
‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

國立政治大學資訊科學系

Department of Computer Science

National Chengchi University

碩士論文

Master’s Thesis

基於橢圓曲線之非互動及指定驗證者

零知識值域證明

Non-Interactive and Designated Verifier Zero-Knowledge Range

Proof Based on Elliptic Curve

研究生: 陳庭軒 撰

指導教授：左瑞麟 博士

中華民國 一百一十年 七月

July, 2021

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

i

謝辭

 首先非常感謝指導教授左瑞麟教授這段時間的教導，左老師給予我很好的研

究方向以及研究目標，很慶幸自己能夠在左老師的教導下順利完成碩士學位，也

很感謝口試委員陳恭教授、曾一凡教授、王紹睿教授以及王智弘教授提供寶貴建

議，尤其特別感謝陳恭教授及曾一凡教授給予我在學期間很多研究上的幫助，也

很感謝大學時期的專題指導教授廖峻鋒教授，讓我學習如何做研究。另外也非常

感謝實驗室的博士班學長劉子源學長很有耐心地督導我做研究以及許仁傑學長

提供寶貴的建議，最後感謝吳映函同學總是提醒我各項重要日程，以讓我能兩年

完成碩士學位。

 再次感謝一路上曾經幫助過我的人，謝謝你們！

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

ii

摘要

零知識值域證明（zero-knowledge range proof，ZKRP）是一種特殊的零知識

證明（zero-knowledge proof，ZKP），此種證明可以使得證明者（prover）說服驗

證者（verifier），一個特定的秘密數值介於某一個範圍內，但不會洩漏該秘密數

值，即驗證者無法得知此秘密數值實際之大小。本篇提出了一種有效率的非交互

式零知識值域證明方案。透過橢圓曲線的應用，本篇方案在相同等級的安全強度

下具有較短的執行時間、較小的金鑰長度和較小的證明大小，若將本篇 ZKRP方

案應用至區塊鏈，可降低區塊鏈上加密貨幣的交易成本。此外，本篇基於原先的

零知識值域證明方案提出了一種指定驗證者（designated verifier）的零知識值域

證明方案和另一種強指定驗證者（strong designated verifier）的零知識值域證明方

案，此兩種方案在產生證明的過程中不需額外增加任何的計算步驟。其中，指定

驗證者的方案僅被指定的驗證者能夠驗證此種方案產生的證明，且該驗證者無法

說服任何第三方驗證之結果；而強指定驗證者的方案則是可以令任何第三方皆無

法驗證此種方案產生的證明。上述的零知識值域證明方案皆可靈活運用，換言之，

可以根據秘密值的機密性來選擇合適的方案。另外，本篇提出的方案協定亦通過

嚴謹且完整的安全性證明，不失其應有的安全性。

關鍵字：區塊鏈、零知識值域證明、橢圓曲線、承諾方案、指定驗證者證明。

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

iii

Abstract

Zero-knowledge range proof (ZKRP) is a kind of particular zero-knowledge proof

which allows a prover to convince a verifier that a secret value is in a specified range

without revealing the actual value. In this thesis, we propose an efficient non-interactive

ZKRP scheme based on elliptic curve. By applying the elliptic curve, our scheme has a

shorter execution time, a smaller key size and a smaller proof size at the same level of

the security strength compared to existing ZKRP schemes. If we apply our ZKRP

scheme to the blockchain, the transaction cost of the cryptocurrency on the blockchain

can be reduced. In addition, we propose a designated verifier ZKRP scheme and a

strong designated verifier ZKRP scheme based on original ZKRP scheme without

adding any extra computation steps during producing proofs. The designated verifier

ZKRP scheme allows the only designated verifier to be able to verify the proof, and the

verifier cannot convince any other third party of the verification result; the strong

designated verifier ZKRP scheme makes any third party cannot verify the proof.

Besides, these ZKRP schemes can be optional and flexible: we can choose a suitable

scheme to produce a ZKRP proof according to the confidentiality of the secret value.

Furthermore, we argue the security proofs of our schemes completely and rigorously so

that our schemes can satisfy necessary security properties.

Keywords: Blockchain, Zero-knowledge range proof, Elliptic curve, Commitment

scheme, Designated verifier proof

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

iv

CONTENTS

謝辭 ···i

摘要 ·· ii

Abstract ·· iii

CONTENTS ··· iv

LIST OF FIGURES ··· vi

LIST OF TABLES ·· vii

1 Introduction ··· 1

1.1 Background ·· 1

1.2 Motivation ··· 2

1.3 Contributions ·· 2

1.4 Organization ··· 3

2 Preliminaries ·· 5

2.1 Notations ··· 5

2.2 Hardness Assumptions ·· 6

2.3 Elliptic-curve Pedersen Commitment Scheme ·· 6

2.4 Elliptic-curve Diffie–Hellman Key Exchange (ECDH)······································· 8

2.5 Trapdoor Commitment Scheme ··· 9

2.6 Elliptic-curve EL Proof ··· 11

2.6.1 Definitions and Security Models ··· 11

2.6.2 EC-EL Proof Protocol ··· 13

2.6.3 Security Descriptions ··· 14

2.7 Elliptic-curve SQR Proof ··· 18

2.7.1 Definitions and Security Models ··· 19

2.7.2 EC-SQR Proof Protocol ·· 21

2.7.3 Security Descriptions ··· 22

2.8 Zero-Knowledge Proof with Commitment Secret (ZKPCS) ···························· 24

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

v

3 Non-Interactive EC-ZKRP Scheme ··· 27

3.1 Definitions and Security Models ··· 27

3.2 Non-Interactive EC-ZKRP Protocol ·· 28

3.3 Security Descriptions ··· 33

3.3.1 Correctness ··· 33

3.3.2 Soundness ··· 34

3.3.3 Zero-knowledge ··· 36

4 Non-Interactive Designated Verifier EC-ZKRP Protocol ··· 41

4.1 Designated Verifier EC-ZKRP Scheme ··· 41

4.1.1 Definitions and Security Models ··· 41

4.1.2 Designated Verifier EC-ZKRP Protocol ·· 43

4.1.3 Security Description: Designated Verifier ··· 45

4.2 Strong Designated Verifier EC-ZKRP Scheme ··· 49

4.2.1 Definitions and Security Models ··· 49

4.2.2 Strong Designated Verifier EC-ZKRP Protocol ··· 51

4.2.3 Security Description: Strong Designated Verifier ·· 53

5 Efficiency Analysis··· 57

6 Application Scenarios ·· 60

7 Conclusions ·· 62

Reference ·· 63

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

vi

LIST OF FIGURES

Figure 1: Protocol to Produce EC-ZKRP Proof ... 32

Figure 2: Protocol to Verify EC-ZKRP Proof .. 32

Figure 3: Proof Games 𝒢1, 𝒢2 of Theorem 5 .. 37

Figure 4: Schematic Diagram of ZKRP Application Scenarios 61

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

vii

LIST OF TABLES

Table 1: Notations and Descriptions .. 5

Table 2: Simulator ℰℒ𝒮 and Oracle ℋ𝒪 ... 17

Table 3: Comparison of Our ZKRP Scheme with Other Related Schemes 58

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

1

1 Introduction

1.1 Background

Blockchain was created by Satoshi Nakamoto [22] in 2008 to serve as the public

ledger of the cryptocurrency, Bitcoin, which is the first decentralized cryptocurrency

that solves the double-spending problem without a trusted authority or central server.

Since the release of Bitcoin, many other decentralized cryptocurrencies have also been

created, such as Ether [2], Monero [27], and Zerocoin [20].

Zero-knowledge proof (ZKP) [11] is a method by which a user can prove to other

people that he/she knows a secret without revealing any information of the secret. In

cryptocurrency, ZKP can provide users with a higher level of privacy during

transactions. For example, users on blockchain can use ZKP to verify the transactions

but keep the identities of sender and receiver secret [29][30]; users use ZKP to enforce

the correctness of the smart contract execution [16][19].

Zero-knowledge range proof (ZKRP) is a kind of particular ZKP, which allows a

prover to convince a verifier that a secret value is in a specified range without revealing

the actual value. For example, a buyer can prove that something is affordable for

him/her without revealing the balance amount [14]; a payer can prove that a payment

amount is in the limited range without revealing the exact amount [14]; a user can prove

that he/she is exactly a country without revealing the exact location [14].

Many ZKRP schemes have been proposed in the literatures: the first ZKRP scheme

was proposed by Boudot [1] in 2001, which is based on the Fujisaki-Okamoto

commitment scheme [9] and is constructed with two proofs: the proof that two

commitments hide the same secret (EL proof) and the proof that a committed number

is a square (SQR proof). The EL proof can convince other people that two commitment

hide the same secret value without revealing the secret value, while SQR proof can

convince other people that a commitment hides a square number 𝑦 = 𝑥2, where 𝑥 ∈

ℤ, without revealing 𝑥 or 𝑦. Pang et al. [24] applied the batch proof and verification

to construct a more efficient ZKRP scheme in 2010. Chaabouni et al. [6] replaced the

random oracle model with a common reference string (CRS) model to construct a new

non-interactive ZKRP scheme in 2012. Bünz et al. [3] proposed a non-interactive ZKRP

scheme without a trusted setup in 2017: the Bulletproofs. Koens et al. [14] improved

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

2

the scheme proposed by Peng et al. [24] to construct a non-interactive ZKRP scheme

and applied it to the smart contract in Ethereum in 2017. Tsai et al. [28] improved the

scheme proposed by Boudot [1] and the scheme proposed by Pang et al. [24] to

construct a new non-interactive ZKRP scheme in 2019.

1.2 Motivation

We analyze the scheme proposed by Boudot [1], the scheme proposed by Pang et

al. [24], and the scheme proposed by Tsai et al. [28]. Under 1024-bit security parameter

size, the proof sizes of them are approximately 896 bytes, 1280 bytes, and 2560 bytes

respectively. If we use these schemes in practice but require the higher security strength,

the security parameter size must be set at least 2048 bits or more, as a result, the proof

sizes produced by these schemes also increase.

At the same level of the security strength, elliptic-curve cryptography (ECC) has

a smaller key size compared to integer-factorization cryptography (IFC) according to

NIST [4], e.g., to meet the 112-bit security strength, IFC has to be set 2048-bit key size

while ECC only needs to be set 224 bits. Therefore, to reduce the proof size or even

shorten the execution time, we apply the elliptic curve to the ZKRP scheme proposed

by Tasi et al. [28].

In addition, we consider that the prover may not want to let everyone except the

designated verifier knows the range of the secret value. That is, the proof produced by

the prover cannot convince any other third parties. Thus, we require a designated

verifier ZKRP scheme. Even if the designated verifier reveals the important information

of the proof, any other third party cannot trust the verification result.

1.3 Contributions

As mentioned in previous section, ECC has a smaller key size compared to IFC

according to NIST [4]. To reduce the proof size or even shorten the execution time, we

apply the elliptic curve to the ZKRP scheme proposed by Tasi et al. [28] and construct

a more efficient non-interactive ZKRP scheme, the elliptic-curve ZKRP (EC-ZKRP).

To apply the elliptic curve, we replace the Fujisaki-Okamoto commitment scheme [9]

with the Pedersen commitment scheme [23] so that our ZKRP scheme has a shorter

execution time, a smaller key size and a smaller proof size at the same level of the

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

3

security strength compared to existing ZKRP schemes, leading to the transaction cost

can be reduced by applying our scheme in cryptocurrency.

In addition, if the prover does not want to let everyone except the designated

verifier knows the range of the secret value, it means that the proof produced by the

prover cannot convince any other third parties. Therefore, we propose the designated

verifier ZKRP and the strong designated verifier ZKRP by applying the trapdoor

commitment scheme [13] and the elliptic-curve Diffie-Hellman key exchange (ECDH)

[5]. The trapdoor commitment scheme is computed through the public key of the

designated verifier. Although any other third parties can open the commitment by

receiving the public key of the designated verifier, they could cannot trust the

commitment because they could think that the prover and verifier cheat together.

Moreover, if the trapdoor commitment is computed through the shared key produced

by ECDH, any other third party cannot open the commitment. As a result, by using the

trapdoor commitment scheme [13] and ECDH [5], we propose a designated verifier

ZKRP scheme and a strong designated verifier ZKRP scheme based on EC-ZKRP

without adding any extra computation steps during producing proofs. The designated

verifier ZKRP scheme allows the only designated verifier to be able to verify the proof,

and the verifier cannot convince any other third party of the verification result; the

strong designated verifier ZKRP scheme makes any third party cannot verify the proof.

Besides, these ZKRP schemes can be optional and flexible: we can choose a suitable

scheme to produce a ZKRP proof according to the confidentiality of the secret value.

Furthermore, we argue the security proofs of our schemes completely and rigorously so

that our schemes can satisfy necessary security properties, e.g., correctness, soundness,

zero-knowledge, designated verifier and strong designated verifier. Finally, we provide

the efficiency analysis compared to other existing ZKRP schemes and list some

application scenarios that uses ZKRP schemes.

1.4 Organization

We start by describing some preliminaries that are used in our schemes in Chapter

2; we introduce the definitions, protocol, and security properties of the non-interactive

EC-ZKRP scheme in Chapter 3; we describe the definitions, protocol, and security

properties of our designated verifier ZKRP scheme and strong designated verifier

ZKRP scheme based on EC-ZKRP in Chapter 4; in Chapter 5, we evaluate the

efficiency of our ZKRP scheme and make a comparison of our ZKRP scheme and other

existing ZKRP schemes; we describe some ZKRP application scenarios in Chapter 6;

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

4

finally, we draw a conclusion in Chapter 7.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

5

2 Preliminaries

In this chapter, we introduce some notations and particular proofs that are used in

our ZKRP schemes.

2.1 Notations

The notations are shown in Table 1.

Notation Description

ℕ the set of natural numbers

ℤ the set of integers

𝑝 a safe prime, 𝑝 = 2𝑝′ + 1, where 𝑝′ is also a prime

𝐸(𝔽𝑝) an elliptic curve over finite field 𝔽𝑝

𝑞 the order of the points on 𝐸(𝔽𝑝)

ℤ𝑞
∗ the set of integers less than 𝑞

𝐺 a generator point on 𝐸(𝔽𝑝)

𝐻 another point on 𝐸(𝔽𝑝), 𝐻 = 𝑠 ∙ 𝐺, where 𝑠 ∈ ℤ𝑞
∗

[𝑎, 𝑏] the range between 𝑎 and 𝑏, where 𝑎 < 𝑏, 𝑎, 𝑏 ∈ ℤ𝑞
∗

𝑠𝑡𝑟1||𝑠𝑡𝑟2 concatenate two strings 𝑠𝑡𝑟1 and 𝑠𝑡𝑟2

𝑋
$
←𝑌 randomly choose the value 𝑋 from the space 𝑌

𝐻𝑎𝑠ℎ(𝑠𝑡𝑟) input a string 𝑠𝑡𝑟 and output its hash value

𝜆 the security parameter

#𝐸(𝔽𝑝) the cardinality of 𝐸(𝔽𝑝)

Table 1: Notations and Descriptions

The equation of elliptic curve over finite field that is used in our schemes is

𝐸(𝔽𝑝)：𝑦
2 = 𝑥3 + 𝐴𝑥 + 𝐵 (mod 𝑝).

Here 𝑝 is a safe prime, which means that 𝑝 = 2𝑝′ + 1 and 𝑝′ is also a prime, and

the discriminant

Δ = 4𝐴3 + 27𝐵2 (mod 𝑝)

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

6

must not equal to 0. In addition, the order 𝑞 is a prime factor of the cardinality

#𝐸(𝔽𝑝), which is the number of points on the curve 𝐸(𝔽𝑝). Many elliptic curves used

in practice have been defined in the literatures, e.g., Secp256k1 [25], NIST224p [10],

NIST256p [10].

2.2 Hardness Assumptions

In this section, we describe some definitions of hardness assumptions in detail.

Definition 1 (Elliptic-curve discrete logarithm problem). Let an elliptic curve 𝐸(𝔽𝑝)

over finite field 𝔽𝑝, a generator point 𝐺 and another point 𝐻 which are on the curve

𝐸(𝔽𝑝) have the order 𝑞 . There does not exist any algorithm in probabilistic-

polynomial time to find 𝑠 ∈ ℤ𝑞
∗ such that 𝐻 = 𝑠 ∙ 𝐺.

Definition 2 (Elliptic-curve Diffie-Hellman assumption). Let an elliptic curve 𝐸(𝔽𝑝)

over finite field 𝔽𝑝, and a generator point 𝐺 which is on the curve 𝐸(𝔽𝑝) has the

order 𝑞 . There does not exist any algorithm in probabilistic-polynomial time to

determine whether 𝑐𝐺 = 𝑎𝑏𝐺 by given (𝐺, 𝑎𝐺, 𝑏𝐺, 𝑐𝐺) with non-negligible

probability, where 𝑎, 𝑏, 𝑐 ∈ ℤ𝑞
∗ .

2.3 Elliptic-curve Pedersen Commitment Scheme

A commitment scheme allows a person to commit to a secret value while keeping

the value hidden, and the person can reveal the committed value later. Before the person

reveal the secret value, no one can derive the secret value from the commitment (the

hiding property). On the other hand, and the person cannot change the committed value

(the binding property).

Pedersen [23] proposed a commitment scheme that based on the discrete logarithm

problem in 1991. In our schemes, we use the elliptic-curve Pedersen commitment

scheme (EC-Pedersen commitment scheme) [8][21], which also satisfies the hiding

property and the binding property through the elliptic-curve discrete logarithm problem

[12].

Definition 3 (Commitment scheme). A commitment scheme is composed by three

functions (𝑆𝑒𝑡𝑢𝑝, 𝐶𝑜𝑚𝑚𝑖𝑡, 𝑂𝑝𝑒𝑛).

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

7

(1) 𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆) : by inputting a secure parameter 𝜆 , the polynomial-time

function 𝑆𝑒𝑡𝑢𝑝 outputs the public parameters 𝑝𝑝.

(2) 𝐶
$
←𝐶𝑜𝑚(𝑚, 𝑟): by inputting the secret value 𝑚 and a random number 𝑟, the

polynomial-time function 𝐶𝑜𝑚 outputs the commitment 𝐶.

(3) 𝑏 ← 𝑂𝑝𝑒𝑛(𝐶,𝑚, 𝑟): by inputting the commitment 𝐶, the secret value 𝑚 and

the random number 𝑟, the polynomial-time function 𝑂𝑝𝑒𝑛 outputs a result

𝑏 ∈ {0,1}. The commitment 𝐶 is accepted if 𝑏 is equal to 1. Otherwise, it is

rejected.

Below, we describe the protocol of EC-Pedersen commitment scheme in detail.

(1) 𝑆𝑒𝑡𝑢𝑝: first, choose a safe prime 𝑝 . The elliptic curve 𝐸 over 𝔽𝑝 that is

defined by an equation: 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 (mod 𝑝) , where 𝐴, 𝐵 ∈ 𝔽𝑝 (its

discriminant 4𝐴3 + 27𝐵2 ≢ 0 (mod 𝑝)). Secondly, randomly choose a

generator point 𝐺 on 𝐸(𝔽𝑝), and then randomly choose 𝑠 ∈ ℤ𝑞
∗ to compute

the point 𝐻 = 𝑠 ∙ 𝐺. The points 𝐺 and 𝐻 have the order 𝑞. Lastly, publish

the public parameters

𝑝𝑝 = {𝑝, 𝐴, 𝐵, 𝑞, 𝐺, 𝐻}.

(2) 𝐶𝑜𝑚𝑚𝑖𝑡: To commit to the secret value 𝑚 ∈ ℤ𝑞
∗ , the sender randomly chooses

𝑟 ∈ ℤ𝑞
∗ to compute

𝐶 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝐻

and publishes the commitment 𝐶.

(3) 𝑂𝑝𝑒𝑛: To open the commitment 𝐶, the sender reveals 𝑚 and 𝑟. The receiver

verifies

𝐶 =
?
𝑚 ∙ 𝐺 + 𝑟 ∙ 𝐻

and accepts the commitment if and only if 𝐶 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝐻. Otherwise, the

commitment is rejected.

In what follows, we describe the definitions of hiding property and binding property

in detail.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

8

Definition 4 (Hiding property). There does not exist any algorithm in probabilistic-

polynomial time to compute the committed value through a commitment. More

precisely, the probability

|
|
Pr

[

𝑏′ = 𝑏 ∶

𝑝𝑝 ← 𝑆𝑒𝑡𝑢𝑝(𝜆);
𝑚0 ≠ 𝑚1;

𝑏 ← {0,1};
𝐶𝑏 ← 𝐶𝑜𝑚(𝑚𝑏, 𝑟);

𝑏′ ← 𝒜(𝐶𝑏)]

−
1

2|
|
≤ 𝑛𝑒𝑔𝑙(𝜆)

for all probabilistic-polynomial time adversaries 𝒜 and security parameter 𝜆. If the

probability of 𝒜 guessing 𝑏 is exactly equal to
1

2
, the commitment scheme satisfies

perfect hiding.

Definition 5 (Binding property). There does not exist any algorithm in probabilistic-

polynomial time to find 𝑚1, 𝑚2, 𝑟1, 𝑟2 ∈ ℤ𝑞
∗ such that 𝐶 = 𝑚1 ∙ 𝐺 + 𝑟1 ∙ 𝐻 = 𝑚2 ∙

𝐺 + 𝑟2 ∙ 𝐻, where (𝑚1, 𝑟1) ≠ (𝑚2, 𝑟2). More precisely, the probability

Pr [
𝐶𝑜𝑚(𝑚1, 𝑟1) = 𝐶𝑜𝑚(𝑚2, 𝑟2);
(𝑚1, 𝑚2, 𝑟1, 𝑟2) ← 𝒜(𝑝𝑝)

∶
𝑝𝑝 ← 𝑆𝑒𝑡𝑢𝑝(𝜆);

𝑚1 ≠ 𝑚2
] ≤ 𝑛𝑒𝑔𝑙(𝜆)

for all probabilistic-polynomial time adversaries 𝒜 and security parameter 𝜆. If the

probability of 𝒜 finding 𝑚1, 𝑚2, 𝑟1, 𝑟2 is exactly equal to 0, the commitment scheme

satisfies perfect binding.

2.4 Elliptic-curve Diffie–Hellman Key Exchange (ECDH)

An elliptic-curve Diffie–Hellman (ECDH) [5] allows two parties to create a shared

key over a public channel. It is a variant of the Diffie–Hellman protocol by applying

the elliptic-curve computation. In our scheme, we use the shared key that created

followed ECDH to fulfill a strong designated verifier ZKRP scheme.

We describe how a shared key is created by the following example. Assume that

Alice and Bob want to create a shared key.

(1) Alice and Bob agree the curve 𝐸(𝔽𝑝)：𝑦
2 = 𝑥3 + 𝐴𝑥 + 𝐵 (mod 𝑝) , the

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

9

discriminant of which 4𝐴3 + 27𝐵2 ≢ 0 (mod 𝑝). The public parameter is

𝑝𝑝 = {𝑝, 𝐴, 𝐵, 𝑞, 𝐺},

where 𝐺 is a generator point on 𝐸(𝔽𝑝), which has the order 𝑞.

(2) Alice and Bob randomly choose their private key 𝑋𝐴 ∈ ℤ𝑞
∗ and 𝑋𝐵 ∈ ℤ𝑞

∗ and

compute their public key 𝑌𝐴 and 𝑌𝐵.

𝑌𝐴 = 𝑋𝐴 ∙ 𝐺,

𝑌𝐵 = 𝑋𝐵 ∙ 𝐺.

Therefore, Alice’s key pair is (𝑋𝐴, 𝑌𝐴) and Bob’s key pair is (𝑋𝐵, 𝑌𝐵). They

send their public key to each other.

(3) Both Alice and Bob can get the shared key 𝑆 by computing

𝑆 = 𝑋𝐴 ∙ 𝑌𝐵 = 𝑌𝐴 ∙ 𝑋𝐵 = 𝑋𝐴 ∙ 𝑋𝐵 ∙ 𝐺.

There does not exist any adversary that can compute Alice’s or Bob’s private key

through their public key, unless the adversary can solve the elliptic-curve discrete

logarithm problem. In addition, there does not exist any adversary that can compute the

shared key, unless the adversary can solve the elliptic-curve Diffie–Hellman problem.

2.5 Trapdoor Commitment Scheme

A trapdoor commitment scheme is proposed by Jakobsson et al. [13] in 1996,

which is based on the Pedersen commitment scheme [23]. In our scheme, we use the

EC-trapdoor Pedersen commitment scheme to fulfill the designated verifier ZKRP

scheme. The difference between the original Pedersen commitment and trapdoor

commitment is that the trapdoor commitment is computed through a user’s public key.

For example, Alice commits a commitment through Bob’s public key. Since Bob knows

his private key, the commitment cannot be trusted by everyone except Alice and Bob.

We decribe the definition and the protocol of the trapdoor commitment and expain the

reason why the commitment cannot be trusted by any third party in detail below.

Definition 6 (Trapdoor commitment scheme). A trapdoor commitment scheme is

composed by three functions (𝑆𝑒𝑡𝑢𝑝, 𝐶𝑜𝑚𝑚𝑖𝑡, 𝑂𝑝𝑒𝑛).

(1) 𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆) : by inputting a secure parameter 𝜆 , the polynomial-time

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

10

function 𝑆𝑒𝑡𝑢𝑝 outputs the public parameters 𝑝𝑝.

(2) 𝐶
$
←𝐶𝑜𝑚(𝑚, 𝑟, 𝑝𝑘): by inputting the secret value 𝑚, a random number 𝑟, and

a public key 𝑝𝑘 , the polynomial-time function 𝐶𝑜𝑚 outputs the trapdoor

commitment 𝐶.

(3) 𝑏 ← 𝑂𝑝𝑒𝑛(𝐶,𝑚, 𝑟, 𝑝𝑘): by inputting the trapdoor commitment 𝐶, the secret

value 𝑚, the random number 𝑟, and the public key 𝑝𝑘, the polynomial-time

function 𝑂𝑝𝑒𝑛 outputs a result 𝑏 ∈ {0,1}. The commitment 𝐶 is accepted if

𝑏 is equal to 1. Otherwise, it is rejected.

We describe the protocol of the EC-trapdoor Pedersen commitment scheme by the

following example.

(1) Alice and Bob agree the curve 𝐸(𝔽𝑝)：𝑦
2 = 𝑥3 + 𝐴𝑥 + 𝐵 (mod 𝑝) , the

discriminant of which 4𝐴3 + 27𝐵2 ≢ 0 (mod 𝑝). The public parameter is

𝑝𝑝 = {𝑝, 𝐴, 𝐵, 𝑞, 𝐺},

where 𝐺 is a generator point on 𝐸(𝔽𝑝), which has the order 𝑞. After that,

Alice and Bob randomly choose their private key 𝑋𝐴 ∈ ℤ𝑞
∗ and 𝑋𝐵 ∈ ℤ𝑞

∗ and

compute their public key 𝑌𝐴 and 𝑌𝐵.

𝑌𝐴 = 𝑋𝐴 ∙ 𝐺,

𝑌𝐵 = 𝑋𝐵 ∙ 𝐺.

Therefore, Alice’s key pair is (𝑋𝐴, 𝑌𝐴) and Bob’s key pair is (𝑋𝐵, 𝑌𝐵). Then

they publish their public keys.

(2) Suppose that Alice wants to commit to the secret value 𝑚 ∈ ℤ𝑞
∗ . Alice

randomly chooses 𝑟 ∈ ℤ𝑞
∗ and computes

𝐶𝑜𝑚(𝑚, 𝑟): 𝐶 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝑌𝐵

by using Bob’s public key 𝑌𝐵. After that, Alice publishes the commitment 𝐶.

(3) To open the commitment 𝐶, Alice reveals (𝑚, 𝑟). Bob verifies

𝐶 =
?
𝑚 ∙ 𝐺 + 𝑟 ∙ 𝑌𝐵

and accepts the commitment if and only if 𝐶 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝑌𝐵.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

11

Since Bob knows his secret key 𝑋𝐵, which is the relation of 𝐺 and 𝑌𝐵, i.e., the

verifier can find 𝑚1, 𝑚2, 𝑟1, 𝑟1 ∈ ℤ𝑞
∗ easily such that

𝐶 = 𝑚1 ∙ 𝐺 + 𝑟1 ∙ 𝑌𝐵 = 𝑚2 ∙ 𝐺 + 𝑟2 ∙ 𝑌𝐵.

For any other third parties, the commitment does not satisfy the binding property.

Therefore, they could think the prover and the designated verifier cheat together and

cannot trust the commitment.

2.6 Elliptic-curve EL Proof

The EL proof was proposed by Boudot [1] in 2001. For short, we follow Tsai et al.

[28] and call it the EL proof. This proof is a kind of zero-knowledge proof such that the

verifier can verify that two commitments hide the same value without leaking the actual

committed values of the two commitments. Since we use the elliptic-curve Pedersen

commitment scheme as described in Section 2.3, we also use the elliptic-curve EL proof

(EC-EL proof) in our schemes.

2.6.1 Definitions and Security Models

Definition 7 (EL proof). EL proof is composed by three functions (𝑆𝑒𝑡𝑢𝑝, EL, vEL).

(1) 𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆) : by inputting a secure parameter 𝜆 , the polynomial-time

function 𝑆𝑒𝑡𝑢𝑝 outputs the public parameters 𝑝𝑝.

(2) 𝐸𝐿
$
←EL(𝑝𝑝, 𝐶1, 𝐶2) : by inputting the public parameters 𝑝𝑝 and two

commitments 𝐶1, 𝐶2, the polynomial-time function EL outputs the proof 𝐸𝐿.

(3) 𝑏 ← vEL(𝑝𝑝, 𝐸𝐿): by inputting the public parameters 𝑝𝑝 and the proof 𝐸𝐿,

the polynomial-time function vEL outputs a result 𝑏 ∈ {0,1}. The proof 𝐸𝐿

is accepted if 𝑏 is equal to 1, which means that two commitments 𝐶1 and 𝐶2

hide the same value. Otherwise, it is rejected.

The EL proof satisfies the correctness property: if the proof produced by two

commitments which hide the same value, the proof must pass the verification.

Therefore, the verifier can confirm that the two commitments hide the same value.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

12

Definition 8 (Correctness of EL proof). If the two commitments 𝐶1 and 𝐶2 hide the

same value 𝑚 and the scheme EL= (𝑆𝑒𝑡𝑢𝑝, EL, vEL) satisfies the correctness

property, the probability

|
|
Pr

[

vEL(𝑝𝑝, 𝐸𝐿) = 1 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝐶1 ← 𝐶𝑜𝑚(𝑚, 𝑟1);

𝐶2 ← 𝐶𝑜𝑚(𝑚, 𝑟2);

𝐸𝐿
$
←EL(𝑝𝑝, 𝐶1, 𝐶2)]

− 1
|
|
≤ 𝑛𝑒𝑔𝑙(𝜆)

for all security parameter 𝜆.

The EL proof satisfies the soundness property: if the proof produced by two

commitments hide different value, the proof cannot pass the verification. In other words,

if the proof can pass the verification, the two commitment must hide the same value.

Definition 9 (Soundness of EL proof). If the two commitments 𝐶1 and 𝐶2 hide

different value 𝑚1, 𝑚2 and the scheme EL= (𝑆𝑒𝑡𝑢𝑝, EL, vEL) satisfies the soundness

property, the probability

Pr

[

vEL(𝑝𝑝, 𝐸𝐿) = 1 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);
𝑚1 ≠ 𝑚2;

𝐶1 ← 𝐶𝑜𝑚(𝑚1, 𝑟1);

𝐶2 ← 𝐶𝑜𝑚(𝑚2, 𝑟2);

𝐸𝐿
$
←EL(𝑝𝑝, 𝐶1, 𝐶2)]

≤ 𝑛𝑒𝑔𝑙(𝜆)

for all security parameter 𝜆.

The EL proof satisfies the zero-knowledge property: the verifier can only confirm

whether the two commitments hide the same value, but cannot know the exact

committed value through the EL proof produced by the prover. More precisely, there

does not exist any algorithm in probabilistic-polynomial time that can distinguish the

real proof from the ideal proof produced by a simulator, which does not contain any

information about the committed values.

Definition 10 (Zero-knowledge of EL proof). Given a polynomial-time simulator ℰℒ𝒮

that can produce a proof without inputting the secret 𝑚 . If the scheme EL=

(𝑆𝑒𝑡𝑢𝑝, EL, vEL) satisfies the zero-knowledge property, the probability

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

13

|

|

Pr

[

𝑏′ = 𝑏 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝐸𝐿1
$
←EL(𝑝𝑝, 𝐶1, 𝐶2);

𝐸𝐿2
$
←ℰℒ𝒮(𝑝𝑝);

𝑏 = {0,1};
𝑏′ ← 𝒜(𝑝𝑝, 𝐸𝐿𝑏)]

−
1

2
|

|

≤ 𝑛𝑒𝑔𝑙(𝜆)

for all probabilistic-polynomial time adversaries 𝒜 and security parameter 𝜆.

2.6.2 EC-EL Proof Protocol

In the following, we describe the protocol of the EC-EL proof in detail: the prover

knows the secret value 𝑚 ∈ ℤ𝑞
∗ and two commitments

𝐴 = 𝑚 ∙ 𝐺1 + 𝑠 ∙ 𝐻1,

𝐵 = 𝑚 ∙ 𝐺2 + 𝑟 ∙ 𝐻2,

computed by two sets of public parameters (𝐺1, 𝐻1) and (𝐺2, 𝐻2), where 𝐺1, 𝐺2 are

two generator points on 𝐸(𝔽𝑝) and 𝐻1, 𝐻2 are two points on 𝐸(𝔽𝑝) . The two

commitments 𝐴 and 𝐵 hide the same secret value 𝑚.

To produce the EL proof for 𝐴 and 𝐵, the prover runs the EL proof function:

𝐸𝐿
$
← EL(𝑚, 𝑠, 𝑟, 𝐺1, 𝐻1, 𝐺2, 𝐻2).

(1) The prover randomly chooses 𝜇, 𝑣1, 𝑣2 ∈ ℤ𝑞
∗ and computes

𝐶1 = 𝜇 ∙ 𝐺1 + 𝑣1 ∙ 𝐻1,

𝐶2 = 𝜇 ∙ 𝐺2 + 𝑣2 ∙ 𝐻2.

(2) The prover computes ℎ = 𝐻𝑎𝑠ℎ(𝐶1||𝐶2).

(3) The prover computes

𝑥 = 𝜇 + ℎ𝑚,

𝑥1 = 𝑣1 + ℎ𝑠,

𝑥2 = 𝑣2 + ℎ𝑟.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

14

(4) Finally, the prover produces the EL proof

𝐸𝐿 = (ℎ, 𝑥, 𝑥1, 𝑥2).

To verify the EL proof, the verifier runs the EL verification function:

vEL(𝐸𝐿, 𝐺1, 𝐻1, 𝐺2, 𝐻2, 𝐴, 𝐵).

(1) The verifier computes

𝐶1
′ = 𝑥 ∙ 𝐺1 + 𝑥1 ∙ 𝐻1 + (−ℎ) ∙ 𝐴,

𝐶2
′ = 𝑥 ∙ 𝐺2 + 𝑥2 ∙ 𝐻2 + (−ℎ) ∙ 𝐵.

(2) The verifier can be convinced that the two commitments 𝐴 and 𝐵 hide the

same value if and only if

ℎ = 𝐻𝑎𝑠ℎ(𝐶1
′||𝐶2

′).

2.6.3 Security Descriptions

In this section, we describe the security properties of the EC-EL proof: correctness,

soundness, zero-knowledge.

2.6.3.1 Correctness of EC-EL Proof

To verify the EC-EL proof, the verifier computes

𝐶1
′ = 𝑥 ∙ 𝐺1 + 𝑥1 ∙ 𝐻1 + (−ℎ) ∙ 𝐴,

𝐶2
′ = 𝑥 ∙ 𝐺2 + 𝑥2 ∙ 𝐻2 + (−ℎ) ∙ 𝐵.

In the detail, if the prover is honest and follows the EC-EL proof to produce 𝐸𝐿 =

(ℎ, 𝑥, 𝑥1, 𝑥2), the verifier can expand 𝐶1
′ and 𝐶2

′ :

𝐶1
′ = 𝑥 ∙ 𝐺1 + 𝑥1 ∙ 𝐻1 + (−ℎ) ∙ 𝐴

= (𝜇 + ℎ𝑚) ∙ 𝐺1 + (𝑣1 + ℎ𝑠) ∙ 𝐻1 + (−ℎ) ∙ (𝑚 ∙ 𝐺1 + 𝑠 ∙ 𝐻1)

= 𝜇 ∙ 𝐺1 + ℎ𝑚 ∙ 𝐺1 + 𝑣1 ∙ 𝐻1 + ℎ𝑠 ∙ 𝐻1 − ℎ𝑚 ∙ 𝐺1 − ℎ𝑠 ∙ 𝐻1

= 𝜇 ∙ 𝐺1 + 𝑣1 ∙ 𝐻1

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

15

= 𝐶1,

𝐶2
′ = 𝑥 ∙ 𝐺2 + 𝑥2 ∙ 𝐻2 + (−ℎ) ∙ 𝐵

= (𝜇 + ℎ𝑚) ∙ 𝐺2 + (𝑣2 + ℎ𝑟) ∙ 𝐻2 + (−ℎ) ∙ (𝑚 ∙ 𝐺2 + 𝑟 ∙ 𝐻2)

= 𝜇 ∙ 𝐺2 + ℎ𝑚 ∙ 𝐺2 + 𝑣2 ∙ 𝐻1 + ℎ𝑟 ∙ 𝐻2 − ℎ𝑚 ∙ 𝐺2 − ℎ𝑟 ∙ 𝐻2

= 𝜇 ∙ 𝐺2 + 𝑣2 ∙ 𝐻2

= 𝐶2.

Therefore, 𝐶1
′ = 𝐶1 and 𝐶2

′ = 𝐶2, i.e.,

ℎ = 𝐻𝑎𝑠ℎ(𝐶1
′||𝐶2

′) = 𝐻𝑎𝑠ℎ(𝐶1||𝐶2).

Finally, since the honest prover follows the EC-EL proof to produce the proof which

can pass the verification, the EC-EL proof satisfies the correctness property.

2.6.3.2 Soundness of EC-EL Proof

Lemma 1. The elliptic-curve Pedersen commitment scheme satisfies the binding

property: it is difficult to find two different secret values that hidden by the same

commitment. More precisely, there does not exist any algorithm in probabilistic-

polynomial time to find 𝑚1, 𝑚2, 𝑟1, 𝑟2 ∈ ℤ𝑞
∗ such that

𝐶 = 𝑚1 ∙ 𝐺 + 𝑟1 ∙ 𝐻 = 𝑚2 ∙ 𝐺 + 𝑟2 ∙ 𝐻,

where (𝑚1, 𝑟1) ≠ (𝑚2, 𝑟2).

Proof. Assume that the order of two points 𝐺,𝐻 is 𝑞 , and 𝐻 = 𝑠 ∙ 𝐺 . Let

𝑚1, 𝑚2, 𝑟1, 𝑟2 ∈ ℤ𝑞
∗ , such that

𝐶 = 𝑚1 ∙ 𝐺 + 𝑟1 ∙ 𝐻 = 𝑚2 ∙ 𝐺 + 𝑟2 ∙ 𝐻

∴ (𝑚1 −𝑚2) ∙ 𝐺 = (𝑟2 − 𝑟1) ∙ 𝐻

∴ (𝑚1 −𝑚2) = 𝑠(𝑟2 − 𝑟1) mod 𝑞.

The discussion is divided into two cases:

(1) 𝑟2 − 𝑟1 = 0: it means that 𝑚1 −𝑚2 ≡ 0 mod 𝑞, i.e.,

𝑚1 ≡ 𝑚2 mod 𝑞.

All values are over a finite field 𝔽𝑞, so 0 ≤ 𝑚1, 𝑚2 ≤ 𝑞 and 0 ≤ 𝑟1, 𝑟2 ≤ 𝑞.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

16

In this case, 𝑚1 must be equal to 𝑚2 and 𝑟1 must be equal to 𝑟2. This is

contradiction with Lemma 1: (𝑚1, 𝑟1) ≠ (𝑚2, 𝑟2).

(2) 𝑟2 − 𝑟1 ≠ 0: We know that 𝑠 ≡
𝑚1−𝑚2

𝑟2−𝑟1
 mod 𝑞. If we can compute 𝑠 through

𝑚1, 𝑚2, 𝑟1, 𝑟2 , it means that there exists an algorithm in probabilistic-

polynomial time to solve the elliptic-curve discrete logarithm problem [12].

According to (1)(2), there does not exist any algorithm in probabilistic-polynomial time

to find 𝑚1, 𝑚2, 𝑟1, 𝑟2 ∈ ℤ𝑞
∗ such that 𝐶 = 𝑚1 ∙ 𝐺 + 𝑟1 ∙ 𝐻 = 𝑚2 ∙ 𝐺 + 𝑟2 ∙ 𝐻 , where

(𝑚1, 𝑟1) ≠ (𝑚2, 𝑟2). Therefore, Lemma 1 is proved.

Theorem 1. If the prover follows EC-EL proof to produce the proof 𝐸𝐿 = (ℎ, 𝑥, 𝑥1, 𝑥2)

that can pass the verification with non-negligible probability, the two commitments

used to produce the proof must hide the same value 𝑚.

Proof. Assume that the prover follows the EC-EL proof protocol to produce the proof

𝐸𝐿 which pass the verification but uses the two commitments 𝐴 and 𝐵 hide different

values 𝑚1, 𝑚2 ∈ ℤ𝑞
∗ respectively, i.e., 𝑚1 ≠ 𝑚2.

We can simplify 𝐶1
′ and 𝐶2

′ :

𝐶1
′ = 𝑥 ∙ 𝐺1 + 𝑥1 ∙ 𝐻1 + (−ℎ) ∙ 𝐴

= (𝑥 − ℎ𝑚1) ∙ 𝐺1 + (𝑥1 − ℎ𝑠) ∙ 𝐻1,

𝐶2
′ = 𝑥 ∙ 𝐺2 + 𝑥2 ∙ 𝐻1 + (−ℎ) ∙ 𝐵

= (𝑥 − ℎ𝑚2) ∙ 𝐺2 + (𝑥2 − ℎ𝑟) ∙ 𝐻1.

If the proof can pass the verification, 𝐶1
′ = 𝐶1 and 𝐶1

′ = 𝐶2 . Considering 𝐶1 = 𝜇 ∙

𝐺1 + 𝑣1 ∙ 𝐻1 and 𝐶2 = 𝜇 ∙ 𝐺2 + 𝑣2 ∙ 𝐻2 and the binding property of the EC-Pederesen

commitment scheme (Lemma 1), i.e.,

𝜇 = 𝑥 − ℎ𝑚1 = 𝑥 − ℎ𝑚2.

We can obtain that 𝑚1 −𝑚2 ≡ 0 mod 𝑞, and we have

𝑚1 ≡ 𝑚2 mod 𝑞.

All values are over a finite field 𝔽𝑞, so 0 < 𝑚1, 𝑚2 < 𝑞 In this case, 𝑚1 must be

equal to 𝑚2. This is contradiction with the assumption: 𝑚1 ≠ 𝑚2. Thus, if the proof

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

17

can pass the verification, the two commitments must hide the same value. Therefore,

Theorem 1 is proved. The EC-EL proof satisfies the soundness property.

2.6.3.3 Zero-knowledge of EC-EL Proof

Theorem 2. Assume that there exists a simulator ℰℒ𝒮 and an oracle ℋ𝒪 follows the

EC-EL proof but replaces secret values which only the prover knows with random

numbers to produce the proof ℰℒ𝒫 . For all adversaries, there does not exist any

algorithm in probabilistic-polynomial time to distinguish between the real proof 𝐸𝐿

produced by the prover and the ideal proof ℰℒ𝒫 produced by the simulator ℰℒ𝒮.

Proof. Assume that the oracle ℋ𝒪 and simulator ℰℒ𝒮 are defined and shown in

Table 2.

Oracle: ℋ𝒪(𝑠𝑡𝑟)

(1) ℎ
$
←𝐻𝑎𝑠ℎ(𝑠𝑡𝑟)

(2) Return ℎ

Simulator: ℰℒ𝒮(𝐺1, 𝐻1, 𝐺2, 𝐻2, 𝐴, 𝐵)

(1) Randomly choose ℎ, 𝑥, 𝑥1, 𝑥2 ∈ ℤ𝑞
∗

(2) Compute 𝐶1 = 𝑥 ∙ 𝐺1 + 𝑥1 ∙ 𝐻1 + (−ℎ) ∙ 𝐴, 𝐶2 = 𝑥 ∙ 𝐺2 + 𝑥2 ∙ 𝐻2 + (−ℎ) ∙ 𝐵

(3) Compute ℎ′ = ℋ𝒪(𝐶1||𝐶2)

(4) Return ℰℒ𝒫 = (ℎ′, 𝑥, 𝑥1, 𝑥2)

Table 2: Simulator ℰℒ𝒮 and Oracle ℋ𝒪

ℋ𝒪(𝑠𝑡𝑟): input a string 𝑠𝑡𝑟 and return the hash value ℎ of the string.

ℰℒ𝒮(𝐺1, 𝐻1, 𝐺2, 𝐻2, 𝐴, 𝐵) : input two commitment 𝐴, 𝐵 and their public parameters

𝐺1, 𝐻1, 𝐺2, 𝐻2 . ℰℒ𝒮 simulates the EC-EL proof to produce a EL proof without any

information of committed values of 𝐴, 𝐵.

First, randomly chooses ℎ, 𝑥, 𝑥1, 𝑥2 ∈ ℤ𝑞
∗ and computes 𝐶1 and 𝐶2:

𝐶1 = 𝑥 ∙ 𝐺1 + 𝑥1 ∙ 𝐻1 + (−ℎ) ∙ 𝐴,

𝐶2 = 𝑥 ∙ 𝐺2 + 𝑥2 ∙ 𝐻2 + (−ℎ) ∙ 𝐵,

and then computes

ℎ′ = ℋ𝒪(𝐶1||𝐶2).

Finally, outputs the simulation proof

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

18

ℰℒ𝒫 = (ℎ′, 𝑥, 𝑥1, 𝑥2).

Assume that a prover knows a secret value 𝑚 and two commitments 𝐴 = 𝑚 ∙ 𝐺1 + 𝑠 ∙

𝐻1 and 𝐵 = 𝑚 ∙ 𝐺2 + 𝑟 ∙ 𝐻2. The prover produces a real proof

𝐸𝐿 = (ℎ, 𝑥, 𝑥1, 𝑥2):

{

𝜇, 𝑣1, 𝑣2 ← ℤ𝑞
∗ ;

𝐶1 = 𝜇 ∙ 𝐺1 + 𝑣1 ∙ 𝐻1;
𝐶2 = 𝜇 ∙ 𝐺2 + 𝑣2 ∙ 𝐻2;

ℎ = 𝐻𝑎𝑠ℎ(𝐶1||𝐶2);
𝑥 = 𝜇 + ℎ𝑚;
𝑥1 = 𝑣1 + ℎ𝑠;
𝑥2 = 𝑣2 + ℎ𝑟

and the simulator ℰℒ𝒮 inputs two commitments 𝐴′ = 𝑚′ ∙ 𝐺1 + 𝑠
′ ∙ 𝐻1 and 𝐵′ =

𝑚′′ ∙ 𝐺2 + 𝑟
′ ∙ 𝐻2. ℰℒ𝒮 produces a ideal proof

ℰℒ𝒫 = (ℎ′, 𝑥′, 𝑥1
′ , 𝑥2

′):

{

ℎ1, 𝑥

′, 𝑥1
′ , 𝑥2

′ ← ℤ𝑞
∗ ;

𝐶1 = 𝑥′ ∙ 𝐺1 + 𝑥1
′ ∙ 𝐻1 + (−ℎ1) ∙ 𝐴;

𝐶2 = 𝑥
′ ∙ 𝐺2 + 𝑥2

′ ∙ 𝐻2 + (−ℎ1) ∙ 𝐵;

ℎ′ = ℋ𝒪(𝐶1||𝐶2)

.

Let 𝐸𝐿̂ = (ℎ̂, 𝑥̂, 𝑥1̂, 𝑥2̂) be a randomly chosen proof in the set of all valid proofs. The

probability

Pr[𝐸𝐿 = 𝐸𝐿̂] = Pr [
𝜇, 𝑣1, 𝑣2 ∈ ℤ𝑞

∗ ;

ℎ = ℎ̂, 𝑥 = 𝑥̂, 𝑥1 = 𝑥1̂, 𝑥2 = 𝑥2̂
] =

1

(𝑞 − 1)4

and the probability

Pr[ℰℒ𝒫 = 𝐸𝐿̂] = Pr [
ℎ1, 𝑥

′, 𝑥1
′ , 𝑥2

′ ∈ ℤ𝑞
∗ ;

ℎ′ = ℎ̂, 𝑥 = 𝑥̂, 𝑥1 = 𝑥1̂, 𝑥2 = 𝑥2̂
] =

1

(𝑞 − 1)4

are equal, i.e., 𝐸𝐿 and ℰℒ𝒫 are indistinguishable. Therefore, Theorem 2 is proved.

The EC-EL proof satisfies the zero-knowledge property.

2.7 Elliptic-curve SQR Proof

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

19

The SQR proof was proposed by Boudot [1] in 2001. For short, we follow Tsai et

al. [28] and call it the SQR proof. This proof is a kind of zero-knowledge proof such

that the verifier can verify that a commitment hides a square number 𝛼2 , 𝛼 ∈ ℤ𝑞
∗ ,

without leaking the value 𝛼 or 𝛼2 . Since we use the elliptic-curve Pedersen

commitment scheme as described in Section 2.3, we use the elliptic-curve SQR proof

(EC-SQR proof) in our schemes.

2.7.1 Definitions and Security Models

Definition 11 (SQR proof). SQR proof is composed by three functions

(𝑆𝑒𝑡𝑢𝑝, SQR, vSQR).

(1) 𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆) : by inputting a secure parameter 𝜆 , the polynomial-time

function 𝑆𝑒𝑡𝑢𝑝 outputs the public parameters 𝑝𝑝.

(2) 𝑆𝑄𝑅
$
←SQR(𝑝𝑝, 𝐶) : by inputting the public parameters 𝑝𝑝 and a

commitment 𝐶, the polynomial-time function SQR outputs the proof 𝑆𝑄𝑅.

(3) 𝑏 ← vSQR(𝑝𝑝, 𝑆𝑄𝑅) : by inputting the public parameters 𝑝𝑝 and the proof

𝑆𝑄𝑅 , the polynomial-time function vSQR outputs a result 𝑏 ∈ {0,1} . The

proof 𝑆𝑄𝑅 is accepted if 𝑏 is equal to 1, which means that the commitment

𝐶 hides a square number. Otherwise, it is rejected.

The SQR proof satisfies the correctness property: if the proof produced by a

commitment which hides a square number, the proof must pass the verification.

Therefore, the verifier can confirm that the commitment hides the committed value is a

square number.

Definition 12 (Correctness of SQR proof). If the commitment 𝐶 hides a square

number 𝑦 = 𝑥2, 𝑥 ∈ ℤ and the scheme SQR= (𝑆𝑒𝑡𝑢𝑝, SQR, vSQR) satisfies the

correctness property, the probability

|

|
Pr

[

vSQR(𝑝𝑝, 𝑆𝑄𝑅) = 1 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝑦 = 𝑥2, 𝑥 ∈ ℤ;

𝐶 ← 𝐶𝑜𝑚(𝑦, 𝑟);

𝑆𝑄𝑅
$
←SQR(𝑝𝑝, 𝐶)]

− 1
|

|
≤ 𝑛𝑒𝑔𝑙(𝜆)

for all security parameter 𝜆.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

20

The SQR proof satisfies the soundness property: if the proof produced by a

commitment hides a value which is not a square number, it cannot pass the verification.

In other words, if the proof can pass the verification, the commitment must hide a square

number.

Definition 13 (Soundness of SQR proof). If the commitments 𝐶 hides the value 𝑦

which is not a square number and the scheme SQR= (𝑆𝑒𝑡𝑢𝑝, SQR, vSQR) satisfies the

soundness property, the probability

Pr

[

vSQR(𝑝𝑝, 𝑆𝑄𝑅) = 1 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝑦 ∈ ℤ,√𝑦 ∉ ℤ;

𝐶 ← 𝐶𝑜𝑚(𝑦, 𝑟);

𝑆𝑄𝑅
$
←SQR(𝑝𝑝, 𝐶)]

≤ 𝑛𝑒𝑔𝑙(𝜆)

for all security parameter 𝜆.

The SQR proof satisfies the zero-knowledge property: the verifier can only

confirm whether the commitment hides a square number, but cannot know the exact

committed value through the SQR proof produced by the prover. More precisely, there

does not exist any algorithm in probabilistic-polynomial time that can distinguish the

real proof from the ideal proof produced by a simulator, which does not contain any

information about the committed value.

Definition 14 (Zero-knowledge of SQR proof). Given a polynomial-time simulator

𝒮𝒬ℛ𝒮 that can produce a proof without inputting the secret 𝑚. If the scheme SQR=

(𝑆𝑒𝑡𝑢𝑝, SQR, vSQR) satisfies the zero-knowledge property, the probability

|

|

Pr

[

𝑏′ = 𝑏 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝑆𝑄𝑅1
$
←SQR(𝑝𝑝, 𝐶);

𝑆𝑄𝑅2
$
←𝒮𝒬ℛ𝒮(𝑝𝑝);

𝑏 = {0,1};
𝑏′ ← 𝒜(𝑝𝑝, 𝑆𝑄𝑅𝑏)]

−
1

2
|

|

≤ 𝑛𝑒𝑔𝑙(𝜆)

for all probabilistic-polynomial time adversaries 𝒜 and security parameter 𝜆.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

21

2.7.2 EC-SQR Proof Protocol

In the following, we describe the protocol of the EC-SQR proof in detail: the

prover knows the secret value 𝛼 and the commitment

𝐸 = 𝛼2 ∙ 𝐺 + 𝑟1 ∙ 𝐻,

computed by a generator point 𝐺 on 𝐸(𝔽𝑝) and another point 𝐻 on 𝐸(𝔽𝑝), where

𝐺 and 𝐻 are public parameters. The commitment 𝐸 hides value 𝛼2 ∈ ℤ𝑞
∗ .

To produce the SQR proof for 𝐸, the prover runs the SQR proof function:

𝑆𝑄𝑅
$
←𝑆𝑄𝑅(𝛼, 𝑟1, 𝐺, 𝐻).

(1) The prover randomly chooses 𝑟2 ∈ ℤ𝑞
∗ and computes

𝐹 = 𝛼 ∙ 𝐺 + 𝑟2 ∙ 𝐻.

(2) The prover computes

𝑟3 = 𝑟1 − 𝑟2𝛼.

(3) The prover computes

𝐸′ = 𝛼 ∙ 𝐹 + 𝑟3 ∙ 𝐻,

where 𝐸′ must be equal to 𝐸.

(4) Since the two commitments 𝐹 and 𝐸′ hide the same value 𝛼 , the prover

runs the EC-EL proof as described in Section 2.6 to produce the proof

𝐸𝐿 = (ℎ, 𝑥, 𝑥1, 𝑥2) = EL(𝛼, 𝑟2, 𝑟3, 𝐺, 𝐻, 𝐹, 𝐻).

In the detail, first, the provers randomly chooses 𝜇, 𝑣1, 𝑣2 ∈ ℤ𝑞
∗ to compute

𝐶1 = 𝜇 ∙ 𝐺 + 𝑣1 ∙ 𝐻,

𝐶2 = 𝜇 ∙ 𝐹 + 𝑣2 ∙ 𝐻.

Then, the prover computes ℎ = 𝐻𝑎𝑠ℎ(𝐶1||𝐶2) to compute

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

22

𝑥 = 𝜇 + ℎ𝛼,

𝑥1 = 𝑣1 + ℎ𝑟2,

𝑥2 = 𝑣2 + ℎ𝑟3.

(5) Finally, the prover produces the SQR proof

𝑆𝑄𝑅 = (ℎ, 𝑥, 𝑥1, 𝑥2, 𝐹).

To verify the SQR proof, the verifier runs the SQR verification function:

vSQR(𝑆𝑄𝑅, 𝐺, 𝐻, 𝐸).

(1) The verifier computes

𝐶1
′ = 𝑥 ∙ 𝐺 + 𝑥1 ∙ 𝐻 + (−ℎ) ∙ 𝐹

𝐶2
′ = 𝑥 ∙ 𝐹 + 𝑥2 ∙ 𝐻 + (−ℎ) ∙ 𝐸.

(2) The verifier can be convinced that the commitment 𝐸 hides a square number

if and only if

ℎ = 𝐻𝑎𝑠ℎ(𝐶1
′||𝐶2

′).

2.7.3 Security Descriptions

In this section, we describe the security properties of the EC-SQR proof:

correctness and soundness. Since the proof of the zero-knowledge property of EC-SQR

proof is easily obtained from the properties of the EC-EL proof, the description of the

zero-knowledge property is omitted from this section.

2.7.3.1 Correctness of EC-SQR Proof

Since we can expand

𝐸′ = 𝛼 ∙ 𝐹 + 𝑟3 ∙ 𝐻

= 𝛼 ∙ (𝛼 ∙ 𝐺 + 𝑟2 ∙ 𝐻) + 𝑟3 ∙ 𝐻

= 𝛼2 ∙ 𝐺 + (𝛼𝑟2 + 𝑟3) ∙ 𝐻

= 𝛼2 ∙ 𝐺 + 𝑟1 ∙ 𝐻

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

23

= 𝐸,

𝐸′ must be equal to 𝐸. To verify the EC-SQR proof, the verifier computes

𝐶1
′ = 𝑥 ∙ 𝐺 + 𝑥1 ∙ 𝐻 + (−ℎ) ∙ 𝐹

𝐶2
′ = 𝑥 ∙ 𝐺 + 𝑥2 ∙ 𝐻 + (−ℎ) ∙ 𝐸.

In the detail, if the prover is honest and follows the EC-SQR proof to produce 𝑆𝑄𝑅 =

(ℎ, 𝑥, 𝑥1, 𝑥2, 𝐹), the verifier can expand 𝐶1
′ and 𝐶2

′ :

𝐶1
′ = 𝑥 ∙ 𝐺 + 𝑥1 ∙ 𝐻 + (−ℎ) ∙ 𝐹

= (𝜇 + ℎ𝛼) ∙ 𝐺 + (𝑣1 + ℎ𝑟2) ∙ 𝐻 + (−ℎ) ∙ (𝛼 ∙ 𝐺 + 𝑟2 ∙ 𝐻)

= 𝜇 ∙ 𝐺 + ℎ𝛼 ∙ 𝐺 + 𝑣1 ∙ 𝐻 + ℎ𝑟2 ∙ 𝐻 − ℎ𝛼 ∙ 𝐺 − ℎ𝑟2 ∙ 𝐻

= 𝜇 ∙ 𝐺 + 𝑣1 ∙ 𝐻

= 𝐶1,

𝐶2
′ = 𝑥 ∙ 𝐹 + 𝑥2 ∙ 𝐻 + (−ℎ) ∙ 𝐸

= (𝜇 + ℎ𝛼) ∙ 𝐹 + (𝑣2 + ℎ𝑟3) ∙ 𝐻 + (−ℎ) ∙ (𝛼 ∙ 𝐹 + 𝑟3 ∙ 𝐻)

= 𝜇 ∙ 𝐹 + ℎ𝛼 ∙ 𝐹 + 𝑣2 ∙ 𝐻 + ℎ𝑟3 ∙ 𝐻 − ℎ𝛼 ∙ 𝐹 − ℎ𝑟3 ∙ 𝐻

= 𝜇 ∙ 𝐹 + 𝑣2 ∙ 𝐻

= 𝐶2.

Therefore, 𝐶1
′ = 𝐶1 and 𝐶2

′ = 𝐶2, i.e.,

ℎ = 𝐻𝑎𝑠ℎ(𝐶1
′||𝐶2

′) = 𝐻𝑎𝑠ℎ(𝐶1||𝐶2).

Finally, since the honest prover follows the EC-SQR proof to produce the proof which

can pass the verification, the EC-SQR proof satisfies the correctness property.

2.7.3.2 Soundness of EC-SQR Proof

Theorem 3. If the prover follows EC-SQR proof to produce the proof 𝑆𝑄𝑅 =

(ℎ, 𝑥, 𝑥1, 𝑥2, 𝐹) that can pass the verification with non-negligible probability, the

commitment used to produce the proof must hide a square number 𝛼2, where 𝛼 ∈ ℤ.

Proof. Assume that the prover follows the EC- SQR proof protocol to produce the proof

𝑆𝑄𝑅 = (ℎ, 𝑥, 𝑥1, 𝑥2, 𝐹) which can pass the verification. According to the soundness of

EC-EL proof (Theorem 2), we can ensure that the commitment 𝐸 and 𝐹 must hide

the same value based on (𝐹, 𝐻) and (𝐺, 𝐻) respectively. Without loss of generality,

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

24

let

𝐸 = 𝛼′ ∙ 𝐹 + 𝑟3
′ ∙ 𝐻,

𝐹 = 𝛼′ ∙ 𝐺 + 𝑟2
′ ∙ 𝐻.

Therefore, we can expand

𝐸 = 𝛼′ ∙ 𝐹 + 𝑟3
′ ∙ 𝐻 = (𝛼′)2 ∙ 𝐺 + (𝛼′𝑟2

′ + 𝑟3
′) ∙ 𝐻.

Obviously, the commitment 𝐸 must hide a square number (𝛼′)2. Thus, Theorem 3 is

proved, the EC-SQR proof satisfies the soundness property.

2.8 Zero-Knowledge Proof with Commitment Secret

(ZKPCS)

In this section, we introduce a particular zero-knowledge proof: the zero-

knowledge proof with commitment secret (ZKPCS), which can be used to convince the

verifier that the prover knows the committed value of a commitment without revealing

the secrets, i.e., the prover can commit another commitment by using the same

committed value. The four papers [1], [18], [24] and [28] all use the similar ZKPCS,

but all of which are used to prove the knowledge of the Fujisaki-Okamoto commitment

scheme [9]. Therefore, we propose a new ZKPCS for the elliptic-curve Pedersen

commitment scheme.

Definition 15 (Zero-knowledge proof with commitment secret). Zero-knowledge proof

with commitment secret is composed by five functions (𝑆𝑒𝑡𝑢𝑝, 𝑃𝑟𝑜, 𝐶ℎ𝑎𝑙, 𝑅𝑒𝑠, 𝑉𝑒𝑟).

(1) 𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆) : by inputting a secure parameter 𝜆 , the polynomial-time

function 𝑆𝑒𝑡𝑢𝑝 outputs the public parameters 𝑝𝑝.

(2) 𝑦, 𝛼
$
←𝑃𝑟𝑜(𝑝𝑝,𝑚) : by inputting the public parameters 𝑝𝑝 and the secret

value 𝑚 , the polynomial-time function 𝑃𝑟𝑜 outputs two commitments 𝑦

and 𝛼.

(3) 𝑠
$
←𝐶ℎ𝑎𝑙(𝑝𝑝) : by inputting the public parameters 𝑝𝑝 , the polynomial-time

function 𝐶ℎ𝑎𝑙 outputs a random number 𝑠.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

25

(4) 𝜇, 𝜈
$
←𝑅𝑒𝑠(𝑝𝑝,𝑚, 𝑟, 𝑥, 𝑧, 𝑠): by inputting the public parameters 𝑝𝑝, the screct

value 𝑚, random numbers 𝑟, 𝑥, 𝑧, and the challenge 𝑠, the polynomial-time

function 𝑅𝑒𝑠 outputs two responses 𝜇 and 𝜈.

(5) 𝑏 ← 𝑉𝑒𝑟(𝑝𝑝, 𝑦, 𝛼, 𝜇, 𝜈) : by inputting the public parameters 𝑝𝑝 , the two

commitments 𝑦, 𝛼 , and two responses 𝜇, 𝜈 , the polynomial-time function

𝑉𝑒𝑟 outputs a result 𝑏 ∈ {0,1}. The verification is accepted if 𝑏 is equal to

1, which means that the two commitments 𝑦 and 𝛼 hide the secret value 𝑚.

Otherwise, it is rejected.

In the following, we describe the protocol of ZKPCS in detail. The prover is

denoted as 𝑃, and the verifier is denoted as 𝑉.

Assume that 𝑃 knows a secret value 𝑚 ∈ ℤ𝑞
∗ .

(1) 𝑃 computes the commitment

𝑦 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝐻

and randomly chooses 𝑥, 𝑟 ∈ ℤ𝑞
∗ to compute another commitment

𝛼 = 𝑥 ∙ 𝐺 + 𝑧 ∙ 𝐻,

where 𝐺 and 𝐻 which are two points on 𝐸(𝔽𝑝) are the public parameters.

Then, 𝑃 publishes 𝑦, 𝛼.

(2) 𝑉 gives 𝑃 a challenge 𝑠 ∈ ℤ𝑞
∗ .

(3) 𝑃 returns two responses

𝜇 = 𝑥 − 𝑠𝑚,

𝜈 = 𝑧 − 𝑠𝑟.

(4) 𝑉 computes 𝜇 ∙ 𝐺 + 𝜈 ∙ 𝐻 + 𝑠 ∙ 𝑦 and can be convinced that 𝑃 knows the

committed value 𝑚 if and only if

𝛼 = 𝜇 ∙ 𝐺 + 𝜈 ∙ 𝐻 + 𝑠 ∙ 𝑦.

In the detail,

𝜇 ∙ 𝐺 + 𝜈 ∙ 𝐻 + 𝑠 ∙ 𝑦

= (𝑥 − 𝑠𝑚) ∙ 𝐺 + (𝑧 − 𝑠𝑟) ∙ 𝐻 + 𝑠 ∙ (𝑚 ∙ 𝐺 + 𝑟 ∙ 𝐻)

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

26

= 𝑥 ∙ 𝐺 − 𝑠𝑚 ∙ 𝐺 + 𝑧 ∙ 𝐻 − 𝑠𝑟 ∙ 𝐻 + 𝑠𝑚 ∙ 𝐺 + 𝑠𝑟 ∙ 𝐻

= 𝑥 ∙ 𝐺 + 𝑧 ∙ 𝐻

= 𝛼.

The verifier can be convinced that the commitment 𝛼 committed by the prover is

another commitment of 𝑚, i.e., the prover definitely knows 𝑚.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

27

3 Non-Interactive EC-ZKRP Scheme

In this chapter, we introduce the definitions, protocol, and security description of

the non-interactive EC-ZKRP scheme in detail.

3.1 Definitions and Security Models

Definition 16 (Non-interactive zero-knowledge range proof). The non-interactive zero-

knowledge range proof is composed by three functions (𝑆𝑒𝑡𝑢𝑝, 𝑃𝑟𝑜, 𝑉𝑒𝑟).

(1) 𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆) : by inputting a secure parameter 𝜆 , the polynomial-time

function 𝑆𝑒𝑡𝑢𝑝 outputs the public parameters 𝑝𝑝.

(2) 𝜋
$
←𝑃𝑟𝑜(𝑝𝑝,𝑚, 𝑎, 𝑏): by inputting the public parameters 𝑝𝑝, the secret value

𝑚, and the lower bound and upper bound of a range 𝑎, 𝑏, where, 𝑎 < 𝑏, the

polynomial-time function 𝑃𝑟𝑜 outputs the proof 𝜋.

(3) 𝑟 ← 𝑉𝑒𝑟(𝑝𝑝, 𝜋, 𝑎, 𝑏): by inputting the public parameters 𝑝𝑝, the proof 𝜋, and

the lower bound and upper bound of a range 𝑎, 𝑏 , the polynomial-time

function 𝑉𝑒𝑟 outputs a result 𝑟 ∈ {0,1} . The proof 𝜋 is accepted if 𝑟 is

equal to 1, which means that the secret value 𝑚 is in the range [𝑎, 𝑏], i.e.,

𝑎 ≤ 𝑚 ≤ 𝑏. Otherwise, it is rejected, i.e., 𝑚 ∉ [𝑎, 𝑏].

A ZKRP scheme satisfies the correctness property: if the secret value is exactly in

the specified range, the proof must pass the verification. Therefore, the verifier can

confirm that the secret value must be in the specified range.

Definition 17 (Correctness of ZKRP). If the secret value 𝑚 is exactly in the range

[𝑎, 𝑏] and the scheme ZKRP = (𝑆𝑒𝑡𝑢𝑝, 𝑃𝑟𝑜, 𝑉𝑒𝑟) satisfies the correctness property,

the probability

|Pr [𝑉𝑒𝑟(𝑝𝑝, 𝜋) = 1 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝑚 ∈ [𝑎, 𝑏];

𝜋
$
←𝑃𝑟𝑜(𝑝𝑝,𝑚, 𝑎, 𝑏)

] − 1| ≤ 𝑛𝑒𝑔𝑙(𝜆)

for all security parameter 𝜆.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

28

A ZKRP scheme satisfies the soundness property: if the prover uses a secret value

that is not in the specified range to produce a proof, then it cannot pass the verification.

In other words, if the proof produced by the prover can pass the verification, the secret

value must be in the specified range.

Definition 18 (Soundness of ZKRP). If the secret value 𝑚 is not in the range [𝑎, 𝑏]

and the scheme ZKRP = (𝑆𝑒𝑡𝑢𝑝, 𝑃𝑟𝑜, 𝑉𝑒𝑟) satisfies the soundness property, the

probability

Pr [𝑉𝑒𝑟(𝑝𝑝, 𝜋) = 1 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝑚 ∉ [𝑎, 𝑏];

𝜋
$
←𝑃𝑟𝑜(𝑝𝑝,𝑚, 𝑎, 𝑏)

] ≤ 𝑛𝑒𝑔𝑙(𝜆)

for all security parameter 𝜆.

A ZKRP scheme satisfies the zero-knowledge property: the verifier can only

confirm whether the secret value is within the specified range, but cannot know the

exact secret value through the proof produced by the prover. More precisely, there does

not exist any algorithm in probabilistic-polynomial time that can distinguish the real

proof from the ideal proof produced by a simulator, which does not contain any

information about the secret value.

Definition 19 (Zero-knowledge of EC-ZKRP). Given a polynomial-time simulator

𝑆𝐼𝑀 that can produce a proof without inputting the secret 𝑚. If the scheme ZKRP =

(𝑆𝑒𝑡𝑢𝑝, 𝑃𝑟𝑜, 𝑉𝑒𝑟) satisfies the zero-knowledge property, the probability

|

|

Pr

[

𝑏′ = 𝑏 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝜋0
$
←𝑃𝑟𝑜(𝑝𝑝,𝑚, 𝑎, 𝑏);

𝜋1
$
←𝑆𝐼𝑀(𝑝𝑝);

𝑏 = {0,1};
𝑏′ ← 𝒜(𝑝𝑝, 𝜋𝑏)]

−
1

2
|

|

≤ 𝑛𝑒𝑔𝑙(𝜆)

for all probabilistic-polynomial time adversaries 𝒜 and security parameter 𝜆.

3.2 Non-Interactive EC-ZKRP Protocol

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

29

In this section, we introduce the EC-ZKRP protocol. The scheme proposed by Tsai

et al. [28] is constructed with the Fujisaki-Okamato commitment scheme [9]. To apply

elliptic curve to the non-interactive ZKRP , we replace the commitment scheme with

the elliptic curve Pedersen commitment scheme as described in Section 2.3 and the EC-

EL proof (Section 2.6) and EC-SQR proof (Section 2.7) both can be applied in our

scheme. The core idea of our scheme is the same as the scheme proposed by Tsai et al.

[28]. Assume that the prover knows the secret value 𝑚 in the range [𝑎, 𝑏] , where

𝑎, 𝑏 ∈ ℤ𝑞
∗ . Therefore, 𝑎 ≤ 𝑚 ≤ 𝑏 , i.e., 𝑚 − 𝑎 ≥ 0 and 𝑏 − 𝑚 ≤ 0 . Then we have

𝑚 − 𝑎 + 1 > 0 and 𝑏 − 𝑚 + 1 > 0 , so (𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) must be greater

than 0. If we prove to the verifier that 𝑚 is in the range [𝑎, 𝑏] by revealing

(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) > 0 , it is not difficult to compute the secret value 𝑚

through (𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) when the verifier knows the range [𝑎, 𝑏]. Thus, we

use

𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) > 0

instead,where 𝜔
$
←ℤ𝑞

∗ . To prover 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) is positive, the prover

randomly chooses 𝑀 = 𝛼2 ∈ ℤ𝑞
∗ such that

𝑀 + 𝑅 = 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1).

If the verifier verifies that 𝑀 is a square number and 𝑅 > 0, he/she can be convinced

that 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) is greater than 0, i.e., the secret value 𝑚 must be in

the range [𝑎, 𝑏].

We describe the non-interactive EC-ZKRP protocol in detail below: the prover

knows the secret value 𝑚 in the range [𝑎, 𝑏] and randomly chooses 𝑟 ∈ ℤ𝑞
∗ to

compute the commitment

𝐶 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝐻.

To produce the non-interactive EC-ZKRP:

(1) The prover randomly chooses 𝑟′ ∈ ℤ𝑞
∗ to compute

𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝐺,

𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶,

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

30

𝐶′ = (𝑏 −𝑚 + 1) ∙ 𝐶1 + 𝑟
′ ∙ 𝐻.

(2) Since the two commitments

𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶 = (𝑏 − 𝑚 + 1) ∙ 𝐺 + (−𝑟) ∙ 𝐻,

𝐶′ = (𝑏 −𝑚 + 1) ∙ 𝐶1 + 𝑟
′ ∙ 𝐻

hide the same value (𝑏 − 𝑚 + 1), the prover produces the EL proof:

𝐸𝐿 = EL(𝑏 − 𝑚 + 1,−𝑟, 𝑟′, 𝐺, 𝐻, 𝐶1, 𝐻).

(3) The prover randomly chooses 𝜔 and 𝑟′′ to compute

𝐶′′ = 𝜔2 ∙ 𝐶′ + 𝑟′′ ∙ 𝐻.

(4) Since the commitment 𝐶′′ hides a square number 𝜔2, the prover produces the

SQR proof:

𝑆𝑄𝑅1 = 𝑆𝑄𝑅(𝜔, 𝑟
′′, 𝐶′, 𝐻).

(5) The prover randomly chooses 𝛼 ∈ ℤ𝑞
∗ to compute

𝑀 = 𝛼2.

If 𝑀 ≥ 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1), repeat (5).

(6) The prover computes

𝑅 = 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) −𝑀,

which must be greater than 0.

(7) The prover randomly chooses 𝑟1 ∈ ℤ𝑞
∗ to compute

𝑟2 = 𝜔2((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) + 𝑟′′ − 𝑟1.

(8) The prover computes

𝐶1
′ = 𝑀 ∙ 𝐺 + 𝑟1 ∙ 𝐻,

𝐶2
′ = 𝑟2 ∙ 𝐻.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

31

(9) Since the commitment 𝐶1
′ hides a square number 𝑀, the prover produces the

SQR proof:

𝑆𝑄𝑅2 = 𝑆𝑄𝑅(𝛼, 𝑟1, 𝐺, 𝐻).

(10) The prover produces the proof

𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2}.

To verify the non-interactive EC-ZKRP proof 𝜋, the verifier runs the following

steps:

(1) Compute 𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝐺.

(2) Compute 𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶.

(3) Verify vEL(𝐸𝐿, 𝐺, 𝐻, 𝐶1, 𝐻, 𝐶2, 𝐶
′).

(4) Verify vSQR(𝑆𝑄𝑅1, 𝐶
′, 𝐻, 𝐶′′).

(5) Verify 𝐶′′ = 𝐶1
′ + 𝐶2

′ + 𝑅 ∙ 𝐺.

(6) Verify vSQR(𝑆𝑄𝑅2, 𝐺, 𝐻, 𝐶1
′).

(7) Verify 𝑅 > 0.

The verifier can be convinced that the secret value 𝑚 must be in the range [𝑎, 𝑏] if

and only if the verification step 3 to step 7 are passed.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

32

Figure 1: Protocol to Produce EC-ZKRP Proof

Figure 2: Protocol to Verify EC-ZKRP Proof

𝐶 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝐻,where 𝑟
$
←ℤ𝑞

∗

𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝐺

𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶

𝐶′ = (𝑏 −𝑚 + 1) ∙ 𝐶1 + 𝑟
′ ∙ 𝐻,where 𝑟′

$
←ℤ𝑞

∗

𝐸𝐿
$
←EL(𝑏 − 𝑚 + 1,−𝑟, 𝑟′, 𝐺, 𝐻, 𝐶1, 𝐻)

𝐶′′ = 𝜔2 ∙ 𝐶′ + 𝑟′′ ∙ 𝐻,where 𝜔, 𝑟′′
$
←ℤ𝑞

∗

𝑆𝑄𝑅1
$
←SQR(𝜔, 𝑟′′, 𝐶′, 𝐻)

𝑀 = 𝛼2, where 𝛼
$
←ℤ𝑞

∗

𝑅 = 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) −𝑀

𝑟1 + 𝑟2 = 𝜔2((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) + 𝑟′′, where 𝑟2
$
←ℤ𝑞

∗

𝐶1
′ = 𝑀 ∙ 𝐺 + 𝑟1 ∙ 𝐻

𝐶2
′ = 𝑟2 ∙ 𝐻

𝑆𝑄𝑅2
$
←SQR(𝛼, 𝑟1, 𝐺, 𝐻)

Produce the proof 𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2}

To verify the proof 𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2}

(1) Compute 𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝐺.

(2) Compute 𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶.

(3) Verify vEL(𝐸𝐿, 𝐺, 𝐻, 𝐶1, 𝐻, 𝐶2, 𝐶
′).

(4) Verify vSQR(𝑆𝑄𝑅1, 𝐶
′, 𝐻, 𝐶′′)

(5) Verify 𝐶′′ = 𝐶1
′ + 𝐶2

′ + 𝑅 ∙ 𝐺

(6) Verify vSQR(𝑆𝑄𝑅2, 𝐺, 𝐻, 𝐶1
′)

(7) Verify 𝑅 > 0

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

33

3.3 Security Descriptions

In this section, we describe the security properties of our EC-ZKRP scheme:

correctness, soundness, zero-knowledge.

3.3.1 Correctness

Assume that an honest prover follows our protocol and uses the secret value 𝑚 in

the range [𝑎, 𝑏] to produce the proof 𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2}, the

verifier can determine whether 𝜋 passes the verification through the following steps:

(1) Compute 𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝐺.

(2) Compute 𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶.

(3) Verify vEL(𝐸𝐿).

(4) Verify vSQR(𝑆𝑄𝑅1).

(5) Verify 𝐶′′ = 𝐶1
′ + 𝐶2

′ + 𝑅 ∙ 𝐺.

(6) Verify vSQR(𝑆𝑄𝑅2).

(7) Verify 𝑅 > 0.

We explain that our protocol satisfies the correctness property below:

If the prover is honest and follows our protocol to produce the proof 𝜋 , then

(1)(2)(7) must be correct.

By expanding 𝐶2, we obtain

𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶 = (𝑏 − 𝑚 + 1) ∙ 𝐺 + (−𝑟) ∙ 𝐻,

its committed value is (𝑏 − 𝑚 + 1) , which is same as the committed value of 𝐶′ .

Therefore, if the EC-EL proof is correct, then (3) must be correct.

Considering 𝐶′′ = ω2 ∙ 𝐶′ + 𝑟′′ ∙ 𝐻, the committed value of 𝐶′′ is ω2, which is

a square number. Therefore, if the EC-SQL proof is correct, then (4) must be correct.

Since we know

ω2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) = 𝑀 + 𝑅,

ω2((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) + 𝑟′′ = 𝑟1 + 𝑟2

according to our ZKRP protocol. By expanding 𝐶′′ and 𝐶1
′ + 𝐶2

′ + 𝑅 ∙ 𝐺, we obtain

𝐶′′ = ω2 ∙ 𝐶′ + 𝑟′′ ∙ 𝐻

= ω2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) ∙ 𝐺 + ω2((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) + 𝑟′′ ∙ 𝐻

= (𝑀 + 𝑅) ∙ 𝐺 + (𝑟1 + 𝑟2) ∙ 𝐻

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

34

and

𝐶1
′ + 𝐶2

′ + 𝑅 ∙ 𝐺

= 𝑀 ∙ 𝐺 + 𝑟1 ∙ 𝐻 + 𝑟2 ∙ 𝐻 + 𝑅 ∙ 𝐺

= (𝑀 + 𝑅) ∙ 𝐺 + (𝑟1 + 𝑟2) ∙ 𝐻.

The two are equal, so (5) must be correct.

Considering 𝐶1
′ = 𝑀 ∙ 𝐶′ + 𝑟1 ∙ 𝐻 , the committed value of 𝐶1

′ is 𝑀 , which is a

square number. Therefore, if the EC-SQL proof is correct, then (6) must be correct.

Because (3)(4)(5)(6)(7) are all correct and 𝜋 passes the verification, the verifier

can confirm that 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) must be greater than 0. As a result, the

verifier can be convinced that the secret value 𝑚 must be in the range [𝑎, 𝑏].

The honest prover follows our protocol to produce the proof 𝜋 that can pass the

verification such that the verifier can confirm that the secret value 𝑚 must be in the

range [𝑎, 𝑏]. Therefore, our protocol satisfies the correctness property.

3.3.2 Soundness

Theorem 4. If the prover follows our protocol to produce the proof 𝜋 =

{𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2} that can pass the verification with non-negligible

probability, the secret value 𝑚 must be in the range [𝑎, 𝑏]. In addition, the committed

value of 𝐶 must be 𝑚.

Lemma 2. If the proof 𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2} can pass the

verification with non-negligible probability, the prover must know all the secret values

that are used to produce the proof 𝜋, such as 𝑀, 𝑟1. In other words, when the prover

does not know any of secret values, the prover cannot produce a proof 𝜋 that can pass

the verification.

Proof. We take 𝑀, 𝑟1 as example. Use one of the steps from our protocol: 𝐶1
′ = 𝑀 ∙

𝐺 + 𝑟1 ∙ 𝐻 to run the ZKPCS (Section 2.8) with two different challenges ς and ς′:

In the following, the prover is denoted as 𝑃, and the verifier is denoted as 𝑉.

(1) 𝑃 randomly chooses 𝑟, 𝑠 ∈ ℤ𝑞
∗ and computes 𝐶 = 𝑟 ∙ 𝐺 + 𝑠 ∙ 𝐻 . Then, 𝑃

publishes 𝐶.

(2) 𝑉 randomly chooses two different challenges ς, ς′ ∈ ℤ𝑞
∗ and sends them to 𝑃.

(3) 𝑃 computes two responses

(𝑢 = 𝑟 − ς𝑀, 𝑣 = 𝑠 − ς𝑟1),

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

35

(𝑢′ = 𝑟 − ς′𝑀, 𝑣′ = 𝑠 − ς′𝑟1)

and publishes them.

(4) 𝑉 computes 𝐶 by the two responses:

(𝑢 = 𝑟 − ς𝑀, 𝑣 = 𝑠 − ς𝑟1) → 𝐶 = 𝑢 ∙ 𝐺 + 𝑣 ∙ 𝐻 + ς ∙ 𝐶1
′ ,

(𝑢′ = 𝑟 − ς′𝑀, 𝑣′ = 𝑠 − ς′𝑟1) → 𝐶 = 𝑢′ ∙ 𝐺 + 𝑣′ ∙ 𝐻 + ς′ ∙ 𝐶1
′ .

We subtract the two equations, and we obtain

0 = (𝑢 − 𝑢′)𝐺 + (𝑣 − 𝑣′)𝐻 + (𝜍 − 𝜍′)𝐶1
′ .

Because ς ≠ ς′, ς − ς′ ≠ 0. Therefore,

𝐶1
′ =

(𝑢 − 𝑢′)

(𝜍′ − 𝜍)
∙ 𝐺 +

(𝑣 − 𝑣′)

(𝜍′ − 𝜍)
∙ 𝐻.

And then we know 𝐶1
′ = 𝑀 ∙ 𝐺 + 𝑟1 ∙ 𝐻, so

𝑀 =
(𝑢 − 𝑢′)

(𝜍′ − 𝜍)
 mod 𝑞,

𝑟1 =
(𝑢 − 𝑢′)

(𝜍′ − 𝜍)
 mod 𝑞.

In addition, since 𝑞 which is the order of the points 𝐺 and 𝐻 is a prime number,

𝐺𝐶𝐷(𝑞, 𝜍′ − 𝜍) = 1.

As a result, the inverse of 𝜍′ − 𝜍,
1

𝜍′−𝜍
, must exist. Therefore, 𝑀, 𝑟1 must exist, and

the prover must know them. Similarly, the prover must know all the committed values

that are used to produce the proof 𝜋 and these values must exist, so Lemma 2 is

proved.

Lemma 3. If the proof 𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2} can pass the

verification with non-negligible probability, the committed value of 𝐶′′, 𝜔2(𝑚 − 𝑎 +

1)(𝑏 − 𝑚 + 1), must greater than 0.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

36

Proof. According to Lemma 2, if the proof 𝜋 can pass the verification, the prover

must know 𝑀, 𝑟1, 𝑟2. According to our protocol, 𝐶1
′ = 𝑀 ∙ 𝐺 + 𝑟1 ∙ 𝐻，𝐶2

′ = 𝑟2 ∙ 𝐻. In

addition, the verifier can compute 𝐶′′ = 𝐶1
′ + 𝐶2

′ + 𝑅 ∙ 𝐺 through 𝐶1
′ , 𝐶2

′ , and 𝑅. We

know 𝐶′′ = (𝑀 + 𝑅) ∙ 𝐺 + (𝑟1 + 𝑟2) ∙ 𝐻. If 𝜋 pass the verification step 6 and step 7,

it means that 𝑀 is a square number and 𝑅 > 0. Obviously, the committed value of

𝐶′′ is greater than 0, i.e., ω2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) = 𝑀 + 𝑅 > 0, so Lemma 3 is

proved.

 According to the binding property of the EC-Pederesen commitment scheme

(Lemma 1), Lemma 2, and Lemma 3, If the proof 𝜋 can pass the verification with

non-negligible probability, the committed value of 𝐶′′ must be ω2(𝑚 − 𝑎 + 1)(𝑏 −

𝑚 + 1) , and ω2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) must be greater than 0. In other words,

when the proof 𝜋 pass the verification, the verifier can confirm that the secret value

𝑚 must be in the range [𝑎, 𝑏] . As a result, Theorem 4 always holds, our protocol

satisfies the soundness property.

3.3.3 Zero-knowledge

Theorem 5. Assume that there exists a simulator 𝑆 follows our protocol, but replaces

all secret values that only the prover knows (e.g., 𝑚, 𝑟) with random numbers to

produce the proof 𝜋′, and 𝜋′ can be verified. For all adversaries, there does not exist

any algorithm in probabilistic-polynomial time to distinguish between the proof 𝜋

produced by the prover and the proof 𝜋′ produced by the simulator 𝑆.

Proof. To prove Theorem 5, we use game hopping. First, we define two games: the

first game 𝒢1 (real game) follows our protocol to produce the proof. Secondly, the

game 𝒢2 (ideal game) is to change the steps of 𝒢1 so that the proof produced by 𝒢2

does not contain any information of secret values. Lastly, we argue the computationally

indistinguishable of the two games 𝒢1 and 𝒢2, to prove that Theorem 5 holds.

According to the zero-knowledge property of EC-EL proof (Theorem 2), no adversary

can distinguish the proof produced by simulator ℰℒ𝒮 from the real EC-EL proof.

We describe the two games 𝒢1 and 𝒢2 and explain their differences in detail. The

complete game description is shown in Figure 3, where “chg” means to change 𝒢1 to

a new instruction, and “del” means to delete the instruction of 𝒢1.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

37

Figure 3: Proof Games 𝒢1, 𝒢2 of Theorem 5

𝒢1: This game is the real model of our ZKRP protocol.

𝒢2: This game is the ideal model. In this game, the EC-EL proof is replaced by the

simulator ℰℒ𝒮 to produce the EL proof and the SQR proof, and any values that related

to the secret value is replaced by a random number, so the proof produced by 𝒢2 does

not contain any information of secret values.

In the following, we explain the computationally indistinguishable of the two games

𝒢1 and 𝒢2.

(1) In “chg 1”, 𝒢2 replaces the proof produced by the EC-EL proof with the proof

produced by the simulator ℰℒ𝒮 . If there exists a distinguisher 𝒟 in

probabilistic-polynomial time such that the adversary can distinguish between

the two proofs 𝐸𝐿 produced by 𝒢1 and 𝒢2 , it breaks the zero-knowledge

property of EC-EL proof (Theorem 2). Therefore, if the adversary follows the

verification steps to verify the two proofs produced by 𝒢1 and 𝒢2, both can

pass the verification step 3 to step 7. Thus, they cannot distinguish between the

two proofs.

(2) In “chg 2”, the adversary follows 𝒢1 to produce the proof 𝑆𝑄𝑅1. First, the

adversary computes

𝐹1 = 𝜔 ∙ 𝐺 + 𝑟2
′ ∙ 𝐻，𝑟2

′
$
←ℤ𝑞

∗

and then computes

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

38

𝐸′ = 𝜔 ∙ 𝐹1 + 𝑟3
′ ∙ 𝐻.

After that, the adversary produces the proof

𝐸𝐿
$
←EL(𝜔, 𝑟2

′, 𝑟3
′, 𝐺, 𝐻, 𝐹1, H)

through 𝐹1 and 𝐸′. Finally, the adversary produces the proof

𝑆𝑄𝑅1 = {EL(𝜔, 𝑟2
′, 𝑟3

′, 𝐺, 𝐻, 𝐹1, H), 𝐹1}.

If there exists a distinguisher 𝒟 in probabilistic-polynomial time such that the

adversary can distinguish between the two proofs 𝑆𝑄𝑅1 produced by 𝒢1 and

𝒢2, it means that 𝒟 can distinguish between the EL proofs in the two 𝑆𝑄𝑅1.

This breaks the zero-knowledge property of EC-EL proof (Theorem 2). In

addition, it can be seen that "chg 3" is the same as "chg 2". Therefore, if the

adversary follows the verification steps to verify the two proofs produced by

𝒢1 and 𝒢2, both can pass the verification step 3 to step 7. Thus, they cannot

distinguish between the two proofs.

(3) In “chg 4.1”, the adversary follows 𝒢1 to compute

𝐶1
′ = 𝑀 ∙ 𝐺 + 𝑟1 ∙ 𝐻,

and then follows 𝒢2 to compute

𝐶1
′ = 𝑟6 ∙ 𝐺 + 𝑟6̅ ∙ 𝐻，𝑟6

$
←ℤ𝑞

∗ .

If there exists a distinguisher 𝒟 in probabilistic-polynomial time such that the

adversary can distinguish between the two 𝐶1
′ in 𝒢1 and 𝒢2, it means that

the adversary can distinguish between the two committed values 𝑀 and 𝑟6.

This breaks the hiding property of the elliptic-curve Pedersen commitment

scheme.

In “chg 4.2”, the adversary follows 𝒢1 to compute

𝐶2
′ = 𝑟2 ∙ 𝐻,

and then follows 𝒢2 to compute

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

39

𝐶2
′ = 𝑟7 ∙ 𝐻，𝑟7

$
←ℤ𝑞

∗ .

If there exists a distinguisher 𝒟 in probabilistic-polynomial time such that the

adversary can distinguish between the two 𝐶2
′ in 𝒢1 and 𝒢2, it means that

the adversary can compute 𝑟2, 𝑟7 through the two 𝐶2
′ . That is, 𝒟 can solve

the elliptic-curve discrete logarithm problem [12] in probabilistic-polynomial

time.

In “chg 4.3”, The value of 𝑅 in 𝒢2 must be positive, so the proof 𝜋

produced by 𝒢2 can pass the verification step 7. Therefore, the adversary

cannot distinguish the two 𝑅 in 𝒢1 and 𝒢2.

In “chg 4.4”, the adversary follows 𝒢2 to compute

𝐶′′ = 𝐶1
′ + 𝐶2

′ + 𝑅 ∙ 𝐺,

so the proof 𝜋 produced by 𝒢2 can pass the verification step 5. Therefore,

the adversary cannot distinguish the two 𝐶′′ in 𝒢1 and 𝒢2. If the adversary

follows the verification steps to verify the two proofs produced by 𝒢1 and 𝒢2,

both can pass the verification step 3 to step 7. Thus, they cannot distinguish

between the two proofs.

(4) In “chg 5.1”, the adversary follows 𝒢1 to compute

𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝐺 = (𝑚 − 𝑎 + 1) ∙ 𝐺 + 𝑟 ∙ 𝐻,

and then follows 𝒢2 to compute

𝐶1 = 𝑟8 ∙ 𝐺 + 𝑟8̅ ∙ 𝐻，𝑟8
$
←ℤ𝑞

∗ .

If there exists a distinguisher 𝒟 in probabilistic-polynomial time such that the

adversary can distinguish between the two 𝐶1 in 𝒢1 and 𝒢2, it means that

the adversary can distinguish between the two committed values (𝑚 − 𝑎 + 1)

and 𝑟8 . This breaks the hiding property of the elliptic-curve Pedersen

commitment scheme.

In “chg 5.2”, the adversary follows 𝒢1 to compute

𝐶 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝐻,

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

40

and then follows 𝒢2 to compute

𝐶 = 𝐶1 + (𝑎 − 1) ∙ 𝐺 = (𝑟8 + 𝑎 − 1) ∙ 𝐺 + 𝑟 ∙ 𝐻.

This is the same as “chg 5.1”.

In “chg 5.2”, the adversary follows 𝒢1 to compute

𝐶′ = (𝑏 −𝑚 + 1) ∙ 𝐶1 + 𝑟
′ ∙ 𝐻

= (𝑚 − 𝑎 + 1)(𝑏 −𝑚 + 1) ∙ 𝐺 + ((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) ∙ 𝐻,

and then follows 𝒢2 to compute

𝐶′ = 𝑟9 ∙ 𝐺 + 𝑟9̅ ∙ 𝐻，𝑟9
$
←ℤ𝑞

∗ .

This is the same as “chg 5.1”. Therefore, if the adversary follows the

verification steps to verify the two proofs produced by 𝒢1 and 𝒢2, both can

pass the verification step 3 to step 7. Thus, they cannot distinguish between the

two proofs.

According to (1)(2)(3)(4), there does not exist any algorithm in probabilistic-

polynomial time to distinguish the two proofs produced by the game 𝒢1 and 𝒢2. That

is 𝒢1 and 𝒢2 are computationally indistinguishable, so Theorem 5 is proved.

According to Theorem 5, no adversary can distinguish between the two proofs

produced by 𝒢1 and 𝒢2 . It means that the adversary cannot determine whether the

proof 𝜋 produced by our protocol contains the secret value 𝑚. That is, the adversary

cannot compute the secret value 𝑚 through the proof 𝜋 . Therefore, our protocol

satisfies the zero-knowledge property.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

41

4 Non-Interactive Designated Verifier EC-ZKRP

Protocol

In addition, we consider that the prover may not want to let everyone except the

designated verifier knows the range of the secret value. That is, the proof produced by

the prover cannot convince any other third parties. Thus, we require a designated

verifier ZKRP scheme. Even if the designated verifier reveals the important information

of the proof, any other third party cannot trust the verification result or verify the proof.

There are several related works about the designated verifier non-interactive zero-

knowledge proof (DV-NIZK) [7][14][17], but a DV-ZKRP scheme has not been

proposed yet.

In this chapter, we introduce the non-interactive designated verifier EC-ZKRP

scheme (DV-EC-ZKRP) and the non-interactive strong designated verifier EC-ZKRP

scheme (SDV-EC-ZKRP) which are based on our EC-ZKRP scheme as described in

Chapter 3, but the commitment scheme is replaced by the trapdoor commitment

scheme (Section 2.5). The definitions of the designated verifier and strong designated

verifier in this thesis follow by the definitions proposed by Jakobsson et al. [13], i.e.,

the designated verifier proof cannot be trusted by any third party, while the strong

designated verifier proof cannot be verifier by any third party. However, the designated

verifier is strictly defined in the schemes [7][14][17] mentioned above, which is

different from our definitions: the designated verifier proof cannot be verified by any

third party. Therefore, our definition of the strong designated verifier can correspond to

the definition of the designated verifier in the schemes [7][14][17]. In the following,

we describe the definitions and the protocols in detail.

4.1 Designated Verifier EC-ZKRP Scheme

In this section, we introduce the definitions, protocol, and security description of

the DV-EC-ZKRP scheme in detail.

4.1.1 Definitions and Security Models

A scheme satisfies the designated verifier property: the prover follows the scheme

to produce the proof which can only convince the designated verifier, and any other

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

42

third party cannot be convince by the proof. More precisely, there does not exist any

algorithm in probabilistic-polynomial time to distinguish between the proof produced

by the prover and the proof produced by the verifier. Since any third parties can think

the proof is produced by the designated verifier, they cannot trust the proof.

Definition 20 (Designated verifier). Let 𝑃(𝐴, 𝐵) is a designated verifier protocol

which allows a prover 𝐴 to produce a proof 𝜋 to prove to 𝐵 that a statement 𝜃 is

true, and there is another protocol 𝑃′(𝐵, 𝐶) such that 𝐵 can prove the truth of 𝜃 to

𝐶. The probability

||Pr

[

𝑏′ = 𝑏 ∶

𝜋0 ← 𝑃(𝐴, 𝐵);

𝜋1 ← 𝑃′(𝐵, 𝐶);

𝑏 ∈ {0,1};
𝑏′ ← 𝒜(𝜋𝑏)]

−
1

2
|| ≤ 𝑛𝑒𝑔𝑙(𝜆)

for all probabilistic-polynomial time adversaries 𝒜 and security parameter 𝜆.

Definition 21 (Non-interactive designated verifier zero-knowledge range proof, DV-

ZKRP). DV-ZKRP is composed by three functions (𝑆𝑒𝑡𝑢𝑝, 𝑃𝑟𝑜, 𝑉𝑒𝑟).

(1) 𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆) : by inputting a secure parameter 𝜆 , the polynomial-time

function 𝑆𝑒𝑡𝑢𝑝 outputs the public parameters 𝑝𝑝.

(2) 𝜋
$
←𝑃𝑟𝑜(𝑝𝑝, 𝑝𝑘𝑣, 𝑚, 𝑎, 𝑏): by inputting the public parameters 𝑝𝑝, the public

key of the designated verifier 𝑝𝑘𝑣, the secret value 𝑚, and the lower bound

and upper bound of a range 𝑎, 𝑏, where 𝑎 < 𝑏, the polynomial-time function

𝑃𝑟𝑜 outputs the proof 𝜋.

(3) 𝑟 ← 𝑉𝑒𝑟(𝑝𝑝, 𝑝𝑘𝑣, 𝜋, 𝑎, 𝑏): by inputting the public parameters 𝑝𝑝, the public

key of the designated verifier 𝑝𝑘𝑣 , the proof 𝜋 , and the lower bound and

upper bound of a range 𝑎, 𝑏 , the polynomial-time function 𝑉𝑒𝑟 outputs a

result 𝑟 ∈ {0,1}. The proof 𝜋 is accepted if 𝑟 is equal to 1, which means that

the secret value 𝑚 is in the range [𝑎, 𝑏], i.e., 𝑎 ≤ 𝑚 ≤ 𝑏. Otherwise, it is

rejected, i.e., 𝑚 ∉ [𝑎, 𝑏].

A DV-ZKRP scheme satisfies the designated verifier property: there does not exist

any algorithm in probabilistic-polynomial time to distinguish between the proof

produced by the prover and the proof produced by the designated verifier.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

43

Definition 22 (Designated verifier of DV-ZKRP). Given a prover 𝐴 and a designated

verifier 𝐵. The probability

|

|
Pr

[

𝑏′ = 𝑏 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝜋0 ← 𝐴(𝑃𝑟𝑜(𝑝𝑝, 𝑝𝑘𝐵, 𝑚, 𝑎, 𝑏));

𝜋1 ← 𝐵(𝑃𝑟𝑜(𝑝𝑝, 𝑝𝑘𝐵, 𝑚, 𝑎, 𝑏));

𝑏 ∈ {0,1};
𝑏′ ← 𝒜(𝑝𝑝, 𝜋𝑏)]

−
1

2
|

|
≤ 𝑛𝑒𝑔𝑙(𝜆)

for all probabilistic-polynomial time adversaries 𝒜 and security parameter 𝜆.

4.1.2 Designated Verifier EC-ZKRP Protocol

We describe the DV-EC-ZKRP protocol in detail below: the prover knows the

secret value 𝑚 in the range [𝑎, 𝑏] , and the prover wants to prove to a designated

verifier that 𝑚 is in the range [𝑎, 𝑏] without revealing 𝑚. Given that the private key

of the designated verifier is 𝑋 and the public key is 𝑌, where 𝑌 = 𝑋 ∙ 𝐺. 𝐺 and 𝑌

are two points on a curve 𝐸(𝔽𝑝) have the order 𝑞, and 𝑋 ∈ ℤ𝑞
∗ . The prover randomly

chooses 𝑟 ∈ ℤ𝑞
∗ to compute the commitment

𝐶 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝑌.

by using the public key of the verifier 𝑌.

To produce the non-interactive DV-EC-ZKRP:

(1) The prover randomly chooses 𝑟′ ∈ ℤ𝑞
∗ to compute

𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝐺,

𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶,

𝐶′ = (𝑏 −𝑚 + 1) ∙ 𝐶1 + 𝑟
′ ∙ 𝑌.

(2) Since the two commitments

𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶 = (𝑏 − 𝑚 + 1) ∙ 𝐺 + (−𝑟) ∙ 𝑌,

𝐶′ = (𝑏 −𝑚 + 1) ∙ 𝐶1 + 𝑟
′ ∙ 𝑌

hide the same value (𝑏 − 𝑚 + 1), the prover produces the EL proof:

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

44

𝐸𝐿 = EL(𝑏 −𝑚 + 1,−𝑟, 𝑟′, 𝐺, 𝑌, 𝐶1, 𝑌).

(3) The prover randomly chooses 𝜔 and 𝑟′′ to compute

𝐶′′ = 𝜔2 ∙ 𝐶′ + 𝑟′′ ∙ 𝑌.

(4) Since the commitment 𝐶′′ hides a square number 𝜔2, the prover produces the

SQR proof:

𝑆𝑄𝑅1 = 𝑆𝑄𝑅(𝜔, 𝑟′′, 𝐶′, 𝑌).

(5) The prover randomly chooses 𝛼 ∈ ℤ𝑞
∗ to compute

𝑀 = 𝛼2.

If 𝑀 ≥ 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1), repeat (5).

(6) The prover computes

𝑅 = 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) −𝑀,

which must be greater than 0.

(7) The prover randomly chooses 𝑟1 ∈ ℤ𝑞
∗ to compute

𝑟2 = 𝜔2((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) + 𝑟′′ − 𝑟1.

(8) The prover computes

𝐶1
′ = 𝑀 ∙ 𝐺 + 𝑟1 ∙ 𝑌,

𝐶2
′ = 𝑟2 ∙ 𝑌.

(9) Since the commitment 𝐶1
′ hides a square number 𝑀, the prover produces the

SQR proof:

𝑆𝑄𝑅2 = 𝑆𝑄𝑅(𝛼, 𝑟1, 𝐺, 𝑌).

(10) The prover produces the proof

𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2}.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

45

To verify the non-interactive DV-EC-ZKRP proof 𝜋, the designated verifier runs

the following steps:

(1) Compute 𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝑌.

(2) Compute 𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶.

(3) Verify vEL(𝐸𝐿, 𝐺, 𝑌, 𝐶1, 𝑌, 𝐶2, 𝐶
′).

(4) Verify vSQR(𝑆𝑄𝑅1, 𝐶
′, 𝑌, 𝐶′′).

(5) Verify 𝐶′′ = 𝐶1
′ + 𝐶2

′ + 𝑅 ∙ 𝐺.

(6) Verify vSQR(𝑆𝑄𝑅2, 𝐺, 𝑌, 𝐶1
′).

(7) Verify 𝑅 > 0.

The designated verifier can be convinced that the secret value 𝑚 must be in the range

[𝑎, 𝑏] if and only if the verification step 3 to step 7 are passed.

If any other third parties follow the verification steps to verify the proof, they

cannot accept the verification result even if the step 3 to step 7 are passed, because they

could think the prover and the designated verifier cheat together since the verifier

knows 𝑋, which is the relation of 𝐺 and 𝑌, i.e., the verifier can find 𝑚1, 𝑚2, 𝑟1, 𝑟1 ∈

ℤ𝑞
∗ easily such that

𝐶 = 𝑚1 ∙ 𝐺 + 𝑟1 ∙ 𝑌 = 𝑚2 ∙ 𝐺 + 𝑟2 ∙ 𝑌.

That is, for any other third parties, the commitments that are used to produce the proof

does not satisfy the binding property. Therefore, the verification result can be only

accepted by the designated verifier.

4.1.3 Security Description: Designated Verifier

Our DV-EC-ZKRP scheme satisfies the designated verifier property: there does

not exist any algorithm in probabilistic-polynomial time to distinguish between the

proof produced by the prover and the proof produced by the designated verifier. In other

words, the designated verifier can find two different secret values to produce the same

proof such that any third party cannot trust the proof.

Lemma 4. Anyone who knows the relation of the public parameters 𝐺,𝐻 can produce

an EC-EL proof 𝐸𝐿 = (ℎ, 𝑥, 𝑥1, 𝑥2) with different inputs.

Proof. Let 𝜌 ∈ ℤ𝑞
∗ be the the relation of the two sets of public parameters

(𝐺1, 𝐻1), (𝐺2, 𝐻2), i.e., 𝐻1 = 𝜌𝐺1, 𝐻2 = 𝜌𝐺2. Assume that an adversary 𝒜 knows 𝜌

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

46

and the two commitments

𝐴 = 𝑚 ∙ 𝐺1 + 𝑠 ∙ 𝐻1,

𝐵 = 𝑚 ∙ 𝐺2 + 𝑟 ∙ 𝐻2,

where 𝐴 and 𝐵 have the same committed value 𝑚 ∈ ℤ𝑞
∗ , 𝑠, 𝑟

$
←ℤ𝑞

∗ . The adversary

𝒜 inputs (𝑚, 𝑟, 𝑠, 𝐺1, 𝐻1, 𝐺2, 𝐻2, 𝐴, 𝐵) and to produce

𝐸𝐿 = (ℎ, 𝑥, 𝑥1, 𝑥2):

{

 𝜇, 𝑣1, 𝑣2

$
←ℤ𝑞

∗

𝐶1 = 𝜇𝐺1 + 𝑣1𝐻1
𝐶2 = 𝜇𝐺2 + 𝑣2𝐻2
ℎ = ℎ𝑎𝑠ℎ(𝐶1||𝐶2)

𝑥 = 𝜇 + ℎ𝑚
𝑥1 = 𝑣1 + ℎ𝑠
𝑥2 = 𝑣2 + ℎ𝑟

.

Then the adversary 𝒜 can compute

𝑠′ =
(𝑚 −𝑚′)

𝜌
+ 𝑠 (mod 𝑞),

𝑟′ =
(𝑚 −𝑚′)

𝜌
+ 𝑟 (mod 𝑞)

such that the two commitment

𝐴 = 𝑚 ∙ 𝐺1 + 𝑠 ∙ 𝐻1 = (𝑚 + 𝜌𝑠) ∙ 𝐺1 = (𝑚′ + 𝜌𝑠′) ∙ 𝐺1 = 𝑚
′ ∙ 𝐺1 + 𝑠

′ ∙ 𝐻1,

𝐵 = 𝑚 ∙ 𝐺2 + 𝑟 ∙ 𝐻2 = (𝑚 + 𝜌𝑟) ∙ 𝐺2 = (𝑚
′ + 𝜌𝑟′) ∙ 𝐺2 = 𝑚′ ∙ 𝐺2 + 𝑟

′ ∙ 𝐻2.

Finally, the adversary 𝒜 can produce the same proof 𝐸𝐿 = (ℎ, 𝑥, 𝑥1, 𝑥2) with the

different input (𝑚′, 𝑟′, 𝑠′, 𝐺1, 𝐻1, 𝐺2, 𝐻2, 𝐴, 𝐵) through

𝜇′ = 𝑥 − ℎ𝑚′,

𝑣1
′ = 𝑥1 − ℎ𝑠

′,

𝑣2
′ = 𝑥2 − ℎ𝑟

′,

since

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

47

𝜇′𝐺1 + 𝑣1
′𝐻1

= [(𝑥 − ℎ𝑚′) + (𝑥1 − ℎ𝑠
′)𝜌]𝐺1

= (𝜇 + ℎ(𝑚 −𝑚′) + (𝑣1 + ℎ(𝑠 − 𝑠
′))𝜌)𝐺1

= (𝜇 + 𝑣1𝜌)𝐺1 + ℎ(𝑚 + 𝜌𝑠)𝐺1 − ℎ(𝑚
′ + 𝜌𝑠′)𝐺1

= 𝜇𝐺1 + 𝑣1𝐻1 + 𝐴 − 𝐴 = 𝐶1,

and

𝜇′𝐺2 + 𝑣2
′𝐻2

= [(𝑥 − ℎ𝑚′) + (𝑥2 − ℎ𝑟
′)𝜌]𝐺2

= (𝜇 + ℎ(𝑚 −𝑚′) + (𝑣2 + ℎ(𝑟 − 𝑟
′))𝜌)𝐺2

= (𝜇 + 𝑣2𝜌)𝐺2 + ℎ(𝑚 + 𝜌𝑟)𝐺2 − ℎ(𝑚
′ + 𝜌𝑟′)𝐺2

= 𝜇𝐺2 + 𝑣2𝐻2 + 𝐵 − 𝐵 = 𝐶2.

Thus, the value ℎ = ℎ𝑎𝑠ℎ(𝐶1||𝐶2) = ℎ𝑎𝑠ℎ((𝜇′𝐺1 + 𝑣1
′𝐻1)||(𝜇

′𝐺2 + 𝑣2
′𝐻2)) does

not change, i.e., the adversary 𝒜 can produce the same EC-EL proof 𝐸𝐿 =

(ℎ, 𝑥, 𝑥1, 𝑥2) with two different inputs

(𝑚, 𝑟, 𝑠, 𝐺1, 𝐻1, 𝐺2, 𝐻2, 𝐴, 𝐵),

(𝑚′, 𝑟′, 𝑠′, 𝐺1, 𝐻1, 𝐺2, 𝐻2, 𝐴, 𝐵)

by knowing 𝜌. Therefore, Lemma 4 is proved.

Theorem 6. The designated verifier can find two different secret values 𝑚,𝑚′ to

produce the same proof 𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2} if the verifier has

his/her private key 𝑋.

Proof. Let 𝑌 be the public key of the designated verifier, and 𝑌 = 𝑋 ∙ 𝐺. Assume that

the verifier knows a secret value 𝑚 ∈ [𝑎, 𝑏] and produces a DV-EC-ZKRP proof

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

48

𝜋 = (
𝐶, 𝐶′, 𝐶′′, 𝐶1

′ , 𝐶2
′ ,

𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2
) :

{

𝑟, 𝑟′, 𝑟′′, 𝜔, 𝛼, 𝑟2 ← ℤ𝑞
∗ ;

𝐶 = 𝑚𝐺 + 𝑟𝑌;
𝐶′ = (𝑏 −𝑚 + 1)𝐶 + 𝑟′𝑌;

𝐶′′ = 𝜔2𝐶′ + 𝑟′′𝑌;

𝐶1
′ = 𝛼2𝐺 + (𝜔2((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) + 𝑟′′ − 𝑟2)𝑌;

𝐶2
′ = 𝑟2𝑌;

𝑅 = 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) − 𝛼2;

𝐸𝐿
$
←EL(𝑏 −𝑚 + 1,−𝑟, 𝑟′, 𝐺, 𝑌, 𝐶 − (𝑎 − 1)𝐺, 𝑌);

𝑆𝑄𝑅1
$
←SQR(𝜔, 𝑟′′, 𝐶′, 𝑌);

𝑆𝑄𝑅2
$
←SQR(𝛼, 𝑟1, 𝐺, 𝑌)

with his/her public key 𝑌. Then the verifier sets 𝜔̂ = 0 and computes

𝑟̂ =
(𝑚 −𝑚′)

𝑋
+ 𝑟 (mod 𝑞),

𝑟 ′̂ =
(𝑚′ −𝑚)(𝑚 + 𝑟𝑋)

𝑋
+ 𝑟′ (mod 𝑞),

𝑟′′̂ =
(𝜔2 − 𝜔̂2)((𝑏 −𝑚 + 1)(𝑚 − 𝑎 + 1 + 𝑟𝑋) + 𝑟′𝑋)

𝑋
+ 𝑟′′ (mod 𝑞),

𝑟2̂ = 𝑟2 (mod 𝑞),

𝑟1̂ = 𝜔̂
2 ((𝑏 − 𝑚′ + 1)𝑟̂ + 𝑟 ′̂) + 𝑟′′̂ − 𝑟2̂ (mod 𝑞),

𝑀̂ = 𝑀 + (𝑟1 − 𝑟1̂)𝑋 (mod 𝑞), where 𝑀 = 𝛼2

such that

𝐶 = 𝑚𝐺 + 𝑟𝑌 = 𝑚′𝐺 + 𝑟̂𝑌,

𝐶′ = (𝑏 −𝑚 + 1)𝐶 + 𝑟′𝑌 = (𝑏 − 𝑚′ + 1)𝐶 + 𝑟 ′̂𝑌,

𝐶′′ = 𝜔2𝐶′ + 𝑟′′𝑌 = 𝜔̂2𝐶′ + 𝑟′′̂𝑌,

𝐶1
′ = 𝑀𝐺 + 𝑟1𝑌 = 𝑀̂𝐺 + 𝑟1̂𝑌,

𝐶2
′ = 𝑟2𝑌 = 𝑟2̂𝑌.

Furthermore, according to Lemma 4, the verifier can produce the same EL proof 𝐸𝐿

with (𝑏 − 𝑚′ + 1) and the same SQR proof 𝑆𝑄𝑅1, 𝑆𝑄𝑅2 with 𝜔̂, 𝑀̂ . Finally, the

verifier can produce the same proof 𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2} by

using the different secret 𝑚′ ∈ ℤ𝑞
∗ since

𝜔̂2(𝑚′ − 𝑎 + 1)(𝑏 − 𝑚′ + 1) − 𝑀̂

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

49

= 0 − 𝑀̂

= (𝑟1̂ − 𝑟1)𝑋 −𝑀

= (𝑟′′̂ − (𝑟1 + 𝑟2))𝑋 −𝑀

= (𝜔2((𝑏 − 𝑚 + 1)(𝑚 − 𝑎 + 1 + 𝑟𝑋) + 𝑟′𝑋) + 𝑟′′𝑋)

− (𝜔2((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) + 𝑟′′)𝑋 −𝑀

= 𝜔2(𝑏 − 𝑚 + 1)(𝑚 − 𝑎 + 1) − 𝑀

= 𝑅.

Thus, it can be seen that the designated verifier can produce the same proof 𝜋 =

{𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2} with two different secret 𝑚,𝑚′ if the verifier

knows his/her private key 𝑋 . Therefore, Theorem 6 is proved. The DV-EC-ZKRP

scheme satisfies the designated verifier property.

4.2 Strong Designated Verifier EC-ZKRP Scheme

Due to the confidentiality of the secret value, sometimes we would everyone except

the designated verifier like to not only be unable to trust the proof, but also cannot verify

the proof. Therefore, we require a strong designated verifier ZKRP scheme.

A strong designated verifier ZKRP scheme can make any third be unable to verify

the proof, or trust the proof even if they receive the key used to produce the proof, while

a designated verifier ZKRP scheme can only make any third party does not trust the

proof, but they can still verify the proof.

In this section, we introduce the definitions, protocol, and security description of

the SDV-EC-ZKRP scheme in detail.

4.2.1 Definitions and Security Models

A scheme satisfies the strong designated verifier property: the prover follows the

scheme to produce the proof which can only convince the designated verifier, and any

other third party cannot follow the scheme to verify the proof. More precisely, there

does not exist any algorithm in probabilistic-polynomial time to distinguish between

two proofs produced by different provers.

Definition 23 (Strong designated verifier). Let 𝑃(𝐴, 𝐵) is a designated verifier

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

50

protocol which allows a prover 𝐴 to produce a proof 𝜋 to prove to 𝐵 that a

statement 𝜃 is true, and there is another protocol 𝑃′(𝐶, 𝐷) such that 𝐶 can prove the

truth of 𝜃 to 𝐷. The probability

||Pr

[

𝑏′ = 𝑏 ∶

𝜋0 ← 𝑃(𝐴, 𝐵);

𝜋1 ← 𝑃′(𝐶, 𝐷);

𝑏 ∈ {0,1};
𝑏′ ← 𝒜(𝜋𝑏)]

−
1

2
|| ≤ 𝑛𝑒𝑔𝑙(𝜆)

for all probabilistic-polynomial time adversaries 𝒜 and security parameter 𝜆.

Definition 24 (Non-interactive strong designated verifier zero-knowledge range proof,

SDV-ZKRP). SDV-ZKRP is composed by three functions (𝑆𝑒𝑡𝑢𝑝, 𝑃𝑟𝑜, 𝑉𝑒𝑟).

(1) 𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆) : by inputting a secure parameter 𝜆 , the polynomial-time

function 𝑆𝑒𝑡𝑢𝑝 outputs the public parameters 𝑝𝑝.

(2) 𝜋
$
←𝑃𝑟𝑜(𝑝𝑝, 𝑆𝑝𝑣, 𝑚, 𝑎, 𝑏): by inputting the public parameters 𝑝𝑝, the shared

key of the prover and the designated verifier 𝑆𝑝𝑣, the secret value 𝑚, and the

lower bound and upper bound of a range 𝑎, 𝑏, where 𝑎 < 𝑏, the polynomial-

time function 𝑃𝑟𝑜 outputs the proof 𝜋.

(3) 𝑟 ← 𝑉𝑒𝑟(𝑝𝑝, 𝑆𝑝𝑣, 𝜋, 𝑎, 𝑏): by inputting the public parameters 𝑝𝑝, the shared

key of the prover and the designated verifier 𝑆𝑝𝑣, the proof 𝜋, and the lower

bound and upper bound of a range 𝑎, 𝑏, the polynomial-time function 𝑉𝑒𝑟

outputs a result 𝑟 ∈ {0,1}. The proof 𝜋 is accepted if 𝑟 is equal to 1, which

means that the secret value 𝑚 is in the range [𝑎, 𝑏] , i.e., 𝑎 ≤ 𝑚 ≤ 𝑏 .

Otherwise, it is rejected, i.e., 𝑚 ∉ [𝑎, 𝑏].

A SDV-ZKRP scheme satisfies the strong designated verifier property: there does

not exist any algorithm in probabilistic-polynomial time to distinguish between two

proofs produced by different provers.

Definition 25 (Strong designated verifier of SDV-EC-ZKRP). Given two provers 𝐴

and 𝐶, and two designated verifiers 𝐵 and 𝐷. The probability

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

51

|

|
Pr

[

𝑏′ = 𝑏 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝜋0 ← 𝐴(𝑃𝑟𝑜(𝑝𝑝, 𝑆𝐴𝐵, 𝑚, 𝑎, 𝑏));

𝜋1 ← 𝐶(𝑃𝑟𝑜(𝑝𝑝, 𝑆𝐶𝐷 , 𝑚, 𝑎, 𝑏));

𝑏 ∈ {0,1};
𝑏′ ← 𝒜(𝑝𝑝, 𝜋𝑏)]

−
1

2
|

|
≤ 𝑛𝑒𝑔𝑙(𝜆)

for all probabilistic-polynomial time adversaries 𝒜 and security parameter 𝜆.

4.2.2 Strong Designated Verifier EC-ZKRP Protocol

We describe the SDV-EC-ZKRP protocol in detail below: the prover knows the

secret value 𝑚 in the range [𝑎, 𝑏] , and the prover wants to prove to a designated

verifier that 𝑚 is in the range [𝑎, 𝑏] without revealing 𝑚. The prover has the private

key 𝑋𝑝 and the public key 𝑌𝑝 = 𝑋𝑝 ∙ 𝐺, and the designated verifier has the private key

𝑋𝑣 and the public key 𝑌𝑣 = 𝑋𝑣 ∙ 𝐺. They runs ECDH as described in Section 2.4 to get

the shared key

𝑆 = 𝑋𝑝 ∙ 𝑌𝑣 = 𝑋𝑣 ∙ 𝑌𝑝 = 𝑋𝑝 ∙ 𝑋𝑣 ∙ 𝐺.

By using the public key of the designated verifier, the prover computes the shared key

𝑆 = 𝑋𝑝 ∙ 𝑌𝑣 and randomly chooses 𝑟 ∈ ℤ𝑞 to compute the commitment

𝐶 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝑆.

To produce the non-interactive SDV-EC-ZKRP:

(1) The prover randomly chooses 𝑟′ ∈ ℤ𝑞
∗ to compute

𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝐺,

𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶,

𝐶′ = (𝑏 −𝑚 + 1) ∙ 𝐶1 + 𝑟
′ ∙ 𝑆.

(2) Since the two commitments

𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶 = (𝑏 − 𝑚 + 1) ∙ 𝐺 + (−𝑟) ∙ 𝑆,

𝐶′ = (𝑏 −𝑚 + 1) ∙ 𝐶1 + 𝑟
′ ∙ 𝑆

hide the same value (𝑏 − 𝑚 + 1), the prover produces the EL proof:

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

52

𝐸𝐿 = EL(𝑏 − 𝑚 + 1,−𝑟, 𝑟′, 𝐺, 𝑆, 𝐶1, 𝑆).

(3) The prover randomly chooses 𝜔 and 𝑟′′ to compute

𝐶′′ = 𝜔2 ∙ 𝐶′ + 𝑟′′ ∙ 𝑆.

(4) Since the commitment 𝐶′′ hides a square number 𝜔2, the prover produces the

SQR proof:

𝑆𝑄𝑅1 = 𝑆𝑄𝑅(𝜔, 𝑟′′, 𝐶′, 𝑆).

(5) The prover randomly chooses 𝛼 ∈ ℤ𝑞
∗ to compute

𝑀 = 𝛼2.

If 𝑀 ≥ 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1), repeat (5).

(6) The prover computes

𝑅 = 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) −𝑀,

which must be greater than 0.

(7) The prover randomly chooses 𝑟1 ∈ ℤ𝑞
∗ to compute

𝑟2 = 𝜔2((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) + 𝑟′′ − 𝑟1.

(8) The prover computes

𝐶1
′ = 𝑀 ∙ 𝐺 + 𝑟1 ∙ 𝑆,

𝐶2
′ = 𝑟2 ∙ 𝑆.

(9) Since the commitment 𝐶1
′ hides a square number 𝑀, the prover produces the

SQR proof:

𝑆𝑄𝑅2 = 𝑆𝑄𝑅(𝛼, 𝑟1, 𝐺, 𝑆).

(10) The prover produces the proof

𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2}.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

53

To verify the non-interactive SDV-EC-ZKRP proof 𝜋 , the designated verifier

computes the shared key 𝑆 = 𝑋𝑣 ∙ 𝑌𝑝 and runs the following steps:

(1) Compute 𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝑆.

(2) Compute 𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶.

(3) Verify vEL(𝐸𝐿, 𝐺, 𝑆, 𝐶1, 𝑆, 𝐶2, 𝐶
′).

(4) Verify vSQR(𝑆𝑄𝑅1, 𝐶
′, 𝑆, 𝐶′′).

(5) Verify 𝐶′′ = 𝐶1
′ + 𝐶2

′ + 𝑅 ∙ 𝐺.

(6) Verify vSQR(𝑆𝑄𝑅2, 𝐺, 𝑆, 𝐶1
′).

(7) Verify 𝑅 > 0.

The designated verifier can be convinced that the secret value 𝑚 must be in the range

[𝑎, 𝑏] if and only if the verification step 3 to step 7 are passed.

Any other third party cannot follow the verification steps to verify the proof

because they are not able to compute the shared key 𝑆 through 𝑌𝑝 and 𝑌𝑣. Note that

it is not helpful for any third party to compute the addition of two points 𝑌𝑝 and 𝑌𝑣,

since

𝑌𝑝 + 𝑌𝑣 = (𝑋𝑝 + 𝑋𝑣)𝐺 ≠ 𝑋𝑝 ∙ 𝑋𝑣 ∙ 𝐺.

However, if the designated verifier is corrupted and sends his/her private key 𝑋𝑣

or the shared key 𝑆 to a third party so that they can verify the proof, the third party

still cannot accept the verification result, because the third party could think the prover

and the designated verifier cheat together since they can exchange their private key to

compute 𝑋𝑝 ∙ 𝑋𝑣, which is the relation of 𝐺 and 𝑆, i.e., the prover and the designated

verifier can find 𝑚1, 𝑚2, 𝑟1, 𝑟1 ∈ ℤ𝑞
∗ easily such that

𝐶 = 𝑚1 ∙ 𝐺 + 𝑟1 ∙ 𝑆 = 𝑚2 ∙ 𝐺 + 𝑟2 ∙ 𝑆.

That is, for any other third parties, the commitments that are used to produce the proof

does not satisfy the binding property. Therefore, the verification result can be only

accepted by the designated verifier and cannot be accepted by any other third party even

if the third party knows the shared key 𝑆.

4.2.3 Security Description: Strong Designated Verifier

Our SDV-ZKRP scheme satisfies the strong designated verifier property: there

does not exist any algorithm in probabilistic-polynomial time to verify the proof

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

54

without using the correct shared key and there does not exist any algorithm in

probabilistic-polynomial time to distinguish between two proofs produced by different

provers.

Theorem 7. There does not exist any algorithm in probabilistic-polynomial time to

verify the proof without using the correct shared key 𝑆.

Proof. We divide the discussion into two cases:

(1) Assume that an adversary verifies the proof through an incorrect shared key

𝑆′: the probability that the adversary finds an incorrect shared key 𝑆′ to verify

the proof is

Pr

[

𝑉𝑒𝑟(𝑝𝑝, 𝑆′, 𝜋, 𝑎, 𝑏) = 1 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝜋 ← 𝑃𝑟𝑜(𝑝𝑝, 𝑆, 𝑚, 𝑎, 𝑏);

𝑆′ ← 𝒜(𝑝𝑝, 𝜋);

𝑆′ ≠ 𝑆]

≤ 𝑛𝑒𝑔𝑙(𝜆) ≈ 0.

Therefore, with such a negligible probability, we can ignore this case.

(2) Assume that an adversary verifies the proof through the correct shared key 𝑆:

it means that the adversary can solve the elliptic-curve Diffie–Hellman

problem in probabilistic-polynomial time.

According to (1)(2), there does not exist any algorithm in probabilistic-polynomial time

to verify the proof without using the correct shared key 𝑆. Therefore, Theorem 7 is

proved.

Theorem 8. There does not exist any algorithm in probabilistic-polynomial time to

distinguish from two proofs produced by different provers.

Proof. Assume that a prover knows a secret value 𝑚 ∈ [𝑎, 𝑏] and produces a SDV-

EC-ZKRP proof

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

55

𝜋 = (
𝐶, 𝐶′, 𝐶′′, 𝐶1

′ , 𝐶2
′ ,

𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2
) :

{

𝑟, 𝑟′, 𝑟′′, 𝜔, 𝛼, 𝑟2 ← ℤ𝑞
∗ ;

𝐶 = 𝑚𝐺 + 𝑟𝑆;
𝐶′ = (𝑏 −𝑚 + 1)𝐶 + 𝑟′𝑆;

𝐶′′ = 𝜔2𝐶′ + 𝑟′′𝑆;

𝐶1
′ = 𝛼2𝐺 + (𝜔2((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) + 𝑟′′ − 𝑟2)𝑆;

𝐶2
′ = 𝑟2𝑆;

𝑅 = 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) − 𝛼2;

𝐸𝐿
$
←EL(𝑏 − 𝑚 + 1,−𝑟, 𝑟′, 𝐺, 𝑆, 𝐶 − (𝑎 − 1)𝐺, 𝑆);

𝑆𝑄𝑅1
$
←SQR(𝜔, 𝑟′′, 𝐶′, 𝑆);

𝑆𝑄𝑅2
$
←SQR(𝛼, 𝑟1, 𝐺, 𝑆)

and another prover knows a secret value 𝑚′ ∈ [𝑎, 𝑏] and uses another shared key 𝑆′

to produce the proof

𝜋′ = (
𝑐, 𝑐′, 𝑐′′, 𝑐1

′ , 𝑐2
′ ,

𝑟, 𝑒𝑙, 𝑠𝑞𝑟1, 𝑠𝑞𝑟2
) :

{

𝑠, 𝑠′, 𝑠′′, 𝜓, 𝛽, 𝑠2 ← ℤ𝑞
∗ ;

𝑐 = 𝑚′𝐺 + 𝑠𝑆′;
𝑐′ = (𝑏 −𝑚′ + 1)𝑐 + 𝑠′𝑆′;

𝑐′′ = 𝜓2𝑐′ + 𝑠′′𝑆′;

𝑐1
′ = 𝛽2𝐺 + (𝜓2((𝑏 −𝑚′ + 1)𝑠 + 𝑠′) + 𝑠′′ − 𝑠2)𝑆

′;

𝑐2
′ = 𝑠2𝑆

′;

𝑟 = 𝜓2(𝑚′ − 𝑎 + 1)(𝑏 − 𝑚′ + 1) − 𝛽2;

𝑒𝑙
$
←EL(𝑏 − 𝑚′ + 1,−𝑠, 𝑠′, 𝐺, 𝑆′, 𝐶 − (𝑎 − 1)𝐺, 𝑆′);

𝑠𝑞𝑟1
$
←SQR(𝜓, 𝑠′′, 𝑐′, 𝑆′);

𝑠𝑞𝑟2
$
←SQR(𝛽, 𝑠1, 𝐺, 𝑆

′)

.

Let 𝜋̂ = (𝐶̂, 𝐶̂′, 𝐶̂′′, 𝐶̂1
′ , 𝐶̂2

′ , 𝑅̂, 𝐸𝐿̂, 𝑆𝑄𝑅1̂, 𝑆𝑄𝑅2̂) be a randomly chosen proof in the set

of all valid proofs. The probability

Pr[𝜋 = 𝜋̂] = Pr [

𝑟, 𝑟′, 𝑟′′, 𝜔, 𝛼, 𝑟2 ∈ ℤ𝑞
∗ ;

𝐶 = 𝐶̂, 𝐶′ = 𝐶̂′, 𝐶′′ = 𝐶̂′′, 𝐶1
′ = 𝐶̂1

′ , 𝐶2
′ = 𝐶̂2

′ ,

𝑅 = 𝑅̂, 𝐸𝐿 = 𝐸𝐿̂, 𝑆𝑄𝑅1 = 𝑆𝑄𝑅1̂, 𝑆𝑄𝑅2 = 𝑆𝑄𝑅2̂

] =
1

(𝑞 − 1)6

and the probability

Pr[𝜋′ = 𝜋̂] = Pr [

𝑠, 𝑠′, 𝑠′′, 𝜓, 𝛽, 𝑠2 ∈ ℤ𝑞
∗ ;

𝑐 = 𝐶̂, 𝑐′ = 𝐶̂′, 𝑐′′ = 𝐶̂′′, 𝑐1
′ = 𝐶̂1

′ , 𝑐2
′ = 𝐶̂2

′ ,

𝑟 = 𝑅̂, 𝐸𝐿 = 𝑒𝑙̂, 𝑆𝑄𝑅1 = 𝑠𝑞𝑟1̂ , 𝑠𝑞𝑟2 = 𝑆𝑄𝑅2̂

] =
1

(𝑞 − 1)6

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

56

are equal, i.e., 𝜋 and 𝜋′ are indistinguishable. Therefore, Theorem 8 is proved. The

SDV-EC-ZKRP scheme satisfies the strong designated verifier property.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

57

5 Efficiency Analysis

In this chapter, we evaluate the efficiency of our scheme and compare our scheme

with other existing ZKRP schemes.

 In Table 3, we compare our scheme with some related ZKRP schemes [1][24][28].

The comparison focuses on the provable range, the execution time and the proof size.

The modular exponentiation is a type of exponentiation that performed over a modulus,

i.e.,

𝑦 = 𝑥𝑖 mod 𝑁.

In the schemes [1][24][28], since most of their steps are kind of the modular

exponentiation, we count the times of the modular exponentiation to represent the

execution time of these schemes; the execution time of our scheme is to count the times

of the point multiplication, i.e.,

𝑌 = 𝑖 ∙ 𝑋,

where 𝑋 and 𝑌 are the two points on an elliptic curve. In addition, we set 1024 bits

as the security parameter size to estimate the proof size produced by the schemes.

According to the analysis of the National Institute of Standards and Technology (NIST)

[4], since our scheme is based on the elliptic-curve cryptography (ECC), we set 160

bits as the security parameter size to estimate the proof size produced by the schemes

so that the security strength of our scheme can be the same as other schemes which are

based on integer-factorization cryptography (IFC).

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

58

Scheme Cryptography

Security

Parameter

Size (bit)

Provable

Range

Computation

Times

Proof

Size

(byte)

[1] IFC1 1024
Arbitrary:

[0,21024]
40 896

[24] IFC1 1024
Arbitrary:

[0,21024]
33 1280

[28] IFC1 1024
Arbitrary:

[0,21024]
30 2560

Our scheme ECC2 160
Arbitrary:

[0,2160]
30 400

Table 3: Comparison of Our ZKRP Scheme with Other Related Schemes
1 IFC: integer-factorization cryptography
2 ECC: elliptic-curve cryptography

It can be seen from Table 3 that the execution time of our scheme is the same as

the scheme proposed by Tsai et al. [28], but only a 160-bit security parameter size is

required to meet the same security strength. At this level of the security strength, the

proof produced by [28] is about 6.4 times different from the proof produced by our

scheme.

Besides, these four schemes have an arbitrary provable range: the prover can

determine the secret range by themselves but the range cannot be outside the security

parameter. Since our scheme is constructed with the elliptic-curve cryptography, the

number of points on a curve can be counted by the Schoof’s algorithm [26]. If the range

of the secret value that the prover wants to prove is over the number of elements, the

proof produced followed our scheme cannot convinces the verifier that the secret value

is in the specified range even if the proof can pass the verification. However, the length

of 160 bits is about 1.46 × 1048. Taking a 160-bit length as the range is quite sufficient

when using the ZKRP scheme in practice, such as the cryptocurrency transactions and

the application scenarios as described in Chapter 6.

More importantly, if the ZKRP schemes that are used in practice requires the higher

security strength, the security parameter size must be set at least 2048 bits or more for

the schemes [1][24][28], but only need to set a 224-bit security parameter size for our

scheme to meet the same level of the security strength, and the 224-bit length is about

2.7 × 1067 . In addition, at this level of the security strength, the size of the proof

produced by our scheme is about 560 bytes. The gap of the proof size can be quite wide:

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

59

it is about 9.14 times different from the scheme proposed by Tsai et al. [28].

Therefore, our ZKRP scheme has a shorter execution time, a smaller security

parameter, and a smaller proof size among the four schemes. By applying our scheme

to the cryptocurrency, the transaction cost can be reduced effectively.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

60

6 Application Scenarios

Our non-interactive EC-ZKRP scheme can be applied to not only the

cryptocurrency on the blockchain to hide the transaction amount, but also other

scenarios in practice. In this chapter, we describe some application scenarios, the

procedure of which is shown in Figure 4.

To produce the ZKRP proof, the prover starts by applying for the ZKRP proof

documents to the corresponding issuer. When applying, it is necessary to send the

documents that can prove one’s identity and the range of the secret value for producing

the proof. After the issuer confirms the identity, the issuer produces the ZKRP proof

document and sends it to the applicant. Then the prover sends the document to the

verifier to determine whether the verification is passed or not. By following this

procedure, the prover can convince the verifier that the secret value is in the specified

range without providing the exact secret value. We describe some practical examples

as below.

Scenario 1: Alice wants to apply to a company for a new job. The company

specifies that the language test score must reach a certain score. Alice knows that his

test score has reached the certain score, but she does not want to provide the exact test

score to the company. Therefore, Alice applies to the test center for the ZKRP proof

document of the score, and then the test center produced the document and sends to

Alice. As a result, instead of providing the exact test score to the company, Alice only

needs to send the ZKRP proof document so that the company can be convinced that her

test score has reached the certain score.

Scenario 2: Bob wants to donate blood. However, Bob wants to know whether his

physical condition is suitable for blood donation, so Bob starts by going to a health

facility to make a blood test report. If the health facility approves that Bob can donate

blood, then Bob can apply to the health facility for the ZKRP proof of the blood draw

report. Therefore, by sending the ZKRP proof of the blood draw report, Bob can directly

answer some important questions from the collecting agency instead of sending the

complete blood draw report.

Scenario 3: Cindy is a student whose family is a low-income family. She wants to

apply to her school for the tuition and miscellaneous fees exemption, so Cindy starts by

applying to the social welfare organization for the ZKRP proof document of the family

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

61

income. Then all students are required by the school to submit the document. Therefore,

the school cannot know the family income of all students, but it can still determine

which students meet the condition.

Figure 4: Schematic Diagram of ZKRP Application Scenarios

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

62

7 Conclusions

We propose the EC-ZKRP scheme. By applying the elliptic curve, our scheme has

a shorter execution time, a smaller key size and a smaller proof size at the same level

of the security strength compared to existing ZKRP schemes such that the transaction

cost can be reduced. In addition, by using the trapdoor commitment scheme [13] and

ECDH [5], we propose a designated verifier ZKRP scheme and a strong designated

verifier ZKRP scheme based on EC-ZKRP without adding any extra computation steps

during producing proofs. The designated verifier ZKRP scheme allows the only

designated verifier to be able to verify the proof, and the verifier cannot convince any

other third party of the verification result; the strong designated verifier ZKRP scheme

makes any third party cannot verify the proof. Besides, these ZKRP schemes can be

optional and flexible: we can choose a suitable scheme to produce a ZKRP proof

according to the confidentiality of the secret value. Furthermore, we argue the security

proofs of our schemes completely and rigorously so that our schemes can satisfy

necessary security properties, e.g., correctness, soundness, zero-knowledge, designated

verifier and strong designated verifier. Finally, we provide the efficiency analysis

compared to other existing ZKRP schemes and list some application scenarios that uses

ZKRP schemes. Our ZKRP schemes can be applied to not only the cryptocurrency on

the blockchain, but also other scenarios in practice. By applying ZKRP widely, our

privacy can be more protected.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

63

Reference

[1] F. Boudot. Efficient proofs that a committed number lies in an interval. In

International Conference on the Theory and Applications of Cryptographic

Techniques, pages 431–444. Springer, 2000.

[2] V. Buterin. Ethereum white paper. In GitHub repository, 2013.

[3] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:

Efficient range proofs for confidential transactions. Technical report, Cryptology

ePrint Archive, Report 2017/1066, 2017. https://eprint. iacr. org/2017/1066, 2017.

[4] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. Recommendation for key

management part 1: General (revision 3). In NIST Special Publication 800-57,

pages 1–147. July, 2012.

[5] E. Barker, D. Johnson, and M. Smid. Recommendation for Pair-Wise Key

Establishment Schemes Using Discrete Logarithm Cryptography. In Special

Publication 800-56A, National Institute of Standards and Technology,

Gaithersburg, MD, March, 2007.

[6] R. Chaabouni, H. Lipmaa, and B. Zhang. A non-interactive range proof with

constant communication. In Financial Cryptography and Data Security, A. D.

Keromytis, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, pages 179–199.

2012.

[7] P. Chaidos, and G. Couteau. Efficient designated-verifier non-interactive zero-

knowledge proofs of knowledge. In Annual International Conference on the

Theory and Applications of Cryptographic Techniques pages 193–221. Springer,

Cham, April, 2018.

[8] F. Christian and G. Johann. Efficient Implementation of Pedersen Commitments

Using Twisted Edwards Curves. In Mobile, Secure, and Programmable

Networking - Third International Conference, MSPN 2017, pages 1–17, 2017.

[9] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular

polynomial relations. In Annual International Cryptology Conference, pages 16–

30. Springer, 1997.

[10] P. Gallagher. Digital signature standard (DSS). In Federal Information Processing

Standards Publications, volume FIPS, 186, 2013.

[11] O. Goldreich, Y. Oren. Definitions and properties of zero-knowledge proof

systems. In J. Cryptology 7, pages 1–32, 1994.

[12] D. Hankerson, A. Menezes. Elliptic Curve Discrete Logarithm Problem. In van

Tilborg H.C.A., Jajodia S. (eds) Encyclopedia of Cryptography and Security, 2011.

[13] M. Jakobsson, K. Sako, R. Impagliazzo. Designated Verifier Proofs and their

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

64

Applications. In Eurocrypt’96, Springer LNCS Vol. 1070, pages 142–154, 1996.

[14] S. Katsumata, R. Nishimaki, S. Yamada, and T. Yamakawa. Designated

verifier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In

Annual International Conference on the Theory and Applications of Cryptographic

Techniques, pages 622–651. Springer, Cham, May, 2019.

[15] T. Koens, C. Ramaekers and C. van Wijk. Efficient Zero-Knowledge Range Proofs

in Ethereum. In ING media.

[16] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain

model of cryptography and privacy-preserving smart contracts. In 2016 IEEE

symposium on security and privacy (SP), pages 839–858, 2016.

[17] B. Libert, A. Passelègue, H. Wee, and D. Wu. New constructions of statistical

NIZKs: dual-mode DV-NIZKs and more. In Eurocrypt 2020-39th Annual

International Conference on the Theory and Applications of Cryptographic

Techniques. May, 2020.

[18] H. Lipmaa. On diophantine complexity and statistical zero-knowledge arguments.

In International Conference on the Theory and Application of Cryptology and

Information Security, pages 398–415, Springer, 2003.

[19] P. McCorry, S. Shahandashti, and F. Hao. A smart contract for boardroom voting

with maximum voter privacy. In International Conference on Financial

Cryptography and Data Security, pages 357–375. Springer, 2017.

[20] I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous

distributed e-cash from bitcoin. In 2013 IEEE Symposium on Security and Privacy,

pages 397–411, IEEE, May, 2013.

[21] E. Morais, T. Koens, C. Wijk, and A. Koren. A survey on zero knowledge range

proofs and applications. In Nature Switzerland AG 2019, Springer, 2019.

[22] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. In Decentralized

Business Review, 2008.

[23] T. Pedersen. Non-interactive and information-theoretic secure verifiable secret

sharing. In CRYPTO, volume 576 of Lecture Notes in Computer Science, pages

129–140, 1991.

[24] K. Peng and F. Bao. Batch range proof for practical small ranges. In International

Conference on Cryptology in Africa, pages 114–130, Springer, 2010.

[25] M. Qu. Sec 2: Recommended elliptic curve domain parameters. In Certicom Res.,

Mississauga, ON, Canada, Tech. Rep. SEC2-Ver-0.6, 1999.

[26] R. Schoof. Elliptic Curves over Finite Fields and the Computation of Square Roots

mod p. In Mathematics of Computation Vol. 44, No. 170, pages 483–494, April,

1985.

[27] N. Van Saberhagen. CryptoNote v 2.0, 2013.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

65

[28] Y. Tsai, R. Tso, Z. Liu, and K. Chen. An improved non-interactive zero-knowledge

range proof for decentralized applications. In 2019 IEEE International Conference

on Decentralized Applications and Infrastructures (DAPPCON), pages 129–134,

April 2019.

[29] Y. Wang and A. Kogan. Designing confidentiality-preserving blockchain-based

transaction processing systems. In International Journal of Accounting

Information Systems, vol. 30, pages 1–18, 2018.

[30] L. Xu, N. Shah, L. Chen, N. Diallo, Z. Gao, Y. Lu, and W. Shi. Enabling the sharing

economy: Privacy respecting contract based on public blockchain. In Proceedings

of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts, pages 15–

21, 2017.

	謝辭
	摘要
	Abstract
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Contributions
	1.4 Organization

	2 Preliminaries
	2.1 Notations
	2.2 Hardness Assumptions
	2.3 Elliptic-curve Pedersen Commitment Scheme
	2.4 Elliptic-curve Diffie–Hellman Key Exchange (ECDH)
	2.5 Trapdoor Commitment Scheme
	2.6 Elliptic-curve EL Proof
	2.6.1 Definitions and Security Models
	2.6.2 EC-EL Proof Protocol
	2.6.3 Security Descriptions
	2.6.3.1 Correctness of EC-EL Proof
	2.6.3.2 Soundness of EC-EL Proof
	2.6.3.3 Zero-knowledge of EC-EL Proof

	2.7 Elliptic-curve SQR Proof
	2.7.1 Definitions and Security Models
	2.7.2 EC-SQR Proof Protocol
	2.7.3 Security Descriptions
	2.7.3.1 Correctness of EC-SQR Proof
	2.7.3.2 Soundness of EC-SQR Proof

	2.8 Zero-Knowledge Proof with Commitment Secret (ZKPCS)

	3 Non-Interactive EC-ZKRP Scheme
	3.1 Definitions and Security Models
	3.2 Non-Interactive EC-ZKRP Protocol
	3.3 Security Descriptions
	3.3.1 Correctness
	3.3.2 Soundness
	3.3.3 Zero-knowledge

	4 Non-Interactive Designated Verifier EC-ZKRP Protocol
	4.1 Designated Verifier EC-ZKRP Scheme
	4.1.1 Definitions and Security Models
	4.1.2 Designated Verifier EC-ZKRP Protocol
	4.1.3 Security Description: Designated Verifier

	4.2 Strong Designated Verifier EC-ZKRP Scheme
	4.2.1 Definitions and Security Models
	4.2.2 Strong Designated Verifier EC-ZKRP Protocol
	4.2.3 Security Description: Strong Designated Verifier

	5 Efficiency Analysis
	6 Application Scenarios
	7 Conclusions
	Reference

