCF  values  are  checked               

together,  they  become  the  integration  of  two  data.  The  integration  finally  implies  that               

TAD  maintenance  may  be  related  to  the  stages  of  mitosis  or  meiosis  (Luo  et  al.,                 

2020).     

Also,  the  accessibility  of  the  chromatin  is  related  to  CTCF  binding,  using  the               

Hi-C  data,  ChIP-Seq  data  and  RNA-Seq  to  check  the  value  individually  to  get  the                

integration,  and  the  integration  of  data  implies  that  CTCF  bindings  are  accessible  in               

T-cell   but   inaccessible   in   T-ALL    (Kloetgen   et   al.,   2020).     

The  transcription  factor  binding  sites  in  3D  space  are  identified  by  the  Hi-C               

data  and  ChIP-Seq  data,  which  is  decided  by  whether  the  gene  is  nearby  or  not  near                  

the  ChIP-Seq  peak.  When  these  two  data  are  checked  together,  the  integration  of  data                
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is  produced.  The  integration  method  also  characterizes  the  chromatin  linkage  (Lan  et              

al.,   2012).   
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2. Methods   
2.1. Overview   

We  use  Hi-C  datasets  in  two  cell  lines:  GM06990  (Lieberman-Aiden  et  al.,             

2009)  and  GM12878  (Rao  et  al.,  2014).  First,  we  need  an  input  of  a  sparse  matrix  or                   

matrix.  Second,  we  do  the  KR  normalization  processing  and  then  get  the  correlation               

matrix  of  the  matrix.  Then,  we  perform  the  PCA  method  on  the  Hi-C  correlation                

matrix  and  use  the  eigenvector  of  the  first  principal  component  to  decide  whether  a                

genome  region  is  compartment   A  or   B   based  on  its  value  as  positive  or  negative                 

respectively.     

In  addition,  we  use  ChIP-Seq  data  and  Hi-C  data  to  be  networks.  We  use  the                 

Louvain  and  the  Leiden  algorithms  to  cluster  Hi-C  and  ChIP-Seq  networks,             

respectively.  Plus,  we  introduce  the  adding  function  and  the  SNF  method  to  combine               

Hi-C  and  ChIP-Seq  networks.  Finally,  we  use  the  Louvain  and  Leiden  methods  to               

cluster   the   fused   network.   The   workflow   of   our   process   is   in   Figure   3.   
  

  

  
5   

DOI:10.6814/NCCU202101389

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y



  

Figure  3.   The  workflow  of  our  process.  We  use  the  PCA  method  to  divide  the                 

correlation  matrix  of  Hi-C  datasets  into  compartments   A  and   B.  We  also  transform  the                

Hi-C  and  ChIP-Seq  correlation  matrix  to  networks.  Then,  we  use  two  ways,  adding               

function  and  SNF  method,  to  combine  those  two  networks  into  one.  Finally,  we  use                

Louvain  and  Leiden  methods  to  cluster  Hi-C,  ChIP-Seq  and  fused  networks             

individually.     

2.2. Data   Sets   

2.2.1. Hi-C   

We   chose   two   datasets   to   analyze.   The   first   dataset,   whose   cell   line   is  

GM06990,   was   produced   in   2009,   Aiden2009   (Lieberman-Aiden   et   al.,   2009).   It   is   

publically   available   at   

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18199 .   We   use   the   

GSE18199_binned_heatmaps    and   choose   100KB   and   1MB   resolution.   

The   second   dataset,   whose   cell   line   is   GM12878,   was   produced   in   2014,  

Rao2014   (Rao   et   al.,   2014).   It   is   publically   available   at   

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63 .   We   use   the   

GSE63525_combined_intrachromosal_contact_matrices    and   choose   25KB,   10KB,   

and   1KB   resolution.   

2.2.2. ChIP-Seq   

We   download   ENCODE   Histone   ChIP-Seq   of   cell   line   GM12878   with   

genome   version   hg19.   It   is   publically   available   at   

https://www.encodeproject.org/experiments/ENCSR057BWO/ .   We   analyze   11   targets   

which   are   H3K36me3 、 H3K27me3 、 H3K9me3 、 H4K20me1 、 H2AFZ 、 H3K27ac 

、 H3K4me1 、 H3K4me2 、 H3K4me3 、 H3K79me2   and   H3K9ac.   

2.3. Hi-C   Contact   Matrix   preprocessing   

There  are  usually  two  types  of  raw  Hi-C  data,  so  the  initial  process  converts                

raw   Hi-C   data   to   a    n   x   n    matrix.     

1) Typical   contact   matrix:     The   matrix   preprocessing   varies   from   data   to   data.   If   
the   input   data   is   a    n   x   n    list,   using   the   ‘ matrix ’   function   to   convert   it   to   a   
matrix   (Lieberman-Aiden   et   al.,   2009).   When   we   are   sure   that   it   is   a   matrix   
format,   we   finish   the   matrix   preprocessing.   

2) Sparse   matrix:     Input   Hi-C   map   could   be   a   sparse   matrix   (Rao   et   al.,   2014).   We   
use   the   function   ‘ sparsematrix ’   in   the    library ( matrix )   to   get   the   data   and   the   
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‘ as.matrix ’   process   to   convert   the   sparse   matrix   to   a   typical   matrix.   The   header   
option   should   be   turned   on   during   parse   if   the   file’s   first   row   is   a   header.   

2.3.1. Knight-Ruiz   (KR)   normalization   processing   
We  usually  use  Hi-C  data  by  using  the   Observed/Expected  file  to  deal  with  the                

Hi-C  bias.  But,  unfortunately,  there  is  no  corresponding   Observed/Expected  file  in             

Rao2014  released  data  (Rao  et  al.,  2014),  so  we  perform  the  following  KR               

normalization   steps   according   to   the   procedure   (Rao   et   al.,   2014).     

The   format   of   the    RAWobserved    file   is   as   following:     

                                .RAWobserved :   loci1    loci2    rawScore                                              (1)   
  

The  index  of  the  observed  score  is  defined  as  dividing  the  specified  resolution  (i.e.,                

25000)   and   then   plus   one   to   the   loci1   and   loci1   (equation   2).   

          index1   =   loci1/resolution+1   
          index2   =   loci2/resolution+1                    (2)   
  

Then,  we  can  extract  the  KR  normalized  score  KR1  and  KR2  from   . KRnorm   file                

using   above   index1   and   index2,   respectively   (equation   3).   

          KR1   =   entry[index1]   
          KR2   =   entry[index2]         (3)   

We  can  calculate  a   score obser   as  rawScore  (the  third  line)  in   RAWobserved   to  be                

divided   by   the   product   of   KR1   and   KR2     (equation   4).   

  score obser    =    rawScore/(KR1*KR2)                                         (4)   
The  index  of  the  expected  score,   index expect ,  is  defined  as  equation  (5).  Then,  we  can                 

extract  an  expected  score,   score expect ,  using   index expect   to  access  the   KRexpected  file              

(equation  6).  Finally,  a  normalized  score  is  defined  as  the  ratio  between   score obser   and                

score expect    (equation   7).   

              index expect    =   (loci2   -   loci1)/resolution+1                                                  (5)   

          score expect    =   entry[ index expect ]                                                (6)   

                       normalized   score   =    score obser / score expect                                               (7)   

  

2.4. ChIP-Seq   binning   
We  analyzed  11  ChIP-Seq  targets,  which  are  H3K36me3 、 H3K27me3 、        

H3K9me3 、 H4K20me1 、 H2AFZ 、 H3K27ac 、 H3K4me1 、 H3K4me2 、 H3K4me3 

、 H3K79me2  and  H3K9ac.  We  chose  the   ‘.bed’  filename  extension  and  split  every              
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target  by  chromosome.  Taking  chromosome  14  as  an  example,  we  split  11  targets  into                

several  bins  at  25KB  resolution.  We  define  bins  to  start  at  0  and  increase  by  25000.                  

Since  the  data  could  begin  with  one  bin  and  end  at  another  bin,  we  deal  with  this                   

situation  using  the  weighted  average  (Figure  4).   Bin  location  is  the  bin  size  we                

defined.   Overlap  length  is  the  segment  in  which  the  bin  overlaps  the  ChIP-Seq  peak.                

The  number  above  represents  the  overlap  length  of  each  element.  We  calculated  the               

peak  score  of  the  bin  by  the  product  of  length  and  score  of  every  segment  and  divided                   

the  result  by  25 k  to  get  the  final  score.  Taking  bin830  (bin  location  =  20750 k )  as  an                   

example,  its  overlap  lengths  of  ChIP-Seq  peak100  and  peak101  are  5000  and  10000,               

respectively.  Therefore,  its  peak  score  is  80  (=  (5000*100+10000*150)/25000).           

Hence,  when  we  got  the  score  of  bins  of  eleven  targets,  we  could  merge  them  into  a                   

matrix  where  row  and  column  represent  bin  instance  and  ChIP-Seq  peak  score,              

respectively.   

  
Figure  4.   Quantify  the  ChIP-Seq  of  the  bin  using  a  weighted  average.  ChIP-Seq  peak                

is   the   simulation   of   the    ‘.bed’    data   with   start,   end,   and   score.   

  

However,  the  result  of  the  ChIP-Seq  binning  has  an   NA  value,  so  we  remove                

NA .  Also,  we  find  the  value  of  the  ChIP-Seq  binning  removed   NA  has  a  gap  between                  

them,   so   we   use   the   scale   function   to   normalize   the   value.   

2.5. Correlation   Matrix   

We  calculate  the  correlation  of  the  normalized  data  in  both  Hi-C  data  and               

ChIP-Seq   data.     

In  Hi-C  data,  we  obtain  more  precise  information.  During  this  phase,  we  need               

to  check  the  variance  not  equal  to  0  by  column  using   which  and   apply  function  in   R  at                    

first,  then  using  the   Pearson  correlation   to  calculate  for  all  variables.  However,  there               

is  a  problem  with  the  result  after  operating  the  steps  above.  After  removing  the                
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columns  whose  variance  is  equal  to  0,  the  bin  index  of  the  raw  data  would  be  reset                   

and  started  by  1.  Hence,  we  need  to  recover  the  bin  index  manually  to  make  sure  the                   

bin   index   and   the   correlation   value   of   the   bins.     

In  ChIP-Seq  data,  we  have  already  got  the  score  of  every  bin  we  set  up  in  11                   

ChIP-Seq  targets.  We  need  to  merge  11  marks  to  one  matrix  and  then  calculate  the                 

correlation  matrix  by  row,  representing  the  correlation  of  every  bin  in  terms  of  the                

ChIP-Seq   pattern.     

2.6. Principal   Component   Analysis   (PCA)   

Principal  Component  Analysis  (PCA)  effectively  reduces  dataset  dimensions          

while  keeping  spatial  characteristics  as  much  as  possible.  We  can  use  the  PCA  method                

to  get  the  eigenvectors  of  the  correlation  matrix  from  the  above  section.  Then,  we  can                 

specify  the   A  or   B  compartment  of  the  genome  region  based  on  the  sign  of  its                  

eigenvalue,  positive  for   A  and  negative  for  B .   A  compartment  is  usually  gene-rich  and                

transcriptionally  active.  In  contrast,  the   B  compartment  is  usually  gene-poor  and             

transcriptionally   silent   (Lieberman-Aiden   et   al.,   2009).    

In  the  past,  the  input  correlation  matrix  was  in  100KB  resolution,  whose  file               

size  is  around  one  hundred  kilobytes  (KB),  the  speed  of  running  PCA  is  in  a  minute                  

(Lieberman-Aiden  et  al.,  2009).  However,  the  input  of  a  25KB  resolution  matrix  is               

around  three  gigabytes  (GB),  then  the  speed  of  running  PCA  is  over  hours.  As  a                 

result,   it   can   get   a   more   precise   contact   pattern   of   chromosomes   (Rao   et   al.,   2014).   

2.7. Network   transform   
1) Hi-C   to   a   network:   

We  use  data  in  three  resolutions:  100KB  and  1MB  of  Aiden2009,  and  25KB  of                

Rao2014.  We  transform  a  correlation  matrix  as  a  network  graph  in  which  a  node  is  a                  

bin  of  the  matrix,  and  an  edge  weight  is  a  similarity  between  two  end  bins.  We                  

calculate   similarity   in   three   ways:   

a) Hi-C  network  similarity  1:  We  use  Hi-C  normalized  contact  score  to  be              

an   edge   weight.   

b) Hi-C  network  similarity  2:  We  use  the  correlation  of  two  bins  as  their               

connected   edge   weight.   

c) Hi-C  network  similarity  3:  The  network  degree  might  be  negative  since             

the  correlation  value  ranges  from  -1  to  1.  Because  of  the  difficulty  of               

the  analysis,  we  introduce  the  weighted  correlation  network  analysis  to            
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solve  the  problem.  We  use  signed  similarity  to  transform  the            

correlation   value:     

 .5 .5cor(x , )Sij
signed = 0 + 0 i xj  

where   and   represent  nodes  in  the  network.  Due  to  the   xi   xj          

transformation  of  the  signed  similarity,  the  correlation  value  will  be            

positive,  which  corresponds  to  the  network  input  should  be  positive  of             

the  Louvain  method.  When  using  the  weighted  correlation  network           

analysis,  the  origin  correlation  value  is  between  -1  and  1,  and  the  new               

correlation  value  is  between  0  and  1.  If  the  new  correlation  value  is               

between  0  and  0.5,  then  it  is  negative  originally.  If  the  new  correlation               

value  is  between  0.5  and  1,  then  it  is  positive  originally.  Using  the               

value  0.5,  we  can  shift  the  correlation  value  to  get  all  positive  values  to                

do   the   next   step.   

2) ChIP-Seq   to   a   network:   
After  getting  the  signed  similarity  correlation  value  matrix,  we  model  every             

bin   to   be   a   node   and   the   correlation   value   to   be   edge   weight.     

2.8. Hi-C   and   ChIP-Seq   Network   fusion   

Some  existing  methods  can  develop  genome  segmentation  by  DNA           

interaction.  The  Hi-C  data  are  analyzed  by  the  PCA  method,  and  then  the               

eigenvectors  of  the  first  principle  component  are  defined  as  compartment   A  and   B ,               

where  the  value  of  the   A  loci  is  more  significant  than  0.  Otherwise,  it  is   B                  

(Lieberman-Aiden  et  al.,  2009).  The  ChIP-Seq  data  are  analyzed  by  the  hidden              

Markov  model  (HMM)  and  are  captured  nucleosome-level  information  and  identified            

domain-level  states  (Eugenio  Marco  et  al.,  2017).  Markov  Clustering  implements  the             

Hi-C  data  in  human  cells  to  segregate  the  regions  into  more  detailed  clusters  inside                

the  affluent  areas  (Lin  Liu  et  al.,  2012).  Developing  genome  segmentation  usually              

uses  Hi-C  data  or  ChIP-Seq  data.  What  we  want  to  do  is  use  both  of  them  to  get  more                     

precise  segments.  We  will  try  to  combine  these  two  different  data  types  by  the  adding                 

function   and   SNF.     

The  adding  function  would  add  two  matrices,   X  and   Y,  together  to  be  a  matrix                 

Z ,  that  is,   Z i,j   =  X i,j  +   Y i,j,  which  is   Z i,j ,   X i,j ,   and   Y i,j   are  scores  in  the  i th  row  and   j th                        

column   of   matrices    X ,    Y    and    Z .   
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We  can  use  the  SNF  method  to  combine  ChIP-Seq  and  Hi-C  data  (Bo  Wang  et                 

al.,  2014).  During  the  step  that  changes  the  matrix,  the  processed  Hi-C  and  ChIP-Seq                

data  belong  to  the  signed  similarity  correlation  matrix.  We  take  the   1-signed  similarity               

correlation  value  to  be  the  distance  matrix  of  two  datasets.  Also,  the  parameters  of  the                 

function   affinityMatrix   we  chose  are  the  default,  which  is  followed  by  empirical  rule.               

After  getting  the  distance  matrix,  we  can  use  the  function   affinityMatrix  to  construct  a                

similarity  network.  Next,  when  we  successfully  acquire  the  similarity  networks  by             

Hi-C  and  ChIP-Seq  data,  we  can  use  the  function  SNF  to  get  the  fused  similarity                 

network   representing   the   combination   of   Hi-C   and   ChIP-Seq   information.   

2.9. Network   clustering   
After  network  transform  or  fusion,  we  use  the  Louvain  method  in   Python  and               

Leiden   in    Java    to   cluster   networks.   

2.9.1. Louvain   method   

The  Louvain  method  is  a  powerful  method  of  community  detection.  It  is  the               

optimization  of  modularity.  It  decomposes  the  network  into  subunits  or  communities;             

the  more  closely  connected  parts  can  be  regarded  as  a  community  and  the  relatively                

sparse  connection  between  communities.  The  Louvain  method  assumes  every  node  to             

be  a  community  at  first.  Then,  it  calculates  the  maximum  modularity  of  each  node  and                 

its  neighboring  nodes.  Then  the  following  step  measures  the  modularity  of  adding  the               

node  to  the  community  of  its  adjacent  nodes.  Finally,  it  chooses  the  node  that                

maximizes  the  modularity  value  and  joins  its  community  until  no  more  changes  occur               

(Blondel  et  al.,  2008).  We  have  compared  another  popular  clustering  algorithm,  smart              

local  moving  (SLM)  (Waltman  et  al.,  2013),  with  Louvain.  We  find  that  Louvain               

gives   better   results   and   is   easier   to   implement.     

We  use  the   best_partition   function  from  the  Python  package   community   for             

the  Louvain  algorithm  (Python-louvain,  2010).  The  parameter   resolution  (default   =   1)             

affects  the  number  of  the  recovered  clusters.  When  the   resolution  is  smaller,  every               

group  recovers  minor  data  points,  getting  more  clusters.  On  the  contrary,  when  the               

resolution  is  larger,  every  cluster  recovers  massive  data  points,  resulting  in  fewer              

clusters.  We  adjust  resolution  when  the  number  of  groups  is  too  big.  Therefore,  we                

expect  the  result  of  the  Louvain  method  is  around  two,  which  might  correlate  with                

two   compartments   of   the   PCA   method.   
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2.9.2. Leiden   method   

The  Leiden  method  is  more  efficient  than  the  Louvain  method  for  community              

detection  (Traag  et  al.,  2019).  It  improves  the  disadvantages  of  the  Louvain  method.               

For  example,  two  nodes  in  the  same  cluster  may  not  have  an  edge  between  them,  and                  

the  accuracy  of  community  detection  may  have  limitations.  Furthermore,  the  runtime             

of   the   Leiden   method   is   faster   than   the   Louvain   method.   

We  apply  this  method  using  the  Java  package   nl.cwts.networkanalysis   from            

the  Github  resource  (CWTSLeiden,  2020).  After  compiling  the  resource  in  Github,  we              

can  get  the   RunNetworkClustering  tool  to  apply  the  Leiden  method  to  our  data.  The                

resolution  dominates  the  fineness  of  the  clustering,  which  means  it  controls  the              

communities  detected.  When  the   resolution  is  smaller,  it  results  in  fewer  clusters.  On               

the  contrary,  when  the  resolution  is  larger,  it  causes  more  clusters.  We  usually  use  the                 

default  resolution  (default   =   1),  which  can  provide  better  clustering  results.  We  expect               

the  result  of  the  Leiden  method  is  around  two,  which  might  correlate  with  two                

compartments   of   the   PCA   method.     
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3. Results   
3.1. A/B   compartment   reproducibility   

3.1.1. KR   normalization   effect   
Using  the  data  given  by  the  paper  (Lieberman-Aiden  et  al.,  2009),  we  try  to                

figure  out  whether  the  result  will  be  different  with  or  without  KR  normalization.  First,                

we  use  the  eigenvectors  given  by  the  paper  to  draw  the  reference  (Figure  5a).  We  find                  

that  it  is  sure  that  the  way  to  mark  the  diagram  will  get  the  same  chart  (Figure  5c,                    

Lieberman-Aiden  et  al.,  2009).  Then  we  use  the  contact  matrix  given  by  the  article  to                

draw  two  graphs.  Figures  5b  and  5c  show  without  and  with  KR  normalization,               

respectively.  We  conclude  that  we  need  to  do  KR  normalization  to  get  the  same  graph                 

as  the  paper.  We  also  use  the  KR  normalization  and  get  the  A/B  compartment  in                 

100KB  of  Aiden2009  (Figure  5d)  and  25KB  of  Rao2014  (Figure  6),  finding  that  the                

KR   normalization   is   essential   to   reproduce   a   similar   segment   in   different   resolutions.   
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Figure  5.   The  result  of  applying  PCA  on  chromosome  14  of  Aiden2009.  (a)  The                

eigenvectors  are  given  by  the  paper  (Lieberman-Aiden  et  al.,  2009)  in  1MB              

resolution.  (b)  We  apply  PCA  on  non-normalized  data  to  get  the  eigenvector  in  1MB                

resolution.  (c)  We  use  PCA  on  KR  normalization  data  in  1MB  resolution.  (d)  We                

apply   PCA   on   KR   normalization   data   in   100KB   resolution.   

  

Figure  6.   We  apply  PCA  on  KR  normalization  data  in  the  25KB  resolution  of                

Rao2014.     

  

3.1.2. The   resolution   influence   the   runtime     
After  testing  two  different  datasets,  we  record  the  file  size  and  runtime  (Table               

1).  At  high  resolution,  which  is  1KB,  the  file  size  sparse  matrix  is  too  big  to  become  a                    

matrix.  At  low  resolution,  which  is  1MB,  the  file  size  of  the  matrix  is  relatively  small,                  

and   its   runtime   is   relatively   fast.   
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Table   1.    The   results   of   runtime   at   different   resolutions   and   datasets.   The   sparse/matrix   

represents   the   file   size   of   the   sparse   matrix   and   matrix   separately.   

  

  

3.1.3. The   explanation   proportion   of   PCA   

We  usually  use  the  PCA  method  to  find  “an  index”  to  represent  the  dataset,  so                 

we  only  keep  the  first  principle  component.  We  calculate  the  variance  by  the  first                

principle  component  and  then  define  its  proportion  as  the  variance  divided  by  the  sum                

of  variance.  Thus,  we  calculate  the  cumulative  ratio  of  the  first   k   principal               

components,  representing  the  percentage  of  the  whole  data  explained  based  on  the              

first   k  components.  For   k  =  1,  it  will  help  us  determine  whether  only  using  the  first                   

principal  component  is  suitable  or  not.  The  variance  of  the  first  principle  component               

at  100KB  and  1MB  resolutions  are  higher  than  other  principle  components  of              

Aiden2009  (Figure  7).  We  find  that  the  first  principal  component  at  1MB  resolution               

can  explain  54%  of  the  whole  dataset  (Figure  7a).  However,  the  first  principal               

component  at  100KB  can  explain  only  around  5%  of  the  entire  dataset  (Figure  7b).                

Also,  the  first  principal  component  of  Rao2014  at  25KB  can  explain  44%  of  the                

whole  dataset  (Figure  7c).  The  accurate  number  of  the  cumulative  proportion  in             

different   resolutions   is   in   Table   2.   

Table  2.   The  cumulative  proportion  of  PC1  in  resolutions:  1MB,  100KB  of              

Aiden2009,   and   25KB   of   Rao2014.   

  

  
16   

Data   set   Lieber   et   al.(2009)   Rao   et   al.(2014)   

Resolution   1MB   100KB   25KB   10KB   1KB   

sparse/   
matrix   

NA/164K   NA/6.18M   133M/107M   317M/418M   1.3G/run   out   
of   memory   

Runtime(s)   6.44   13.74   150.37   2875.39   NA   

Data   set   Lieber   et   al.(2009)   Rao   et   al.(2014)   

Resolution   1MB   100KB   25KB   

Cumulative   prop.(%)   53.96   4.78   43.76   
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Figure  7.   The  cumulative  proportion  of  the  first  principle  component  at  1MB  (a)  and                

100KB  (b)  resolution  of  Aiden2009  and  25KB  (c)  resolution  of  Rao2014.  We  draw               

the  variance  and  principal  component  figures  on  the  left  and  the  cumulative              

proportion   and   principal   component   on   the   right.   
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3.2. Hi-C   network   cluster   

3.2.1. Louvain   cluster   of   Hi-C   network   

We  find  that  the  best  partition  is  given  by  the  default  parameter,  which  is  one.                 

After  clustering  the  datasets,  we  get  two  clusters  of  Aiden2009  (Figure  8b,  8c).  Also,                

we  get  three  groups  of  0,1,2  of  Rao2014  (Figure  8e).  During  this  phase,  the  raw                 

dataset  of  Rao2014  has  some   NA   value,  so  the  figure  of  the  result  has  some  blank.  We                   

observe  the  eigenvalue  result  of  PCA,  then  adjust  the  clusters.  If  the  result  of  the                 

Louvain  method  is  equal  to  two,  then  we  keep  the  result  (Figure  8b,  8c).  If  the  result                   

of  the  Louvain  method  is  around  two  but  not  identical  to  two,  we  merge  the  cluster  to                   

compare  with  the  result  of  the  PCA  method  (Figure  8d).  We  combine  the  cluster  0  and                  

2  to  be  one  cluster  and  keep  the  cluster  1  (Figure  8e).  We  finally  get  a  similar  trend  of                     

the   PCA   method   (Figure   8).     
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Figure  8.   Hi-C  network sim1  using  the  Louvain  method  on  chromosome  14  in  different               

resolutions  compared  with  the  PCA  method  result.  (a)  The  paper  gives  the              

eigenvectors  in  1MB  resolution  (Lieberman-Aiden  et  al.,  2009).  (b)  We  use  the              

Louvain  method  in  the  1MB  resolution  of  Aiden2009.  (c)  We  use  the  Louvain  method                

in  the  100KB  resolution  of  Aiden2009.  (d)  The  Juicer  gives  the  eigenvectors  of               

Rao2014.  (e)  We  use  the  Louvain  method  in  the  25KB  resolution  of  Rao2014.  We                

adjust  the  clusters  to  be  two  clusters  to  compare  with  the  eigenvalues  of  the                

eigenvectors.   

  

We  are  also  interested  in  the  matrix  of  the  input.  We  test  three  situations  using                 

the  Louvain  method  to  determine  the  matrix.  The  first  matrix  is  the  normalized  matrix                

after  doing  matrix  preprocessing  (Figure  9a),  the  second  matrix  is  the  correlation              

matrix  of  the  normalized  matrix  after  doing  matrix  preprocessing  (Figure  9b),  and  the               

last  matrix  is  the  signed  similarity  correlation  matrix  of  the  normalized  matrix  after               

doing  matrix  preprocessing  (Figure  9c).  We  find  that  the  trends  of  these  third  matrices                

are  similar,  and  all  of  them  are  grouped  in  3  clusters.  After  testing  the  different  input                  

matrices,  we  can  choose  the  signed  similarity  correlation  matrix  of  the  normalized              

matrix   after   doing   matrix   preprocessing   to   compare   with   the   ChIP-Seq   data.   
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Figure  9.   Hi-C  network  using  the  Louvain  method  on  chromosome  14  by  different               

input  matrices.  (a)  We  use  the  Louvain  method  in  25KB  resolution  of  the  datasets  of                 

normalized  input  data  of  Rao2014.  (b)  We  use  the  Louvain  method  in  25KB              

resolution  of  the  datasets  of  correlation  of  normalized  input  data  of  Rao2014.  (c)  We                

use  the  Louvain  method  in  25KB  resolution  of  the  datasets  of  signed  similarity               

correlation   of   normalized   input   data   of   Rao2014.   
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Moreover,  we  test  the  Louvain  method  by  giving  different  parameters           

resolution    (Table   2   Louvain   Hi-C).   

Table  3.   The  numbers  of  the  cluster  in  different  resolutions  using  the  Louvain  and                

Leiden   method   in   the   25KB   resolution   of   Rao2014.   

  

  

3.2.2. Cluster   Hi-C   data   by   Leiden   
We  use  the  Hi-C  data  network  to  be  input  and  use  the  Leiden  method  in  Java.                  

We  find  that  the  best  partition  is  given  by  the  parameter   resolution,  which  is  one.                 

After  clustering  the  datasets,  we  get  four  clusters  of  0,1,2  and  3  of  the  datasets  in                  

Rao2014  (Figure  10b).  First,  we  observe  the  eigenvalue  result  of  PCA,  then  adjust  the                

clusters.  Finally,  we  merge  the  group  to  compare  with  the  result  of  the  PCA  method                 

(Figure  10).  We  combine  the  cluster  1,  2  and  3  to  represent  positive  value,  keeping  the                  

cluster   0   representing   negative   value.   

  
22   

DOI:10.6814/NCCU202101389

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y



  

  
Figure  10.   Hi-C  datasets  using  the  Leiden  method  on  chromosome  14.  (a)  The  Juicer                

gives  the  eigenvectors  of  the  datasets  of  Rao2014.  (b)  We  use  the  Leiden  method  in                 

the   25KB   resolution   of   Rao2014.     

  

Moreover,  we  test  the  Leiden  method  by  giving  different  parameters   resolution             

(Table   3   Leiden   Hi-C).   

Also,  we  compare  the  Louvain  and  Leiden  methods  with  their  runtime  in              

different  situations  (Table  4).  We  choose  the  parameter  resolution,  which  results  in  the               

number  of  clusters  closed  to  two,  and  records  two  methods’  runtime.  We  find  that                

although  the  result  of  the  Louvain  and  Leiden  are  pretty  similar,  the  runtime  of  the                 

Leiden   method   is   relatively   shorter   than   the   Louvain   method.   
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Table   4.    The   runtime   of   using   the   Lovain   and   Leiden   method   in   second.   

  

3.2.3. The   consistency   between   network   cluster   and   PCA   

decomposition   
We  use   Pearson  Correlation  to  check  the  consistency  between  PCA            

decomposition  (HiCmatrix,  Figure  11~12)  and  network  clusters  generated  by  the            

Louvain  and  Leiden  method.  If  the  number  of  groups  is  larger  than  two,  we  combine                 

them  into  two  sets  and  compare  the  consistency.  First,  we  compare  the  result  of  the                 

Louvain  method,  and  we  use  three  different  inputs,  which  are  normalized  matrix              

(HiCnetworksim1,  Figure  11),  the  correlation  matrix  of  the  normalized  matrix            

(HiCnetworksim2,  Figure  11),  and  the  signed  similarity  of  the  correlation  matrix  of              

the  normalized  matrix  (HiCnetworksim3,  Figure  11).  We  find  that  the  signed             

similarity  of  the  correlation  matrix  of  the  normalized  matrix  is  slightly  less  than  the                

normalized   matrix,   but   its   correlation   is   still   higher   than   0.85.   

Next,  we  test  the  Leiden  method  in  two  network  similarities:  the  correlation              

matrix  of  the  normalized  matrix  (HiCnetworksim2,  Figure  12)  and  the  signed             

similarity  of  the  correlation  matrix  of  the  normalized  matrix  (HiCnetworksim3,  Figure             

12).  While  network  similarity  1  would  come  out  huge  clusters  (791  clusters),  so  we                

do  not  include  it  into  consistency  checking.  However,  we  find  that  the  signed               

similarity  of  the  correlation  matrix  of  the  normalized  matrix  using  the  Leiden  method               

is   slightly   higher   than   the   Louvain   method.   
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methods   Louvain   Leiden   

HiC.networksim1   37   2   

HiC.networksim2   25   2   

HiC.networksim3   20   1   

ChIP-Seq.network   451   6   

Chip-seq.network   +   remNA   362   5   

Chip-seq.network   +   remNA   +   scale   216   4   

Fusion.network_adding   289   4   

Fusion.network_adding   +   remNA   460   4   

Fusion.network_SNF   220   4   
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Figure  11.   The  cluster  correlation  of  different  Hi-C  networks  using  the  Louvain              

method.   
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Figure  12.   The  cluster  correlation  of  different  Hi-C  networks  using  the  Leiden              

method.   

  

3.3. ChIP-Seq   data   

3.3.1. Cluster   ChIP-Seq   data   by   Louvain   

We  use  the  ChIP-Seq  data  network  to  be  input  and  use  the  Louvain  method  in                 

the  Python  package   community .  We  find  that  the  best  partition  is  given  by  the  default                 

parameter,  which  is  one.  We  check  whether  clusters  of  Louvain  are  consistent  with               

ChIP-Seq  pattern,  that  is,  activation  or  repression  marks  (Table  5)  are  grouped              

together  or  not  based  on  the  Louvain  clusters.  We  use   pheatmap   (R  library)  to  analyze                 

the  ChIP-Seq  network  cluster.  We  find  that  active  marks  and  the  repression  targets               

group  together  separately  (Figure  13a).  We  find  that  removing   NA  is  similar  to  one  of                 

the  original  networks,  making  sense  (Figure  13b).  Finally,  we  find  that  scaling  is  a  bit                 

weird   which   combines   activation   targets   and   repression   targets   together   (Figure   13c).     
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Table   5.    The   role   in   transcription   of   the   histone   modification.  
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Figure  13.   The  pheatmap  results  of  the  ChIP-Seq  network  using  the  Louvain  method.               

(a)  ChIP-Seq  network.  (b)  ChIP-Seq  network  removes   NA .  (c)  ChIP-Seq  network             

removes    NA    and   uses   scale,   where   A   and   B   correspond   to   A/B   compartments.   

  

Since  the  ChIP-Seq  patterns  make  sense,  we  combine  the  clusters  into  two              

clusters  according  to  the   pheatmap  result  (Figure  13).  The  inputs  ChIP-Seq  network              

and  ChIP-Seq  removed   NA  combine  cluster  1  and  3  to  be  positive,  and  cluster  0  and  2                   

to  be  negative  (Figure  14b~c).  The  input  ChIP-Seq  network  removed   NA  and  used               

scale  to  combine  cluster  2  and  3  to  be  positive,  and  cluster  0  and  1  to  be  negative                    

(Figure  14d).  We  find  that  they  have  a  similar  trend  to  the  PCA  method.   Moreover,                 

we  test  the  Louvain  method  by  giving  different  parameters   resolution  (  Louvain  ->               

ChIP-Seq,   Table   3).   
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Figure  14.   ChIP-Seq  data  using  the  Louvain  method  on  chromosome  14  in  25KB               

resolution.  (a)  The  eigenvectors  are  given  by  the  Juicer  (Eigenvector,  2017).  (b)  The               

combined  clusters  of  the  ChIP-Seq  network.  (c)  The  combined  clusters  of  the              

ChIP-Seq  network  removed   NA .  (d)  The  combined  clusters  of  the  ChIP-Seq  network              

removed    NA    and   used   scale.   

3.3.2. Cluster   ChIP-Seq   network   by   Leiden   
We  use  the  ChIP-Seq  data  network  to  be  input  and  use  the  Leiden  method  in                 

Java.  We  find  that  the  best  partition  is  given  by  the  parameter   resolution,  which  is  one.                  

We  also  use  the   pheatmap   function  to  figure  out  whether  the  result  of  clusters  using                 

the  Leiden  method  makes  sense  or  not.  We  also  tested  three  inputs:  ChIP-Seq              

network,  ChIP-Seq  network  removed  NA,  and  ChIP-Seq  network  removed  NA  and             

used  scale  (Figure  15).  We  find  that  the  active  targets  are  together,  and  the  marks  in                  

repression  are  also  together  in  Figure  15a.  Finally,  the  result  is  weird  and  combines                

activation   targets   and   repression   targets   together   (Figure   15c).   
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Figure  15.   The  pheatmap  results  of  the  ChIP-Seq  network  using  the  Leiden  method.              

(a)  ChIP-Seq  network.  (b)  ChIP-Seq  network  removes   NA .  (c)  ChIP-Seq  network             

removes    NA    and   uses   scale,   where   A   and   B   correspond   to   A/B   compartments.   

  

Since  the  ChIP-Seq  patterns  make  sense,  we  combine  the  clusters  into  two              

clusters  according  to  the   pheatmap  result  (Figure  15).  The  inputs  ChIP-Seq  network              

and  ChIP-Seq  removed   NA  combine  cluster  1  and  2  to  be  positive,  and  cluster  0  and  3                   

to  be  negative  (Figure  16b~c).  The  input  ChIP-Seq  network  removed   NA  and  used               

scale  to  combine  cluster  2  and  3  to  be  positive,  and  cluster  0  and  1  to  be  negative                    

(Figure   16d).   We   find   that   they   have   a   similar   trend   to   the   PCA   method.   
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Figure  16.   ChIP-Seq  datasets  using  the  Leiden  method  on  chromosome  14.  (a)  The               

eigenvectors  are  given  by  the  Juicer  (Eigenvector,  2017).  (b)  The  combined  clusters              

of  the  ChIP-Seq  network.  (c)  The  combined  clusters  of  the  ChIP-Seq  network              

removed   NA .  (d)  The  combined  clusters  of  the  ChIP-Seq  network  removed   NA  and               

used   scale.     

  

We  also  compare  the  cluster  correlation  of  ChIP-Seq  data  using  the  Louvain              

and  Leiden  method.  We  find  that  the  PCA  and  ChIP-Seq  data  with  around  0.45                

(Figure  17)  is  lower  than  the  correlation  of  the  PCA  and  Hi-C  data,  whose  values  are                  

about  0.85  (Figure  11~12).  Since  the  correlation  is  lower,  it  means  that  ChIP-Seq  data                

capture   some   different   information   from   Hi-C   data.   

  

Figure  17.   The  correlation  of  the  ChIP-Seq  cluster  results  after  doing  the  Louvain  and                

Leiden   method.     

  

Moreover,  we  test  the  Leiden  method  by  giving  different  parameters   resolution             

(Table   3   Leiden   ChIP-Seq).   
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3.3.3. Further   analysis   of   the   A/B   compartment   

Although  we  can  reproduce  the  A/B  compartment  by  combining  the  result  of              

the  Louvain  or  Leiden  method  to  two  clusters  (Figure  11~12),  we  are  also  interested                

in  whether  the  clusters  could  be  segmented  better.  The  A/B  compartment  can  be               

further  segmented  into  more  subcompartments  (Rao  et  al.,  2014).  Although  the             

runtime  of  the  Leiden  method  is  relatively  shorter  than  the  Louvain  method  (Table  4),                

we  find  that  the  result  using  the  Louvain  method  of   hclust   to  H3K27me3  and                

H3K9me3  is  more  suitable  (Figure  18).  As  a  result,  We  use  our   pheatmap  result  of  the                  

ChIP-Seq  network  removed   NA  using  the  Louvain  method  (Figure  13b)  to  compare              

with  the  subcompartments  (Figure  19).  The  ChIP-Seq  data  patterns  show  that  our              

clusters  0,  1,  2,  3  can  correspond  to  subcompartment  B1,  A1,  B4,  A2  separately.  As  a                  

result,  we  offer  consequences  where  using  the  Louvain  method  to  cluster  can  be  more                

accurate   than   only   segmenting   to   the   A/B   compartment.     

  
Figure  18.  The   hclust  of  the  ChIP-Seq  network  removes   NA .  We  use   log  distance  to                 

show   the   clusters   of   the   Louvain   (a)   and   Leiden   (b)   clearer.   
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Figure   19.    Six   contact   patterns   of   ChIP-Seq   data   (Adapted   from   Rao   et   al.,   2014).   

  

3.4. Correlation   of   Hi-C   clusters   and   ChIP-Seq   clusters   
We  get  clusters  individually  when  we  finish  doing  the  Louvain  method  on  the               

Hi-C  network  and  ChIP-Seq  network.  We  can  use  the  Pearson  correlation  value  to               

figure  out  the  similarity  of  our  results.  The  results  of  the  Pearson  correlations  of  Hi-C                 

clusters  using  the  Louvain  method  by  three  different  input  methods  are  higher  than               

0.86  (Figure  20HiC).  Hence,  we  are  sure  that  we  can  reproduce  the  A  and  B                 

compartments.  On  the  other  hand,  the  Pearson  correlations  of  ChIP-Seq  sets  using  the               

Louvain  method  by  three  different  input  methods  results  are  relatively  low  (Figure              

20ChIPSeq).  Although  the  value  of  ChIP-Seq  is  not  that  high,  it  represents  ChIP-Seq               

data  and  Hi-C  datasets  provide  different  information.  Therefore,  we  can  try  to  fuse               

two   datasets   which   are   Hi-C   and   ChIP-Seq.   
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Figure  20.   The  correlation  of  cluster  results  after  doing  the  Louvain  method.  We               

compare  the  eigenvector  given  by  Juicer  and  Hi-C  data  using  PCA  method  in  25KB                

resolution  to  the  result  of  Hi-C  data  using  three  different  input  methods  and  ChIP-Seq                

data   using   three   other   input   methods.   

  

We  also  use  the  Pearson  correlation  value  to  determine  the  similarity  of  the               

results  using  the  Leiden  method.  As  a  result,  the  numerical  distribution  of  the  Pearson                

correlation   value   is   similar   to   the   result   of   the   Louvain   method   (Figure   21).     
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Figure   21.    The   correlation   of   cluster   results   after   doing   the   Leiden   method.     

  

3.5. Combination   of   ChIP-Seq   and   Hi-C   

After  analyzing  the  Hi-C  datasets  and  ChIP-Seq  data  of  Rao2014,  we  wonder              

whether  the  information  combined  by  these  two  datasets  are  better  segments  or  not.               

Hence,  we  first  add  these  two  datasets  together,  and  then  use  the  Louvain  and  Leiden                 

method  to  cluster.  Next,  we  use  the  SNF  method  and  still  use  the  Louvain  and  Leiden                  

method   to   compare   with   the   way   we   only   add   together.   

We  use  the  Louvain  method  to  compare  the  figures,  which  are  only  ChIP-Seq               

data  and  only  Hi-C  data  (Figure  22).  We  use  Juicebox  software  to  visualize  our  result                 

of  the  Louvain  method.  The  first  track  (PCA.published)  is  the  eigenvectors  produced              

by  Juicer.  The  second  track  (ChIP-Seq.network)  results  from  the  Louvain  clustering             

method  of  ChIP-Seq  data.  The  third  track  (HiC.network sim3 )   results  from  the  Louvain              

method  of  Rao2014.  The  fourth  track  (Fusion_SNF)   results  from  the  Louvain  method              

of  SNF  of  ChIP-Seq  and  Hi-C,  grouping  into  six  clusters.  Finally,  the  last  track                

(Fusion_adding)  results  from  the  Louvain  method  of  ChIP-Seq  and  Hi-C  data  added              

together,   set   into   three   groups.   
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Figure  22.   Genome  segmentation  based  on  PCA  of  HiC  matrix,  ChIP-Seq,  Hi-C  and               

fusion  networks  using  the  Louvain  method  on  chromosome  14:50MB~62MB  in            

25KB  resolution  of  Rao2014  where  white  indicates  missing  data  (NA)  in             

HiC.network.   

  

We  also  use  the  Leiden  method  to  compare  the  figures,  only  ChIP-Seq  data               

and  Hi-C  data  (Figure  23).  The  second  track  (ChIP-Seq.network)  results  from  the              

Leiden  clustering  method  of  ChIP-Seq  data.  The  third  track  (HiC.networksim3)            

results  from  the  Leiden  method  of  Rao2014.  The  fourth  track  (Fusion_SNF)   results              

from  the  Leiden  method  of  SNF  of  ChIP-Seq  and  Hi-C,  grouping  into  three  clusters.                
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Finally,  the  last  track  (Fusion_adding)  results  from  the  Leiden  method  of  ChIP-Seq              

and   Hi-C   data   were   added   together,   set   into   three   groups.   

  
Figure  23.   Genome  segmentation  based  on  PCA  of  HiC  matrix,  ChIP-Seq,  Hi-C  and               

fusion  networks  using  the  Leiden  method  on  chromosome  14:50MB~62MB  in  25KB             

resolution   of   Rao2014   where   white   indicates   missing   data   (NA)   in   HiC.network.   

  

After  acquiring  the  result  of  the  Louvain  and  Leiden  method,  we  find  that  the                

the  eigenvectors  produced  by  Juicer  only  produce  the  information  of  A/B             

compartments,  and  the  ChIP-Seq  network  produce  too  fragmented,  and  the  Hi-C             

network  is  similar  to  eigenvectors  but  not  that  precise.  Our  result  of  adding  function                

performs  the  segments  which  are  almost  affected  by  the  ChIP-Seq  data,  and  the  result                

of  SNF  performs  the  balanced  result  which  contains  the  precision  of  Hi-C  data  and                
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also  more  information  from  ChIP-Seq  data.  Hence,  using  our  SNF  method  can  get  a                

compromise   of   the   Hi-C   data   and   ChIP-Seq   data.   

We  also  test  the  Louvain  and  Leiden  methods  by  giving  different  parameters              

resolution    for   two   fusion   networks   (Fusion.network,   Table   3).     
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4. Discussion   and   Conclusion   
We  provide  a  platform  that  clusters  Hi-C  and  ChIP-Seq  individually.  In  this              

platform,  we  can  use  Hi-C  datasets  to  reproduce  the  result  of  compartments  A  and  B.                 

Furthermore,  we  can  use  ChIP-Seq  data  to  classify  the  role  in  transcription,  which               

belongs  to  activation  or  repression.  On  top  of  that,  we  merge  two  different  data  types                 

to   get   more   information   to   receive   more   references   to   segment   the   genome   better.   

We  try  to  figure  out  the  clusters  produced  by  the  SNF  method  corresponding               

to  which  targets  in  ChIP-Seq,  which  means  the  combined  groups  are  classified  as               

activation   or   repression.   Hence,   the   result   of   the   SNF   method   needs   more   analysis.   
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