B oo x BT AT K
Department of Computer Science

National Chengchi University

FALim

Master’s Thesis

z%”‘ﬁafﬁ] b2 R B R Jfﬂ T p’f\a‘i‘_'ﬁ
Sk (g S P

¥v
B
m)e
"‘I!

Non-Interactive and Designated Verifier Zero-Knowledge Range

Proof Based on Elliptic Curve

g4 Medr #E
#p%fk% = IamE L

:*;j;%]g],ﬁ_,l.g = n

July, 2021

DOI:10.6814/NCCU202101402

s

FOALE R B BRI o RGBT i 2 AT A g e
T NEFAT PR ORATR L A AR RET R RN ALE S
ﬁ@?féiﬁﬁﬁﬁﬁ‘%—“%ﬁ‘iﬁﬁﬁﬁu£i%%%ﬁﬁ%§%@
ﬁ’£E%W@#ﬁﬁ%ﬁ£%—mﬁﬁ@%ﬂaﬁﬂﬂﬁzpijﬁﬁy,g
REHA RN M R RRFUB R B F Vo o ¥ ths 22
EHT&HT OB IFIF LY AT LG o R FEARPF T N F-BREL
BREFFIER RERHIPI P TR IRPANLALL P UEALS £
AL E o

£ AP B B e B

DOI:10.6814/NCCU202101402

2

FAoa @B HEM (zero-knowledge range proof » ZKRP) & - fé 7k enE oo
B (zero-knowledge proof » ZKP) » p* B 7 11 ¢ WM & (prover) IR
W H (verifier) » - BHE TG EE A E - BHEEP - L7 § BIRERREK
o T R F S RBEEFEL AL AR RN - B et T
;u: BB ER 2 R BB ROt o AR R AR FBOT 2RE
7 RAEE ﬁB*F'“ Pl R AR E R o] M Xl F A ZKRP
‘;'ﬂ@;q* DRHAS T K HHAE B PRSI E A A s A AN R A
FACBEPED > EE N - ﬁ&‘p TR FE_F] (designated verifier) #1E sk & B
HP S AoV - Mty WkE K (strong designated verifier) s frp B EP

,-\

Aot kAAL P R 7 %%ﬁ’*i‘a”vﬁ'?m EHFe A g
553?”{‘—}%’ SRR K& im%pﬁ_ﬂ WA BRTEL A KA L aRER 0 ¥ ?”255??3’?‘1(Bz
F’LFRIIIF f)v._”%%”’ % sy %%Epﬁ_jﬂ(m" %m‘k“ NEEREZC YA

FHL A RAL TEP VPR B ER RPN ARV REEY T 2
?uf%:}%ﬁ.&v @_é’ﬂﬁﬁl MREHEERNS T o F by APEH NN KR T E

Bt s 2 fen% 2 EER 0 3 % B] chd 2

BMAES Rrh . BB EEED BT A KES R h ke Rr

DOI:10.6814/NCCU202101402

Abstract

Zero-knowledge range proof (ZKRP) is a kind of particular zero-knowledge proof
which allows a prover to convince a verifier that a secret value is in a specified range
without revealing the actual value. In this thesis, we propose an efficient non-interactive
ZKRP scheme based on elliptic curve. By applying the elliptic curve, our scheme has a
shorter execution time, a smaller key size and a smaller proof size at the same level of
the security strength compared to existing ZKRP schemes. If we apply our ZKRP
scheme to the blockchain, the transaction cost of the cryptocurrency on the blockchain
can be reduced. In addition, we propose a designated verifier ZKRP scheme and a
strong designated verifier ZKRP scheme based on original ZKRP scheme without
adding any extra computation steps during producing proofs. The designated verifier
ZKRP scheme allows the only designated verifier to be able to verify the proof, and the
verifier cannot convince any other third party of the verification result; the strong
designated verifier ZKRP scheme makes any third party cannot verify the proof.
Besides, these ZKRP schemes can be optional and flexible: we can choose a suitable
scheme to produce a ZKRP proof according to the confidentiality of the secret value.
Furthermore, we argue the security proofs of our schemes completely and rigorously so

that our schemes can satisfy necessary security properties.

Keywords: Blockchain, Zero-knowledge range proof, Elliptic curve, Commitment

scheme, Designated verifier proof

DOI:10.6814/NCCU202101402

CONTENTS

R —_——————————————ttrrtiiiE i
e i
AADSEIACE ++++-sserereresemememrerestaseeaetesses s i s e s s e s s sss e b et s s i
CONTENTS -evveeeerreerereremrurersesentteiitte st e ssteseste e st s esbte e sbes e sste s sbesesbae e s besessaeesabessbeeesabesensneens iv
LIST OF FIGURES: -+t ttteteesteestesieiieiitiiiesitesieessie st st sasssasesasesasssassssssssssesssessessasssanssnsssnns Vi
LIST OF TABLES::+++tsseesseesurestesiesiieiiteiittisttesitesitssste st s st sisesssesasesaaessaessasesssesasssanesanesns vii
1 INELOQUCEION «+erereeererrereremememersesesistissesemsssist s 1
1.1 BACKGEOUNM «+++esereeesstnmnesetiese ettt s 1
1.2 [V 0TV URTo) 8 T LT PR UP PP 2
1.3 CONEIIDULIONS -+ e+evereererererensie sttt bbb 2
1.4 Orgaflifatid)V- /P e SCERRRLN - - XD -+ Y e osrenane 3

2 PLElIMINATIES -+++-eererereeeseresrereremesesensesesiatschesetee st th e e ssse st st asb s s s s esses s s see s s s 5
21 NI 18 RN, . R S oo ™ SN Y AN NV N SOORRersmseroen 5
22 Hardness ASSUMPLIONS «+swsessusesessesseriisssiisiitiiiits st 6
23 Elliptic-curve Pedersen COMMItment SCheme -+ eserrrerseuseinesennninninsisieees 6
2.4 Elliptic-curve Diffie=Hellman Key Exchange (ECDH):«-eoeeeeeseseeiinncnne 8
25 Trapdoor COMMItMENt SCREME «++++eseseresetemsesiinniitit i 9
26 EIliptic-CUIVE EL Proof «-e e esseesesseeisiiieiisisisit i 11
2.6.1 Definitions and Security MOdels: -+ werererieiiriieiiniiniiiisis 11
2.6.2 EC-EL Proof PrOtOCO| -+ - ssreeeeeserrreerssiureeisiirieisitieeeesiieeeseiieeeeneee e esneee e 13
2.6.3 SECUNity DESCHIPLIONS: s +sesessssssrssutssssissistsissisttisi e 14

27 Elliptic-Curve SQR Pro0f e, 18
2.7.1 Definitions and Security MOdels: -+ wwerrrieiimiieiiciininiiiiii s 19
2.7.2 EC-SQR Proof ProtoCol - s sessesessssusmessiiiiiiiiiiiisiiiii 21
2.7.3 SECUNity DESCHIPLIONS s esessssssrssstsssimstisisissisisi st 22

2.8 Zero-Knowledge Proof with Commitment Secret (ZKPCS) ewereeereeesnneinnnees 24

iv

DOI:10.6814/NCCU202101402

3 Non-Interactive EC-ZKRP SCheme -+ steeeeerrenmimmiiiiiiiiaeane 27

31 Definitions and SECUNity MOTEIS -+ rrssseeevssserrssmrrisrisisesiisseisesssie i 27
3.2 Non-Interactive EC-ZIKRP ProOtOCO| s+« sseereersrrmrmmrmiirieniiiiieiiiie i esneneen 28
3.3 SECUILY DESCIIPLIONS -++++rressersssseessseessssesssssssssssastssssss s 33

TN T 070 1 o= o 18T o TP 33
3.3.2 SOUNTNESS -+ rvvereveerrrermmmmmimsiieiieiie ittt ettt sab e sb e bbb sbe e e sra s sabeebe e 34
3.3.3 ZEIO-KNOWIBAGE «+rs+vreessserssseenssssenssssessssssiss st 36

4 Non-Interactive Designated Verifier EC-ZKRP Protocol -« -eseeereresmennnininncnnnne 41

4.1 Designated Verifier EC-ZKRP SCREME -+++vevevrieieiiniiniiiniiiiiiii e, a1
411 Definitions and SECUFItY MOGEIS: - -+ rerssseriimmrsinsersiseniisesnisesssisesneesniones 41
4.1.2 Designated Verifier EC-ZKRP Protocol- s sweserseiessisieiniciiiisiieinee, 43
4.1.3 Security Description: Designated Verifier - eierienrrsssrsesseeennas 45

4.2 Strong Designated Verifier EC-ZKRP SCheme: -« weessseremsiunrininnisininins 49
421 Definitions and SECUFItY MOGEIS:«swssserrsesserssssessissiersssernisesiisnieniiesneesniones 49
4.2.2 Strong Designated Verifier EC-ZKRP Protocol -« eeeereeermncnnnnninnnne. 51
4.2.3 Security Description: Strong Designated Verifier - ..o 53

B EFICIENCY ANGIYSIS:+trersrersnseerssseeesssssessssstssssssasssssessssssest s esssssengssstinsssesbessesssssssensssesess 57

6 APPICALION SCENATTOS-++++rrsrsersssersisssirsssesnssstiiist st et 60

7 CONCIUSIONS «+++errerereseseseserrerertacheresshnmnetstaesesesseseteeiesessasesestsebeseseasbeesteesetesseseaeecaesesennssacs 62

REFEIEIICE ++++++++rerereresesesrereesesthesessanesestaesetesessestaeseseteses st tseseseseasb et eseeeb et et et eataebebeb et st eataetetesnas 63

\

DOI:10.6814/NCCU202101402

LIST OF FIGURES

Figure 1: Protocol to Produce EC-ZKRP Proof........cccceeviiiiiiiiiiiiiiiiiecieceeeiees 32

Figure 2: Protocol to Verify EC-ZKRP Proofccoovuiiiviiiiiiiiiiieciecceccneeesieee 32

Figure 3: Proof Games G1,G2 of Theorem 5...........cccoooviiiiiiiiiiiiniiienieeneeenieeee 37

Figure 4: Schematic Diagram of ZKRP Application Scenarios.......c.ccceeveueeeriveeiniveenns 61
Vi

DOI:10.6814/NCCU202101402

LIST OF TABLES

Table 1: Notations and DeESCIIPLIONSccevveeeririeeiiieeeiieesiiee e e sieeesreeesreeesreeesneeesans 5

Table 2: Simulator ELS and Oracle HOcccoeviieiiinieiiieeeeeeeeee e 17

Table 3: Comparison of Our ZKRP Scheme with Other Related Schemes.................. 58
vii

DOI:10.6814/NCCU202101402

1 Introduction

1.1 Background

Blockchain was created by Satoshi Nakamoto [22] in 2008 to serve as the public
ledger of the cryptocurrency, Bitcoin, which is the first decentralized cryptocurrency
that solves the double-spending problem without a trusted authority or central server.
Since the release of Bitcoin, many other decentralized cryptocurrencies have also been
created, such as Ether [2], Monero [27], and Zerocoin [20].

Zero-knowledge proof (ZKP) [11] is a method by which a user can prove to other
people that he/she knows a secret without revealing any information of the secret. In
cryptocurrency, ZKP can provide users with a higher level of privacy during
transactions. For example, users on blockchain can use ZKP to verify the transactions
but keep the identities of sender and receiver secret [29][30]; users use ZKP to enforce

the correctness of the smart contract execution [16][19].

Zero-knowledge range proof (ZKRP) is a kind of particular ZKP, which allows a
prover to convince a verifier that a secret value is in a specified range without revealing
the actual value. For example, a buyer can prove that something is affordable for
him/her without revealing the balance amount [14]; a payer can prove that a payment
amount is in the limited range without revealing the exact amount [14]; a user can prove

that he/she is exactly a country without revealing the exact location [14].

Many ZKRP schemes have been proposed in the literatures: the first ZKRP scheme
was proposed by Boudot [1] in 2001, which is based on the Fujisaki-Okamoto
commitment scheme [9] and is constructed with two proofs: the proof that two
commitments hide the same secret (EL proof) and the proof that a committed number
is a square (SQR proof). The EL proof can convince other people that two commitment
hide the same secret value without revealing the secret value, while SQR proof can
convince other people that a commitment hides a square number y = x2, where x €
Z, without revealing x or y. Pang et al. [24] applied the batch proof and verification
to construct a more efficient ZKRP scheme in 2010. Chaabouni et al. [6] replaced the
random oracle model with a common reference string (CRS) model to construct a new
non-interactive ZKRP scheme in 2012. Biinz et al. [3] proposed a non-interactive ZKRP

scheme without a trusted setup in 2017: the Bulletproofs. Koens et al. [14] improved

1

DOI:10.6814/NCCU202101402

the scheme proposed by Peng et al. [24] to construct a non-interactive ZKRP scheme
and applied it to the smart contract in Ethereum in 2017. Tsai et al. [28] improved the
scheme proposed by Boudot [1] and the scheme proposed by Pang et al. [24] to

construct a new non-interactive ZKRP scheme in 2019.

1.2 Motivation

We analyze the scheme proposed by Boudot [1], the scheme proposed by Pang et
al. [24], and the scheme proposed by Tsai et al. [28]. Under 1024-bit security parameter
size, the proof sizes of them are approximately 896 bytes, 1280 bytes, and 2560 bytes
respectively. If we use these schemes in practice but require the higher security strength,
the security parameter size must be set at least 2048 bits or more, as a result, the proof

sizes produced by these schemes also increase.

At the same level of the security strength, elliptic-curve cryptography (ECC) has
a smaller key size compared to integer-factorization cryptography (IFC) according to
NIST [4], e.g., to meet the 112-bit security strength, IFC has to be set 2048-bit key size
while ECC only needs to be set 224 bits. Therefore, to reduce the proof size or even
shorten the execution time, we apply the elliptic curve to the ZKRP scheme proposed
by Tasi et al. [28].

In addition, we consider that the prover may not want to let everyone except the
designated verifier knows the range of the secret value. That is, the proof produced by
the prover cannot convince any other third parties. Thus, we require a designated
verifier ZKRP scheme. Even if the designated verifier reveals the important information

of the proof, any other third party cannot trust the verification result.

1.3 Contributions

As mentioned in previous section, ECC has a smaller key size compared to IFC
according to NIST [4]. To reduce the proof size or even shorten the execution time, we
apply the elliptic curve to the ZKRP scheme proposed by Tasi et al. [28] and construct
a more efficient non-interactive ZKRP scheme, the elliptic-curve ZKRP (EC-ZKRP).
To apply the elliptic curve, we replace the Fujisaki-Okamoto commitment scheme [9]
with the Pedersen commitment scheme [23] so that our ZKRP scheme has a shorter

execution time, a smaller key size and a smaller proof size at the same level of the

2

DOI:10.6814/NCCU202101402

security strength compared to existing ZKRP schemes, leading to the transaction cost

can be reduced by applying our scheme in cryptocurrency.

In addition, if the prover does not want to let everyone except the designated
verifier knows the range of the secret value, it means that the proof produced by the
prover cannot convince any other third parties. Therefore, we propose the designated
verifier ZKRP and the strong designated verifier ZKRP by applying the trapdoor
commitment scheme [13] and the elliptic-curve Diffie-Hellman key exchange (ECDH)
[5]. The trapdoor commitment scheme is computed through the public key of the
designated verifier. Although any other third parties can open the commitment by
receiving the public key of the designated verifier, they could cannot trust the
commitment because they could think that the prover and verifier cheat together.
Moreover, if the trapdoor commitment is computed through the shared key produced
by ECDH, any other third party cannot open the commitment. As a result, by using the
trapdoor commitment scheme [13] and ECDH [5], we propose a designated verifier
ZKRP scheme and a strong designated verifier ZKRP scheme based on EC-ZKRP
without adding any extra computation steps during producing proofs. The designated
verifier ZKRP scheme allows the only designated verifier to be able to verify the proof,
and the verifier cannot convince any other third party of the verification result; the
strong designated verifier ZKRP scheme makes any third party cannot verify the proof.
Besides, these ZKRP schemes can be optional and flexible: we can choose a suitable
scheme to produce a ZKRP proof according to the confidentiality of the secret value.
Furthermore, we argue the security proofs of our schemes completely and rigorously so
that our schemes can satisfy necessary security properties, e.g., correctness, soundness,
zero-knowledge, designated verifier and strong designated verifier. Finally, we provide
the efficiency analysis compared to other existing ZKRP schemes and list some

application scenarios that uses ZKRP schemes.

1.4 Organization

We start by describing some preliminaries that are used in our schemes in Chapter
2; we introduce the definitions, protocol, and security properties of the non-interactive
EC-ZKRP scheme in Chapter 3; we describe the definitions, protocol, and security
properties of our designated verifier ZKRP scheme and strong designated verifier
ZKRP scheme based on EC-ZKRP in Chapter 4; in Chapter 5, we evaluate the
efficiency of our ZKRP scheme and make a comparison of our ZKRP scheme and other

existing ZKRP schemes; we describe some ZKRP application scenarios in Chapter 6;

3

DOI:10.6814/NCCU202101402

finally, we draw a conclusion in Chapter 7.

DOI:10.6814/NCCU202101402

2 Preliminaries

In this chapter, we introduce some notations and particular proofs that are used in
our ZKRP schemes.

2.1 Notations

The notations are shown in Table 1.

Notation Description
N the set of natural numbers
Z the set of integers
p a safe prime, p = 2p’ + 1, where p’ is also a prime
E(F,) an elliptic curve over finite field [F,
q the order of the points on E(IF,)
Lg the set of integers less than g
G a generator point on E(IF,)
H another point on E(F,), H = s G, where s € Zg
[a, b] the range between a and b, where a < b, a,b € Z
strl||str2 concatenate two strings strl and str2
X i Y randomly choose the value X from the space Y
Hash(str) input a string str and output its hash value
A the security parameter
#HE ([Fp) the cardinality of E ([Fp)

The equation of elliptic curve over finite field that is used in our schemes is

Here p is a safe prime, which means that p = 2p’ + 1 and p’ is also a prime, and

the discriminant

Table 1: Notations and Descriptions

E(F,) : y* = x3 + Ax + B (mod p).

A = 4A3 + 27B? (mod p)

DOI:10.6814/NCCU202101402

must not equal to 0. In addition, the order g is a prime factor of the cardinality
#E ([Fp), which is the number of points on the curve E (IFp). Many elliptic curves used
in practice have been defined in the literatures, e.g., Secp256k1 [25], NIST224p [10],
NIST256p [10].

2.2 Hardness Assumptions

In this section, we describe some definitions of hardness assumptions in detail.

Definition 1 (Elliptic-curve discrete logarithm problem). Let an elliptic curve E(IF,)
over finite field IF,, a generator point G and another point H which are on the curve
E(F,) have the order q. There does not exist any algorithm in probabilistic-
polynomial time to find s € Z; such that H =s-G.

Definition 2 (Elliptic-curve Diffie-Hellman assumption). Let an elliptic curve E(IF,)
over finite field [F,, and a generator point G which is on the curve E(IF,) has the
order q. There does not exist any algorithm in probabilistic-polynomial time to
determine whether ¢G = abG by given (G, aG, bG, cG) with non-negligible
probability, where a, b, ¢ € Z.

2.3 Elliptic-curve Pedersen Commitment Scheme

A commitment scheme allows a person to commit to a secret value while keeping
the value hidden, and the person can reveal the committed value later. Before the person
reveal the secret value, no one can derive the secret value from the commitment (the
hiding property). On the other hand, and the person cannot change the committed value

(the binding property).

Pedersen [23] proposed a commitment scheme that based on the discrete logarithm
problem in 1991. In our schemes, we use the elliptic-curve Pedersen commitment
scheme (EC-Pedersen commitment scheme) [8][21], which also satisfies the hiding
property and the binding property through the elliptic-curve discrete logarithm problem
[12].

Definition 3 (Commitment scheme). A commitment scheme is composed by three

functions (Setup, Commit, Open).

DOI:10.6814/NCCU202101402

$
(1) pp < Setup(A): by inputting a secure parameter A, the polynomial-time

function Setup outputs the public parameters pp.

$
(2) C < Com(m,r): by inputting the secret value m and arandom number 7, the

polynomial-time function Com outputs the commitment C.

(3) b « Open(C,m,r): by inputting the commitment C, the secret value m and
the random number 7, the polynomial-time function Open outputs a result
b € {0,1}. The commitment C is accepted if b is equal to 1. Otherwise, it is

rejected.

Below, we describe the protocol of EC-Pedersen commitment scheme in detail.

(1) Setup: first, choose a safe prime p. The elliptic curve E over [, that is
defined by an equation: y? = x* + Ax + B (mod p), where A,B € F, (its
discriminant 443 +27B% #0 (modp)). Secondly, randomly choose a
generator point G on E(F,), and then randomly choose s € Z; to compute
the point H = s G. The points G and H have the order g. Lastly, publish

the public parameters

pp ={p,A,B,q,G,H}.

(2) Commit: To commit to the secret value m € Zj, the sender randomly chooses

T € Zg to compute
C=m-G+r-H
and publishes the commitment C.

(3) Open: To open the commitment C, the sender reveals m and r. The receiver

verifies
?
C=m-G+r-H

and accepts the commitment if and only if € = m -G + r - H. Otherwise, the

commitment is rejected.

In what follows, we describe the definitions of hiding property and binding property

in detail.

DOI:10.6814/NCCU202101402

Definition 4 (Hiding property). There does not exist any algorithm in probabilistic-
polynomial time to compute the committed value through a commitment. More

precisely, the probability

pp < Setup(2);
mgy F my; 1
Pr|b’' =b: b < {0,1}; —3 < negl(1)
C, « Com(my,1);
| b — AC,)

for all probabilistic-polynomial time adversaries A and security parameter A. If the
probability of A guessing b is exactly equal to %, the commitment scheme satisfies

perfect hiding.

Definition 5 (Binding property). There does not exist any algorithm in probabilistic-
polynomial time to find my,my, 7,7, € Zg such that C=my-G+r,-H=m;"

G + 1y, - H,where (mq,1;) # (my,1,). More precisely, the probability

Com(my, 1) = Com(my, 13); . pp « Setup(A);

Pr :
(my, my, 1y, 12) < A(pp) my #m;

< negl(1)

for all probabilistic-polynomial time adversaries A and security parameter A. If the
probability of A finding m,,m,, 1y, 7, is exactly equal to 0, the commitment scheme

satisfies perfect binding.

2.4 Elliptic-curve Diffie-Hellman Key Exchange (ECDH)

An elliptic-curve Diffie-Hellman (ECDH) [5] allows two parties to create a shared
key over a public channel. It is a variant of the Diffie—Hellman protocol by applying
the elliptic-curve computation. In our scheme, we use the shared key that created
followed ECDH to fulfill a strong designated verifier ZKRP scheme.

We describe how a shared key is created by the following example. Assume that
Alice and Bob want to create a shared key.
(1) Alice and Bob agree the curve E(F,) : y* =x°+ Ax + B (mod p), the

8

DOI:10.6814/NCCU202101402

discriminant of which 443 + 27B? # 0 (mod p). The public parameter is

ppr = {p,A, B, q,G},

where G is a generator point on E ([Fp), which has the order q.
(2) Alice and Bob randomly choose their private key X, € Z; and Xy € Z; and
compute their public key Y, and Yj.

YA=XA'G,
YB=XB'G.

Therefore, Alice’s key pair is (Xy,Y,) and Bob’s key pair is (Xg, Y3). They
send their public key to each other.
(3) Both Alice and Bob can get the shared key S by computing

S=XA'YB=YA.XB=XA.XB'G'

There does not exist any adversary that can compute Alice’s or Bob’s private key
through their public key, unless the adversary can solve the elliptic-curve discrete
logarithm problem. In addition, there does not exist any adversary that can compute the

shared key, unless the adversary can solve the elliptic-curve Diffie-Hellman problem.

2.5 Trapdoor Commitment Scheme

A trapdoor commitment scheme is proposed by Jakobsson et al. [13] in 1996,
which is based on the Pedersen commitment scheme [23]. In our scheme, we use the
EC-trapdoor Pedersen commitment scheme to fulfill the designated verifier ZKRP
scheme. The difference between the original Pedersen commitment and trapdoor
commitment is that the trapdoor commitment is computed through a user’s public key.
For example, Alice commits a commitment through Bob’s public key. Since Bob knows
his private key, the commitment cannot be trusted by everyone except Alice and Bob.
We decribe the definition and the protocol of the trapdoor commitment and expain the

reason why the commitment cannot be trusted by any third party in detail below.

Definition 6 (Trapdoor commitment scheme). A trapdoor commitment scheme is

composed by three functions (Setup, Commit, Open).

$
(1) pp < Setup(A): by inputting a secure parameter A, the polynomial-time
9

DOI:10.6814/NCCU202101402

function Setup outputs the public parameters pp.

$
(2) C « Com(m,r, pk): by inputting the secret value m, arandom number r, and

a public key pk, the polynomial-time function Com outputs the trapdoor
commitment C.

(3) b « Open(C,m,r,pk): by inputting the trapdoor commitment C, the secret
value m, the random number r, and the public key pk, the polynomial-time
function Open outputs aresult b € {0,1}. The commitment C is accepted if

b is equal to 1. Otherwise, it is rejected.

We describe the protocol of the EC-trapdoor Pedersen commitment scheme by the
following example.
(1) Alice and Bob agree the curve E(F,) :y%=x%+ Ax + B (modp), the
discriminant of which 443 4+ 27B? % 0 (mod p). The public parameter is

pp = {p,A, B, q,G},

where G is a generator point on E (IFp), which has the order g. After that,
Alice and Bob randomly choose their private key X, € Z; and Xp € Z; and
compute their public key Y, and Yj.

Yo =X4-G,
YB=XB'G.

Therefore, Alice’s key pair is (Xy4,Y,) and Bob’s key pair is (Xg, Yz). Then
they publish their public keys.

(2) Suppose that Alice wants to commit to the secret value m € Zg; . Alice

randomly chooses r € Z; and computes
Com(m,r):C=m-G+r-Yg

by using Bob’s public key Yg. After that, Alice publishes the commitment C.

(3) To open the commitment C, Alice reveals (m,r). Bob verifies

CEm-G+r-Y,

and accepts the commitment if and only if C =m -G + 1 - Y;.

10

DOI:10.6814/NCCU202101402

Since Bob knows his secret key Xg, which is the relation of G and Yg, i.e., the
verifier can find my, m,,r;, 11 € ZZ easily such that

C=m1'G+T‘1'YB=m2'G+T‘2'YB.

For any other third parties, the commitment does not satisfy the binding property.
Therefore, they could think the prover and the designated verifier cheat together and

cannot trust the commitment.

2.6 Elliptic-curve EL Proof

The EL proof was proposed by Boudot [1] in 2001. For short, we follow Tsai et al.
[28] and call it the EL proof. This proof'is a kind of zero-knowledge proof such that the
verifier can verify that two commitments hide the same value without leaking the actual
committed values of the two commitments. Since we use the elliptic-curve Pedersen
commitment scheme as described in Section 2.3, we also use the elliptic-curve EL proof

(EC-EL proof) in our schemes.

2.6.1 Definitions and Security Models

Definition 7 (EL proof). EL proof is composed by three functions (Setup, EL, VEL).

$
(1) pp < Setup(4): by inputting a secure parameter A, the polynomial-time

function Setup outputs the public parameters pp.

$
(2) EL < EL(pp, C;,C,) : by inputting the public parameters pp and two

commitments Cj, C;, the polynomial-time function EL outputs the proof EL.
(3) b « VEL(pp, EL): by inputting the public parameters pp and the proof EL,
the polynomial-time function VEL outputs a result b € {0,1}. The proof EL
isaccepted if b is equal to 1, which means that two commitments C; and C,

hide the same value. Otherwise, it is rejected.
The EL proof satisfies the correctness property: if the proof produced by two

commitments which hide the same value, the proof must pass the verification.

Therefore, the verifier can confirm that the two commitments hide the same value.

11

DOI:10.6814/NCCU202101402

Definition 8 (Correctness of EL proof). If the two commitments C; and C, hide the
same value m and the scheme EL = (Setup, EL,VvEL) satisfies the correctness

property, the probability

$
[pp < Setup(2);

C, « Com(m,ry);
=1: — <
Pr|vEL(pp,EL) = 1 C, « Com(m.1y); i 1| < negl(1)

$
EL < EL(pp, Cy, Cy)

for all security parameter A.

The EL proof satisfies the soundness property: if the proof produced by two
commitments hide different value, the proof cannot pass the verification. In other words,

if the proof can pass the verification, the two commitment must hide the same value.

Definition 9 (Soundness of EL proof). If the two commitments C; and C, hide
different value m;, m, and the scheme EL= (Setup, EL,VvEL) satisfies the soundness
property, the probability

$ -
pp < Setup(4);

my F my;
Pr{vEL(pp,EL) = 1: C; « Com(my,7y); | < negl(A)
C, « Com(m,,1,);

$
EL < EL(pp, Cy, C,)]

for all security parameter A.

The EL proof satisfies the zero-knowledge property: the verifier can only confirm
whether the two commitments hide the same value, but cannot know the exact
committed value through the EL proof produced by the prover. More precisely, there
does not exist any algorithm in probabilistic-polynomial time that can distinguish the
real proof from the ideal proof produced by a simulator, which does not contain any

information about the committed values.

Definition 10 (Zero-knowledge of EL proof). Given a polynomial-time simulator ELS
that can produce a proof without inputting the secret m. If the scheme EL =
(Setup, EL,VEL) satisfies the zero-knowledge property, the probability

12

DOI:10.6814/NCCU202101402

$
pp < Setup(1);
$
ELl «— EL(pp, Cl’ Cz),

$
EL, < ELS(pp);
b ={0,1};
b' « A(pp,ELy) |

1
Pr|ib’' =»b —3 < negl(1)

for all probabilistic-polynomial time adversaries A and security parameter A.

2.6.2 EC-EL Proof Protocol

In the following, we describe the protocol of the EC-EL proof in detail: the prover

knows the secret value m € Z;; and two commitments

A=m-G; +s-H,,
B=m'62+r'H2,

computed by two sets of public parameters (G;, H;) and (G,, H,), where Gq,G, are
two generator points on E(IF,) and H,,H, are two points on E(F,). The two

commitments A and B hide the same secret value m.

To produce the EL proof for A and B, the prover runs the EL proof function:

$
EL & EL(m, s, 7, Gy, Hy, G4, Hy).

(1) The prover randomly chooses u, vy, v, € Z; and computes

Ci=u"G +v,Hy,
C2=,LL'G2+U2'H2.

(2) The prover computes h = Hash(C;||C,).

(3) The prover computes

x=u+ hm,
Xy = vy + hs,

X, = v, + hr.

13

DOI:10.6814/NCCU202101402

(4) Finally, the prover produces the EL proof
EL = (h,x,xq,x5).
To verify the EL proof, the verifier runs the EL verification function:
vEL(EL,G1,H1,G2,H2,A, B).
(1) The verifier computes

C{=XG1+x1H1+(_h)A,

(2) The verifier can be convinced that the two commitments A and B hide the

same value if and only if
h = Hash(C{||C5).
2.6.3 Security Descriptions

In this section, we describe the security properties of the EC-EL proof: correctness,

soundness, zero-knowledge.
2.6.3.1 Correctness of EC-EL Proof
To verify the EC-EL proof, the verifier computes

C{=x01+X1H1+(_h)A,

In the detail, if the prover is honest and follows the EC-EL proof to produce EL =

(h, x, x4, x,), the verifier can expand C; and Cj:
p 1 2

Ci=x"G, +x;,H +(-h)-A
=(u+hm)-G,+ W, +hs)-H +(—h)-(m-G, +s-H,)
=u-G+hm-G;+v,-H +hs-H —hm-G, —hs-H;
=u-G,+v,-Hy

14

DOI:10.6814/NCCU202101402

=C,,
C;=x-G,+x,-H,+(—h)'B

=W+hm)-G,+ (w,+hr)-Hy,+ (=h)-(m-G, + 7 H,)
=u-G,+hm-G,+v,-H;+hr-H,—hm-G, — hr - H,
=u Gy +vy,-Hy

= C,.

Therefore, C{ = C; and C; = C,, i.e.,
h = Hash(C{||C;) = Hash(C,||Cy).

Finally, since the honest prover follows the EC-EL proof to produce the proof which

can pass the verification, the EC-EL proof satisfies the correctness property.
2.6.3.2 Soundness of EC-EL Proof

Lemma 1. The elliptic-curve Pedersen commitment scheme satisfies the binding
property: it is difficult to find two different secret values that hidden by the same
commitment. More precisely, there does not exist any algorithm in probabilistic-

polynomial time to find m,, m,, 7,7, € Zg such that
C=m1'G+T1'H=m2'G+T2'H,
where (mq,1y) # (My, 1y).

Proof. Assume that the order of two points G,H is q, and H=s-G. Let
My, My, 11,7, € Zg, such that

C=my-G+r,"-H=my-G+1r,"H
smg—my)-G=(0y—1) H

~(my —m,) =s(r, — ;) mod q.

The discussion is divided into two cases:

(1) r, — r, = 0: it means that my — m, = 0 mod q, i.e.,
m; = m, mod q.

All values are over a finite field Fgy,s0 0 <my,m, <q and 0 <r, 1, <q.

15

DOI:10.6814/NCCU202101402

In this case, m; must be equal to m, and r; must be equal to r,. This is
contradiction with Lemma 1: (mq, 1) # (m,,13).

(2) r, — 1, # 0: We know that s = —=—=

— mod q. If we can compute s through
277"
my,m,,1y,7, , it means that there exists an algorithm in probabilistic-

polynomial time to solve the elliptic-curve discrete logarithm problem [12].

According to (1)(2), there does not exist any algorithm in probabilistic-polynomial time
to find mq,my, 7,7, € Zg such that C =my-G+r,-H=my G+ 1, H, where

(my,11) # (m,,1y). Therefore, Lemma 1 is proved.

Theorem 1. If the prover follows EC-EL proof'to produce the proof EL = (h, x, x4, X5)
that can pass the verification with non-negligible probability, the two commitments

used to produce the proof must hide the same value m.

Proof. Assume that the prover follows the EC-EL proof protocol to produce the proof
EL which pass the verification but uses the two commitments A and B hide different
values my, m, € Z; respectively, i.e., my; # m;.

We can simplify C; and C;:

C{ =X'Gl +X1H1+(_h)A

= (x —hmy) - Gy + (x, — hs) - Hy,

Cé =sz+x2H1+(—h)B

= (X - hmz) - GZ + (xz - hT')) Hl'
If the proof can pass the verification, C{ = C; and C; = C,. Considering C; = u -
G, +v,-H; and C, = u- G, + v, - H, and the binding property of the EC-Pederesen
commitment scheme (Lemma 1), i.e.,

U=x—hmy; =x—hm,.

We can obtain that m; — m, = 0 mod q, and we have

my; = m, mod q.

All values are over a finite field Fg, so 0 <m,,m, < g In this case, m; must be

equal to m,. This is contradiction with the assumption: m, # m,. Thus, if the proof

16

DOI:10.6814/NCCU202101402

can pass the verification, the two commitments must hide the same value. Therefore,

Theorem 1 is proved. The EC-EL proof satisfies the soundness property.

2.6.3.3 Zero-knowledge of EC-EL Proof

Theorem 2. Assume that there exists a simulator ££S and an oracle HO follows the
EC-EL proof but replaces secret values which only the prover knows with random
numbers to produce the proof ELP. For all adversaries, there does not exist any
algorithm in probabilistic-polynomial time to distinguish between the real proof EL
produced by the prover and the ideal proof ELP produced by the simulator ELS.

Proof. Assume that the oracle HO and simulator ELS are defined and shown in
Table 2.
Oracle: HO(str)

1) h i Hash(str)

(2) Return h
Simulator: ELS(G4,Hq,G,,Hy, A, B)
(1) Randomly choose h, x, x4, %, € Zg
(2) Compute C; =x-G, +x,-H; +(=h)-A, C, =x-G,+x,-H,+(—h)-B
(3) Compute h' = HO(Cy]|Cy)
(4) Return ELP = (h', x, x1,x3)
Table 2: Simulator E£LS and Oracle H0O

HO(str): input a string str and return the hash value h of the string.

ELS(Gy,Hy, Gy, Hy A, B): input two commitment A, B and their public parameters
G, Hy, Gy, Hy. ELS simulates the EC-EL proof to produce a EL proof without any
information of committed values of 4, B.

First, randomly chooses h, x, x4, x, € Z; and computes C; and C;:

Cl=X'Gl+x1'Hl+(—h)'A,
szx'Gz+x2'H2+(_h)'B,

and then computes
h' = HO(G]1C).

Finally, outputs the simulation proof

17

DOI:10.6814/NCCU202101402

ELP = (h', x,xq,x,).

Assume that a prover knows a secret value m and two commitments A =m:-G; + s -

H, and B = m~- G, + r * H,. The prover produces a real proof

(U1, U, < Ly;
Ci=u G +vqy-Hy;
Cy, =u-Gy+ v, Hy;
EL = (h,x,x1,%3):3 h = Hash(C,]||C,);
X =u+hm;
X1 = vy + hs;
\ X, =v,+hr

and the simulator ELS inputs two commitments A' =m'-G; +s'-H; and B' =
m' -G, +r'-H,. ELS produces a ideal proof

hy, x', %1, x5 < Zg;
Co=x'-Gy+x; H + (—hy) 4
C,=x"-G,+x5 Hy+ (—hy)-B;’
h' = HO(G||C)

ELP = (W, x',x1,%x3): J

Let EL = (fl, X, X7, 56}) be a randomly chosen proof in the set of all valid proofs. The

probability
2\ , V1,V €E ZL; 1
prlEL=FL]=pr| . MUV o
h=h,x=x,x1=xl,x2=XZ (q_l)
and the probability
_ hy,x',x1,x5 € Ly; 1
Pr[eLP = EL] = Pr vhoTmrz Al=—4
W =hx=%x=%,% =%x] (@—1)

are equal, i.e., EL and ELP are indistinguishable. Therefore, Theorem 2 is proved.
The EC-EL proof satisfies the zero-knowledge property.

2.7 Elliptic-curve SQR Proof

18

DOI:10.6814/NCCU202101402

The SQR proof was proposed by Boudot [1] in 2001. For short, we follow Tsai et
al. [28] and call it the SQR proof. This proof is a kind of zero-knowledge proof such
that the verifier can verify that a commitment hides a square number a?, a € Lg,
without leaking the value a or a?. Since we use the elliptic-curve Pedersen
commitment scheme as described in Section 2.3, we use the elliptic-curve SQR proof
(EC-SQR proof) in our schemes.

2.7.1 Definitions and Security Models

Definition 11 (SQR proof). SQR proof is composed by three functions
(Setup, SQR, vSQR).

$
(1) pp < Setup(A): by inputting a secure parameter A, the polynomial-time

function Setup outputs the public parameters pp.

$
(2) SOR < SQR(pp,C) : by inputting the public parameters pp and a

commitment C, the polynomial-time function SQR outputs the proof SQR.
(3) b < vSQR(pp, SQR): by inputting the public parameters pp and the proof

SQR, the polynomial-time function VSQR outputs a result b € {0,1}. The

proof SQR is accepted if b is equal to 1, which means that the commitment

C hides a square number. Otherwise, it is rejected.

The SQR proof satisfies the correctness property: if the proof produced by a
commitment which hides a square number, the proof must pass the verification.
Therefore, the verifier can confirm that the commitment hides the committed value is a

square number.

Definition 12 (Correctness of SQR proof). If the commitment C hides a square
number y = x%,x € Z and the scheme SQR = (Setup,SQR,vSQR) satisfies the
correctness property, the probability

$
[pp < Setup(A);]
y =x2%,x € Z;
C « Com(y,r);

$
SQR < SQR(pp, C)

Pr|{vSQR(pp,SQR) = 1: — 1| < negl(1)

for all security parameter A.

19

DOI:10.6814/NCCU202101402

The SQR proof satisfies the soundness property: if the proof produced by a
commitment hides a value which is not a square number, it cannot pass the verification.
In other words, if the proof can pass the verification, the commitment must hide a square

number.

Definition 13 (Soundness of SQR proof). If the commitments C hides the value y
which is not a square number and the scheme SQR= (Setup, SQR, vSQR) satisfies the
soundness property, the probability

[ppiSetup(/l); |
I y €Ly ¢ L; I
PrivSQRpp, SQRY =10 s |
l SQR & SQR(p, C)J

for all security parameter A.

The SQR proof satisfies the zero-knowledge property: the verifier can only
confirm whether the commitment hides a square number, but cannot know the exact
committed value through the SQR proof produced by the prover. More precisely, there
does not exist any algorithm in probabilistic-polynomial time that can distinguish the
real proof from the ideal proof produced by a simulator, which does not contain any

information about the committed value.

Definition 14 (Zero-knowledge of SQR proof). Given a polynomial-time simulator
SQRS that can produce a proof without inputting the secret m. If the scheme SQR=
(Setup, SQR,vSQR) satisfies the zero-knowledge property, the probability

$
pp « Setup(1);
$
SQR; < SQR(pp, C);

: $
SQR, < SQRS (pp);
b ={0,1};
b' « A(pp,SQR,) |

1
Pr|ib’ =»b —3 < negl(1)

for all probabilistic-polynomial time adversaries A and security parameter A.

20

DOI:10.6814/NCCU202101402

2.7.2 EC-SQR Proof Protocol

In the following, we describe the protocol of the EC-SQR proof in detail: the

prover knows the secret value a and the commitment
E=a?-G+nr-H,

computed by a generator point G on E ([Fp) and another point H on E (IFp), where
G and H are public parameters. The commitment E hides value a? € Lg.

To produce the SQR proof for E, the prover runs the SQR proof function:

$
SQR < SQR(a,11,G,H).

(1) The prover randomly chooses 1, € Z; and computes
F = a - G + TZ - H.

(2) The prover computes

T3 = T1 —T1a.
(3) The prover computes
El =C('F+T3'H,
where E' must be equal to E.
(4) Since the two commitments F and E’ hide the same value «, the prover
runs the EC-EL proof as described in Section 2.6 to produce the proof
EL = (h,x, X1, xz) = EL(O(, 7,13, G, H, F, H)

In the detail, first, the provers randomly chooses , v;,v, € Zg to compute

C1=M'G+UI'H,
C2=‘U'F+v2'H.

Then, the prover computes h = Hash(C;||C,) to compute

21

DOI:10.6814/NCCU202101402

X =u+ ha,
X1 = Vg + hry,
x2 = vz + hT3.
(5) Finally, the prover produces the SQR proof
SOR = (h,x,xq1,x,, F).
To verify the SQR proof, the verifier runs the SQR verification function:
vSQR(SQR,G,H,E).

(1) The verifier computes

Ci=xG+x,-H+ (—h)-F
C;=x"F+x,-H+ (=h)-E.

(2) The verifier can be convinced that the commitment E hides a square number
if and only if

h = Hash(C{||C5).
2.7.3 Security Descriptions

In this section, we describe the security properties of the EC-SQR proof:
correctness and soundness. Since the proof of the zero-knowledge property of EC-SQR
proof is easily obtained from the properties of the EC-EL proof, the description of the

zero-knowledge property is omitted from this section.
2.7.3.1 Correctness of EC-SQR Proof
Since we can expand

E'=a-F+mr;-H
=a-(a-G+r,"H)+1r;-H
=a’- G+ (ar,+13)-H
=a’-G+rH

22

DOI:10.6814/NCCU202101402

=E,
E' must be equal to E. To verify the EC-SQR proof, the verifier computes

Ci=xG+x;,-H+(—h)-F
C;=xG+x,-H+ (—h)"E.

In the detail, if the prover is honest and follows the EC-SQR proof to produce SQR =

(h, x, x1, x5, F), the verifier can expand C;{ and Cj:

Ci=x-G+x;,-H+(—h)-F

=W+ha) G+ W, +hry) -H+(—h) (a-G+1r,-H)
=u-G+ha-G+vi-H+hry,-H—ha-G—hr,-H
=u-G+vy,H

= (y,

C,=x"F+x,-H+ (—h)-E

=W+ha) F+(w,+hr;)-H+ (—h) - (a*F+1r3-H)
=puF+ha-F+v,"H+hrs-H—ha-F—hr;-H
=u-F+v,'H

= C,.

Therefore, C{ = C; and C; = C,, i.e.,
h = Hash(C{||C;) = Hash(C,||C,).

Finally, since the honest prover follows the EC-SQR proof to produce the proof which
can pass the verification, the EC-SQR proof satisfies the correctness property.

2.7.3.2 Soundness of EC-SQR Proof

Theorem 3. If the prover follows EC-SQR proof to produce the proof SQR =
(h,x,xq,x,,F) that can pass the verification with non-negligible probability, the

commitment used to produce the proof must hide a square number a?, where a € Z.

Proof. Assume that the prover follows the EC- SQR proof protocol to produce the proof
SQR = (h, x, x4, x5, F) which can pass the verification. According to the soundness of
EC-EL proof (Theorem 2), we can ensure that the commitment E and F must hide

the same value based on (F,H) and (G,H) respectively. Without loss of generality,

23

DOI:10.6814/NCCU202101402

let

E=a " F+r;-H,
F=a'-G+nr,-H.

Therefore, we can expand
E=a F+r;-H=(a)?-G+ (a'r; +13)-H.

Obviously, the commitment E must hide a square number (a')2. Thus, Theorem 3 is

proved, the EC-SQR proof satisfies the soundness property.

2.8 Zero-Knowledge Proof with Commitment Secret

(ZKPCS)

In this section, we introduce a particular zero-knowledge proof: the zero-
knowledge proof with commitment secret (ZKPCS), which can be used to convince the
verifier that the prover knows the committed value of a commitment without revealing
the secrets, i.e., the prover can commit another commitment by using the same
committed value. The four papers [1], [18], [24] and [28] all use the similar ZKPCS,
but all of which are used to prove the knowledge of the Fujisaki-Okamoto commitment
scheme [9]. Therefore, we propose a new ZKPCS for the elliptic-curve Pedersen

commitment scheme.

Definition 15 (Zero-knowledge proof with commitment secret). Zero-knowledge proof

with commitment secret is composed by five functions (Setup, Pro, Chal, Res,Ver).

$
(1) pp < Setup(A): by inputting a secure parameter A, the polynomial-time

function Setup outputs the public parameters pp.

$
(2) y,a < Pro(pp, m): by inputting the public parameters pp and the secret

value m , the polynomial-time function Pro outputs two commitments y

and a.

$
(3) s < Chal(pp): by inputting the public parameters pp, the polynomial-time
function Chal outputs a random number s.

24

DOI:10.6814/NCCU202101402

$
(4) u,v < Res(pp, m,1,x, z,s): by inputting the public parameters pp, the screct

value m, random numbers 7, x, z, and the challenge s, the polynomial-time
function Res outputs two responses p and v.

(5) b < Ver(pp,y,a,u,v): by inputting the public parameters pp, the two
commitments y,a, and two responses K,Vv, the polynomial-time function
Ver outputs a result b € {0,1}. The verification is accepted if b is equal to
1, which means that the two commitments y and « hide the secret value m.

Otherwise, it is rejected.

In the following, we describe the protocol of ZKPCS in detail. The prover is
denoted as P, and the verifier is denoted as V.
Assume that P knows a secret value m € Zj.

(1) P computes the commitment
y=m-G+r-H
and randomly chooses x,r € Z; to compute another commitment
a=x:G+z'H,
where G and H which are two points on E (IFp) are the public parameters.
Then, P publishes y, a.
(2) V gives P achallenge s € Zg.

(3) P returns two responses

U=x—sm,

vV =2Z—Sr.

(4)V computes u-G+v-H+s-y and can be convinced that P knows the

committed value m if and only if
a=u-G+v-H+s-y.
In the detail,

u-G+v-H+s-y
=(x—-—sm)'G+(z—sr)H+s-(m-G+r-H)

25

DOI:10.6814/NCCU202101402

=xG—smG+z-H—sr H+sm-G+sr-H
=x'G+z-H

= Q.

The verifier can be convinced that the commitment a¢ committed by the prover is

another commitment of m, i.e., the prover definitely knows m.

26

DOI:10.6814/NCCU202101402

3 Non-Interactive EC-ZKRP Scheme

In this chapter, we introduce the definitions, protocol, and security description of

the non-interactive EC-ZKRP scheme in detail.

3.1 Definitions and Security Models

Definition 16 (Non-interactive zero-knowledge range proof). The non-interactive zero-

knowledge range proof is composed by three functions (Setup, Pro,Ver).

$
(1) pp < Setup(A) : by inputting a secure parameter A, the polynomial-time

function Setup outputs the public parameters pp.

$
(2) T < Pro(pp, m, a, b): by inputting the public parameters pp, the secret value

m, and the lower bound and upper bound of a range a, b, where, a < b, the
polynomial-time function Pro outputs the proof m.

(3) r « Ver(pp, m, a, b): by inputting the public parameters pp, the proof m, and
the lower bound and upper bound of a range a,b, the polynomial-time
function Ver outputs a result r € {0,1}. The proof m is accepted if 7 is
equal to 1, which means that the secret value m is in the range [a, b], i.e.,
a < m < b. Otherwise, it is rejected, i.e., m & [a, b].

A ZKRP scheme satisfies the correctness property: if the secret value is exactly in
the specified range, the proof must pass the verification. Therefore, the verifier can

confirm that the secret value must be in the specified range.

Definition 17 (Correctness of ZKRP). If the secret value m is exactly in the range
[a, b] and the scheme ZKRP = (Setup, Pro,Ver) satisfies the correctness property,
the probability

$
pp « Setup(A);
Pr|Ver(pp,m) =1: m € [a, b]; — 1| < negl(1)

$
< Pro(pp,m,a,b)

for all security parameter A.

27

DOI:10.6814/NCCU202101402

A ZKRP scheme satisfies the soundness property: if the prover uses a secret value
that is not in the specified range to produce a proof, then it cannot pass the verification.
In other words, if the proof produced by the prover can pass the verification, the secret

value must be in the specified range.

Definition 18 (Soundness of ZKRP). If the secret value m is not in the range [a, b]
and the scheme ZKRP = (Setup, Pro,Ver) satisfies the soundness property, the
probability

$
pp < Setup(4);
Pr|Ver(pp,m) =1: m¢& [a,b]; < negl(1)

$
< Pro(pp,m,a, b)

for all security parameter A.

A ZKRP scheme satisfies the zero-knowledge property: the verifier can only
confirm whether the secret value is within the specified range, but cannot know the
exact secret value through the proof produced by the prover. More precisely, there does
not exist any algorithm in probabilistic-polynomial time that can distinguish the real
proof from the ideal proof produced by a simulator, which does not contain any

information about the secret value.

Definition 19 (Zero-knowledge of EC-ZKRP). Given a polynomial-time simulator
SIM that can produce a proof without inputting the secret m. If the scheme ZKRP =
(Setup, Pro,Ver) satisfies the zero-knowledge property, the probability

$
pp < Setup(1);
$
o < Pro(pp,m,a, b);

$
w1 < SIM (pp);
b ={0,1};
b" < A(pp,mp)

1
Prib’ =»b —3 < negl(1)

for all probabilistic-polynomial time adversaries A and security parameter A.

3.2 Non-Interactive EC-ZKRP Protocol

28

DOI:10.6814/NCCU202101402

In this section, we introduce the EC-ZKRP protocol. The scheme proposed by Tsai
et al. [28] is constructed with the Fujisaki-Okamato commitment scheme [9]. To apply
elliptic curve to the non-interactive ZKRP , we replace the commitment scheme with
the elliptic curve Pedersen commitment scheme as described in Section 2.3 and the EC-
EL proof (Section 2.6) and EC-SQR proof (Section 2.7) both can be applied in our
scheme. The core idea of our scheme is the same as the scheme proposed by Tsai et al.
[28]. Assume that the prover knows the secret value m in the range [a, b], where
a,b € Zg. Therefore, a <m <b, ie, m—a=0 and b —m < 0. Then we have
m—a+1>0and b—m+1>0,s0 (m—a+1)(b—m+ 1) must be greater
than 0. If we prove to the verifier that m is in the range [a,b] by revealing
m—a+1)(b—-—m+1)>0, it is not difficult to compute the secret value m
through (m —a + 1)(b — m + 1) when the verifier knows the range [a, b]. Thus, we

use

w’m—a+1D)b-m+1)>0

$
instead, where w « Zj. To prover w?(m—a+1)(b—m+ 1) is positive, the prover

randomly chooses M = a® € Z; such that
M+R=w?’m-—a+1)(b—m+1).

If the verifier verifies that M is a square number and R > 0, he/she can be convinced
that w?(m —a + 1)(b — m + 1) is greater than 0, i.e., the secret value m must be in
the range [a, b].

We describe the non-interactive EC-ZKRP protocol in detail below: the prover

knows the secret value m in the range [a,b] and randomly chooses r € Z; to

compute the commitment
C=m-G+r-H.

To produce the non-interactive EC-ZKRP:
(1) The prover randomly chooses 7' € Z7 to compute

C1=C_(a—1)'G;

29

DOI:10.6814/NCCU202101402

C'=b-m+1)-C,+71r"-H.
(2) Since the two commitments

C;=Mb+1)-G-C=b-m+1)-G+(-r) H,
C'=(b-m+1)-C;+7r'-H

hide the same value (b —m + 1), the prover produces the EL proof:
EL=EL(b—m+1,-1r,1',G,H,Cy, H).
(3) The prover randomly chooses w and r'' to compute
C'"=w?-C'+r"-H.

(4) Since the commitment C" hides a square number w?, the prover produces the
SQR proof:

SQR; = SQR(w,r",C", H).
(5) The prover randomly chooses a € Z; to compute
M = a?.

IfM > w?(m—a+ 1)(b—m+ 1), repeat (5).
(6) The prover computes

R=w?’m—a+1Db-m+1)—-M,

which must be greater than 0.
(7) The prover randomly chooses 7; € Z; to compute

r=w?((b—m+Dr+7r)+r" —n.
(8) The prover computes

C{=M'G+T1'H,

30

DOI:10.6814/NCCU202101402

(9) Since the commitment C; hides a square number M, the prover produces the
SQR proof:

SQR, = SQR(a, 1, G, H).

(10) The prover produces the proof

n={CC',C", C{,CyR,EL SQRy,SQR,}.

To verify the non-interactive EC-ZKRP proof m, the verifier runs the following
steps:

(1) Compute C; =C—-(a—1)-G.

(2) Compute C, =(b+1)-G—C.

(3) Verify vEL(EL,G,H,Cy,H,C,,C").

(4) Verify vSQR(SQR,,C',H,C").

(5) Verify C" =C{+C,+R-G.

(6) Verify vSQR(SQR,,G,H,Cy).

(7) Verity R > 0.
The verifier can be convinced that the secret value m must be in the range [a, b] if

and only if the verification step 3 to step 7 are passed.

31

DOI:10.6814/NCCU202101402

$
C=m-G+r-H wherer «Z
Ci=C—-—(a-1)-G
Cb=Mb+1)-G-C

c'= (b—m+1)-C1+r’-H,Wherer’iZ;;
EL & EL(b —m + 1, -7, G, H, Cy, H)

C" = w?-C"+7r" - H,where w,r”iZZ
SOR, & SQR(w, 7", C', H)

$
M = a? where a < Z;
R=w?m—a+1D)b-m+1)—-M

$
rnt+r = a)z((b -m+ Dr+ r’) + 1", where r, « Zg
Cl=M-G+r-H
CZI = T2 " H
$

SQR, < SQR(a, 14, G, H)
Produce the proof @ = {C,C’,C",C{,C;,R,EL,SQR;,SQR,}

Figure 1: Protocol to Produce EC-ZKRP Proof

To verify the proof @ = {C,C’,C",C{,C;,R,EL,SQR;,SQR;}
(1) Compute C; =C—-(a—1)-G.
(2) Compute C, =(b+1)-G—C.
(3) Verify VEL(EL, G, H,Cy, H,C,,C").
(4) Verify vSQR(SQRy,C’,H,C")
(5) Verify C" =C]+C,+R-G
(6) Verify vSQR(SQR,, G, H,C))
(7) Verify R >0

Figure 2: Protocol to Verify EC-ZKRP Proof

32

DOI:10.6814/NCCU202101402

3.3 Security Descriptions

In this section, we describe the security properties of our EC-ZKRP scheme:

correctness, soundness, zero-knowledge.
3.3.1 Correctness

Assume that an honest prover follows our protocol and uses the secret value m in
the range [a, b] to produce the proof m = {C,C’,C",C{,C;,R,EL,SQR,,SQR,}, the
verifier can determine whether passes the verification through the following steps:

(1) Compute C; =C—-(a—1)-G.

(2) Compute C, =(b+1):G—C.

(3) Verify vEL(EL).

(4) Verify vSQR(SQR,).

(5) Verity C" =C;{+C; +R-G.

(6) Verify vSQR(SQR,).

(7) Verify R > 0.

We explain that our protocol satisfies the correctness property below:

If the prover is honest and follows our protocol to produce the proof m, then
(1)(2)(7) must be correct.

By expanding C,, we obtain
C,=b+1)-G-C=b-m+1)-G+(-r)-H,

its committed value is (b —m + 1), which is same as the committed value of C'.
Therefore, if the EC-EL proof is correct, then (3) must be correct.
Considering C"" = w?-C' + r"" - H, the committed value of C” is w?, which is
a square number. Therefore, if the EC-SQL proof is correct, then (4) must be correct.
Since we know
w’m—a+1)(b-m+1)=M+R,
W (b—m+Dr+r)+r" =r+n

according to our ZKRP protocol. By expanding C"” and C; + C; + R - G, we obtain
C"=w?C' +7" H

=w(m—a+1)b-m+1) G+w*((b—-m+Dr+r)+r"-H
—(M+R)-G+(r 471, H

33

DOI:10.6814/NCCU202101402

and
Ci+C,+R-G
=M-G+r,*H+7r,-H+R-G
=(M+R)' G+ (r; +1,) H.

The two are equal, so (5) must be correct.

Considering C; = M - C' + ry - H, the committed value of C; is M, which is a
square number. Therefore, if the EC-SQL proof is correct, then (6) must be correct.

Because (3)(4)(5)(6)(7) are all correct and 7 passes the verification, the verifier
can confirm that w?(m — a + 1)(b — m + 1) must be greater than 0. As a result, the
verifier can be convinced that the secret value m must be in the range [a, b].

The honest prover follows our protocol to produce the proof m that can pass the
verification such that the verifier can confirm that the secret value m must be in the

range [a, b]. Therefore, our protocol satisfies the correctness property.

3.3.2 Soundness

Theorem 4. If the prover follows our protocol to produce the proof m =
{c,c',c",c{,C;,R,EL,SQR,,SQR,} that can pass the verification with non-negligible
probability, the secret value m must be in the range [a, b]. In addition, the committed

value of C must be m.

Lemma 2. If the proof m = {C,C',C",C{,C; R,EL,SQR;,SQR,} can pass the
verification with non-negligible probability, the prover must know all the secret values
that are used to produce the proof m, such as M, r;. In other words, when the prover
does not know any of secret values, the prover cannot produce a proof m that can pass

the verification.

Proof. We take M,r; as example. Use one of the steps from our protocol: C; = M -
G + r; - H to run the ZKPCS (Section 2.8) with two different challenges ¢ and ¢':
In the following, the prover is denoted as P, and the verifier is denoted as V.

(1) P randomly chooses 7,s € Z; and computes C =7:G +s-H. Then, P

publishes C.
(2) V' randomly chooses two different challenges ¢,¢' € Z7 and sends themto P.

(3) P computes two responses

(u=r—c¢M,v=s5—gr),

34

DOI:10.6814/NCCU202101402

Ww=r—¢Mv =s—-¢nr)

and publishes them.
(4) V computes C by the two responses:

u=r-¢M,v=s—-¢ry) > C=u-G+v-H+¢g-Cj,
Ww=r-¢Mv =s—-¢rn)->C=u-G+v' -H+¢ (.

We subtract the two equations, and we obtain
0O=@w—-u)G+w—-v')H+ (¢—¢")C;.
Because ¢ # ¢, ¢— ¢ # 0. Therefore,

_@-w) . @-v)

T (¢"—9) (c"—¢) v

C1

And then we know C; =M -G + 1, H, so

M = ((1:'_——1;’)) mod g,
1 ((u,—_uc’)) mod q.

In addition, since g which is the order of the points G and H 1is a prime number,

GCD(q,¢' —¢) = 1.

) 1) .
As a result, the inverse of ¢’ — ¢, ——, must exist. Therefore, M,r; must exist, and
¢ ¢ ¢'—¢ 1

the prover must know them. Similarly, the prover must know all the committed values
that are used to produce the proof m and these values must exist, so Lemma 2 is

proved.

Lemma 3. If the proof n = {C,C',C",C{,Cs, R,EL,SQR,,SQR,} can pass the
verification with non-negligible probability, the committed value of C”, w?(m —a +
1)(b — m + 1), must greater than 0.

35

DOI:10.6814/NCCU202101402

Proof. According to Lemma 2, if the proof m can pass the verification, the prover
must know M, 1y, 1,. According to our protocol, C; =M -G +r,-H > C;=1r,-H.In
addition, the verifier can compute C" = C; + C; + R - G through C{,C;, and R. We
know C" =(M+R) -G+ (r; + r,) - H. If m pass the verification step 6 and step 7,
it means that M is a square number and R > 0. Obviously, the committed value of
C" is greaterthan 0, i.e., w?’(m—a+1)(b—m+1)=M + R > 0, so Lemma 3 is
proved.

According to the binding property of the EC-Pederesen commitment scheme
(Lemma 1), Lemma 2, and Lemma 3, If the proof m can pass the verification with
non-negligible probability, the committed value of C” must be w?(m —a+ 1)(b —
m+1), and w?(m—a+1)(b—m+ 1) must be greater than 0. In other words,
when the proof m pass the verification, the verifier can confirm that the secret value
m must be in the range [a, b]. As a result, Theorem 4 always holds, our protocol

satisfies the soundness property.

3.3.3 Zero-knowledge

Theorem 5. Assume that there exists a simulator S follows our protocol, but replaces
all secret values that only the prover knows (e.g., m,r) with random numbers to
produce the proof 7', and ' can be verified. For all adversaries, there does not exist
any algorithm in probabilistic-polynomial time to distinguish between the proof w

produced by the prover and the proof @' produced by the simulator S.

Proof. To prove Theorem 5, we use game hopping. First, we define two games: the
first game G; (real game) follows our protocol to produce the proof. Secondly, the
game G, (ideal game) is to change the steps of G; so that the proof produced by G,
does not contain any information of secret values. Lastly, we argue the computationally
indistinguishable of the two games G; and §,, to prove that Theorem 5 holds.

According to the zero-knowledge property of EC-EL proof (Theorem 2), no adversary
can distinguish the proof produced by simulator LS from the real EC-EL proof.

We describe the two games G; and G, and explain their differences in detail. The

complete game description is shown in Figure 3, where “chg” means to change G; to
a new instruction, and “del” means to delete the instruction of §;.

36

DOI:10.6814/NCCU202101402

G+ G2 *

$.
C=m-G+r-Hwherer«Zg chg(5.2)| C=C+(a—-1)-G
$
G=C—(a—-1)-G chg(5.1) | € =13-G +75: H,whererg <7
G=0b+1)-6-C C=(0b+1)-6-C
$ $
C'=(h-m+1)-C +r'-Hwherer' < Z; chg(53) | €'=ry: G+ 75 H wherer, < I
$:
EL<EL(b—m+1,—1,7",G,H,C, H) chg(1) | EL=ELS(G,H,C1,H,C,,C)
§
C"=w?-C' 47" Hwherer" «Z chg (44) | C"=C{+C;+R-G
$ $
SOR; < SQR(w,r",C', H) chg (2) Fy=13-G+17; - H,wherern, < Z;
chg(2) | SQRy ={ELS(G,H,F,H F,C"), Fi}
. $
M = a?, where a = Z; del
R=w’(m—a+D(b-m+1)—M che(@3)| REN
$
r+1m =0 ((b—m+ Dr+71') + 1", wherer, r, « Zj; | del
$
Ci=M-G+nr-H chg (4.1) | €] =15-G +75- H,wherers < Z;
, $
Cy=r1,-H chg(4.2) | ¢} =17, - H wherer; L
$ _ $
SOR, < SQR(a, 11, G, H) chg (3) F; =715-G +75+ H,wherers « Z
chg(3) | SQR; = SQR{ELS(G,H,F;, H,F,, 1), Fy}
n={C,C',C",C{C, R ELSQRy,SQR;} ' ={C,C',C",Cy,C),R,EL SQRy, SQR;}

Figure 3: Proof Games G;,G, of Theorem 5

G1: This game is the real model of our ZKRP protocol.

G,: This game is the ideal model. In this game, the EC-EL proof is replaced by the
simulator ELS to produce the EL proof and the SQR proof, and any values that related
to the secret value is replaced by a random number, so the proof produced by G, does

not contain any information of secret values.

In the following, we explain the computationally indistinguishable of the two games
G, and G.

(1) In“chg 1, G, replaces the proof produced by the EC-EL proof with the proof
produced by the simulator ELS . If there exists a distinguisher D in
probabilistic-polynomial time such that the adversary can distinguish between
the two proofs EL produced by G; and G, it breaks the zero-knowledge
property of EC-EL proof (Theorem 2). Therefore, if the adversary follows the
verification steps to verify the two proofs produced by G; and G, both can
pass the verification step 3 to step 7. Thus, they cannot distinguish between the
two proofs.

(2) In “chg 27, the adversary follows G; to produce the proof SQR;. First, the
adversary computes

$
Fi=w-G+ry-H 1y«
and then computes

37

DOI:10.6814/NCCU202101402

E'=w-F, +r;-H.

After that, the adversary produces the proof

$
EL < EL((‘); r2,1r3,l Gr H' F]J H)

through F; and E'. Finally, the adversary produces the proof
SQRl - {EL((I), T‘2’, T‘é, G, H, Fl’ H), Fl}'

If there exists a distinguisher D in probabilistic-polynomial time such that the
adversary can distinguish between the two proofs SQR; produced by G; and
G, it means that D can distinguish between the EL proofs in the two SQR;.
This breaks the zero-knowledge property of EC-EL proof (Theorem 2). In
addition, it can be seen that "chg 3" is the same as "chg 2". Therefore, if the
adversary follows the verification steps to verify the two proofs produced by
G, and G,, both can pass the verification step 3 to step 7. Thus, they cannot
distinguish between the two proofs.

(3) In “chg 4.1”, the adversary follows G; to compute
C{ =M'G+T1'H,

and then follows G, to compute
, C $
C1=T6'G+T6'H’T6<—ZZ.

If there exists a distinguisher D in probabilistic-polynomial time such that the
adversary can distinguish between the two C; in G; and G, it means that
the adversary can distinguish between the two committed values M and 7.
This breaks the hiding property of the elliptic-curve Pedersen commitment
scheme.

In “chg 4.2”, the adversary follows G; to compute
CZI = Tz - H,

and then follows G, to compute

38

DOI:10.6814/NCCU202101402

$
C,=1,"H r« L.

If there exists a distinguisher D in probabilistic-polynomial time such that the
adversary can distinguish between the two C, in G; and §,, it means that
the adversary can compute 1,7, through the two C;. That is, D can solve
the elliptic-curve discrete logarithm problem [12] in probabilistic-polynomial
time.

In “chg 4.3”, The value of R in G, must be positive, so the proof m
produced by G, can pass the verification step 7. Therefore, the adversary
cannot distinguish the two R in G; and G,.

In “chg 4.4”, the adversary follows G, to compute
C"=C,+C;+R-G,

so the proof m produced by G, can pass the verification step 5. Therefore,
the adversary cannot distinguish the two C" in G, and §,. If the adversary
follows the verification steps to verify the two proofs produced by G; and G,
both can pass the verification step 3 to step 7. Thus, they cannot distinguish
between the two proofs.

(4) In “chg 5.1, the adversary follows G; to compute
C,=C—-(a=-1)G=(m—-a+1)-G+r-H,

and then follows G, to compute
_ $
C1=T8'G+T8'H’T8<—ZZ.

If there exists a distinguisher D in probabilistic-polynomial time such that the
adversary can distinguish between the two C; in G; and G,, it means that
the adversary can distinguish between the two committed values (m —a + 1)
and rg. This breaks the hiding property of the elliptic-curve Pedersen
commitment scheme.

In “chg 5.2”, the adversary follows G; to compute

C=m-G+r-H,

39

DOI:10.6814/NCCU202101402

and then follows G, to compute
C=C+(@—-1)G=0g+a—-1)-G+r-H.

This is the same as “chg 5.1”.
In “chg 5.2”, the adversary follows G; to compute

C'=(b-m+1)-C;+r'*H
=(m—a+1)(b—m+1)-G+((b—m+1)r+r’)-H,

and then follows G, to compute
/1 $
C'=1ry:G+79"H 19 L.

This is the same as “chg 5.1”. Therefore, if the adversary follows the
verification steps to verify the two proofs produced by G; and §,, both can
pass the verification step 3 to step 7. Thus, they cannot distinguish between the

two proofs.

According to (1)(2)(3)(4), there does not exist any algorithm in probabilistic-
polynomial time to distinguish the two proofs produced by the game G; and G,. That

is G; and G, are computationally indistinguishable, so Theorem 5 is proved.

According to Theorem S, no adversary can distinguish between the two proofs
produced by G; and §G,. It means that the adversary cannot determine whether the
proof m produced by our protocol contains the secret value m. That is, the adversary
cannot compute the secret value m through the proof m. Therefore, our protocol

satisfies the zero-knowledge property.

40

DOI:10.6814/NCCU202101402

4 Non-Interactive Designated Verifier EC-ZKRP

Protocol

In addition, we consider that the prover may not want to let everyone except the
designated verifier knows the range of the secret value. That is, the proof produced by
the prover cannot convince any other third parties. Thus, we require a designated
verifier ZKRP scheme. Even if the designated verifier reveals the important information
of the proof, any other third party cannot trust the verification result or verify the proof.
There are several related works about the designated verifier non-interactive zero-
knowledge proof (DV-NIZK) [7][14][17], but a DV-ZKRP scheme has not been
proposed yet.

In this chapter, we introduce the non-interactive designated verifier EC-ZKRP
scheme (DV-EC-ZKRP) and the non-interactive strong designated verifier EC-ZKRP
scheme (SDV-EC-ZKRP) which are based on our EC-ZKRP scheme as described in
Chapter 3, but the commitment scheme is replaced by the trapdoor commitment
scheme (Section 2.5). The definitions of the designated verifier and strong designated
verifier in this thesis follow by the definitions proposed by Jakobsson et al. [13], i.e.,
the designated verifier proof cannot be trusted by any third party, while the strong
designated verifier proof cannot be verifier by any third party. However, the designated
verifier is strictly defined in the schemes [7][14][17] mentioned above, which is
different from our definitions: the designated verifier proof cannot be verified by any
third party. Therefore, our definition of the strong designated verifier can correspond to
the definition of the designated verifier in the schemes [7][14][17]. In the following,

we describe the definitions and the protocols in detail.

4.1 Designated Verifier EC-ZKRP Scheme

In this section, we introduce the definitions, protocol, and security description of
the DV-EC-ZKRP scheme in detail.

4.1.1 Definitions and Security Models

A scheme satisfies the designated verifier property: the prover follows the scheme

to produce the proof which can only convince the designated verifier, and any other

41

DOI:10.6814/NCCU202101402

third party cannot be convince by the proof. More precisely, there does not exist any
algorithm in probabilistic-polynomial time to distinguish between the proof produced
by the prover and the proof produced by the verifier. Since any third parties can think
the proof is produced by the designated verifier, they cannot trust the proof.

Definition 20 (Designated verifier). Let P(A,B) is a designated verifier protocol
which allows a prover A to produce a proof m to prove to B that a statement 6 is
true, and there is another protocol P'(B,C) such that B can prove the truth of 6 to
C. The probability

| I ,T[l(_PI(B:C);
Prib™=b: 01},

]

[1

=3 < negl(1)
| b' < A(m,)

for all probabilistic-polynomial time adversaries A and security parameter A.

Definition 21 (Non-interactive designated verifier zero-knowledge range proof, DV-
ZKRP). DV-ZKRP is composed by three functions (Setup, Pro,Ver).

$
(1) pp < Setup(A) : by inputting a secure parameter A, the polynomial-time

function Setup outputs the public parameters pp.

$
(2) T < Pro(pp, pky,m, a, b): by inputting the public parameters pp, the public

key of the designated verifier pk,, the secret value m, and the lower bound
and upper bound of a range a, b, where a < b, the polynomial-time function
Pro outputs the proof .

(3) r « Ver(pp, pky, m, a, b): by inputting the public parameters pp, the public
key of the designated verifier pk,,, the proof m, and the lower bound and
upper bound of a range a, b, the polynomial-time function Ver outputs a
result r € {0,1}. The proof 7 isaccepted if r isequal to 1, which means that
the secret value m is in the range [a,b], i.e., a < m < b. Otherwise, it is

rejected, i.e., m € [a, b].
A DV-ZKRP scheme satisfies the designated verifier property: there does not exist

any algorithm in probabilistic-polynomial time to distinguish between the proof

produced by the prover and the proof produced by the designated verifier.

42

DOI:10.6814/NCCU202101402

Definition 22 (Designated verifier of DV-ZKRP). Given a prover A and a designated
verifier B. The probability

$
pp < Setup(4);
o < A(Pro(pp, pks,m,a,b));

1
Prib' =b: —3 < negl(1)

Ty < B(Pro(pp,pkB,m, a, b));
b € {0,1};
b’ < A(pp,mp)

for all probabilistic-polynomial time adversaries A and security parameter A.

4.1.2 Designated Verifier EC-ZKRP Protocol

We describe the DV-EC-ZKRP protocol in detail below: the prover knows the
secret value m in the range [a, b], and the prover wants to prove to a designated
verifier that m is in the range [a, b] without revealing m. Given that the private key
of the designated verifier is X and the public key is Y, where Y =X-G. G and Y
are two points on a curve E(IF,) have the order q,and X € Zg. The prover randomly

chooses r € Z; to compute the commitment
C=m-G+r-Y.
by using the public key of the verifier Y.

To produce the non-interactive DV-EC-ZKRP:
(1) The prover randomly chooses 7' € Zg to compute

C1=C—(a—1)'G,
C,b=Mb+1)-G-C,
C'=(b—m+1)C1+T'Y

(2) Since the two commitments

C,=b+1)-6-C=b-m+1)-G+(-r)-Y,
C'=(b—m+1)C1+T'Y

hide the same value (b —m + 1), the prover produces the EL proof:

43

DOI:10.6814/NCCU202101402

EL=EL(b—m+1,—-1r,7,G,Y,C,Y).
(3) The prover randomly chooses w and r"' to compute
C"=w?-C"+71"-Y.

(4) Since the commitment C" hides a square number w?, the prover produces the
SQR proof:

SQR; = SQR(w,r",C",Y).
(5) The prover randomly chooses a € Zg; to compute
M = a?.

IfM > w?(m—a+1)(b — m+ 1), repeat (5).

(6) The prover computes
R=w?’m—a+1DB-m+1)-—M,

which must be greater than 0.
(7) The prover randomly chooses 7y € Zg to compute

=0’ ((b=m+Dr+7r)+r"—r.
(8) The prover computes

C1,=M'G+TI'Y,
C2,=T2'Y.

(9) Since the commitment C; hides a square number M, the prover produces the
SQR proof:

SQR, = SQR(a,1,,G,Y).
(10) The prover produces the proof

n={C,C',C",C},C, R EL SQR,,SOR,}.

44

DOI:10.6814/NCCU202101402

To verify the non-interactive DV-EC-ZKRP proof m, the designated verifier runs
the following steps:

(1) Compute C; =C—(a—1)-Y.

(2) Compute C, =(b+1)-G—C.

(3) Verify VEL(EL,G,Y,C,,Y,C,,C").

(4) Verify vSQR(SQR,,C',Y,C™).

(5) Verifty C" =C{+C;+R-G.

(6) Verify vSQR(SQR,,G,Y, ;).

(7) Verify R > 0.
The designated verifier can be convinced that the secret value m must be in the range

[a, b] if and only if the verification step 3 to step 7 are passed.

If any other third parties follow the verification steps to verify the proof, they
cannot accept the verification result even if the step 3 to step 7 are passed, because they
could think the prover and the designated verifier cheat together since the verifier
knows X, which is the relation of G and Y, i.e., the verifier can find m;,m,,r;,r; €
Zg easily such that

C=m1'G+T1'Y=m2'G+T2'Y.

That is, for any other third parties, the commitments that are used to produce the proof
does not satisfy the binding property. Therefore, the verification result can be only

accepted by the designated verifier.
4.1.3 Security Description: Designated Verifier

Our DV-EC-ZKRP scheme satisfies the designated verifier property: there does
not exist any algorithm in probabilistic-polynomial time to distinguish between the
proof produced by the prover and the proof produced by the designated verifier. In other
words, the designated verifier can find two different secret values to produce the same

proof such that any third party cannot trust the proof.

Lemma 4. Anyone who knows the relation of the public parameters G, H can produce
an EC-EL proof EL = (h, x, x1,x,) with different inputs.

Proof. Let p € Zy be the the relation of the two sets of public parameters
(G, H,),(Gy,Hy), i.e., H = pG;,H, = pG,. Assume that an adversary A knows p

45

DOI:10.6814/NCCU202101402

and the two commitments

A=m-G; +s-Hy,
B=m'GZ+T"H2,

. $
where A and B have the same committed value m € Zg, s,r < Zg. The adversary

A inputs (m,r,s,Gq, Hy, Gy, Hy, A, B) and to produce

($

W, V1, Uy < Ly
C; = uG; +v{H;
Cy = uG, +v,H,
h = hash(C,]|C,)"

x=pu+hm

X1 =V, +hs
\ X, =v,+hr

EL = (h,x,%x4,%3): %

Then the adversary A can compute

m-—m'
s’ =(Pf)+s(modq),

(m —m’)
r' =T+r(modq)

such that the two commitment

A=m-G +s-H =(m+ps)-Gg=m"+ps")-G,=m'-G; +s'-Hy,
B=m-G,+r-Hy=m+pr)-Go=(m"+pr')-G,=m'-G,+r"-H,.

Finally, the adversary A can produce the same proof EL = (h,x,xy,x,) with the
different input (m',r’,s’, G, Hy, G5, H,, A, B) through

u' =x—hm,

vy = x; — hs’,

vy = x, — hr',

since

46

DOI:10.6814/NCCU202101402

u'Gy + viH;

= [(x —hm') + (x; — hs")p]G,
=(g+h(m—-m)+ (v, +h(s—s"))p)G,

= (U +v,p)G, + h(m+ ps)G, — h(m' + ps')G,
=uG, +viHi +A—-A=C(,

and

u'Gy, + vyH,

= [(x = hm') + (x, — hr')p]G,

= (/,t +h(m—-—m') + (vz + h(r— r’))p)Gz

= (U +vyp)G, + h(m + pr)G, — h(m' + pr')G,
= uG, +v,H, + B — B = (,.

Thus, the value h = hash(Cy||C,) = hash((w'G, + viH,)||(1'G, + v3H,)) does
not change, i.e., the adversary A can produce the same EC-EL proof EL =

(h, x, x4, x,) with two different inputs

(ml r; S; G]J Hll GZI HZ; A; B);
(m',r',s’, Gy, Hy, Gy, Hy, A, B)

by knowing p. Therefore, Lemma 4 is proved.
Theorem 6. The designated verifier can find two different secret values m,m’ to
produce the same proof © = {C,C’,C",C{,C;,R,EL,SQR,SQR,} if the verifier has

his/her private key X.

Proof. Let Y be the public key of the designated verifier, and Y = X - G. Assume that
the verifier knows a secret value m € [a, b] and produces a DV-EC-ZKRP proof

47

DOI:10.6814/NCCU202101402

(" w e,y < Ly;
C =mG +71Y;
C'=Mb-m+1)C+7r'Y;
C" = w?C' +1"Y;
Ci=a?G+ (?(b—m+Dr+71")+1r" —1)Y;
LG Y. G
R,EL 5QRy, SQR, R=w?*(m—a+1)(b-m+1)—a?

$
EL<EL(bb—-m+1,-r1,GY,C—(a—1)G,Y);
$
SQR; « SQR(w,r",C",Y);
$
\ SQR, < SQR(a,11,G,Y)

with his/her public key Y. Then the verifier sets @ = 0 and computes

. (m—-m’)
7 = ————+r (mod q),
X

- m —m)(m+rX
= ()) + r' (mod q),

X
(@ =-D((b-m+1D(m—a+1+1X)+1'X
o (¢))((DX L o (mod),

73 = 1, (mod q),
rq=az((b—m'+1)f+ﬁ)+ﬁ—r;(modq),

M =M + (r; — /)X (mod q), where M = a?
such that

C=mG+rY=m'G+1+Y,
C'=(b-m+1DC+r'Y=0b-m+1)C+71'Y,
C" = w?C' +71"Y = ®*C' +1"Y,

C{ = MG +nY =MG+#RY,

Czl = TZY = Y/EY

Furthermore, according to Lemma 4, the verifier can produce the same EL proof EL
with (b —m' + 1) and the same SQR proof SQR,;,SQR, with @, M. Finally, the
verifier can produce the same proof @ ={C,C’,C",C{,C,,R,EL,SQR;,SQR,} by
using the different secret m' € Z; since

d*(m' —a+1)(b-m'+1)-M

48

DOI:10.6814/NCCU202101402

=0—-M
={F\-m)X—-M

=(‘7m—(r1+r2))X—M

= (wz((b -m+1)(m—a+1+71X) +r’X) +r”X)
— (0> ((b—-m+Dr+r)+1r")X-M

=w?’(b-m+1D)(m—-a+1)—-M

= R.

Thus, it can be seen that the designated verifier can produce the same proof m =
{c,c',c",c{,C;,R,EL,SQR,,SQR,} with two different secret m,m’ if the verifier
knows his/her private key X. Therefore, Theorem 6 is proved. The DV-EC-ZKRP

scheme satisfies the designated verifier property.

4.2 Strong Designated Verifier EC-ZKRP Scheme

Due to the confidentiality of the secret value, sometimes we would everyone except
the designated verifier like to not only be unable to trust the proof, but also cannot verify

the proof. Therefore, we require a strong designated verifier ZKRP scheme.

A strong designated verifier ZKRP scheme can make any third be unable to verify
the proof, or trust the proof even if they receive the key used to produce the proof, while
a designated verifier ZKRP scheme can only make any third party does not trust the
proof, but they can still verify the proof.

In this section, we introduce the definitions, protocol, and security description of
the SDV-EC-ZKRP scheme in detail.

4.2.1 Definitions and Security Models

A scheme satisfies the strong designated verifier property: the prover follows the
scheme to produce the proof which can only convince the designated verifier, and any
other third party cannot follow the scheme to verify the proof. More precisely, there
does not exist any algorithm in probabilistic-polynomial time to distinguish between

two proofs produced by different provers.

Definition 23 (Strong designated verifier). Let P(A,B) is a designated verifier

49

DOI:10.6814/NCCU202101402

protocol which allows a prover A to produce a proof m to prove to B that a
statement 6 is true, and there is another protocol P'(C,D) suchthat C can prove the
truth of 6 to D. The probability

TEO « P(ArB);
1 T[l « P,(CPD); 1
= N —_—— <
Prib'=»b b e 0.1} 7| = negl(1)
| b A(T,)

for all probabilistic-polynomial time adversaries A and security parameter A.

Definition 24 (Non-interactive strong designated verifier zero-knowledge range proof,
SDV-ZKRP). SDV-ZKRP is composed by three functions (Setup, Pro,Ver).

$
(1) pp < Setup(A): by inputting a secure parameter A, the polynomial-time

function Setup outputs the public parameters pp.

$
(2) T Pro(pp, Spv,m, a, b): by inputting the public parameters pp, the shared

key of the prover and the designated verifier S,,,, the secret value m, and the
lower bound and upper bound of a range a, b, where a < b, the polynomial-
time function Pro outputs the proof .
(3) v « Ver(pp, Spy, ™, a, b): by inputting the public parameters pp, the shared
key of the prover and the designated verifier S,,,
bound and upper bound of a range a, b, the polynomial-time function Ver

the proof m, and the lower

outputs a result r € {0,1}. The proof 7 is accepted if r is equal to 1, which
means that the secret value m is in the range [a,b], ie., a<m<bh.

Otherwise, it is rejected, i.e., m & [a, b].
A SDV-ZKRP scheme satisfies the strong designated verifier property: there does

not exist any algorithm in probabilistic-polynomial time to distinguish between two

proofs produced by different provers.

Definition 25 (Strong designated verifier of SDV-EC-ZKRP). Given two provers A
and C, and two designated verifiers B and D. The probability

50

DOI:10.6814/NCCU202101402

$
pp « Setup(1);
n'-O « A(Pro(pp' SAB' m,a, b));

1
Prib' =b: —3 < negl(1)

Ty < C(Pro(pp, Scp,m, a, b));
b € {0,1};
b’ < A(pp,mp)

for all probabilistic-polynomial time adversaries A and security parameter A.
4.2.2 Strong Designated Verifier EC-ZKRP Protocol

We describe the SDV-EC-ZKRP protocol in detail below: the prover knows the
secret value m in the range [a, b], and the prover wants to prove to a designated
verifier that m is in the range [a, b] without revealing m. The prover has the private
key X, and the publickey Y, = X,, - G, and the designated verifier has the private key
X, andthe publickey Y, = X,, - G. They runs ECDH as described in Section 2.4 to get
the shared key

S=X, Y,=X, Y, =X, X, G.

By using the public key of the designated verifier, the prover computes the shared key
§ = X, * Y, and randomly chooses r € Z; to compute the commitment

C=m-G+r-S.

To produce the non-interactive SDV-EC-ZKRP:
(1) The prover randomly chooses 7' € Zg to compute

C1=C—(a—1)'G,
C,b=Mb+1)-G-C,
C'=Mb-m+1)-C;+71r"-S.

(2) Since the two commitments

C,=b+1)-G-C=(b-m+1)-G+(-r)-S,
C'=Mb-m+1)-C;+71r"-S

hide the same value (b —m + 1), the prover produces the EL proof:

51

DOI:10.6814/NCCU202101402

EL=EL(b—m+1,—-r,7',G,S,C,S).
(3) The prover randomly chooses w and r"' to compute
C"=w?-C"+71""8.

(4) Since the commitment C" hides a square number w?, the prover produces the
SQR proof:

SQR; = SQR(w, 1", (", S).
(5) The prover randomly chooses a € Zg; to compute
M = a?.

IfM > w?(m—a+1)(b — m+ 1), repeat (5).

(6) The prover computes
R=w?’m—a+1DB-m+1)-—M,

which must be greater than 0.
(7) The prover randomly chooses 7y € Zg to compute

=0’ ((b=m+Dr+7r)+r"—r.
(8) The prover computes

Ci=M-G+1,-S,
C2,=T2'S.

(9) Since the commitment C; hides a square number M, the prover produces the
SQR proof:

SQR, = SQR(a,1,G,S).
(10) The prover produces the proof

n={C,C',C",C},C, R EL SQR,,SOR,}.

52

DOI:10.6814/NCCU202101402

To verify the non-interactive SDV-EC-ZKRP proof m, the designated verifier
computes the shared key S = X, Y, and runs the following steps:

(1) Compute C; =C—(a—1)"S.

(2) Compute C, =(b+1)-G—C.

(3) Verify VvEL(EL,G,S,Cy,S,C,,C").

(4) Verify vSQR(SQR4,C',S,C").

(5) Verifty C" =C{+C;+R-G.

(6) Verify vSQR(SQR,,G,S,C)).

(7) Verify R > 0.
The designated verifier can be convinced that the secret value m must be in the range

[a, b] if and only if the verification step 3 to step 7 are passed.

Any other third party cannot follow the verification steps to verify the proof
because they are not able to compute the shared key S through Y, and Y. Note that
it is not helpful for any third party to compute the addition of two points Y, and Y,

since
Y, +Y,=(X,+X,)G % X,-X,-G.

However, if the designated verifier is corrupted and sends his/her private key X,
or the shared key S to a third party so that they can verify the proof, the third party
still cannot accept the verification result, because the third party could think the prover
and the designated verifier cheat together since they can exchange their private key to
compute X, * X,,, which is the relation of G and S, i.e., the prover and the designated

verifier can find my, my, 1y, 1y € Zg easily such that
C=m1'G+T1'S=m2'G+T2'S.

That is, for any other third parties, the commitments that are used to produce the proof
does not satisfy the binding property. Therefore, the verification result can be only
accepted by the designated verifier and cannot be accepted by any other third party even
if the third party knows the shared key S.

4.2.3 Security Description: Strong Designated Verifier

Our SDV-ZKRP scheme satisfies the strong designated verifier property: there

does not exist any algorithm in probabilistic-polynomial time to verify the proof

53

DOI:10.6814/NCCU202101402

without using the correct shared key and there does not exist any algorithm in
probabilistic-polynomial time to distinguish between two proofs produced by different

provers.

Theorem 7. There does not exist any algorithm in probabilistic-polynomial time to

verify the proof without using the correct shared key S.

Proof. We divide the discussion into two cases:
(1) Assume that an adversary verifies the proof through an incorrect shared key

S': the probability that the adversary finds an incorrect shared key S’ to verify

the proof'is
$
|[pp < Setup(A); 1|
Pr|Ver(pp,S’,m,a,b) = 1: T < Pro(pp,S,m,a,b);| < negi(2) ~ 0.
| '~ Alppm); |
l S"#S J

Therefore, with such a negligible probability, we can ignore this case.
(2) Assume that an adversary verifies the proof through the correct shared key S:
it means that the adversary can solve the elliptic-curve Diffie-Hellman

problem in probabilistic-polynomial time.
According to (1)(2), there does not exist any algorithm in probabilistic-polynomial time
to verify the proof without using the correct shared key S. Therefore, Theorem 7 is

proved.

Theorem 8. There does not exist any algorithm in probabilistic-polynomial time to

distinguish from two proofs produced by different provers.

Proof. Assume that a prover knows a secret value m € [a, b] and produces a SDV-
EC-ZKRP proof

54

DOI:10.6814/NCCU202101402

(" w e,y < Ly;
C =mG +rS;
C'=Mb-m+1)C+r'S;
C" =w?C' +1"S;
Ci=a?G+ (0?((b—m+Dr+71")+1r" —1,)S;
C; =1,S;
R=w?’m—a+1D)(b-m+1)—a?

$
EL<ELbb—-m+1,-r1,G,S,C—(a—1)G,S);
$
SQR, < SQR(w,r",C",S);
$
\ SQR, < SQR(a,14,G,S)

(c,c'.c" clcl)<
~ \R,EL,SQR,,SQR,) "

and another prover knows a secret value m' € [a, b] and uses another shared key S’
to produce the proof

(s,s',s", Y, B,s; « Lg;
c=m'G +sS’;
c'=Mb-m'+1c+s'Sh
¢ =i’ +5"S";

c; = B%G + (W2((b—m' + s + s’) +s" — SZ)S’;
c; = 5,5";
r=¢?(m'—a+1)(b—-m'+1) — B

$
el<«EL(b—-m'+1,-s,5,G,5',C = (a—1)G,S');
$
sqr; < SQR(W,s",c',S");

$
\ SquPSQR(ﬁ,Sl, G,S,)

o = (c,C’,C”, C{,CQ,),
r,el,sqry, sqry)

Let T = (é, ¢',C",C{, ¢, R,EL,SQR,,SQR;) be arandomly chosen proof in the set
of all valid proofs. The probability

rr,r",w a1, € Ly;

A A A . A 1
Prim=a]=Pr| C=(C=CC"=C"C=66G=06 |=r—
R =R,EL = EL,SQR, = SQR,,SQR, = SQR,
and the probability
s,s',8",,B,s, € Ly; 1
Prln’ =/] =Pr|c=C,c' =C"c"=C"c; =C},c; =0} ReEN
r =R, EL = el,SQR, = sqry, sqr, = SQR, 1

55

DOI:10.6814/NCCU202101402

are equal, i.e., m and ©' are indistinguishable. Therefore, Theorem 8 is proved. The
SDV-EC-ZKRP scheme satisfies the strong designated verifier property.

56

DOI:10.6814/NCCU202101402

5 Efficiency Analysis

In this chapter, we evaluate the efficiency of our scheme and compare our scheme

with other existing ZKRP schemes.

In Table 3, we compare our scheme with some related ZKRP schemes [1][24][28].
The comparison focuses on the provable range, the execution time and the proof size.
The modular exponentiation is a type of exponentiation that performed over a modulus,

ie.,
y = x'mod N.

In the schemes [1][24][28], since most of their steps are kind of the modular
exponentiation, we count the times of the modular exponentiation to represent the
execution time of these schemes; the execution time of our scheme is to count the times
of the point multiplication, i.e.,

Y=iX,

where X and Y are the two points on an elliptic curve. In addition, we set 1024 bits
as the security parameter size to estimate the proof size produced by the schemes.
According to the analysis of the National Institute of Standards and Technology (NIST)
[4], since our scheme is based on the elliptic-curve cryptography (ECC), we set 160
bits as the security parameter size to estimate the proof size produced by the schemes
so that the security strength of our scheme can be the same as other schemes which are
based on integer-factorization cryptography (IFC).

57

DOI:10.6814/NCCU202101402

Security Provabl Computation Proof
rovaole utatl
Scheme Cryptography | Parameter R v TPmes Size
ange |

Size (bit) 8 (byte)
1 Arbitrary:

[1] IFC 1024 |0 ro2e) 40 896
L Arbitrary:

[24] IFC 1024 (0,21024] 33 1280
L Arbitrary:

[28] IFC 1024 (0,21024] 30 2560
) Arbitrary:

Our scheme ECC 160 30 400
[0,2160]

Table 3: Comparison of Our ZKRP Scheme with Other Related Schemes
VIFC: integer-factorization cryptography
2 ECC: elliptic-curve cryptography

It can be seen from Table 3 that the execution time of our scheme is the same as
the scheme proposed by Tsai et al. [28], but only a 160-bit security parameter size is
required to meet the same security strength. At this level of the security strength, the
proof produced by [28] is about 6.4 times different from the proof produced by our

scheme.

Besides, these four schemes have an arbitrary provable range: the prover can
determine the secret range by themselves but the range cannot be outside the security
parameter. Since our scheme is constructed with the elliptic-curve cryptography, the
number of points on a curve can be counted by the Schoof’s algorithm [26]. If the range
of the secret value that the prover wants to prove is over the number of elements, the
proof produced followed our scheme cannot convinces the verifier that the secret value
is in the specified range even if the proof can pass the verification. However, the length
of 160 bits is about 1.46 x 108, Taking a 160-bit length as the range is quite sufficient
when using the ZKRP scheme in practice, such as the cryptocurrency transactions and

the application scenarios as described in Chapter 6.

More importantly, if the ZKRP schemes that are used in practice requires the higher
security strength, the security parameter size must be set at least 2048 bits or more for
the schemes [1][24][28], but only need to set a 224-bit security parameter size for our
scheme to meet the same level of the security strength, and the 224-bit length is about
2.7 X 10%7. In addition, at this level of the security strength, the size of the proof
produced by our scheme is about 560 bytes. The gap of the proof size can be quite wide:

58

DOI:10.6814/NCCU202101402

it is about 9.14 times different from the scheme proposed by Tsai et al. [28].
Therefore, our ZKRP scheme has a shorter execution time, a smaller security

parameter, and a smaller proof size among the four schemes. By applying our scheme

to the cryptocurrency, the transaction cost can be reduced effectively.

59

DOI:10.6814/NCCU202101402

6 Application Scenarios

Our non-interactive EC-ZKRP scheme can be applied to not only the
cryptocurrency on the blockchain to hide the transaction amount, but also other
scenarios in practice. In this chapter, we describe some application scenarios, the

procedure of which is shown in Figure 4.

To produce the ZKRP proof, the prover starts by applying for the ZKRP proof
documents to the corresponding issuer. When applying, it is necessary to send the
documents that can prove one’s identity and the range of the secret value for producing
the proof. After the issuer confirms the identity, the issuer produces the ZKRP proof
document and sends it to the applicant. Then the prover sends the document to the
verifier to determine whether the verification is passed or not. By following this
procedure, the prover can convince the verifier that the secret value is in the specified
range without providing the exact secret value. We describe some practical examples

as below.

Scenario 1: Alice wants to apply to a company for a new job. The company
specifies that the language test score must reach a certain score. Alice knows that his
test score has reached the certain score, but she does not want to provide the exact test
score to the company. Therefore, Alice applies to the test center for the ZKRP proof
document of the score, and then the test center produced the document and sends to
Alice. As a result, instead of providing the exact test score to the company, Alice only
needs to send the ZKRP proof document so that the company can be convinced that her

test score has reached the certain score.

Scenario 2: Bob wants to donate blood. However, Bob wants to know whether his
physical condition is suitable for blood donation, so Bob starts by going to a health
facility to make a blood test report. If the health facility approves that Bob can donate
blood, then Bob can apply to the health facility for the ZKRP proof of the blood draw
report. Therefore, by sending the ZKRP proof of the blood draw report, Bob can directly
answer some important questions from the collecting agency instead of sending the

complete blood draw report.

Scenario 3: Cindy is a student whose family is a low-income family. She wants to
apply to her school for the tuition and miscellaneous fees exemption, so Cindy starts by

applying to the social welfare organization for the ZKRP proof document of the family

60

DOI:10.6814/NCCU202101402

income. Then all students are required by the school to submit the document. Therefore,
the school cannot know the family income of all students, but it can still determine

which students meet the condition.

Issuer -
(2) Return the ZKRP (1) Apply for the ZKRP proof document
proof document
(3) Send the ZKRP proof document
>
<€
(4) reply with the verification result
Prover
Verifier

Figure 4: Schematic Diagram of ZKRP Application Scenarios

61

DOI:10.6814/NCCU202101402

7 Conclusions

We propose the EC-ZKRP scheme. By applying the elliptic curve, our scheme has
a shorter execution time, a smaller key size and a smaller proof size at the same level
of the security strength compared to existing ZKRP schemes such that the transaction
cost can be reduced. In addition, by using the trapdoor commitment scheme [13] and
ECDH [5], we propose a designated verifier ZKRP scheme and a strong designated
verifier ZKRP scheme based on EC-ZKRP without adding any extra computation steps
during producing proofs. The designated verifier ZKRP scheme allows the only
designated verifier to be able to verify the proof, and the verifier cannot convince any
other third party of the verification result; the strong designated verifier ZKRP scheme
makes any third party cannot verify the proof. Besides, these ZKRP schemes can be
optional and flexible: we can choose a suitable scheme to produce a ZKRP proof
according to the confidentiality of the secret value. Furthermore, we argue the security
proofs of our schemes completely and rigorously so that our schemes can satisfy
necessary security properties, e.g., correctness, soundness, zero-knowledge, designated
verifier and strong designated verifier. Finally, we provide the efficiency analysis
compared to other existing ZKRP schemes and list some application scenarios that uses
ZKRP schemes. Our ZKRP schemes can be applied to not only the cryptocurrency on
the blockchain, but also other scenarios in practice. By applying ZKRP widely, our

privacy can be more protected.

62

DOI:10.6814/NCCU202101402

Reference

[1] F. Boudot. Efficient proofs that a committed number lies in an interval. In
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 431-444. Springer, 2000.

[2] V. Buterin. Ethereum white paper. In GitHub repository, 2013.

[3] B.Biinz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Efficient range proofs for confidential transactions. Technical report, Cryptology
ePrint Archive, Report 2017/1066, 2017. https://eprint. iacr. org/2017/1066, 2017.

[4] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. Recommendation for key
management part 1: General (revision 3). In NIST Special Publication 800-57,
pages 1-147. July, 2012.

[5] E. Barker, D. Johnson, and M. Smid. Recommendation for Pair-Wise Key
Establishment Schemes Using Discrete Logarithm Cryptography. In Special
Publication 800-56A, National Institute of Standards and Technology,
Gaithersburg, MD, March, 2007.

[6] R. Chaabouni, H. Lipmaa, and B. Zhang. A non-interactive range proof with
constant communication. In Financial Cryptography and Data Security, A. D.
Keromytis, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, pages 179-199.
2012.

[7] P. Chaidos, and G. Couteau. Efficient designated-verifier non-interactive zero-
knowledge proofs of knowledge. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques pages 193—-221. Springer,
Cham, April, 2018.

[8] F. Christian and G. Johann. Efficient Implementation of Pedersen Commitments
Using Twisted Edwards Curves. In Mobile, Secure, and Programmable
Networking - Third International Conference, MSPN 2017, pages 1-17, 2017.

[9] E.Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In Annual International Cryptology Conference, pages 16—
30. Springer, 1997.

[10] P. Gallagher. Digital signature standard (DSS). In Federal Information Processing
Standards Publications, volume FIPS, 186, 2013.

[11] O. Goldreich, Y. Oren. Definitions and properties of zero-knowledge proof
systems. In J. Cryptology 7, pages 1-32, 1994.

[12] D. Hankerson, A. Menezes. Elliptic Curve Discrete Logarithm Problem. In van
Tilborg H.C.A., Jajodia S. (eds) Encyclopedia of Cryptography and Security, 2011.

[13] M. Jakobsson, K. Sako, R. Impagliazzo. Designated Verifier Proofs and their

63

DOI:10.6814/NCCU202101402

Applications. In Eurocrypt’96, Springer LNCS Vol. 1070, pages 142—154, 1996.

[14] S. Katsumata, R. Nishimaki, S. Yamada, and T. Yamakawa. Designated
verifier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 622—651. Springer, Cham, May, 2019.

[15] T. Koens, C. Ramaekers and C. van Wijk. Efficient Zero-Knowledge Range Proofs
in Ethereum. In ING media.

[16] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. In 2016 IEEE
symposium on security and privacy (SP), pages 839-858, 2016.

[17] B. Libert, A. Passelégue, H. Wee, and D. Wu. New constructions of statistical
NIZKs: dual-mode DV-NIZKs and more. In Eurocrypt 2020-39th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques. May, 2020.

[18] H. Lipmaa. On diophantine complexity and statistical zero-knowledge arguments.
In International Conference on the Theory and Application of Cryptology and
Information Security, pages 398415, Springer, 2003.

[19] P. McCorry, S. Shahandashti, and F. Hao. A smart contract for boardroom voting
with maximum voter privacy. In International Conference on Financial
Cryptography and Data Security, pages 357-375. Springer, 2017.

[20] I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous
distributed e-cash from bitcoin. In 2013 IEEE Symposium on Security and Privacy,
pages 397411, IEEE, May, 2013.

[21] E. Morais, T. Koens, C. Wijk, and A. Koren. A survey on zero knowledge range
proofs and applications. In Nature Switzerland AG 2019, Springer, 2019.

[22] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. In Decentralized
Business Review, 2008.

[23] T. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In CRYPTO, volume 576 of Lecture Notes in Computer Science, pages
129-140, 1991.

[24] K. Peng and F. Bao. Batch range proof for practical small ranges. In International
Conference on Cryptology in Africa, pages 114—130, Springer, 2010.

[25] M. Qu. Sec 2: Recommended elliptic curve domain parameters. In Certicom Res.,
Mississauga, ON, Canada, Tech. Rep. SEC2-Ver-0.6, 1999.

[26] R. Schoof. Elliptic Curves over Finite Fields and the Computation of Square Roots
mod p. In Mathematics of Computation Vol. 44, No. 170, pages 483—494, April,
1985.

[27] N. Van Saberhagen. CryptoNote v 2.0, 2013.

64

DOI:10.6814/NCCU202101402

[28] Y. Tsai, R. Tso, Z. Liu, and K. Chen. An improved non-interactive zero-knowledge
range proof for decentralized applications. In 2019 IEEE International Conference
on Decentralized Applications and Infrastructures (DAPPCON), pages 129-134,
April 2019.

[29] Y. Wang and A. Kogan. Designing confidentiality-preserving blockchain-based
transaction processing systems. In International Journal of Accounting
Information Systems, vol. 30, pages 1-18, 2018.

[30] L. Xu, N. Shah, L. Chen, N. Diallo, Z. Gao, Y. Lu, and W. Shi. Enabling the sharing
economy: Privacy respecting contract based on public blockchain. In Proceedings
of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts, pages 15—
21,2017.

65

DOI:10.6814/NCCU202101402

	謝辭
	摘要
	Abstract
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Contributions
	1.4 Organization

	2 Preliminaries
	2.1 Notations
	2.2 Hardness Assumptions
	2.3 Elliptic-curve Pedersen Commitment Scheme
	2.4 Elliptic-curve Diffie–Hellman Key Exchange (ECDH)
	2.5 Trapdoor Commitment Scheme
	2.6 Elliptic-curve EL Proof
	2.6.1 Definitions and Security Models
	2.6.2 EC-EL Proof Protocol
	2.6.3 Security Descriptions
	2.6.3.1 Correctness of EC-EL Proof
	2.6.3.2 Soundness of EC-EL Proof
	2.6.3.3 Zero-knowledge of EC-EL Proof

	2.7 Elliptic-curve SQR Proof
	2.7.1 Definitions and Security Models
	2.7.2 EC-SQR Proof Protocol
	2.7.3 Security Descriptions
	2.7.3.1 Correctness of EC-SQR Proof
	2.7.3.2 Soundness of EC-SQR Proof

	2.8 Zero-Knowledge Proof with Commitment Secret (ZKPCS)

	3 Non-Interactive EC-ZKRP Scheme
	3.1 Definitions and Security Models
	3.2 Non-Interactive EC-ZKRP Protocol
	3.3 Security Descriptions
	3.3.1 Correctness
	3.3.2 Soundness
	3.3.3 Zero-knowledge

	4 Non-Interactive Designated Verifier EC-ZKRP Protocol
	4.1 Designated Verifier EC-ZKRP Scheme
	4.1.1 Definitions and Security Models
	4.1.2 Designated Verifier EC-ZKRP Protocol
	4.1.3 Security Description: Designated Verifier

	4.2 Strong Designated Verifier EC-ZKRP Scheme
	4.2.1 Definitions and Security Models
	4.2.2 Strong Designated Verifier EC-ZKRP Protocol
	4.2.3 Security Description: Strong Designated Verifier

	5 Efficiency Analysis
	6 Application Scenarios
	7 Conclusions
	Reference

