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摘要 

 

零知識值域證明（zero-knowledge range proof，ZKRP）是一種特殊的零知識

證明（zero-knowledge proof，ZKP），此種證明可以使得證明者（prover）說服驗

證者（verifier），一個特定的秘密數值介於某一個範圍內，但不會洩漏該秘密數

值，即驗證者無法得知此秘密數值實際之大小。本篇提出了一種有效率的非交互

式零知識值域證明方案。透過橢圓曲線的應用，本篇方案在相同等級的安全強度

下具有較短的執行時間、較小的金鑰長度和較小的證明大小，若將本篇 ZKRP方

案應用至區塊鏈，可降低區塊鏈上加密貨幣的交易成本。此外，本篇基於原先的

零知識值域證明方案提出了一種指定驗證者（designated verifier）的零知識值域

證明方案和另一種強指定驗證者（strong designated verifier）的零知識值域證明方

案，此兩種方案在產生證明的過程中不需額外增加任何的計算步驟。其中，指定

驗證者的方案僅被指定的驗證者能夠驗證此種方案產生的證明，且該驗證者無法

說服任何第三方驗證之結果；而強指定驗證者的方案則是可以令任何第三方皆無

法驗證此種方案產生的證明。上述的零知識值域證明方案皆可靈活運用，換言之，

可以根據秘密值的機密性來選擇合適的方案。另外，本篇提出的方案協定亦通過

嚴謹且完整的安全性證明，不失其應有的安全性。 

 

關鍵字：區塊鏈、零知識值域證明、橢圓曲線、承諾方案、指定驗證者證明。 
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Abstract 

 

Zero-knowledge range proof (ZKRP) is a kind of particular zero-knowledge proof 

which allows a prover to convince a verifier that a secret value is in a specified range 

without revealing the actual value. In this thesis, we propose an efficient non-interactive 

ZKRP scheme based on elliptic curve. By applying the elliptic curve, our scheme has a 

shorter execution time, a smaller key size and a smaller proof size at the same level of 

the security strength compared to existing ZKRP schemes. If we apply our ZKRP 

scheme to the blockchain, the transaction cost of the cryptocurrency on the blockchain 

can be reduced. In addition, we propose a designated verifier ZKRP scheme and a 

strong designated verifier ZKRP scheme based on original ZKRP scheme without 

adding any extra computation steps during producing proofs. The designated verifier 

ZKRP scheme allows the only designated verifier to be able to verify the proof, and the 

verifier cannot convince any other third party of the verification result; the strong 

designated verifier ZKRP scheme makes any third party cannot verify the proof. 

Besides, these ZKRP schemes can be optional and flexible: we can choose a suitable 

scheme to produce a ZKRP proof according to the confidentiality of the secret value. 

Furthermore, we argue the security proofs of our schemes completely and rigorously so 

that our schemes can satisfy necessary security properties. 

 

Keywords: Blockchain, Zero-knowledge range proof, Elliptic curve, Commitment 

scheme, Designated verifier proof 
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1 Introduction 

 

1.1 Background 

 

Blockchain was created by Satoshi Nakamoto [22] in 2008 to serve as the public 

ledger of the cryptocurrency, Bitcoin, which is the first decentralized cryptocurrency 

that solves the double-spending problem without a trusted authority or central server. 

Since the release of Bitcoin, many other decentralized cryptocurrencies have also been 

created, such as Ether [2], Monero [27], and Zerocoin [20].  

 

Zero-knowledge proof (ZKP) [11] is a method by which a user can prove to other 

people that he/she knows a secret without revealing any information of the secret. In 

cryptocurrency, ZKP can provide users with a higher level of privacy during 

transactions. For example, users on blockchain can use ZKP to verify the transactions 

but keep the identities of sender and receiver secret [29][30]; users use ZKP to enforce 

the correctness of the smart contract execution [16][19]. 

 

Zero-knowledge range proof (ZKRP) is a kind of particular ZKP, which allows a 

prover to convince a verifier that a secret value is in a specified range without revealing 

the actual value. For example, a buyer can prove that something is affordable for 

him/her without revealing the balance amount [14]; a payer can prove that a payment 

amount is in the limited range without revealing the exact amount [14]; a user can prove 

that he/she is exactly a country without revealing the exact location [14]. 

 

Many ZKRP schemes have been proposed in the literatures: the first ZKRP scheme 

was proposed by Boudot [1] in 2001, which is based on the Fujisaki-Okamoto 

commitment scheme [9] and is constructed with two proofs: the proof that two 

commitments hide the same secret (EL proof) and the proof that a committed number 

is a square (SQR proof). The EL proof can convince other people that two commitment 

hide the same secret value without revealing the secret value, while SQR proof can 

convince other people that a commitment hides a square number 𝑦 = 𝑥2, where 𝑥 ∈

ℤ, without revealing 𝑥 or 𝑦. Pang et al. [24] applied the batch proof and verification 

to construct a more efficient ZKRP scheme in 2010. Chaabouni et al. [6] replaced the 

random oracle model with a common reference string (CRS) model to construct a new 

non-interactive ZKRP scheme in 2012. Bünz et al. [3] proposed a non-interactive ZKRP 

scheme without a trusted setup in 2017: the Bulletproofs. Koens et al. [14] improved 
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the scheme proposed by Peng et al. [24] to construct a non-interactive ZKRP scheme 

and applied it to the smart contract in Ethereum in 2017. Tsai et al. [28] improved the 

scheme proposed by Boudot [1] and the scheme proposed by Pang et al. [24] to 

construct a new non-interactive ZKRP scheme in 2019. 

 

1.2 Motivation 

 

We analyze the scheme proposed by Boudot [1], the scheme proposed by Pang et 

al. [24], and the scheme proposed by Tsai et al. [28]. Under 1024-bit security parameter 

size, the proof sizes of them are approximately 896 bytes, 1280 bytes, and 2560 bytes 

respectively. If we use these schemes in practice but require the higher security strength, 

the security parameter size must be set at least 2048 bits or more, as a result, the proof 

sizes produced by these schemes also increase.  

 

At the same level of the security strength, elliptic-curve cryptography (ECC) has 

a smaller key size compared to integer-factorization cryptography (IFC) according to 

NIST [4], e.g., to meet the 112-bit security strength, IFC has to be set 2048-bit key size 

while ECC only needs to be set 224 bits. Therefore, to reduce the proof size or even 

shorten the execution time, we apply the elliptic curve to the ZKRP scheme proposed 

by Tasi et al. [28].  

 

In addition, we consider that the prover may not want to let everyone except the 

designated verifier knows the range of the secret value. That is, the proof produced by 

the prover cannot convince any other third parties. Thus, we require a designated 

verifier ZKRP scheme. Even if the designated verifier reveals the important information 

of the proof, any other third party cannot trust the verification result. 

 

1.3 Contributions 

 

As mentioned in previous section, ECC has a smaller key size compared to IFC 

according to NIST [4]. To reduce the proof size or even shorten the execution time, we 

apply the elliptic curve to the ZKRP scheme proposed by Tasi et al. [28] and construct 

a more efficient non-interactive ZKRP scheme, the elliptic-curve ZKRP (EC-ZKRP). 

To apply the elliptic curve, we replace the Fujisaki-Okamoto commitment scheme [9] 

with the Pedersen commitment scheme [23] so that our ZKRP scheme has a shorter 

execution time, a smaller key size and a smaller proof size at the same level of the 
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security strength compared to existing ZKRP schemes, leading to the transaction cost 

can be reduced by applying our scheme in cryptocurrency.  

 

In addition, if the prover does not want to let everyone except the designated 

verifier knows the range of the secret value, it means that the proof produced by the 

prover cannot convince any other third parties. Therefore, we propose the designated 

verifier ZKRP and the strong designated verifier ZKRP by applying the trapdoor 

commitment scheme [13] and the elliptic-curve Diffie-Hellman key exchange (ECDH) 

[5]. The trapdoor commitment scheme is computed through the public key of the 

designated verifier. Although any other third parties can open the commitment by 

receiving the public key of the designated verifier, they could cannot trust the 

commitment because they could think that the prover and verifier cheat together. 

Moreover, if the trapdoor commitment is computed through the shared key produced 

by ECDH, any other third party cannot open the commitment. As a result, by using the 

trapdoor commitment scheme [13] and ECDH [5], we propose a designated verifier 

ZKRP scheme and a strong designated verifier ZKRP scheme based on EC-ZKRP 

without adding any extra computation steps during producing proofs. The designated 

verifier ZKRP scheme allows the only designated verifier to be able to verify the proof, 

and the verifier cannot convince any other third party of the verification result; the 

strong designated verifier ZKRP scheme makes any third party cannot verify the proof. 

Besides, these ZKRP schemes can be optional and flexible: we can choose a suitable 

scheme to produce a ZKRP proof according to the confidentiality of the secret value. 

Furthermore, we argue the security proofs of our schemes completely and rigorously so 

that our schemes can satisfy necessary security properties, e.g., correctness, soundness, 

zero-knowledge, designated verifier and strong designated verifier. Finally, we provide 

the efficiency analysis compared to other existing ZKRP schemes and list some 

application scenarios that uses ZKRP schemes. 

 

1.4 Organization 

 

We start by describing some preliminaries that are used in our schemes in Chapter 

2; we introduce the definitions, protocol, and security properties of the non-interactive 

EC-ZKRP scheme in Chapter 3; we describe the definitions, protocol, and security 

properties of our designated verifier ZKRP scheme and strong designated verifier 

ZKRP scheme based on EC-ZKRP in Chapter 4; in Chapter 5, we evaluate the 

efficiency of our ZKRP scheme and make a comparison of our ZKRP scheme and other 

existing ZKRP schemes; we describe some ZKRP application scenarios in Chapter 6; 
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finally, we draw a conclusion in Chapter 7.  
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2 Preliminaries 

 

In this chapter, we introduce some notations and particular proofs that are used in 

our ZKRP schemes. 

 

2.1 Notations 

 

The notations are shown in Table 1. 

 

Notation Description 

ℕ the set of natural numbers 

ℤ the set of integers 

𝑝 a safe prime, 𝑝 = 2𝑝′ + 1, where 𝑝′ is also a prime 

𝐸(𝔽𝑝) an elliptic curve over finite field 𝔽𝑝 

𝑞 the order of the points on 𝐸(𝔽𝑝) 

ℤ𝑞
∗  the set of integers less than 𝑞 

𝐺 a generator point on 𝐸(𝔽𝑝) 

𝐻 another point on 𝐸(𝔽𝑝), 𝐻 = 𝑠 ∙ 𝐺, where 𝑠 ∈ ℤ𝑞
∗  

[𝑎, 𝑏] the range between 𝑎 and 𝑏, where 𝑎 < 𝑏, 𝑎, 𝑏 ∈ ℤ𝑞
∗  

𝑠𝑡𝑟1||𝑠𝑡𝑟2 concatenate two strings 𝑠𝑡𝑟1 and 𝑠𝑡𝑟2 

𝑋
$
←𝑌 randomly choose the value 𝑋 from the space 𝑌 

𝐻𝑎𝑠ℎ(𝑠𝑡𝑟) input a string 𝑠𝑡𝑟 and output its hash value 

𝜆 the security parameter 

#𝐸(𝔽𝑝) the cardinality of 𝐸(𝔽𝑝) 

Table 1: Notations and Descriptions 

 

The equation of elliptic curve over finite field that is used in our schemes is  

 

𝐸(𝔽𝑝)：𝑦
2 = 𝑥3 + 𝐴𝑥 + 𝐵 (mod 𝑝). 

 

Here 𝑝 is a safe prime, which means that 𝑝 = 2𝑝′ + 1 and 𝑝′ is also a prime, and 

the discriminant  

 

Δ = 4𝐴3 + 27𝐵2 (mod 𝑝)  

 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

6 
 

must not equal to 0. In addition, the order 𝑞  is a prime factor of the cardinality 

#𝐸(𝔽𝑝), which is the number of points on the curve 𝐸(𝔽𝑝). Many elliptic curves used 

in practice have been defined in the literatures, e.g., Secp256k1 [25], NIST224p [10], 

NIST256p [10]. 

 

2.2 Hardness Assumptions 

 

In this section, we describe some definitions of hardness assumptions in detail. 

 

Definition 1 (Elliptic-curve discrete logarithm problem). Let an elliptic curve 𝐸(𝔽𝑝) 

over finite field 𝔽𝑝, a generator point 𝐺 and another point 𝐻 which are on the curve 

𝐸(𝔽𝑝)  have the order 𝑞 . There does not exist any algorithm in probabilistic-

polynomial time to find 𝑠 ∈ ℤ𝑞
∗  such that 𝐻 = 𝑠 ∙ 𝐺. 

 

Definition 2 (Elliptic-curve Diffie-Hellman assumption). Let an elliptic curve 𝐸(𝔽𝑝) 

over finite field 𝔽𝑝, and a generator point 𝐺 which is on the curve 𝐸(𝔽𝑝) has the 

order 𝑞 . There does not exist any algorithm in probabilistic-polynomial time to 

determine whether 𝑐𝐺 = 𝑎𝑏𝐺  by given (𝐺, 𝑎𝐺, 𝑏𝐺, 𝑐𝐺)  with non-negligible 

probability, where 𝑎, 𝑏, 𝑐 ∈ ℤ𝑞
∗ . 

 

2.3 Elliptic-curve Pedersen Commitment Scheme 

 

A commitment scheme allows a person to commit to a secret value while keeping 

the value hidden, and the person can reveal the committed value later. Before the person 

reveal the secret value, no one can derive the secret value from the commitment (the 

hiding property). On the other hand, and the person cannot change the committed value 

(the binding property).  

 

Pedersen [23] proposed a commitment scheme that based on the discrete logarithm 

problem in 1991. In our schemes, we use the elliptic-curve Pedersen commitment 

scheme (EC-Pedersen commitment scheme) [8][21], which also satisfies the hiding 

property and the binding property through the elliptic-curve discrete logarithm problem 

[12].  

 

Definition 3 (Commitment scheme). A commitment scheme is composed by three 

functions (𝑆𝑒𝑡𝑢𝑝, 𝐶𝑜𝑚𝑚𝑖𝑡, 𝑂𝑝𝑒𝑛). 
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(1) 𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆) : by inputting a secure parameter 𝜆 , the polynomial-time 

function 𝑆𝑒𝑡𝑢𝑝 outputs the public parameters 𝑝𝑝. 

(2) 𝐶
$
←𝐶𝑜𝑚(𝑚, 𝑟): by inputting the secret value 𝑚 and a random number 𝑟, the 

polynomial-time function 𝐶𝑜𝑚 outputs the commitment 𝐶. 

(3) 𝑏 ← 𝑂𝑝𝑒𝑛(𝐶,𝑚, 𝑟): by inputting the commitment 𝐶, the secret value 𝑚 and 

the random number 𝑟, the polynomial-time function 𝑂𝑝𝑒𝑛 outputs a result 

𝑏 ∈ {0,1}. The commitment 𝐶 is accepted if 𝑏 is equal to 1. Otherwise, it is 

rejected. 

 

Below, we describe the protocol of EC-Pedersen commitment scheme in detail. 

(1) 𝑆𝑒𝑡𝑢𝑝:  first, choose a safe prime 𝑝 . The elliptic curve 𝐸  over 𝔽𝑝  that is 

defined by an equation: 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 (mod 𝑝) , where 𝐴, 𝐵 ∈ 𝔽𝑝  (its 

discriminant 4𝐴3 + 27𝐵2  ≢ 0  (mod 𝑝) ). Secondly, randomly choose a 

generator point 𝐺 on 𝐸(𝔽𝑝), and then randomly choose 𝑠 ∈ ℤ𝑞
∗  to compute 

the point 𝐻 = 𝑠 ∙ 𝐺. The points 𝐺 and 𝐻 have the order 𝑞. Lastly, publish 

the public parameters  

 

𝑝𝑝 = {𝑝, 𝐴, 𝐵, 𝑞, 𝐺, 𝐻}. 

 

(2) 𝐶𝑜𝑚𝑚𝑖𝑡: To commit to the secret value 𝑚 ∈ ℤ𝑞
∗ , the sender randomly chooses 

𝑟 ∈ ℤ𝑞
∗  to compute  

 

𝐶 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝐻  

 

and publishes the commitment 𝐶. 

(3) 𝑂𝑝𝑒𝑛: To open the commitment 𝐶, the sender reveals 𝑚 and 𝑟. The receiver 

verifies  

 

𝐶 =
?
𝑚 ∙ 𝐺 + 𝑟 ∙ 𝐻  

 

and accepts the commitment if and only if 𝐶 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝐻. Otherwise, the 

commitment is rejected. 

 

In what follows, we describe the definitions of hiding property and binding property 

in detail. 
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Definition 4 (Hiding property). There does not exist any algorithm in probabilistic-

polynomial time to compute the committed value through a commitment. More 

precisely, the probability 

 

|
|
Pr

[
 
 
 
 

𝑏′ = 𝑏 ∶  

𝑝𝑝 ← 𝑆𝑒𝑡𝑢𝑝(𝜆);
𝑚0 ≠ 𝑚1;

𝑏 ← {0,1};
𝐶𝑏 ← 𝐶𝑜𝑚(𝑚𝑏, 𝑟);

𝑏′ ← 𝒜(𝐶𝑏) ]
 
 
 
 

−
1

2|
|
≤ 𝑛𝑒𝑔𝑙(𝜆) 

 

for all probabilistic-polynomial time adversaries 𝒜 and security parameter 𝜆. If the 

probability of 𝒜 guessing 𝑏 is exactly equal to 
1

2
, the commitment scheme satisfies 

perfect hiding. 

 

Definition 5 (Binding property). There does not exist any algorithm in probabilistic-

polynomial time to find 𝑚1, 𝑚2, 𝑟1, 𝑟2 ∈ ℤ𝑞
∗   such that 𝐶 = 𝑚1 ∙ 𝐺 + 𝑟1 ∙ 𝐻 = 𝑚2 ∙

𝐺 + 𝑟2 ∙ 𝐻, where (𝑚1, 𝑟1) ≠ (𝑚2, 𝑟2). More precisely, the probability 

 

Pr [
𝐶𝑜𝑚(𝑚1, 𝑟1) = 𝐶𝑜𝑚(𝑚2, 𝑟2);
(𝑚1, 𝑚2, 𝑟1, 𝑟2) ← 𝒜(𝑝𝑝)

∶  
𝑝𝑝 ← 𝑆𝑒𝑡𝑢𝑝(𝜆);

𝑚1 ≠ 𝑚2
] ≤ 𝑛𝑒𝑔𝑙(𝜆) 

 

for all probabilistic-polynomial time adversaries 𝒜 and security parameter 𝜆. If the 

probability of 𝒜 finding 𝑚1, 𝑚2, 𝑟1, 𝑟2 is exactly equal to 0, the commitment scheme 

satisfies perfect binding. 

 

2.4 Elliptic-curve Diffie–Hellman Key Exchange (ECDH) 

 

An elliptic-curve Diffie–Hellman (ECDH) [5] allows two parties to create a shared 

key over a public channel. It is a variant of the Diffie–Hellman protocol by applying 

the elliptic-curve computation. In our scheme, we use the shared key that created 

followed ECDH to fulfill a strong designated verifier ZKRP scheme.  

 

We describe how a shared key is created by the following example. Assume that 

Alice and Bob want to create a shared key.  

(1) Alice and Bob agree the curve 𝐸(𝔽𝑝)：𝑦
2 = 𝑥3 + 𝐴𝑥 + 𝐵 (mod 𝑝) , the 
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discriminant of which 4𝐴3 + 27𝐵2  ≢ 0 (mod 𝑝). The public parameter is 

 

𝑝𝑝 = {𝑝, 𝐴, 𝐵, 𝑞, 𝐺}, 

 

where 𝐺 is a generator point on 𝐸(𝔽𝑝), which has the order 𝑞. 

(2) Alice and Bob randomly choose their private key 𝑋𝐴 ∈ ℤ𝑞
∗  and 𝑋𝐵 ∈ ℤ𝑞

∗  and 

compute their public key 𝑌𝐴 and  𝑌𝐵. 

 

𝑌𝐴 = 𝑋𝐴 ∙ 𝐺, 

𝑌𝐵 = 𝑋𝐵 ∙ 𝐺. 

 

Therefore, Alice’s key pair is (𝑋𝐴, 𝑌𝐴) and Bob’s key pair is (𝑋𝐵, 𝑌𝐵). They 

send their public key to each other. 

(3) Both Alice and Bob can get the shared key 𝑆 by computing  

 

𝑆 = 𝑋𝐴 ∙ 𝑌𝐵 = 𝑌𝐴 ∙ 𝑋𝐵 = 𝑋𝐴 ∙ 𝑋𝐵 ∙ 𝐺. 

 

There does not exist any adversary that can compute Alice’s or Bob’s private key 

through their public key, unless the adversary can solve the elliptic-curve discrete 

logarithm problem. In addition, there does not exist any adversary that can compute the 

shared key, unless the adversary can solve the elliptic-curve Diffie–Hellman problem. 

 

2.5 Trapdoor Commitment Scheme 

 

A trapdoor commitment scheme is proposed by Jakobsson et al. [13] in 1996, 

which is based on the Pedersen commitment scheme [23]. In our scheme, we use the 

EC-trapdoor Pedersen commitment scheme to fulfill the designated verifier ZKRP 

scheme. The difference between the original Pedersen commitment and trapdoor 

commitment is that the trapdoor commitment is computed through a user’s public key. 

For example, Alice commits a commitment through Bob’s public key. Since Bob knows 

his private key, the commitment cannot be trusted by everyone except Alice and Bob. 

We decribe the definition and the protocol of the trapdoor commitment and expain the 

reason why the commitment cannot be trusted by any third party in detail below. 

 

Definition 6 (Trapdoor commitment scheme). A trapdoor commitment scheme is 

composed by three functions (𝑆𝑒𝑡𝑢𝑝, 𝐶𝑜𝑚𝑚𝑖𝑡, 𝑂𝑝𝑒𝑛). 

(1) 𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆) : by inputting a secure parameter 𝜆 , the polynomial-time 
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function 𝑆𝑒𝑡𝑢𝑝 outputs the public parameters 𝑝𝑝. 

(2) 𝐶
$
←𝐶𝑜𝑚(𝑚, 𝑟, 𝑝𝑘): by inputting the secret value 𝑚, a random number 𝑟, and 

a public key 𝑝𝑘 , the polynomial-time function 𝐶𝑜𝑚  outputs the trapdoor 

commitment 𝐶. 

(3) 𝑏 ← 𝑂𝑝𝑒𝑛(𝐶,𝑚, 𝑟, 𝑝𝑘): by inputting the trapdoor commitment 𝐶, the secret 

value 𝑚, the random number 𝑟, and the public key 𝑝𝑘, the polynomial-time 

function 𝑂𝑝𝑒𝑛 outputs a result 𝑏 ∈ {0,1}. The commitment 𝐶 is accepted if 

𝑏 is equal to 1. Otherwise, it is rejected. 

 

We describe the protocol of the EC-trapdoor Pedersen commitment scheme by the 

following example. 

(1) Alice and Bob agree the curve 𝐸(𝔽𝑝)：𝑦
2 = 𝑥3 + 𝐴𝑥 + 𝐵 (mod 𝑝) , the 

discriminant of which 4𝐴3 + 27𝐵2  ≢ 0 (mod 𝑝). The public parameter is 

 

𝑝𝑝 = {𝑝, 𝐴, 𝐵, 𝑞, 𝐺}, 

 

where 𝐺 is a generator point on 𝐸(𝔽𝑝), which has the order 𝑞. After that, 

Alice and Bob randomly choose their private key 𝑋𝐴 ∈ ℤ𝑞
∗  and 𝑋𝐵 ∈ ℤ𝑞

∗  and 

compute their public key 𝑌𝐴 and  𝑌𝐵. 

 

𝑌𝐴 = 𝑋𝐴 ∙ 𝐺, 

𝑌𝐵 = 𝑋𝐵 ∙ 𝐺. 

 

Therefore, Alice’s key pair is (𝑋𝐴, 𝑌𝐴) and Bob’s key pair is (𝑋𝐵, 𝑌𝐵). Then 

they publish their public keys. 

(2) Suppose that Alice wants to commit to the secret value 𝑚 ∈ ℤ𝑞
∗  . Alice 

randomly chooses 𝑟 ∈ ℤ𝑞
∗  and computes 

 

𝐶𝑜𝑚(𝑚, 𝑟): 𝐶 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝑌𝐵  

 

by using Bob’s public key 𝑌𝐵. After that, Alice publishes the commitment 𝐶. 

(3) To open the commitment 𝐶, Alice reveals (𝑚, 𝑟). Bob verifies  

 

𝐶 =
?
𝑚 ∙ 𝐺 + 𝑟 ∙ 𝑌𝐵  

 

and accepts the commitment if and only if 𝐶 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝑌𝐵. 
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Since Bob knows his secret key 𝑋𝐵, which is the relation of 𝐺 and 𝑌𝐵, i.e., the 

verifier can find 𝑚1, 𝑚2, 𝑟1, 𝑟1 ∈ ℤ𝑞
∗  easily such that  

 

𝐶 = 𝑚1 ∙ 𝐺 + 𝑟1 ∙ 𝑌𝐵 = 𝑚2 ∙ 𝐺 + 𝑟2 ∙ 𝑌𝐵. 

 

For any other third parties, the commitment does not satisfy the binding property. 

Therefore, they could think the prover and the designated verifier cheat together and 

cannot trust the commitment. 

 

2.6 Elliptic-curve EL Proof 

 

The EL proof was proposed by Boudot [1] in 2001. For short, we follow Tsai et al. 

[28] and call it the EL proof. This proof is a kind of zero-knowledge proof such that the 

verifier can verify that two commitments hide the same value without leaking the actual 

committed values of the two commitments. Since we use the elliptic-curve Pedersen 

commitment scheme as described in Section 2.3, we also use the elliptic-curve EL proof 

(EC-EL proof) in our schemes. 

 

2.6.1 Definitions and Security Models 

 

Definition 7 (EL proof). EL proof is composed by three functions (𝑆𝑒𝑡𝑢𝑝, EL, vEL). 

(1) 𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆) : by inputting a secure parameter 𝜆 , the polynomial-time 

function 𝑆𝑒𝑡𝑢𝑝 outputs the public parameters 𝑝𝑝. 

(2) 𝐸𝐿
$
←EL(𝑝𝑝, 𝐶1, 𝐶2) : by inputting the public parameters 𝑝𝑝  and two 

commitments 𝐶1, 𝐶2, the polynomial-time function EL outputs the proof 𝐸𝐿. 

(3) 𝑏 ← vEL(𝑝𝑝, 𝐸𝐿): by inputting the public parameters 𝑝𝑝 and the proof 𝐸𝐿, 

the polynomial-time function vEL outputs a result 𝑏 ∈ {0,1}. The proof 𝐸𝐿 

is accepted if 𝑏 is equal to 1, which means that two commitments 𝐶1 and 𝐶2 

hide the same value. Otherwise, it is rejected. 

 

The EL proof satisfies the correctness property: if the proof produced by two 

commitments which hide the same value, the proof must pass the verification. 

Therefore, the verifier can confirm that the two commitments hide the same value. 
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Definition 8 (Correctness of EL proof). If the two commitments 𝐶1 and 𝐶2 hide the 

same value 𝑚  and the scheme EL= (𝑆𝑒𝑡𝑢𝑝, EL, vEL)  satisfies the correctness 

property, the probability  

 

|
|
Pr

[
 
 
 
 

vEL(𝑝𝑝, 𝐸𝐿) = 1 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝐶1 ← 𝐶𝑜𝑚(𝑚, 𝑟1);

𝐶2 ← 𝐶𝑜𝑚(𝑚, 𝑟2);

𝐸𝐿
$
←EL(𝑝𝑝, 𝐶1, 𝐶2)]

 
 
 
 

− 1
|
|
≤ 𝑛𝑒𝑔𝑙(𝜆) 

 

for all security parameter 𝜆. 

 

The EL proof satisfies the soundness property: if the proof produced by two 

commitments hide different value, the proof cannot pass the verification. In other words, 

if the proof can pass the verification, the two commitment must hide the same value. 

 

Definition 9 (Soundness of EL proof). If the two commitments 𝐶1  and 𝐶2  hide 

different value 𝑚1, 𝑚2 and the scheme EL= (𝑆𝑒𝑡𝑢𝑝, EL, vEL) satisfies the soundness 

property, the probability  

 

Pr

[
 
 
 
 
 

vEL(𝑝𝑝, 𝐸𝐿) = 1 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);
𝑚1 ≠ 𝑚2;

𝐶1 ← 𝐶𝑜𝑚(𝑚1, 𝑟1);

𝐶2 ← 𝐶𝑜𝑚(𝑚2, 𝑟2);

𝐸𝐿
$
←EL(𝑝𝑝, 𝐶1, 𝐶2)]

 
 
 
 
 

≤ 𝑛𝑒𝑔𝑙(𝜆) 

 

for all security parameter 𝜆. 

 

The EL proof satisfies the zero-knowledge property: the verifier can only confirm 

whether the two commitments hide the same value, but cannot know the exact 

committed value through the EL proof produced by the prover. More precisely, there 

does not exist any algorithm in probabilistic-polynomial time that can distinguish the 

real proof from the ideal proof produced by a simulator, which does not contain any 

information about the committed values. 

 

Definition 10 (Zero-knowledge of EL proof). Given a polynomial-time simulator ℰℒ𝒮 

that can produce a proof without inputting the secret 𝑚 . If the scheme EL=

(𝑆𝑒𝑡𝑢𝑝, EL, vEL) satisfies the zero-knowledge property, the probability  
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|

|

Pr

[
 
 
 
 
 
 

𝑏′ = 𝑏 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝐸𝐿1
$
←EL(𝑝𝑝, 𝐶1, 𝐶2);

𝐸𝐿2
$
←ℰℒ𝒮(𝑝𝑝);

𝑏 = {0,1};
𝑏′ ← 𝒜(𝑝𝑝, 𝐸𝐿𝑏) ]

 
 
 
 
 
 

−
1

2
|

|

≤ 𝑛𝑒𝑔𝑙(𝜆) 

 

for all probabilistic-polynomial time adversaries 𝒜 and security parameter 𝜆. 

 

2.6.2 EC-EL Proof Protocol 

 

In the following, we describe the protocol of the EC-EL proof in detail: the prover 

knows the secret value 𝑚 ∈ ℤ𝑞
∗  and two commitments  

 

𝐴 = 𝑚 ∙ 𝐺1 + 𝑠 ∙ 𝐻1, 

𝐵 = 𝑚 ∙ 𝐺2 + 𝑟 ∙ 𝐻2, 

 

computed by two sets of public parameters (𝐺1, 𝐻1) and (𝐺2, 𝐻2), where 𝐺1, 𝐺2 are 

two generator points on 𝐸(𝔽𝑝)  and 𝐻1, 𝐻2  are two points on 𝐸(𝔽𝑝) . The two 

commitments 𝐴 and 𝐵 hide the same secret value 𝑚.  

 

To produce the EL proof for 𝐴 and 𝐵, the prover runs the EL proof function:  

 

𝐸𝐿
$
← EL(𝑚, 𝑠, 𝑟, 𝐺1, 𝐻1, 𝐺2, 𝐻2). 

 

(1) The prover randomly chooses 𝜇, 𝑣1, 𝑣2 ∈ ℤ𝑞
∗  and computes 

 

𝐶1 = 𝜇 ∙ 𝐺1 + 𝑣1 ∙ 𝐻1, 

𝐶2 = 𝜇 ∙ 𝐺2 + 𝑣2 ∙ 𝐻2. 

 

(2) The prover computes ℎ = 𝐻𝑎𝑠ℎ(𝐶1||𝐶2). 

(3) The prover computes  

 

𝑥 = 𝜇 + ℎ𝑚, 

𝑥1 = 𝑣1 + ℎ𝑠, 

𝑥2 = 𝑣2 + ℎ𝑟. 
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(4) Finally, the prover produces the EL proof 

 

𝐸𝐿 = (ℎ, 𝑥, 𝑥1, 𝑥2). 

 

To verify the EL proof, the verifier runs the EL verification function: 

 

vEL(𝐸𝐿, 𝐺1, 𝐻1, 𝐺2, 𝐻2, 𝐴, 𝐵). 

 

(1) The verifier computes  

 

𝐶1
′ = 𝑥 ∙ 𝐺1 + 𝑥1 ∙ 𝐻1 + (−ℎ) ∙ 𝐴, 

𝐶2
′ = 𝑥 ∙ 𝐺2 + 𝑥2 ∙ 𝐻2 + (−ℎ) ∙ 𝐵. 

 

(2) The verifier can be convinced that the two commitments 𝐴 and 𝐵 hide the 

same value if and only if  

 

ℎ = 𝐻𝑎𝑠ℎ(𝐶1
′||𝐶2

′). 

 

2.6.3 Security Descriptions 

 

In this section, we describe the security properties of the EC-EL proof: correctness, 

soundness, zero-knowledge. 

 

2.6.3.1 Correctness of EC-EL Proof 

 

To verify the EC-EL proof, the verifier computes 

 

𝐶1
′ = 𝑥 ∙ 𝐺1 + 𝑥1 ∙ 𝐻1 + (−ℎ) ∙ 𝐴, 

𝐶2
′ = 𝑥 ∙ 𝐺2 + 𝑥2 ∙ 𝐻2 + (−ℎ) ∙ 𝐵. 

 

In the detail, if the prover is honest and follows the EC-EL proof to produce 𝐸𝐿 =

(ℎ, 𝑥, 𝑥1, 𝑥2), the verifier can expand 𝐶1
′ and 𝐶2

′ : 

 

𝐶1
′ = 𝑥 ∙ 𝐺1 + 𝑥1 ∙ 𝐻1 + (−ℎ) ∙ 𝐴 

= (𝜇 + ℎ𝑚) ∙ 𝐺1 + (𝑣1 + ℎ𝑠) ∙ 𝐻1 + (−ℎ) ∙ (𝑚 ∙ 𝐺1 + 𝑠 ∙ 𝐻1) 

= 𝜇 ∙ 𝐺1 + ℎ𝑚 ∙ 𝐺1 + 𝑣1 ∙ 𝐻1 + ℎ𝑠 ∙ 𝐻1 − ℎ𝑚 ∙ 𝐺1 − ℎ𝑠 ∙ 𝐻1 

= 𝜇 ∙ 𝐺1 + 𝑣1 ∙ 𝐻1 
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= 𝐶1, 

𝐶2
′ = 𝑥 ∙ 𝐺2 + 𝑥2 ∙ 𝐻2 + (−ℎ) ∙ 𝐵 

= (𝜇 + ℎ𝑚) ∙ 𝐺2 + (𝑣2 + ℎ𝑟) ∙ 𝐻2 + (−ℎ) ∙ (𝑚 ∙ 𝐺2 + 𝑟 ∙ 𝐻2) 

= 𝜇 ∙ 𝐺2 + ℎ𝑚 ∙ 𝐺2 + 𝑣2 ∙ 𝐻1 + ℎ𝑟 ∙ 𝐻2 − ℎ𝑚 ∙ 𝐺2 − ℎ𝑟 ∙ 𝐻2 

= 𝜇 ∙ 𝐺2 + 𝑣2 ∙ 𝐻2 

= 𝐶2. 

 

Therefore, 𝐶1
′ = 𝐶1 and 𝐶2

′ = 𝐶2, i.e.,  

 

ℎ = 𝐻𝑎𝑠ℎ(𝐶1
′||𝐶2

′) = 𝐻𝑎𝑠ℎ(𝐶1||𝐶2). 

 

Finally, since the honest prover follows the EC-EL proof to produce the proof which 

can pass the verification, the EC-EL proof satisfies the correctness property. 

 

2.6.3.2 Soundness of EC-EL Proof 

 

Lemma 1. The elliptic-curve Pedersen commitment scheme satisfies the binding 

property: it is difficult to find two different secret values that hidden by the same 

commitment. More precisely, there does not exist any algorithm in probabilistic-

polynomial time to find 𝑚1, 𝑚2, 𝑟1, 𝑟2 ∈ ℤ𝑞
∗  such that 

 

𝐶 = 𝑚1 ∙ 𝐺 + 𝑟1 ∙ 𝐻 = 𝑚2 ∙ 𝐺 + 𝑟2 ∙ 𝐻, 

 

where (𝑚1, 𝑟1) ≠ (𝑚2, 𝑟2). 

 

Proof. Assume that the order of two points 𝐺,𝐻  is 𝑞 , and 𝐻 = 𝑠 ∙ 𝐺 . Let 

𝑚1, 𝑚2, 𝑟1, 𝑟2 ∈ ℤ𝑞
∗ , such that 

 

𝐶 = 𝑚1 ∙ 𝐺 + 𝑟1 ∙ 𝐻 = 𝑚2 ∙ 𝐺 + 𝑟2 ∙ 𝐻 

∴ (𝑚1 −𝑚2) ∙ 𝐺 = (𝑟2 − 𝑟1) ∙ 𝐻 

∴ (𝑚1 −𝑚2) = 𝑠(𝑟2 − 𝑟1) mod 𝑞. 

 

The discussion is divided into two cases: 

(1) 𝑟2 − 𝑟1 = 0: it means that 𝑚1 −𝑚2 ≡ 0 mod 𝑞, i.e.,  

 

𝑚1 ≡ 𝑚2 mod 𝑞. 

 

All values are over a finite field 𝔽𝑞, so 0 ≤ 𝑚1, 𝑚2 ≤ 𝑞 and 0 ≤ 𝑟1, 𝑟2 ≤ 𝑞. 
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In this case, 𝑚1 must be equal to 𝑚2 and 𝑟1 must be equal to 𝑟2. This is 

contradiction with Lemma 1: (𝑚1, 𝑟1) ≠ (𝑚2, 𝑟2). 

(2) 𝑟2 − 𝑟1 ≠ 0: We know that 𝑠 ≡
𝑚1−𝑚2

𝑟2−𝑟1
 mod 𝑞. If we can compute 𝑠 through 

𝑚1, 𝑚2, 𝑟1, 𝑟2 , it means that there exists an algorithm in probabilistic-

polynomial time to solve the elliptic-curve discrete logarithm problem [12]. 

 

According to (1)(2), there does not exist any algorithm in probabilistic-polynomial time 

to find 𝑚1, 𝑚2, 𝑟1, 𝑟2 ∈ ℤ𝑞
∗   such that 𝐶 = 𝑚1 ∙ 𝐺 + 𝑟1 ∙ 𝐻 = 𝑚2 ∙ 𝐺 + 𝑟2 ∙ 𝐻 , where 

(𝑚1, 𝑟1) ≠ (𝑚2, 𝑟2). Therefore, Lemma 1 is proved. 

 

Theorem 1. If the prover follows EC-EL proof to produce the proof 𝐸𝐿 = (ℎ, 𝑥, 𝑥1, 𝑥2) 

that can pass the verification with non-negligible probability, the two commitments 

used to produce the proof must hide the same value 𝑚. 

 

Proof. Assume that the prover follows the EC-EL proof protocol to produce the proof 

𝐸𝐿 which pass the verification but uses the two commitments 𝐴 and 𝐵 hide different 

values 𝑚1, 𝑚2 ∈ ℤ𝑞
∗  respectively, i.e., 𝑚1 ≠ 𝑚2.  

We can simplify 𝐶1
′ and 𝐶2

′ : 

 

𝐶1
′ = 𝑥 ∙ 𝐺1 + 𝑥1 ∙ 𝐻1 + (−ℎ) ∙ 𝐴 

= (𝑥 − ℎ𝑚1) ∙ 𝐺1 + (𝑥1 − ℎ𝑠) ∙ 𝐻1, 

𝐶2
′ = 𝑥 ∙ 𝐺2 + 𝑥2 ∙ 𝐻1 + (−ℎ) ∙ 𝐵 

= (𝑥 − ℎ𝑚2) ∙ 𝐺2 + (𝑥2 − ℎ𝑟) ∙ 𝐻1. 

 

If the proof can pass the verification, 𝐶1
′ = 𝐶1  and 𝐶1

′ = 𝐶2 . Considering 𝐶1 = 𝜇 ∙

𝐺1 + 𝑣1 ∙ 𝐻1 and 𝐶2 = 𝜇 ∙ 𝐺2 + 𝑣2 ∙ 𝐻2 and the binding property of the EC-Pederesen 

commitment scheme (Lemma 1), i.e.,  

 

𝜇 = 𝑥 − ℎ𝑚1 = 𝑥 − ℎ𝑚2. 

 

We can obtain that 𝑚1 −𝑚2 ≡ 0 mod 𝑞, and we have 

 

𝑚1 ≡ 𝑚2 mod 𝑞. 

 

All values are over a finite field 𝔽𝑞, so 0 < 𝑚1, 𝑚2 < 𝑞 In this case, 𝑚1 must be 

equal to 𝑚2. This is contradiction with the assumption: 𝑚1 ≠ 𝑚2. Thus, if the proof 
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can pass the verification, the two commitments must hide the same value. Therefore, 

Theorem 1 is proved. The EC-EL proof satisfies the soundness property. 

 

2.6.3.3 Zero-knowledge of EC-EL Proof 

 

Theorem 2. Assume that there exists a simulator ℰℒ𝒮 and an oracle ℋ𝒪 follows the 

EC-EL proof but replaces secret values which only the prover knows with random 

numbers to produce the proof ℰℒ𝒫 . For all adversaries, there does not exist any 

algorithm in probabilistic-polynomial time to distinguish between the real proof 𝐸𝐿 

produced by the prover and the ideal proof ℰℒ𝒫 produced by the simulator ℰℒ𝒮. 

 

Proof. Assume that the oracle ℋ𝒪  and simulator ℰℒ𝒮  are defined and shown in 

Table 2. 

Oracle: ℋ𝒪(𝑠𝑡𝑟) 

(1) ℎ
$
←𝐻𝑎𝑠ℎ(𝑠𝑡𝑟) 

(2) Return ℎ 

Simulator: ℰℒ𝒮(𝐺1, 𝐻1, 𝐺2, 𝐻2, 𝐴, 𝐵) 

(1) Randomly choose ℎ, 𝑥, 𝑥1, 𝑥2 ∈ ℤ𝑞
∗  

(2) Compute 𝐶1 = 𝑥 ∙ 𝐺1 + 𝑥1 ∙ 𝐻1 + (−ℎ) ∙ 𝐴, 𝐶2 = 𝑥 ∙ 𝐺2 + 𝑥2 ∙ 𝐻2 + (−ℎ) ∙ 𝐵 

(3) Compute ℎ′ = ℋ𝒪(𝐶1||𝐶2) 

(4) Return ℰℒ𝒫 = (ℎ′, 𝑥, 𝑥1, 𝑥2) 

Table 2: Simulator ℰℒ𝒮 and Oracle ℋ𝒪 

 

ℋ𝒪(𝑠𝑡𝑟): input a string 𝑠𝑡𝑟 and return the hash value ℎ of the string. 

ℰℒ𝒮(𝐺1, 𝐻1, 𝐺2, 𝐻2, 𝐴, 𝐵) : input two commitment 𝐴, 𝐵  and their public parameters 

𝐺1, 𝐻1, 𝐺2, 𝐻2 . ℰℒ𝒮  simulates the EC-EL proof to produce a EL proof without any 

information of committed values of 𝐴, 𝐵.  

First, randomly chooses ℎ, 𝑥, 𝑥1, 𝑥2 ∈ ℤ𝑞
∗  and computes 𝐶1 and 𝐶2:  

 

𝐶1 = 𝑥 ∙ 𝐺1 + 𝑥1 ∙ 𝐻1 + (−ℎ) ∙ 𝐴, 

𝐶2 = 𝑥 ∙ 𝐺2 + 𝑥2 ∙ 𝐻2 + (−ℎ) ∙ 𝐵, 

 

and then computes  

 

ℎ′ = ℋ𝒪(𝐶1||𝐶2). 

 

Finally, outputs the simulation proof  
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ℰℒ𝒫 = (ℎ′, 𝑥, 𝑥1, 𝑥2). 

 

Assume that a prover knows a secret value 𝑚 and two commitments 𝐴 = 𝑚 ∙ 𝐺1 + 𝑠 ∙

𝐻1 and 𝐵 = 𝑚 ∙ 𝐺2 + 𝑟 ∙ 𝐻2. The prover produces a real proof 

 

𝐸𝐿 = (ℎ, 𝑥, 𝑥1, 𝑥2):

{
 
 
 

 
 
 

𝜇, 𝑣1, 𝑣2 ← ℤ𝑞
∗ ;

𝐶1 = 𝜇 ∙ 𝐺1 + 𝑣1 ∙ 𝐻1;
𝐶2 = 𝜇 ∙ 𝐺2 + 𝑣2 ∙ 𝐻2;

ℎ = 𝐻𝑎𝑠ℎ(𝐶1||𝐶2);
𝑥 = 𝜇 + ℎ𝑚;
𝑥1 = 𝑣1 + ℎ𝑠;
𝑥2 = 𝑣2 + ℎ𝑟

 

 

and the simulator ℰℒ𝒮  inputs two commitments 𝐴′ = 𝑚′ ∙ 𝐺1 + 𝑠
′ ∙ 𝐻1  and 𝐵′ =

𝑚′′ ∙ 𝐺2 + 𝑟
′ ∙ 𝐻2. ℰℒ𝒮 produces a ideal proof 

 

ℰℒ𝒫 = (ℎ′, 𝑥′, 𝑥1
′ , 𝑥2

′ ):

{
 

 
ℎ1, 𝑥

′, 𝑥1
′ , 𝑥2

′ ← ℤ𝑞
∗ ;

𝐶1 = 𝑥′ ∙ 𝐺1 + 𝑥1
′ ∙ 𝐻1 + (−ℎ1) ∙ 𝐴;

𝐶2 = 𝑥
′ ∙ 𝐺2 + 𝑥2

′ ∙ 𝐻2 + (−ℎ1) ∙ 𝐵;

ℎ′ = ℋ𝒪(𝐶1||𝐶2)

. 

 

Let 𝐸𝐿̂ = (ℎ̂, 𝑥̂, 𝑥1̂, 𝑥2̂) be a randomly chosen proof in the set of all valid proofs. The 

probability  

 

Pr[𝐸𝐿 = 𝐸𝐿̂] = Pr [
𝜇, 𝑣1, 𝑣2 ∈ ℤ𝑞

∗ ;

ℎ = ℎ̂, 𝑥 = 𝑥̂, 𝑥1 = 𝑥1̂, 𝑥2 = 𝑥2̂
] =

1

(𝑞 − 1)4
 

 

and the probability 

 

Pr[ℰℒ𝒫 = 𝐸𝐿̂] = Pr [
ℎ1, 𝑥

′, 𝑥1
′ , 𝑥2

′ ∈ ℤ𝑞
∗ ;

ℎ′ = ℎ̂, 𝑥 = 𝑥̂, 𝑥1 = 𝑥1̂, 𝑥2 = 𝑥2̂
] =

1

(𝑞 − 1)4
 

 

are equal, i.e., 𝐸𝐿 and ℰℒ𝒫 are indistinguishable. Therefore, Theorem 2 is proved. 

The EC-EL proof satisfies the zero-knowledge property. 

 

2.7 Elliptic-curve SQR Proof 
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The SQR proof was proposed by Boudot [1] in 2001. For short, we follow Tsai et 

al. [28] and call it the SQR proof. This proof is a kind of zero-knowledge proof such 

that the verifier can verify that a commitment hides a square number 𝛼2 , 𝛼 ∈ ℤ𝑞
∗  , 

without leaking the value 𝛼  or 𝛼2 . Since we use the elliptic-curve Pedersen 

commitment scheme as described in Section 2.3, we use the elliptic-curve SQR proof 

(EC-SQR proof) in our schemes.  

 

2.7.1 Definitions and Security Models 

 

Definition 11 (SQR proof). SQR proof is composed by three functions 

(𝑆𝑒𝑡𝑢𝑝, SQR, vSQR). 

(1) 𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆) : by inputting a secure parameter 𝜆 , the polynomial-time 

function 𝑆𝑒𝑡𝑢𝑝 outputs the public parameters 𝑝𝑝. 

(2) 𝑆𝑄𝑅
$
←SQR(𝑝𝑝, 𝐶) : by inputting the public parameters 𝑝𝑝  and a 

commitment 𝐶, the polynomial-time function SQR outputs the proof 𝑆𝑄𝑅. 

(3) 𝑏 ← vSQR(𝑝𝑝, 𝑆𝑄𝑅) : by inputting the public parameters 𝑝𝑝  and the proof 

𝑆𝑄𝑅 , the polynomial-time function vSQR  outputs a result 𝑏 ∈ {0,1} . The 

proof 𝑆𝑄𝑅 is accepted if 𝑏 is equal to 1, which means that the commitment 

𝐶 hides a square number. Otherwise, it is rejected. 

 

The SQR proof satisfies the correctness property: if the proof produced by a 

commitment which hides a square number, the proof must pass the verification. 

Therefore, the verifier can confirm that the commitment hides the committed value is a 

square number. 

 

Definition 12 (Correctness of SQR proof). If the commitment 𝐶  hides a square 

number 𝑦 = 𝑥2, 𝑥 ∈ ℤ  and the scheme SQR= (𝑆𝑒𝑡𝑢𝑝, SQR, vSQR)  satisfies the 

correctness property, the probability  

 

|

|
Pr

[
 
 
 
 

vSQR(𝑝𝑝, 𝑆𝑄𝑅) = 1 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝑦 = 𝑥2, 𝑥 ∈ ℤ;

𝐶 ← 𝐶𝑜𝑚(𝑦, 𝑟);

𝑆𝑄𝑅
$
←SQR(𝑝𝑝, 𝐶)]

 
 
 
 

− 1
|

|
≤ 𝑛𝑒𝑔𝑙(𝜆) 

 

for all security parameter 𝜆. 
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The SQR proof satisfies the soundness property: if the proof produced by a 

commitment hides a value which is not a square number, it cannot pass the verification. 

In other words, if the proof can pass the verification, the commitment must hide a square 

number. 

 

Definition 13 (Soundness of SQR proof). If the commitments 𝐶 hides the value 𝑦 

which is not a square number and the scheme SQR= (𝑆𝑒𝑡𝑢𝑝, SQR, vSQR) satisfies the 

soundness property, the probability  

 

Pr

[
 
 
 
 
 

vSQR(𝑝𝑝, 𝑆𝑄𝑅) = 1 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝑦 ∈ ℤ,√𝑦 ∉ ℤ;

𝐶 ← 𝐶𝑜𝑚(𝑦, 𝑟);

𝑆𝑄𝑅
$
←SQR(𝑝𝑝, 𝐶)]

 
 
 
 
 

≤ 𝑛𝑒𝑔𝑙(𝜆) 

 

for all security parameter 𝜆. 

 

The SQR proof satisfies the zero-knowledge property: the verifier can only 

confirm whether the commitment hides a square number, but cannot know the exact 

committed value through the SQR proof produced by the prover. More precisely, there 

does not exist any algorithm in probabilistic-polynomial time that can distinguish the 

real proof from the ideal proof produced by a simulator, which does not contain any 

information about the committed value. 

 

Definition 14 (Zero-knowledge of SQR proof). Given a polynomial-time simulator 

𝒮𝒬ℛ𝒮 that can produce a proof without inputting the secret 𝑚. If the scheme SQR=

(𝑆𝑒𝑡𝑢𝑝, SQR, vSQR) satisfies the zero-knowledge property, the probability  

 

|

|

Pr

[
 
 
 
 
 
 

𝑏′ = 𝑏 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝑆𝑄𝑅1
$
←SQR(𝑝𝑝, 𝐶);

𝑆𝑄𝑅2
$
←𝒮𝒬ℛ𝒮(𝑝𝑝);

𝑏 = {0,1};
𝑏′ ← 𝒜(𝑝𝑝, 𝑆𝑄𝑅𝑏) ]

 
 
 
 
 
 

−
1

2
|

|

≤ 𝑛𝑒𝑔𝑙(𝜆) 

 

for all probabilistic-polynomial time adversaries 𝒜 and security parameter 𝜆. 
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2.7.2 EC-SQR Proof Protocol 

 

In the following, we describe the protocol of the EC-SQR proof in detail: the 

prover knows the secret value 𝛼 and the commitment  

 

𝐸 = 𝛼2 ∙ 𝐺 + 𝑟1 ∙ 𝐻, 

 

computed by a generator point 𝐺 on 𝐸(𝔽𝑝) and another point 𝐻 on 𝐸(𝔽𝑝), where 

𝐺 and 𝐻 are public parameters. The commitment 𝐸 hides value 𝛼2 ∈ ℤ𝑞
∗ . 

 

To produce the SQR proof for 𝐸, the prover runs the SQR proof function:  

 

𝑆𝑄𝑅
$
←𝑆𝑄𝑅(𝛼, 𝑟1, 𝐺, 𝐻). 

 

(1) The prover randomly chooses 𝑟2 ∈ ℤ𝑞
∗  and computes 

 

𝐹 = 𝛼 ∙ 𝐺 + 𝑟2 ∙ 𝐻. 

 

(2) The prover computes  

𝑟3 = 𝑟1 − 𝑟2𝛼. 

 

(3) The prover computes  

 

𝐸′ = 𝛼 ∙ 𝐹 + 𝑟3 ∙ 𝐻, 

 

where 𝐸′ must be equal to 𝐸. 

(4) Since the two commitments 𝐹  and 𝐸′  hide the same value 𝛼 , the prover 

runs the EC-EL proof as described in Section 2.6 to produce the proof 

 

𝐸𝐿 = (ℎ, 𝑥, 𝑥1, 𝑥2) = EL(𝛼, 𝑟2, 𝑟3, 𝐺, 𝐻, 𝐹, 𝐻). 

 

In the detail, first, the provers randomly chooses 𝜇, 𝑣1, 𝑣2 ∈ ℤ𝑞
∗  to compute 

 

𝐶1 = 𝜇 ∙ 𝐺 + 𝑣1 ∙ 𝐻, 

𝐶2 = 𝜇 ∙ 𝐹 + 𝑣2 ∙ 𝐻. 

 

Then, the prover computes ℎ = 𝐻𝑎𝑠ℎ(𝐶1||𝐶2) to compute 
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𝑥 = 𝜇 + ℎ𝛼, 

𝑥1 = 𝑣1 + ℎ𝑟2, 

𝑥2 = 𝑣2 + ℎ𝑟3. 

 

(5) Finally, the prover produces the SQR proof 

 

𝑆𝑄𝑅 = (ℎ, 𝑥, 𝑥1, 𝑥2, 𝐹). 

 

To verify the SQR proof, the verifier runs the SQR verification function: 

 

vSQR(𝑆𝑄𝑅, 𝐺, 𝐻, 𝐸). 

 

(1) The verifier computes  

 

𝐶1
′ = 𝑥 ∙ 𝐺 + 𝑥1 ∙ 𝐻 + (−ℎ) ∙ 𝐹 

𝐶2
′ = 𝑥 ∙ 𝐹 + 𝑥2 ∙ 𝐻 + (−ℎ) ∙ 𝐸. 

 

(2) The verifier can be convinced that the commitment 𝐸 hides a square number 

if and only if  

 

ℎ = 𝐻𝑎𝑠ℎ(𝐶1
′||𝐶2

′). 

 

2.7.3 Security Descriptions 

 

In this section, we describe the security properties of the EC-SQR proof: 

correctness and soundness. Since the proof of the zero-knowledge property of EC-SQR 

proof is easily obtained from the properties of the EC-EL proof, the description of the 

zero-knowledge property is omitted from this section. 

 

2.7.3.1 Correctness of EC-SQR Proof 

 

Since we can expand  

 

𝐸′ = 𝛼 ∙ 𝐹 + 𝑟3 ∙ 𝐻 

= 𝛼 ∙ (𝛼 ∙ 𝐺 + 𝑟2 ∙ 𝐻) + 𝑟3 ∙ 𝐻 

= 𝛼2 ∙ 𝐺 + (𝛼𝑟2 + 𝑟3) ∙ 𝐻 

= 𝛼2 ∙ 𝐺 + 𝑟1 ∙ 𝐻 
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= 𝐸, 

 

𝐸′ must be equal to 𝐸. To verify the EC-SQR proof, the verifier computes 

 

𝐶1
′ = 𝑥 ∙ 𝐺 + 𝑥1 ∙ 𝐻 + (−ℎ) ∙ 𝐹 

𝐶2
′ = 𝑥 ∙ 𝐺 + 𝑥2 ∙ 𝐻 + (−ℎ) ∙ 𝐸. 

 

In the detail, if the prover is honest and follows the EC-SQR proof to produce 𝑆𝑄𝑅 =

(ℎ, 𝑥, 𝑥1, 𝑥2, 𝐹), the verifier can expand 𝐶1
′ and 𝐶2

′ : 

 

𝐶1
′ = 𝑥 ∙ 𝐺 + 𝑥1 ∙ 𝐻 + (−ℎ) ∙ 𝐹 

= (𝜇 + ℎ𝛼) ∙ 𝐺 + (𝑣1 + ℎ𝑟2) ∙ 𝐻 + (−ℎ) ∙ (𝛼 ∙ 𝐺 + 𝑟2 ∙ 𝐻) 

= 𝜇 ∙ 𝐺 + ℎ𝛼 ∙ 𝐺 + 𝑣1 ∙ 𝐻 + ℎ𝑟2 ∙ 𝐻 − ℎ𝛼 ∙ 𝐺 − ℎ𝑟2 ∙ 𝐻 

= 𝜇 ∙ 𝐺 + 𝑣1 ∙ 𝐻 

= 𝐶1, 

𝐶2
′ = 𝑥 ∙ 𝐹 + 𝑥2 ∙ 𝐻 + (−ℎ) ∙ 𝐸 

= (𝜇 + ℎ𝛼) ∙ 𝐹 + (𝑣2 + ℎ𝑟3) ∙ 𝐻 + (−ℎ) ∙ (𝛼 ∙ 𝐹 + 𝑟3 ∙ 𝐻) 

= 𝜇 ∙ 𝐹 + ℎ𝛼 ∙ 𝐹 + 𝑣2 ∙ 𝐻 + ℎ𝑟3 ∙ 𝐻 − ℎ𝛼 ∙ 𝐹 − ℎ𝑟3 ∙ 𝐻 

= 𝜇 ∙ 𝐹 + 𝑣2 ∙ 𝐻 

= 𝐶2. 

 

Therefore, 𝐶1
′ = 𝐶1 and 𝐶2

′ = 𝐶2, i.e.,  

 

ℎ = 𝐻𝑎𝑠ℎ(𝐶1
′||𝐶2

′) = 𝐻𝑎𝑠ℎ(𝐶1||𝐶2). 

 

Finally, since the honest prover follows the EC-SQR proof to produce the proof which 

can pass the verification, the EC-SQR proof satisfies the correctness property. 

 

2.7.3.2 Soundness of EC-SQR Proof 

 

Theorem 3. If the prover follows EC-SQR proof to produce the proof 𝑆𝑄𝑅 =

(ℎ, 𝑥, 𝑥1, 𝑥2, 𝐹)  that can pass the verification with non-negligible probability, the 

commitment used to produce the proof must hide a square number 𝛼2, where 𝛼 ∈ ℤ. 

 

Proof. Assume that the prover follows the EC- SQR proof protocol to produce the proof 

𝑆𝑄𝑅 = (ℎ, 𝑥, 𝑥1, 𝑥2, 𝐹) which can pass the verification. According to the soundness of 

EC-EL proof (Theorem 2), we can ensure that the commitment 𝐸 and 𝐹 must hide 

the same value based on (𝐹, 𝐻) and (𝐺, 𝐻) respectively. Without loss of generality, 
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let  

 

𝐸 = 𝛼′ ∙ 𝐹 + 𝑟3
′ ∙ 𝐻, 

𝐹 = 𝛼′ ∙ 𝐺 + 𝑟2
′ ∙ 𝐻. 

 

Therefore, we can expand 

 

𝐸 = 𝛼′ ∙ 𝐹 + 𝑟3
′ ∙ 𝐻 = (𝛼′)2 ∙ 𝐺 + (𝛼′𝑟2

′ + 𝑟3
′) ∙ 𝐻. 

 

Obviously, the commitment 𝐸 must hide a square number (𝛼′)2. Thus, Theorem 3 is 

proved, the EC-SQR proof satisfies the soundness property. 

 

2.8 Zero-Knowledge Proof with Commitment Secret 

(ZKPCS) 

 

In this section, we introduce a particular zero-knowledge proof: the zero-

knowledge proof with commitment secret (ZKPCS), which can be used to convince the 

verifier that the prover knows the committed value of a commitment without revealing 

the secrets, i.e., the prover can commit another commitment by using the same 

committed value. The four papers [1], [18], [24] and [28] all use the similar ZKPCS, 

but all of which are used to prove the knowledge of the Fujisaki-Okamoto commitment 

scheme [9]. Therefore, we propose a new ZKPCS for the elliptic-curve Pedersen 

commitment scheme. 

 

Definition 15 (Zero-knowledge proof with commitment secret). Zero-knowledge proof 

with commitment secret is composed by five functions (𝑆𝑒𝑡𝑢𝑝, 𝑃𝑟𝑜, 𝐶ℎ𝑎𝑙, 𝑅𝑒𝑠, 𝑉𝑒𝑟). 

(1) 𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆) : by inputting a secure parameter 𝜆 , the polynomial-time 

function 𝑆𝑒𝑡𝑢𝑝 outputs the public parameters 𝑝𝑝. 

(2) 𝑦, 𝛼
$
←𝑃𝑟𝑜(𝑝𝑝,𝑚) : by inputting the public parameters 𝑝𝑝  and the secret 

value 𝑚  , the polynomial-time function 𝑃𝑟𝑜  outputs two commitments 𝑦 

and 𝛼. 

(3) 𝑠
$
←𝐶ℎ𝑎𝑙(𝑝𝑝) : by inputting the public parameters 𝑝𝑝 , the polynomial-time 

function 𝐶ℎ𝑎𝑙 outputs a random number 𝑠. 
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(4) 𝜇, 𝜈
$
←𝑅𝑒𝑠(𝑝𝑝,𝑚, 𝑟, 𝑥, 𝑧, 𝑠): by inputting the public parameters 𝑝𝑝, the screct 

value 𝑚, random numbers 𝑟, 𝑥, 𝑧, and the challenge 𝑠, the polynomial-time 

function 𝑅𝑒𝑠 outputs two responses 𝜇 and 𝜈. 

(5) 𝑏 ← 𝑉𝑒𝑟(𝑝𝑝, 𝑦, 𝛼, 𝜇, 𝜈) : by inputting the public parameters 𝑝𝑝 , the two 

commitments 𝑦, 𝛼 , and two responses 𝜇, 𝜈 , the polynomial-time function 

𝑉𝑒𝑟 outputs a result 𝑏 ∈ {0,1}. The verification is accepted if 𝑏 is equal to 

1, which means that the two commitments 𝑦 and 𝛼 hide the secret value 𝑚. 

Otherwise, it is rejected. 

 

In the following, we describe the protocol of ZKPCS in detail. The prover is 

denoted as 𝑃, and the verifier is denoted as 𝑉.  

Assume that 𝑃 knows a secret value 𝑚 ∈ ℤ𝑞
∗ . 

(1) 𝑃 computes the commitment  

 

𝑦 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝐻 

 

and randomly chooses 𝑥, 𝑟 ∈ ℤ𝑞
∗  to compute another commitment  

 

𝛼 = 𝑥 ∙ 𝐺 + 𝑧 ∙ 𝐻, 

 

where 𝐺 and 𝐻 which are two points on 𝐸(𝔽𝑝) are the public parameters. 

Then, 𝑃 publishes 𝑦, 𝛼. 

(2) 𝑉 gives 𝑃 a challenge 𝑠 ∈ ℤ𝑞
∗ . 

(3) 𝑃 returns two responses  

 

𝜇 = 𝑥 − 𝑠𝑚, 

𝜈 = 𝑧 − 𝑠𝑟. 

 

(4) 𝑉  computes 𝜇 ∙ 𝐺 + 𝜈 ∙ 𝐻 + 𝑠 ∙ 𝑦  and can be convinced that 𝑃  knows the 

committed value 𝑚 if and only if  

 

𝛼 = 𝜇 ∙ 𝐺 + 𝜈 ∙ 𝐻 + 𝑠 ∙ 𝑦. 

 

In the detail,  

 

𝜇 ∙ 𝐺 + 𝜈 ∙ 𝐻 + 𝑠 ∙ 𝑦 

= (𝑥 − 𝑠𝑚) ∙ 𝐺 + (𝑧 − 𝑠𝑟) ∙ 𝐻 + 𝑠 ∙ (𝑚 ∙ 𝐺 + 𝑟 ∙ 𝐻) 
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=  𝑥 ∙ 𝐺 − 𝑠𝑚 ∙ 𝐺 + 𝑧 ∙ 𝐻 − 𝑠𝑟 ∙ 𝐻 + 𝑠𝑚 ∙ 𝐺 + 𝑠𝑟 ∙ 𝐻 

= 𝑥 ∙ 𝐺 + 𝑧 ∙ 𝐻 

= 𝛼. 

 

The verifier can be convinced that the commitment 𝛼  committed by the prover is 

another commitment of 𝑚, i.e., the prover definitely knows 𝑚. 
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3 Non-Interactive EC-ZKRP Scheme 

 

In this chapter, we introduce the definitions, protocol, and security description of 

the non-interactive EC-ZKRP scheme in detail. 

 

3.1 Definitions and Security Models 

 

Definition 16 (Non-interactive zero-knowledge range proof). The non-interactive zero-

knowledge range proof is composed by three functions (𝑆𝑒𝑡𝑢𝑝, 𝑃𝑟𝑜, 𝑉𝑒𝑟). 

(1) 𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆) : by inputting a secure parameter 𝜆 , the polynomial-time 

function 𝑆𝑒𝑡𝑢𝑝 outputs the public parameters 𝑝𝑝. 

(2) 𝜋
$
←𝑃𝑟𝑜(𝑝𝑝,𝑚, 𝑎, 𝑏): by inputting the public parameters 𝑝𝑝, the secret value 

𝑚, and the lower bound and upper bound of a range 𝑎, 𝑏, where, 𝑎 < 𝑏, the 

polynomial-time function 𝑃𝑟𝑜 outputs the proof 𝜋. 

(3) 𝑟 ← 𝑉𝑒𝑟(𝑝𝑝, 𝜋, 𝑎, 𝑏): by inputting the public parameters 𝑝𝑝, the proof 𝜋, and 

the lower bound and upper bound of a range 𝑎, 𝑏 , the polynomial-time 

function 𝑉𝑒𝑟  outputs a result 𝑟 ∈ {0,1} . The proof 𝜋  is accepted if 𝑟  is 

equal to 1, which means that the secret value 𝑚 is in the range [𝑎, 𝑏], i.e., 

𝑎 ≤ 𝑚 ≤ 𝑏. Otherwise, it is rejected, i.e., 𝑚 ∉ [𝑎, 𝑏]. 

 

A ZKRP scheme satisfies the correctness property: if the secret value is exactly in 

the specified range, the proof must pass the verification. Therefore, the verifier can 

confirm that the secret value must be in the specified range. 

 

Definition 17 (Correctness of ZKRP). If the secret value 𝑚 is exactly in the range 

[𝑎, 𝑏] and the scheme ZKRP = (𝑆𝑒𝑡𝑢𝑝, 𝑃𝑟𝑜, 𝑉𝑒𝑟) satisfies the correctness property, 

the probability  

 

|Pr [𝑉𝑒𝑟(𝑝𝑝, 𝜋) = 1 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝑚 ∈ [𝑎, 𝑏];

𝜋
$
←𝑃𝑟𝑜(𝑝𝑝,𝑚, 𝑎, 𝑏)

] − 1| ≤ 𝑛𝑒𝑔𝑙(𝜆) 

 

for all security parameter 𝜆. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

28 
 

 

A ZKRP scheme satisfies the soundness property: if the prover uses a secret value 

that is not in the specified range to produce a proof, then it cannot pass the verification. 

In other words, if the proof produced by the prover can pass the verification, the secret 

value must be in the specified range. 

 

Definition 18 (Soundness of ZKRP). If the secret value 𝑚 is not in the range [𝑎, 𝑏] 

and the scheme ZKRP  = (𝑆𝑒𝑡𝑢𝑝, 𝑃𝑟𝑜, 𝑉𝑒𝑟)  satisfies the soundness property, the 

probability  

 

Pr [𝑉𝑒𝑟(𝑝𝑝, 𝜋) = 1 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝑚 ∉ [𝑎, 𝑏];

𝜋
$
←𝑃𝑟𝑜(𝑝𝑝,𝑚, 𝑎, 𝑏)

] ≤ 𝑛𝑒𝑔𝑙(𝜆) 

 

for all security parameter 𝜆. 

 

A ZKRP scheme satisfies the zero-knowledge property: the verifier can only 

confirm whether the secret value is within the specified range, but cannot know the 

exact secret value through the proof produced by the prover. More precisely, there does 

not exist any algorithm in probabilistic-polynomial time that can distinguish the real 

proof from the ideal proof produced by a simulator, which does not contain any 

information about the secret value. 

 

Definition 19 (Zero-knowledge of EC-ZKRP). Given a polynomial-time simulator 

𝑆𝐼𝑀 that can produce a proof without inputting the secret 𝑚. If the scheme ZKRP =

(𝑆𝑒𝑡𝑢𝑝, 𝑃𝑟𝑜, 𝑉𝑒𝑟) satisfies the zero-knowledge property, the probability  

 

|

|

Pr

[
 
 
 
 
 
 

𝑏′ = 𝑏 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝜋0
$
←𝑃𝑟𝑜(𝑝𝑝,𝑚, 𝑎, 𝑏);

𝜋1
$
←𝑆𝐼𝑀(𝑝𝑝);

𝑏 = {0,1};
𝑏′ ← 𝒜(𝑝𝑝, 𝜋𝑏) ]

 
 
 
 
 
 

−
1

2
|

|

≤ 𝑛𝑒𝑔𝑙(𝜆) 

 

for all probabilistic-polynomial time adversaries 𝒜 and security parameter 𝜆. 

 

3.2 Non-Interactive EC-ZKRP Protocol 
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In this section, we introduce the EC-ZKRP protocol. The scheme proposed by Tsai 

et al. [28] is constructed with the Fujisaki-Okamato commitment scheme [9]. To apply 

elliptic curve to the non-interactive ZKRP , we replace the commitment scheme with 

the elliptic curve Pedersen commitment scheme as described in Section 2.3 and the EC-

EL proof (Section 2.6) and EC-SQR proof (Section 2.7) both can be applied in our 

scheme. The core idea of our scheme is the same as the scheme proposed by Tsai et al. 

[28]. Assume that the prover knows the secret value 𝑚  in the range [𝑎, 𝑏] , where 

𝑎, 𝑏 ∈ ℤ𝑞
∗  . Therefore, 𝑎 ≤ 𝑚 ≤ 𝑏 , i.e., 𝑚 − 𝑎 ≥ 0  and 𝑏 − 𝑚 ≤ 0 . Then we have 

𝑚 − 𝑎 + 1 > 0  and 𝑏 − 𝑚 + 1 > 0 , so (𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1)  must be greater 

than 0. If we prove to the verifier that 𝑚  is in the range [𝑎, 𝑏]  by revealing 

(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) > 0 , it is not difficult to compute the secret value 𝑚 

through (𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) when the verifier knows the range [𝑎, 𝑏]. Thus, we 

use  

 

𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) > 0 

 

instead,where 𝜔
$
←ℤ𝑞

∗ . To prover 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) is positive, the prover 

randomly chooses 𝑀 = 𝛼2 ∈ ℤ𝑞
∗  such that  

 

𝑀 + 𝑅 = 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1). 

 

If the verifier verifies that 𝑀 is a square number and 𝑅 > 0, he/she can be convinced 

that 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) is greater than 0, i.e., the secret value 𝑚 must be in 

the range [𝑎, 𝑏].  

 

We describe the non-interactive EC-ZKRP protocol in detail below: the prover 

knows the secret value 𝑚  in the range [𝑎, 𝑏]  and randomly chooses 𝑟 ∈ ℤ𝑞
∗   to 

compute the commitment 

 

𝐶 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝐻. 

 

To produce the non-interactive EC-ZKRP:  

(1) The prover randomly chooses 𝑟′ ∈ ℤ𝑞
∗  to compute 

 

𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝐺, 

𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶, 
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𝐶′ = (𝑏 −𝑚 + 1) ∙ 𝐶1 + 𝑟
′ ∙ 𝐻. 

 

(2) Since the two commitments 

 

𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶 = (𝑏 − 𝑚 + 1) ∙ 𝐺 + (−𝑟) ∙ 𝐻, 

𝐶′ = (𝑏 −𝑚 + 1) ∙ 𝐶1 + 𝑟
′ ∙ 𝐻 

 

hide the same value (𝑏 − 𝑚 + 1), the prover produces the EL proof:  

 

𝐸𝐿 = EL(𝑏 − 𝑚 + 1,−𝑟, 𝑟′, 𝐺, 𝐻, 𝐶1, 𝐻). 

 

(3) The prover randomly chooses 𝜔 and 𝑟′′ to compute 

 

𝐶′′ = 𝜔2 ∙ 𝐶′ + 𝑟′′ ∙ 𝐻. 

 

(4) Since the commitment 𝐶′′ hides a square number 𝜔2, the prover produces the 

SQR proof: 

 

𝑆𝑄𝑅1 = 𝑆𝑄𝑅(𝜔, 𝑟
′′, 𝐶′, 𝐻). 

 

(5) The prover randomly chooses 𝛼 ∈ ℤ𝑞
∗  to compute 

 

𝑀 = 𝛼2. 

 

If 𝑀 ≥ 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1), repeat (5). 

(6) The prover computes  

 

𝑅 = 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) −𝑀, 

 

which must be greater than 0. 

(7) The prover randomly chooses 𝑟1 ∈ ℤ𝑞
∗  to compute  

 

𝑟2 = 𝜔2((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) + 𝑟′′ − 𝑟1. 

 

(8) The prover computes 

 

𝐶1
′ = 𝑀 ∙ 𝐺 + 𝑟1 ∙ 𝐻, 

𝐶2
′ = 𝑟2 ∙ 𝐻. 
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(9) Since the commitment 𝐶1
′ hides a square number 𝑀, the prover produces the 

SQR proof: 

 

𝑆𝑄𝑅2 = 𝑆𝑄𝑅(𝛼, 𝑟1, 𝐺, 𝐻). 

 

(10) The prover produces the proof 

 

𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2}. 

 

To verify the non-interactive EC-ZKRP proof 𝜋, the verifier runs the following 

steps:  

(1) Compute 𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝐺. 

(2) Compute 𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶. 

(3) Verify vEL(𝐸𝐿, 𝐺, 𝐻, 𝐶1, 𝐻, 𝐶2, 𝐶
′). 

(4) Verify vSQR(𝑆𝑄𝑅1, 𝐶
′, 𝐻, 𝐶′′). 

(5) Verify 𝐶′′ = 𝐶1
′ + 𝐶2

′ + 𝑅 ∙ 𝐺. 

(6) Verify vSQR(𝑆𝑄𝑅2, 𝐺, 𝐻, 𝐶1
′). 

(7) Verify 𝑅 > 0. 

The verifier can be convinced that the secret value 𝑚 must be in the range [𝑎, 𝑏] if 

and only if the verification step 3 to step 7 are passed. 
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Figure 1: Protocol to Produce EC-ZKRP Proof 

 

 

 

 

 

 

 

 

 

 

Figure 2: Protocol to Verify EC-ZKRP Proof 

 

  

𝐶 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝐻,where 𝑟
$
←ℤ𝑞

∗   

𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝐺  

𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶  

𝐶′ = (𝑏 −𝑚 + 1) ∙ 𝐶1 + 𝑟
′ ∙ 𝐻,where 𝑟′

$
←ℤ𝑞

∗   

𝐸𝐿
$
←EL(𝑏 − 𝑚 + 1,−𝑟, 𝑟′, 𝐺, 𝐻, 𝐶1, 𝐻)  

𝐶′′ = 𝜔2 ∙ 𝐶′ + 𝑟′′ ∙ 𝐻,where 𝜔, 𝑟′′
$
←ℤ𝑞

∗   

𝑆𝑄𝑅1
$
←SQR(𝜔, 𝑟′′, 𝐶′, 𝐻)  

𝑀 = 𝛼2, where 𝛼
$
←ℤ𝑞

∗   

𝑅 = 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) −𝑀  

𝑟1 + 𝑟2 = 𝜔2((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) + 𝑟′′, where 𝑟2
$
←ℤ𝑞

∗   

𝐶1
′ = 𝑀 ∙ 𝐺 + 𝑟1 ∙ 𝐻  

𝐶2
′ = 𝑟2 ∙ 𝐻  

𝑆𝑄𝑅2
$
←SQR(𝛼, 𝑟1, 𝐺, 𝐻)  

Produce the proof 𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2}  

To verify the proof 𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2} 

(1) Compute 𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝐺. 

(2) Compute 𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶. 

(3) Verify vEL(𝐸𝐿, 𝐺, 𝐻, 𝐶1, 𝐻, 𝐶2, 𝐶
′). 

(4) Verify vSQR(𝑆𝑄𝑅1, 𝐶
′, 𝐻, 𝐶′′) 

(5) Verify 𝐶′′ = 𝐶1
′ + 𝐶2

′ + 𝑅 ∙ 𝐺 

(6) Verify vSQR(𝑆𝑄𝑅2, 𝐺, 𝐻, 𝐶1
′) 

(7) Verify 𝑅 > 0 
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3.3 Security Descriptions  

 

In this section, we describe the security properties of our EC-ZKRP scheme: 

correctness, soundness, zero-knowledge. 

 

3.3.1 Correctness 

 

Assume that an honest prover follows our protocol and uses the secret value 𝑚 in 

the range [𝑎, 𝑏] to produce the proof 𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2}, the 

verifier can determine whether 𝜋 passes the verification through the following steps:  

(1) Compute 𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝐺. 

(2) Compute 𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶. 

(3) Verify vEL(𝐸𝐿). 

(4) Verify vSQR(𝑆𝑄𝑅1). 

(5) Verify 𝐶′′ = 𝐶1
′ + 𝐶2

′ + 𝑅 ∙ 𝐺. 

(6) Verify vSQR(𝑆𝑄𝑅2). 

(7) Verify 𝑅 > 0. 

We explain that our protocol satisfies the correctness property below: 

If the prover is honest and follows our protocol to produce the proof 𝜋 , then 

(1)(2)(7) must be correct.  

By expanding 𝐶2, we obtain  

 

𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶 = (𝑏 − 𝑚 + 1) ∙ 𝐺 + (−𝑟) ∙ 𝐻, 

 

its committed value is (𝑏 − 𝑚 + 1) , which is same as the committed value of 𝐶′ . 

Therefore, if the EC-EL proof is correct, then (3) must be correct. 

Considering 𝐶′′ = ω2 ∙ 𝐶′ + 𝑟′′ ∙ 𝐻, the committed value of 𝐶′′ is ω2, which is 

a square number. Therefore, if the EC-SQL proof is correct, then (4) must be correct. 

Since we know  

ω2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) = 𝑀 + 𝑅, 

ω2((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) + 𝑟′′ = 𝑟1 + 𝑟2 

 

according to our ZKRP protocol. By expanding 𝐶′′ and 𝐶1
′ + 𝐶2

′ + 𝑅 ∙ 𝐺, we obtain  

 

𝐶′′ = ω2 ∙ 𝐶′ + 𝑟′′ ∙ 𝐻 

= ω2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) ∙ 𝐺 + ω2((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) + 𝑟′′ ∙ 𝐻 

= (𝑀 + 𝑅) ∙ 𝐺 + (𝑟1 + 𝑟2) ∙ 𝐻 
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and  

𝐶1
′ + 𝐶2

′ + 𝑅 ∙ 𝐺 

= 𝑀 ∙ 𝐺 + 𝑟1 ∙ 𝐻 + 𝑟2 ∙ 𝐻 + 𝑅 ∙ 𝐺 

= (𝑀 + 𝑅) ∙ 𝐺 + (𝑟1 + 𝑟2) ∙ 𝐻. 

 

The two are equal, so (5) must be correct. 

Considering 𝐶1
′ = 𝑀 ∙ 𝐶′ + 𝑟1 ∙ 𝐻 , the committed value of 𝐶1

′  is 𝑀 , which is a 

square number. Therefore, if the EC-SQL proof is correct, then (6) must be correct. 

Because (3)(4)(5)(6)(7) are all correct and 𝜋 passes the verification, the verifier 

can confirm that 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) must be greater than 0. As a result, the 

verifier can be convinced that the secret value 𝑚 must be in the range [𝑎, 𝑏]. 

The honest prover follows our protocol to produce the proof 𝜋 that can pass the 

verification such that the verifier can confirm that the secret value 𝑚 must be in the 

range [𝑎, 𝑏]. Therefore, our protocol satisfies the correctness property. 

 

3.3.2 Soundness 

 

Theorem 4. If the prover follows our protocol to produce the proof 𝜋 =

{𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2} that can pass the verification with non-negligible 

probability, the secret value 𝑚 must be in the range [𝑎, 𝑏]. In addition, the committed 

value of 𝐶 must be 𝑚. 

 

Lemma 2. If the proof 𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2}  can pass the 

verification with non-negligible probability, the prover must know all the secret values 

that are used to produce the proof 𝜋, such as 𝑀, 𝑟1. In other words, when the prover 

does not know any of secret values, the prover cannot produce a proof 𝜋 that can pass 

the verification. 

 

Proof. We take 𝑀, 𝑟1 as example. Use one of the steps from our protocol: 𝐶1
′ = 𝑀 ∙

𝐺 + 𝑟1 ∙ 𝐻 to run the ZKPCS (Section 2.8) with two different challenges ς and ς′:  

In the following, the prover is denoted as 𝑃, and the verifier is denoted as 𝑉. 

(1) 𝑃  randomly chooses 𝑟, 𝑠 ∈ ℤ𝑞
∗   and computes 𝐶 = 𝑟 ∙ 𝐺 + 𝑠 ∙ 𝐻 . Then, 𝑃 

publishes 𝐶. 

(2) 𝑉 randomly chooses two different challenges ς, ς′ ∈ ℤ𝑞
∗  and sends them to 𝑃. 

(3) 𝑃 computes two responses  

 

(𝑢 = 𝑟 − ς𝑀, 𝑣 = 𝑠 − ς𝑟1), 
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(𝑢′ = 𝑟 − ς′𝑀, 𝑣′ = 𝑠 − ς′𝑟1) 

 

and publishes them. 

(4) 𝑉 computes 𝐶 by the two responses:  

 

(𝑢 = 𝑟 − ς𝑀, 𝑣 = 𝑠 − ς𝑟1) → 𝐶 = 𝑢 ∙ 𝐺 + 𝑣 ∙ 𝐻 + ς ∙ 𝐶1
′ , 

(𝑢′ = 𝑟 − ς′𝑀, 𝑣′ = 𝑠 − ς′𝑟1) → 𝐶 = 𝑢′ ∙ 𝐺 + 𝑣′ ∙ 𝐻 + ς′ ∙ 𝐶1
′ . 

 

We subtract the two equations, and we obtain  

 

0 = (𝑢 − 𝑢′)𝐺 + (𝑣 − 𝑣′)𝐻 + (𝜍 − 𝜍′)𝐶1
′ . 

 

Because ς ≠ ς′, ς − ς′ ≠ 0. Therefore,  

 

𝐶1
′ =

(𝑢 − 𝑢′)

(𝜍′ − 𝜍)
∙ 𝐺 +

(𝑣 − 𝑣′)

(𝜍′ − 𝜍)
∙ 𝐻. 

 

And then we know 𝐶1
′ = 𝑀 ∙ 𝐺 + 𝑟1 ∙ 𝐻, so  

 

𝑀 =
(𝑢 − 𝑢′)

(𝜍′ − 𝜍)
 mod 𝑞, 

𝑟1 =
(𝑢 − 𝑢′)

(𝜍′ − 𝜍)
 mod 𝑞. 

 

In addition, since 𝑞 which is the order of the points 𝐺 and 𝐻 is a prime number,  

 

𝐺𝐶𝐷(𝑞, 𝜍′ − 𝜍) = 1. 

 

As a result, the inverse of 𝜍′ − 𝜍, 
1

𝜍′−𝜍
, must exist. Therefore, 𝑀, 𝑟1 must exist, and 

the prover must know them. Similarly, the prover must know all the committed values 

that are used to produce the proof 𝜋  and these values must exist, so Lemma 2 is 

proved. 

 

Lemma 3. If the proof 𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2}  can pass the 

verification with non-negligible probability, the committed value of 𝐶′′, 𝜔2(𝑚 − 𝑎 +

1)(𝑏 − 𝑚 + 1), must greater than 0.  
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Proof. According to Lemma 2, if the proof 𝜋 can pass the verification, the prover 

must know 𝑀, 𝑟1, 𝑟2. According to our protocol, 𝐶1
′ = 𝑀 ∙ 𝐺 + 𝑟1 ∙ 𝐻，𝐶2

′ = 𝑟2 ∙ 𝐻. In 

addition, the verifier can compute 𝐶′′ = 𝐶1
′ + 𝐶2

′ + 𝑅 ∙ 𝐺 through 𝐶1
′ , 𝐶2

′ , and 𝑅. We 

know 𝐶′′ = (𝑀 + 𝑅) ∙ 𝐺 + (𝑟1 + 𝑟2) ∙ 𝐻. If 𝜋 pass the verification step 6 and step 7, 

it means that 𝑀 is a square number and 𝑅 > 0. Obviously, the committed value of 

𝐶′′ is greater than 0, i.e., ω2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) = 𝑀 + 𝑅 > 0, so Lemma 3 is 

proved. 

 

 According to the binding property of the EC-Pederesen commitment scheme 

(Lemma 1), Lemma 2, and Lemma 3, If the proof 𝜋 can pass the verification with 

non-negligible probability, the committed value of 𝐶′′ must be ω2(𝑚 − 𝑎 + 1)(𝑏 −

𝑚 + 1) , and ω2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1)  must be greater than 0. In other words, 

when the proof 𝜋 pass the verification, the verifier can confirm that the secret value 

𝑚  must be in the range [𝑎, 𝑏] . As a result, Theorem 4 always holds, our protocol 

satisfies the soundness property. 

 

3.3.3 Zero-knowledge 

 

Theorem 5. Assume that there exists a simulator 𝑆 follows our protocol, but replaces 

all secret values that only the prover knows (e.g., 𝑚, 𝑟 ) with random numbers to 

produce the proof 𝜋′, and 𝜋′ can be verified. For all adversaries, there does not exist 

any algorithm in probabilistic-polynomial time to distinguish between the proof 𝜋 

produced by the prover and the proof 𝜋′ produced by the simulator 𝑆. 

 

Proof. To prove Theorem 5, we use game hopping. First, we define two games: the 

first game 𝒢1 (real game) follows our protocol to produce the proof. Secondly, the 

game 𝒢2 (ideal game) is to change the steps of 𝒢1 so that the proof produced by 𝒢2 

does not contain any information of secret values. Lastly, we argue the computationally 

indistinguishable of the two games 𝒢1 and 𝒢2, to prove that Theorem 5 holds.  

 

According to the zero-knowledge property of EC-EL proof (Theorem 2), no adversary 

can distinguish the proof produced by simulator ℰℒ𝒮 from the real EC-EL proof. 

 

We describe the two games 𝒢1  and 𝒢2  and explain their differences in detail. The 

complete game description is shown in Figure 3, where “chg” means to change 𝒢1 to 

a new instruction, and “del” means to delete the instruction of 𝒢1. 
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Figure 3: Proof Games 𝒢1, 𝒢2 of Theorem 5 

 

𝒢1: This game is the real model of our ZKRP protocol. 

𝒢2: This game is the ideal model. In this game, the EC-EL proof is replaced by the 

simulator ℰℒ𝒮 to produce the EL proof and the SQR proof, and any values that related 

to the secret value is replaced by a random number, so the proof produced by 𝒢2 does 

not contain any information of secret values.  

 

In the following, we explain the computationally indistinguishable of the two games 

𝒢1 and 𝒢2.  

(1) In “chg 1”, 𝒢2 replaces the proof produced by the EC-EL proof with the proof 

produced by the simulator ℰℒ𝒮 . If there exists a distinguisher 𝒟  in 

probabilistic-polynomial time such that the adversary can distinguish between 

the two proofs 𝐸𝐿  produced by 𝒢1  and 𝒢2 , it breaks the zero-knowledge 

property of EC-EL proof (Theorem 2). Therefore, if the adversary follows the 

verification steps to verify the two proofs produced by 𝒢1 and 𝒢2, both can 

pass the verification step 3 to step 7. Thus, they cannot distinguish between the 

two proofs. 

(2) In “chg 2”, the adversary follows 𝒢1 to produce the proof 𝑆𝑄𝑅1. First, the 

adversary computes  

 

𝐹1 = 𝜔 ∙ 𝐺 + 𝑟2
′ ∙ 𝐻，𝑟2

′
$
←ℤ𝑞

∗  

 

and then computes  

 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

38 
 

𝐸′ = 𝜔 ∙ 𝐹1 + 𝑟3
′ ∙ 𝐻. 

 

After that, the adversary produces the proof  

 

𝐸𝐿
$
←EL(𝜔, 𝑟2

′, 𝑟3
′, 𝐺, 𝐻, 𝐹1, H) 

 

through 𝐹1 and 𝐸′. Finally, the adversary produces the proof  

 

𝑆𝑄𝑅1 = {EL(𝜔, 𝑟2
′, 𝑟3

′, 𝐺, 𝐻, 𝐹1, H), 𝐹1}. 

 

If there exists a distinguisher 𝒟 in probabilistic-polynomial time such that the 

adversary can distinguish between the two proofs 𝑆𝑄𝑅1 produced by 𝒢1 and 

𝒢2, it means that 𝒟 can distinguish between the EL proofs in the two 𝑆𝑄𝑅1. 

This breaks the zero-knowledge property of EC-EL proof (Theorem 2). In 

addition, it can be seen that "chg 3" is the same as "chg 2". Therefore, if the 

adversary follows the verification steps to verify the two proofs produced by 

𝒢1 and 𝒢2, both can pass the verification step 3 to step 7. Thus, they cannot 

distinguish between the two proofs. 

(3) In “chg 4.1”, the adversary follows 𝒢1 to compute  

 

𝐶1
′ = 𝑀 ∙ 𝐺 + 𝑟1 ∙ 𝐻, 

 

and then follows 𝒢2 to compute  

 

𝐶1
′ = 𝑟6 ∙ 𝐺 + 𝑟6̅ ∙ 𝐻，𝑟6

$
←ℤ𝑞

∗ . 

 

If there exists a distinguisher 𝒟 in probabilistic-polynomial time such that the 

adversary can distinguish between the two 𝐶1
′ in 𝒢1 and 𝒢2, it means that 

the adversary can distinguish between the two committed values 𝑀 and 𝑟6. 

This breaks the hiding property of the elliptic-curve Pedersen commitment 

scheme. 

In “chg 4.2”, the adversary follows 𝒢1 to compute  

 

𝐶2
′ = 𝑟2 ∙ 𝐻, 

 

and then follows 𝒢2 to compute  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

39 
 

 

𝐶2
′ = 𝑟7 ∙ 𝐻，𝑟7

$
←ℤ𝑞

∗ . 

 

If there exists a distinguisher 𝒟 in probabilistic-polynomial time such that the 

adversary can distinguish between the two 𝐶2
′  in 𝒢1 and 𝒢2, it means that 

the adversary can compute 𝑟2, 𝑟7 through the two 𝐶2
′ . That is, 𝒟 can solve 

the elliptic-curve discrete logarithm problem [12] in probabilistic-polynomial 

time. 

In “chg 4.3”, The value of 𝑅  in 𝒢2  must be positive, so the proof 𝜋 

produced by 𝒢2  can pass the verification step 7. Therefore, the adversary 

cannot distinguish the two 𝑅 in 𝒢1 and 𝒢2. 

In “chg 4.4”, the adversary follows 𝒢2 to compute  

 

𝐶′′ = 𝐶1
′ + 𝐶2

′ + 𝑅 ∙ 𝐺, 

 

so the proof 𝜋 produced by 𝒢2 can pass the verification step 5. Therefore, 

the adversary cannot distinguish the two 𝐶′′ in 𝒢1 and 𝒢2. If the adversary 

follows the verification steps to verify the two proofs produced by 𝒢1 and 𝒢2, 

both can pass the verification step 3 to step 7. Thus, they cannot distinguish 

between the two proofs. 

(4) In “chg 5.1”, the adversary follows 𝒢1 to compute  

 

𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝐺 = (𝑚 − 𝑎 + 1) ∙ 𝐺 + 𝑟 ∙ 𝐻, 

 

and then follows 𝒢2 to compute  

 

𝐶1 = 𝑟8 ∙ 𝐺 + 𝑟8̅ ∙ 𝐻，𝑟8
$
←ℤ𝑞

∗ . 

 

If there exists a distinguisher 𝒟 in probabilistic-polynomial time such that the 

adversary can distinguish between the two 𝐶1 in 𝒢1 and 𝒢2, it means that 

the adversary can distinguish between the two committed values (𝑚 − 𝑎 + 1) 

and 𝑟8 . This breaks the hiding property of the elliptic-curve Pedersen 

commitment scheme. 

In “chg 5.2”, the adversary follows 𝒢1 to compute 

 

𝐶 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝐻, 
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and then follows 𝒢2 to compute  

 

𝐶 = 𝐶1 + (𝑎 − 1) ∙ 𝐺 = (𝑟8 + 𝑎 − 1) ∙ 𝐺 + 𝑟 ∙ 𝐻. 

 

This is the same as “chg 5.1”. 

In “chg 5.2”, the adversary follows 𝒢1 to compute 

 

𝐶′ = (𝑏 −𝑚 + 1) ∙ 𝐶1 + 𝑟
′ ∙ 𝐻 

= (𝑚 − 𝑎 + 1)(𝑏 −𝑚 + 1) ∙ 𝐺 + ((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) ∙ 𝐻, 

 

and then follows 𝒢2 to compute  

 

𝐶′ = 𝑟9 ∙ 𝐺 + 𝑟9̅ ∙ 𝐻，𝑟9
$
←ℤ𝑞

∗ . 

 

This is the same as “chg 5.1”. Therefore, if the adversary follows the 

verification steps to verify the two proofs produced by 𝒢1 and 𝒢2, both can 

pass the verification step 3 to step 7. Thus, they cannot distinguish between the 

two proofs. 

 

According to (1)(2)(3)(4), there does not exist any algorithm in probabilistic-

polynomial time to distinguish the two proofs produced by the game 𝒢1 and 𝒢2. That 

is 𝒢1 and 𝒢2 are computationally indistinguishable, so Theorem 5 is proved. 

 

According to Theorem 5, no adversary can distinguish between the two proofs 

produced by 𝒢1  and 𝒢2 . It means that the adversary cannot determine whether the 

proof 𝜋 produced by our protocol contains the secret value 𝑚. That is, the adversary 

cannot compute the secret value 𝑚  through the proof 𝜋 . Therefore, our protocol 

satisfies the zero-knowledge property. 
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4 Non-Interactive Designated Verifier EC-ZKRP 

Protocol 

 

In addition, we consider that the prover may not want to let everyone except the 

designated verifier knows the range of the secret value. That is, the proof produced by 

the prover cannot convince any other third parties. Thus, we require a designated 

verifier ZKRP scheme. Even if the designated verifier reveals the important information 

of the proof, any other third party cannot trust the verification result or verify the proof. 

There are several related works about the designated verifier non-interactive zero-

knowledge proof (DV-NIZK) [7][14][17], but a DV-ZKRP scheme has not been 

proposed yet. 

 

In this chapter, we introduce the non-interactive designated verifier EC-ZKRP 

scheme (DV-EC-ZKRP) and the non-interactive strong designated verifier EC-ZKRP 

scheme (SDV-EC-ZKRP) which are based on our EC-ZKRP scheme as described in 

Chapter 3, but the commitment scheme is replaced by the trapdoor commitment 

scheme (Section 2.5). The definitions of the designated verifier and strong designated 

verifier in this thesis follow by the definitions proposed by Jakobsson et al. [13], i.e., 

the designated verifier proof cannot be trusted by any third party, while the strong 

designated verifier proof cannot be verifier by any third party. However, the designated 

verifier is strictly defined in the schemes [7][14][17] mentioned above, which is 

different from our definitions: the designated verifier proof cannot be verified by any 

third party. Therefore, our definition of the strong designated verifier can correspond to 

the definition of the designated verifier in the schemes [7][14][17]. In the following, 

we describe the definitions and the protocols in detail. 

 

4.1 Designated Verifier EC-ZKRP Scheme 

 

In this section, we introduce the definitions, protocol, and security description of 

the DV-EC-ZKRP scheme in detail. 

 

4.1.1 Definitions and Security Models 

 

A scheme satisfies the designated verifier property: the prover follows the scheme 

to produce the proof which can only convince the designated verifier, and any other 
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third party cannot be convince by the proof. More precisely, there does not exist any 

algorithm in probabilistic-polynomial time to distinguish between the proof produced 

by the prover and the proof produced by the verifier. Since any third parties can think 

the proof is produced by the designated verifier, they cannot trust the proof. 

 

Definition 20 (Designated verifier). Let 𝑃(𝐴, 𝐵)  is a designated verifier protocol 

which allows a prover 𝐴 to produce a proof 𝜋 to prove to 𝐵 that a statement 𝜃 is 

true, and there is another protocol 𝑃′(𝐵, 𝐶) such that 𝐵 can prove the truth of 𝜃 to 

𝐶. The probability  

 

||Pr

[
 
 
 
𝑏′ = 𝑏 ∶

𝜋0 ← 𝑃(𝐴, 𝐵);

𝜋1 ← 𝑃′(𝐵, 𝐶);

𝑏 ∈ {0,1};
𝑏′ ← 𝒜(𝜋𝑏) ]

 
 
 
−
1

2
|| ≤ 𝑛𝑒𝑔𝑙(𝜆) 

 

for all probabilistic-polynomial time adversaries 𝒜 and security parameter 𝜆. 

 

Definition 21 (Non-interactive designated verifier zero-knowledge range proof, DV-

ZKRP). DV-ZKRP is composed by three functions (𝑆𝑒𝑡𝑢𝑝, 𝑃𝑟𝑜, 𝑉𝑒𝑟). 

(1) 𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆) : by inputting a secure parameter 𝜆 , the polynomial-time 

function 𝑆𝑒𝑡𝑢𝑝 outputs the public parameters 𝑝𝑝. 

(2) 𝜋
$
←𝑃𝑟𝑜(𝑝𝑝, 𝑝𝑘𝑣, 𝑚, 𝑎, 𝑏): by inputting the public parameters 𝑝𝑝, the public 

key of the designated verifier 𝑝𝑘𝑣, the secret value 𝑚, and the lower bound 

and upper bound of a range 𝑎, 𝑏, where 𝑎 < 𝑏, the polynomial-time function 

𝑃𝑟𝑜 outputs the proof 𝜋. 

(3) 𝑟 ← 𝑉𝑒𝑟(𝑝𝑝, 𝑝𝑘𝑣, 𝜋, 𝑎, 𝑏): by inputting the public parameters 𝑝𝑝, the public 

key of the designated verifier 𝑝𝑘𝑣 , the proof 𝜋 , and the lower bound and 

upper bound of a range 𝑎, 𝑏 , the polynomial-time function 𝑉𝑒𝑟  outputs a 

result 𝑟 ∈ {0,1}. The proof 𝜋 is accepted if 𝑟 is equal to 1, which means that 

the secret value 𝑚 is in the range [𝑎, 𝑏], i.e., 𝑎 ≤ 𝑚 ≤ 𝑏. Otherwise, it is 

rejected, i.e., 𝑚 ∉ [𝑎, 𝑏]. 

 

A DV-ZKRP scheme satisfies the designated verifier property: there does not exist 

any algorithm in probabilistic-polynomial time to distinguish between the proof 

produced by the prover and the proof produced by the designated verifier. 
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Definition 22 (Designated verifier of DV-ZKRP). Given a prover 𝐴 and a designated 

verifier 𝐵. The probability  

 

|

|
Pr

[
 
 
 
 
 

𝑏′ = 𝑏 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝜋0 ← 𝐴(𝑃𝑟𝑜(𝑝𝑝, 𝑝𝑘𝐵, 𝑚, 𝑎, 𝑏));

𝜋1 ← 𝐵(𝑃𝑟𝑜(𝑝𝑝, 𝑝𝑘𝐵, 𝑚, 𝑎, 𝑏));

𝑏 ∈ {0,1};
𝑏′ ← 𝒜(𝑝𝑝, 𝜋𝑏) ]

 
 
 
 
 

−
1

2
|

|
≤ 𝑛𝑒𝑔𝑙(𝜆) 

 

for all probabilistic-polynomial time adversaries 𝒜 and security parameter 𝜆. 

 

4.1.2 Designated Verifier EC-ZKRP Protocol 

 

We describe the DV-EC-ZKRP protocol in detail below: the prover knows the 

secret value 𝑚  in the range [𝑎, 𝑏] , and the prover wants to prove to a designated 

verifier that 𝑚 is in the range [𝑎, 𝑏] without revealing 𝑚. Given that the private key 

of the designated verifier is 𝑋 and the public key is 𝑌, where 𝑌 = 𝑋 ∙ 𝐺. 𝐺 and 𝑌 

are two points on a curve 𝐸(𝔽𝑝) have the order 𝑞, and 𝑋 ∈ ℤ𝑞
∗ . The prover randomly 

chooses 𝑟 ∈ ℤ𝑞
∗  to compute the commitment  

 

𝐶 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝑌. 

 

by using the public key of the verifier 𝑌. 

 

To produce the non-interactive DV-EC-ZKRP:  

(1) The prover randomly chooses 𝑟′ ∈ ℤ𝑞
∗  to compute 

 

𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝐺, 

𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶, 

𝐶′ = (𝑏 −𝑚 + 1) ∙ 𝐶1 + 𝑟
′ ∙ 𝑌. 

 

(2) Since the two commitments 

 

𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶 = (𝑏 − 𝑚 + 1) ∙ 𝐺 + (−𝑟) ∙ 𝑌, 

𝐶′ = (𝑏 −𝑚 + 1) ∙ 𝐶1 + 𝑟
′ ∙ 𝑌 

 

hide the same value (𝑏 − 𝑚 + 1), the prover produces the EL proof:  
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𝐸𝐿 = EL(𝑏 −𝑚 + 1,−𝑟, 𝑟′, 𝐺, 𝑌, 𝐶1, 𝑌). 

 

(3) The prover randomly chooses 𝜔 and 𝑟′′ to compute 

 

𝐶′′ = 𝜔2 ∙ 𝐶′ + 𝑟′′ ∙ 𝑌. 

 

(4) Since the commitment 𝐶′′ hides a square number 𝜔2, the prover produces the 

SQR proof: 

 

𝑆𝑄𝑅1 = 𝑆𝑄𝑅(𝜔, 𝑟′′, 𝐶′, 𝑌). 

 

(5) The prover randomly chooses 𝛼 ∈ ℤ𝑞
∗  to compute 

 

𝑀 = 𝛼2. 

 

If 𝑀 ≥ 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1), repeat (5). 

(6) The prover computes  

 

𝑅 = 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) −𝑀, 

 

which must be greater than 0. 

(7) The prover randomly chooses 𝑟1 ∈ ℤ𝑞
∗  to compute  

 

𝑟2 = 𝜔2((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) + 𝑟′′ − 𝑟1. 

 

(8) The prover computes 

 

𝐶1
′ = 𝑀 ∙ 𝐺 + 𝑟1 ∙ 𝑌, 

𝐶2
′ = 𝑟2 ∙ 𝑌. 

 

(9) Since the commitment 𝐶1
′ hides a square number 𝑀, the prover produces the 

SQR proof: 

 

𝑆𝑄𝑅2 = 𝑆𝑄𝑅(𝛼, 𝑟1, 𝐺, 𝑌). 

 

(10) The prover produces the proof 

 

𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2}. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101402

45 
 

 

To verify the non-interactive DV-EC-ZKRP proof 𝜋, the designated verifier runs 

the following steps:  

(1) Compute 𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝑌. 

(2) Compute 𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶. 

(3) Verify vEL(𝐸𝐿, 𝐺, 𝑌, 𝐶1, 𝑌, 𝐶2, 𝐶
′). 

(4) Verify vSQR(𝑆𝑄𝑅1, 𝐶
′, 𝑌, 𝐶′′). 

(5) Verify 𝐶′′ = 𝐶1
′ + 𝐶2

′ + 𝑅 ∙ 𝐺. 

(6) Verify vSQR(𝑆𝑄𝑅2, 𝐺, 𝑌, 𝐶1
′). 

(7) Verify 𝑅 > 0. 

The designated verifier can be convinced that the secret value 𝑚 must be in the range 

[𝑎, 𝑏] if and only if the verification step 3 to step 7 are passed.  

 

If any other third parties follow the verification steps to verify the proof, they 

cannot accept the verification result even if the step 3 to step 7 are passed, because they 

could think the prover and the designated verifier cheat together since the verifier 

knows 𝑋, which is the relation of 𝐺 and 𝑌, i.e., the verifier can find 𝑚1, 𝑚2, 𝑟1, 𝑟1 ∈

ℤ𝑞
∗  easily such that  

 

𝐶 = 𝑚1 ∙ 𝐺 + 𝑟1 ∙ 𝑌 = 𝑚2 ∙ 𝐺 + 𝑟2 ∙ 𝑌. 

 

That is, for any other third parties, the commitments that are used to produce the proof 

does not satisfy the binding property. Therefore, the verification result can be only 

accepted by the designated verifier. 

 

4.1.3 Security Description: Designated Verifier 

 

Our DV-EC-ZKRP scheme satisfies the designated verifier property: there does 

not exist any algorithm in probabilistic-polynomial time to distinguish between the 

proof produced by the prover and the proof produced by the designated verifier. In other 

words, the designated verifier can find two different secret values to produce the same 

proof such that any third party cannot trust the proof. 

 

Lemma 4. Anyone who knows the relation of the public parameters 𝐺,𝐻 can produce 

an EC-EL proof 𝐸𝐿 = (ℎ, 𝑥, 𝑥1, 𝑥2) with different inputs. 

 

Proof. Let 𝜌 ∈ ℤ𝑞
∗   be the the relation of the two sets of public parameters 

(𝐺1, 𝐻1), (𝐺2, 𝐻2), i.e., 𝐻1 = 𝜌𝐺1, 𝐻2 = 𝜌𝐺2. Assume that an adversary 𝒜 knows 𝜌 
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and the two commitments  

 

𝐴 = 𝑚 ∙ 𝐺1 + 𝑠 ∙ 𝐻1, 

𝐵 = 𝑚 ∙ 𝐺2 + 𝑟 ∙ 𝐻2, 

 

where 𝐴 and 𝐵 have the same committed value 𝑚 ∈ ℤ𝑞
∗ , 𝑠, 𝑟

$
←ℤ𝑞

∗ . The adversary 

𝒜 inputs (𝑚, 𝑟, 𝑠, 𝐺1, 𝐻1, 𝐺2, 𝐻2, 𝐴, 𝐵) and to produce  

 

𝐸𝐿 = (ℎ, 𝑥, 𝑥1, 𝑥2):

{
 
 
 

 
 
 𝜇, 𝑣1, 𝑣2

$
←ℤ𝑞

∗

𝐶1 = 𝜇𝐺1 + 𝑣1𝐻1
𝐶2 = 𝜇𝐺2 + 𝑣2𝐻2
ℎ = ℎ𝑎𝑠ℎ(𝐶1||𝐶2)

𝑥 = 𝜇 + ℎ𝑚
𝑥1 = 𝑣1 + ℎ𝑠
𝑥2 = 𝑣2 + ℎ𝑟

. 

 

Then the adversary 𝒜 can compute  

 

𝑠′ =
(𝑚 −𝑚′)

𝜌
+ 𝑠 (mod 𝑞), 

𝑟′ =
(𝑚 −𝑚′)

𝜌
+ 𝑟 (mod 𝑞) 

 

such that the two commitment  

 

𝐴 = 𝑚 ∙ 𝐺1 + 𝑠 ∙ 𝐻1 = (𝑚 + 𝜌𝑠) ∙ 𝐺1 = (𝑚′ + 𝜌𝑠′) ∙ 𝐺1 = 𝑚
′ ∙ 𝐺1 + 𝑠

′ ∙ 𝐻1, 

𝐵 = 𝑚 ∙ 𝐺2 + 𝑟 ∙ 𝐻2 = (𝑚 + 𝜌𝑟) ∙ 𝐺2 = (𝑚
′ + 𝜌𝑟′) ∙ 𝐺2 = 𝑚′ ∙ 𝐺2 + 𝑟

′ ∙ 𝐻2. 

 

Finally, the adversary 𝒜  can produce the same proof 𝐸𝐿 = (ℎ, 𝑥, 𝑥1, 𝑥2)  with the 

different input (𝑚′, 𝑟′, 𝑠′, 𝐺1, 𝐻1, 𝐺2, 𝐻2, 𝐴, 𝐵) through 

 

𝜇′ = 𝑥 − ℎ𝑚′, 

𝑣1
′ = 𝑥1 − ℎ𝑠

′, 

𝑣2
′ = 𝑥2 − ℎ𝑟

′, 

 

since 
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𝜇′𝐺1 + 𝑣1
′𝐻1 

= [(𝑥 − ℎ𝑚′) + (𝑥1 − ℎ𝑠
′)𝜌]𝐺1 

= (𝜇 + ℎ(𝑚 −𝑚′) + (𝑣1 + ℎ(𝑠 − 𝑠
′))𝜌)𝐺1 

= (𝜇 + 𝑣1𝜌)𝐺1 + ℎ(𝑚 + 𝜌𝑠)𝐺1 − ℎ(𝑚
′ + 𝜌𝑠′)𝐺1 

= 𝜇𝐺1 + 𝑣1𝐻1 + 𝐴 − 𝐴 = 𝐶1, 

 

and  

 

𝜇′𝐺2 + 𝑣2
′𝐻2 

= [(𝑥 − ℎ𝑚′) + (𝑥2 − ℎ𝑟
′)𝜌]𝐺2 

= (𝜇 + ℎ(𝑚 −𝑚′) + (𝑣2 + ℎ(𝑟 − 𝑟
′))𝜌)𝐺2 

= (𝜇 + 𝑣2𝜌)𝐺2 + ℎ(𝑚 + 𝜌𝑟)𝐺2 − ℎ(𝑚
′ + 𝜌𝑟′)𝐺2 

= 𝜇𝐺2 + 𝑣2𝐻2 + 𝐵 − 𝐵 = 𝐶2. 

 

Thus, the value ℎ = ℎ𝑎𝑠ℎ(𝐶1||𝐶2) = ℎ𝑎𝑠ℎ((𝜇′𝐺1 + 𝑣1
′𝐻1)||(𝜇

′𝐺2 + 𝑣2
′𝐻2))  does 

not change, i.e., the adversary 𝒜  can produce the same EC-EL proof 𝐸𝐿 =

(ℎ, 𝑥, 𝑥1, 𝑥2) with two different inputs 

 

(𝑚, 𝑟, 𝑠, 𝐺1, 𝐻1, 𝐺2, 𝐻2, 𝐴, 𝐵), 

(𝑚′, 𝑟′, 𝑠′, 𝐺1, 𝐻1, 𝐺2, 𝐻2, 𝐴, 𝐵) 

 

by knowing 𝜌. Therefore, Lemma 4 is proved. 

 

Theorem 6. The designated verifier can find two different secret values 𝑚,𝑚′  to 

produce the same proof 𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2} if the verifier has 

his/her private key 𝑋. 

 

Proof. Let 𝑌 be the public key of the designated verifier, and 𝑌 = 𝑋 ∙ 𝐺. Assume that 

the verifier knows a secret value 𝑚 ∈ [𝑎, 𝑏] and produces a DV-EC-ZKRP proof  
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𝜋 = (
𝐶, 𝐶′, 𝐶′′, 𝐶1

′ , 𝐶2
′ ,

𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2
) :

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑟, 𝑟′, 𝑟′′, 𝜔, 𝛼, 𝑟2 ← ℤ𝑞
∗ ;

𝐶 = 𝑚𝐺 + 𝑟𝑌;
𝐶′ = (𝑏 −𝑚 + 1)𝐶 + 𝑟′𝑌;

𝐶′′ = 𝜔2𝐶′ + 𝑟′′𝑌;

𝐶1
′ = 𝛼2𝐺 + (𝜔2((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) + 𝑟′′ − 𝑟2)𝑌;

𝐶2
′ = 𝑟2𝑌;

𝑅 = 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) − 𝛼2;

𝐸𝐿
$
←EL(𝑏 −𝑚 + 1,−𝑟, 𝑟′, 𝐺, 𝑌, 𝐶 − (𝑎 − 1)𝐺, 𝑌);

𝑆𝑄𝑅1
$
←SQR(𝜔, 𝑟′′, 𝐶′, 𝑌);

𝑆𝑄𝑅2
$
←SQR(𝛼, 𝑟1, 𝐺, 𝑌)

 

 

with his/her public key 𝑌. Then the verifier sets 𝜔̂ = 0 and computes  

 

𝑟̂ =
(𝑚 −𝑚′)

𝑋
+ 𝑟 (mod 𝑞), 

𝑟 ′̂ =
(𝑚′ −𝑚)(𝑚 + 𝑟𝑋)

𝑋
+ 𝑟′ (mod 𝑞), 

𝑟′′̂ =
(𝜔2 − 𝜔̂2)((𝑏 −𝑚 + 1)(𝑚 − 𝑎 + 1 + 𝑟𝑋) + 𝑟′𝑋)

𝑋
+ 𝑟′′ (mod 𝑞), 

𝑟2̂ = 𝑟2 (mod 𝑞), 

𝑟1̂ = 𝜔̂
2 ((𝑏 − 𝑚′ + 1)𝑟̂ + 𝑟 ′̂) + 𝑟′′̂ − 𝑟2̂ (mod 𝑞), 

𝑀̂ = 𝑀 + (𝑟1 − 𝑟1̂)𝑋 (mod 𝑞), where 𝑀 = 𝛼2 

 

such that 

 

𝐶 = 𝑚𝐺 + 𝑟𝑌 = 𝑚′𝐺 + 𝑟̂𝑌, 

𝐶′ = (𝑏 −𝑚 + 1)𝐶 + 𝑟′𝑌 = (𝑏 − 𝑚′ + 1)𝐶 + 𝑟 ′̂𝑌, 

𝐶′′ = 𝜔2𝐶′ + 𝑟′′𝑌 = 𝜔̂2𝐶′ + 𝑟′′̂𝑌, 

𝐶1
′ = 𝑀𝐺 + 𝑟1𝑌 = 𝑀̂𝐺 + 𝑟1̂𝑌, 

𝐶2
′ = 𝑟2𝑌 = 𝑟2̂𝑌. 

 

Furthermore, according to Lemma 4, the verifier can produce the same EL proof 𝐸𝐿 

with (𝑏 − 𝑚′ + 1)  and the same SQR proof 𝑆𝑄𝑅1, 𝑆𝑄𝑅2  with 𝜔̂, 𝑀̂ . Finally, the 

verifier can produce the same proof 𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2}  by 

using the different secret 𝑚′ ∈ ℤ𝑞
∗  since 

 

𝜔̂2(𝑚′ − 𝑎 + 1)(𝑏 − 𝑚′ + 1) − 𝑀̂ 
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= 0 − 𝑀̂ 

= (𝑟1̂ − 𝑟1)𝑋 −𝑀 

= (𝑟′′̂ − (𝑟1 + 𝑟2))𝑋 −𝑀 

= (𝜔2((𝑏 − 𝑚 + 1)(𝑚 − 𝑎 + 1 + 𝑟𝑋) + 𝑟′𝑋) + 𝑟′′𝑋)

− (𝜔2((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) + 𝑟′′)𝑋 −𝑀 

= 𝜔2(𝑏 − 𝑚 + 1)(𝑚 − 𝑎 + 1) − 𝑀 

= 𝑅. 

 

Thus, it can be seen that the designated verifier can produce the same proof 𝜋 =

{𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2}  with two different secret 𝑚,𝑚′  if the verifier 

knows his/her private key 𝑋 . Therefore, Theorem 6 is proved. The DV-EC-ZKRP 

scheme satisfies the designated verifier property. 

 

4.2 Strong Designated Verifier EC-ZKRP Scheme 

 

Due to the confidentiality of the secret value, sometimes we would everyone except 

the designated verifier like to not only be unable to trust the proof, but also cannot verify 

the proof. Therefore, we require a strong designated verifier ZKRP scheme.  

 

A strong designated verifier ZKRP scheme can make any third be unable to verify 

the proof, or trust the proof even if they receive the key used to produce the proof, while 

a designated verifier ZKRP scheme can only make any third party does not trust the 

proof, but they can still verify the proof. 

 

In this section, we introduce the definitions, protocol, and security description of 

the SDV-EC-ZKRP scheme in detail. 

 

4.2.1 Definitions and Security Models 

 

A scheme satisfies the strong designated verifier property: the prover follows the 

scheme to produce the proof which can only convince the designated verifier, and any 

other third party cannot follow the scheme to verify the proof. More precisely, there 

does not exist any algorithm in probabilistic-polynomial time to distinguish between 

two proofs produced by different provers.  

 

Definition 23 (Strong designated verifier). Let 𝑃(𝐴, 𝐵)  is a designated verifier 
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protocol which allows a prover 𝐴  to produce a proof 𝜋  to prove to 𝐵  that a 

statement 𝜃 is true, and there is another protocol 𝑃′(𝐶, 𝐷) such that 𝐶 can prove the 

truth of 𝜃 to 𝐷. The probability  

 

||Pr

[
 
 
 
𝑏′ = 𝑏 ∶

𝜋0 ← 𝑃(𝐴, 𝐵);

𝜋1 ← 𝑃′(𝐶, 𝐷);

𝑏 ∈ {0,1};
𝑏′ ← 𝒜(𝜋𝑏) ]

 
 
 
−
1

2
|| ≤ 𝑛𝑒𝑔𝑙(𝜆) 

 

for all probabilistic-polynomial time adversaries 𝒜 and security parameter 𝜆. 

 

Definition 24 (Non-interactive strong designated verifier zero-knowledge range proof, 

SDV-ZKRP). SDV-ZKRP is composed by three functions (𝑆𝑒𝑡𝑢𝑝, 𝑃𝑟𝑜, 𝑉𝑒𝑟). 

(1) 𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆) : by inputting a secure parameter 𝜆 , the polynomial-time 

function 𝑆𝑒𝑡𝑢𝑝 outputs the public parameters 𝑝𝑝. 

(2) 𝜋
$
←𝑃𝑟𝑜(𝑝𝑝, 𝑆𝑝𝑣, 𝑚, 𝑎, 𝑏): by inputting the public parameters 𝑝𝑝, the shared 

key of the prover and the designated verifier 𝑆𝑝𝑣, the secret value 𝑚, and the 

lower bound and upper bound of a range 𝑎, 𝑏, where 𝑎 < 𝑏, the polynomial-

time function 𝑃𝑟𝑜 outputs the proof 𝜋. 

(3) 𝑟 ← 𝑉𝑒𝑟(𝑝𝑝, 𝑆𝑝𝑣, 𝜋, 𝑎, 𝑏): by inputting the public parameters 𝑝𝑝, the shared 

key of the prover and the designated verifier 𝑆𝑝𝑣, the proof 𝜋, and the lower 

bound and upper bound of a range 𝑎, 𝑏, the polynomial-time function 𝑉𝑒𝑟 

outputs a result 𝑟 ∈ {0,1}. The proof 𝜋 is accepted if 𝑟 is equal to 1, which 

means that the secret value 𝑚  is in the range [𝑎, 𝑏] , i.e., 𝑎 ≤ 𝑚 ≤ 𝑏 . 

Otherwise, it is rejected, i.e., 𝑚 ∉ [𝑎, 𝑏]. 

 

A SDV-ZKRP scheme satisfies the strong designated verifier property: there does 

not exist any algorithm in probabilistic-polynomial time to distinguish between two 

proofs produced by different provers. 

 

Definition 25 (Strong designated verifier of SDV-EC-ZKRP). Given two provers 𝐴 

and 𝐶, and two designated verifiers 𝐵 and 𝐷. The probability  
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|

|
Pr

[
 
 
 
 
 

𝑏′ = 𝑏 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝜋0 ← 𝐴(𝑃𝑟𝑜(𝑝𝑝, 𝑆𝐴𝐵, 𝑚, 𝑎, 𝑏));

𝜋1 ← 𝐶(𝑃𝑟𝑜(𝑝𝑝, 𝑆𝐶𝐷 , 𝑚, 𝑎, 𝑏));

𝑏 ∈ {0,1};
𝑏′ ← 𝒜(𝑝𝑝, 𝜋𝑏) ]

 
 
 
 
 

−
1

2
|

|
≤ 𝑛𝑒𝑔𝑙(𝜆) 

 

for all probabilistic-polynomial time adversaries 𝒜 and security parameter 𝜆. 

 

4.2.2 Strong Designated Verifier EC-ZKRP Protocol 

 

We describe the SDV-EC-ZKRP protocol in detail below: the prover knows the 

secret value 𝑚  in the range [𝑎, 𝑏] , and the prover wants to prove to a designated 

verifier that 𝑚 is in the range [𝑎, 𝑏] without revealing 𝑚. The prover has the private 

key 𝑋𝑝 and the public key 𝑌𝑝 = 𝑋𝑝 ∙ 𝐺, and the designated verifier has the private key 

𝑋𝑣 and the public key 𝑌𝑣 = 𝑋𝑣 ∙ 𝐺. They runs ECDH as described in Section 2.4 to get 

the shared key  

 

𝑆 = 𝑋𝑝 ∙ 𝑌𝑣 = 𝑋𝑣 ∙ 𝑌𝑝 = 𝑋𝑝 ∙ 𝑋𝑣 ∙ 𝐺. 

 

By using the public key of the designated verifier, the prover computes the shared key 

𝑆 = 𝑋𝑝 ∙ 𝑌𝑣 and randomly chooses 𝑟 ∈ ℤ𝑞 to compute the commitment  

 

𝐶 = 𝑚 ∙ 𝐺 + 𝑟 ∙ 𝑆. 

 

To produce the non-interactive SDV-EC-ZKRP:  

(1) The prover randomly chooses 𝑟′ ∈ ℤ𝑞
∗  to compute 

 

𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝐺, 

𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶, 

𝐶′ = (𝑏 −𝑚 + 1) ∙ 𝐶1 + 𝑟
′ ∙ 𝑆. 

 

(2) Since the two commitments 

 

𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶 = (𝑏 − 𝑚 + 1) ∙ 𝐺 + (−𝑟) ∙ 𝑆, 

𝐶′ = (𝑏 −𝑚 + 1) ∙ 𝐶1 + 𝑟
′ ∙ 𝑆 

 

hide the same value (𝑏 − 𝑚 + 1), the prover produces the EL proof:  
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𝐸𝐿 = EL(𝑏 − 𝑚 + 1,−𝑟, 𝑟′, 𝐺, 𝑆, 𝐶1, 𝑆). 

 

(3) The prover randomly chooses 𝜔 and 𝑟′′ to compute 

 

𝐶′′ = 𝜔2 ∙ 𝐶′ + 𝑟′′ ∙ 𝑆. 

 

(4) Since the commitment 𝐶′′ hides a square number 𝜔2, the prover produces the 

SQR proof: 

 

𝑆𝑄𝑅1 = 𝑆𝑄𝑅(𝜔, 𝑟′′, 𝐶′, 𝑆). 

 

(5) The prover randomly chooses 𝛼 ∈ ℤ𝑞
∗  to compute 

 

𝑀 = 𝛼2. 

 

If 𝑀 ≥ 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1), repeat (5). 

(6) The prover computes  

 

𝑅 = 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) −𝑀, 

 

which must be greater than 0. 

(7) The prover randomly chooses 𝑟1 ∈ ℤ𝑞
∗  to compute  

 

𝑟2 = 𝜔2((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) + 𝑟′′ − 𝑟1. 

 

(8) The prover computes 

 

𝐶1
′ = 𝑀 ∙ 𝐺 + 𝑟1 ∙ 𝑆, 

𝐶2
′ = 𝑟2 ∙ 𝑆. 

 

(9) Since the commitment 𝐶1
′ hides a square number 𝑀, the prover produces the 

SQR proof: 

 

𝑆𝑄𝑅2 = 𝑆𝑄𝑅(𝛼, 𝑟1, 𝐺, 𝑆). 

 

(10) The prover produces the proof 

 

𝜋 = {𝐶, 𝐶′, 𝐶′′, 𝐶1
′ , 𝐶2

′ , 𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2}. 
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To verify the non-interactive SDV-EC-ZKRP proof 𝜋 , the designated verifier 

computes the shared key 𝑆 = 𝑋𝑣 ∙ 𝑌𝑝 and runs the following steps:  

(1) Compute 𝐶1 = 𝐶 − (𝑎 − 1) ∙ 𝑆. 

(2) Compute 𝐶2 = (𝑏 + 1) ∙ 𝐺 − 𝐶. 

(3) Verify vEL(𝐸𝐿, 𝐺, 𝑆, 𝐶1, 𝑆, 𝐶2, 𝐶
′). 

(4) Verify vSQR(𝑆𝑄𝑅1, 𝐶
′, 𝑆, 𝐶′′). 

(5) Verify 𝐶′′ = 𝐶1
′ + 𝐶2

′ + 𝑅 ∙ 𝐺. 

(6) Verify vSQR(𝑆𝑄𝑅2, 𝐺, 𝑆, 𝐶1
′). 

(7) Verify 𝑅 > 0. 

The designated verifier can be convinced that the secret value 𝑚 must be in the range 

[𝑎, 𝑏] if and only if the verification step 3 to step 7 are passed.  

 

Any other third party cannot follow the verification steps to verify the proof 

because they are not able to compute the shared key 𝑆 through 𝑌𝑝 and 𝑌𝑣. Note that 

it is not helpful for any third party to compute the addition of two points 𝑌𝑝 and 𝑌𝑣, 

since  

 

𝑌𝑝 + 𝑌𝑣 = (𝑋𝑝 + 𝑋𝑣)𝐺 ≠ 𝑋𝑝 ∙ 𝑋𝑣 ∙ 𝐺. 

 

However, if the designated verifier is corrupted and sends his/her private key 𝑋𝑣 

or the shared key 𝑆 to a third party so that they can verify the proof, the third party 

still cannot accept the verification result, because the third party could think the prover 

and the designated verifier cheat together since they can exchange their private key to 

compute 𝑋𝑝 ∙ 𝑋𝑣, which is the relation of 𝐺 and 𝑆, i.e., the prover and the designated 

verifier can find 𝑚1, 𝑚2, 𝑟1, 𝑟1 ∈ ℤ𝑞
∗  easily such that  

 

𝐶 = 𝑚1 ∙ 𝐺 + 𝑟1 ∙ 𝑆 = 𝑚2 ∙ 𝐺 + 𝑟2 ∙ 𝑆. 

 

That is, for any other third parties, the commitments that are used to produce the proof 

does not satisfy the binding property. Therefore, the verification result can be only 

accepted by the designated verifier and cannot be accepted by any other third party even 

if the third party knows the shared key 𝑆. 

 

4.2.3 Security Description: Strong Designated Verifier 

 

Our SDV-ZKRP scheme satisfies the strong designated verifier property: there 

does not exist any algorithm in probabilistic-polynomial time to verify the proof 
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without using the correct shared key and there does not exist any algorithm in 

probabilistic-polynomial time to distinguish between two proofs produced by different 

provers. 

 

Theorem 7. There does not exist any algorithm in probabilistic-polynomial time to 

verify the proof without using the correct shared key 𝑆. 

 

Proof. We divide the discussion into two cases:  

(1) Assume that an adversary verifies the proof through an incorrect shared key 

𝑆′: the probability that the adversary finds an incorrect shared key 𝑆′ to verify 

the proof is 

 

Pr

[
 
 
 
 

𝑉𝑒𝑟(𝑝𝑝, 𝑆′, 𝜋, 𝑎, 𝑏) = 1 ∶

𝑝𝑝
$
←𝑆𝑒𝑡𝑢𝑝(𝜆);

𝜋 ← 𝑃𝑟𝑜(𝑝𝑝, 𝑆, 𝑚, 𝑎, 𝑏);

𝑆′ ← 𝒜(𝑝𝑝, 𝜋);

𝑆′ ≠ 𝑆 ]
 
 
 
 

≤ 𝑛𝑒𝑔𝑙(𝜆) ≈ 0. 

 

Therefore, with such a negligible probability, we can ignore this case. 

(2) Assume that an adversary verifies the proof through the correct shared key 𝑆: 

it means that the adversary can solve the elliptic-curve Diffie–Hellman 

problem in probabilistic-polynomial time. 

 

According to (1)(2), there does not exist any algorithm in probabilistic-polynomial time 

to verify the proof without using the correct shared key 𝑆. Therefore, Theorem 7 is 

proved. 

 

Theorem 8. There does not exist any algorithm in probabilistic-polynomial time to 

distinguish from two proofs produced by different provers. 

 

Proof. Assume that a prover knows a secret value 𝑚 ∈ [𝑎, 𝑏] and produces a SDV-

EC-ZKRP proof  
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𝜋 = (
𝐶, 𝐶′, 𝐶′′, 𝐶1

′ , 𝐶2
′ ,

𝑅, 𝐸𝐿, 𝑆𝑄𝑅1, 𝑆𝑄𝑅2
) :

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑟, 𝑟′, 𝑟′′, 𝜔, 𝛼, 𝑟2 ← ℤ𝑞
∗ ;

𝐶 = 𝑚𝐺 + 𝑟𝑆;
𝐶′ = (𝑏 −𝑚 + 1)𝐶 + 𝑟′𝑆;

𝐶′′ = 𝜔2𝐶′ + 𝑟′′𝑆;

𝐶1
′ = 𝛼2𝐺 + (𝜔2((𝑏 − 𝑚 + 1)𝑟 + 𝑟′) + 𝑟′′ − 𝑟2)𝑆;

𝐶2
′ = 𝑟2𝑆;

𝑅 = 𝜔2(𝑚 − 𝑎 + 1)(𝑏 − 𝑚 + 1) − 𝛼2;

𝐸𝐿
$
←EL(𝑏 − 𝑚 + 1,−𝑟, 𝑟′, 𝐺, 𝑆, 𝐶 − (𝑎 − 1)𝐺, 𝑆);

𝑆𝑄𝑅1
$
←SQR(𝜔, 𝑟′′, 𝐶′, 𝑆);

𝑆𝑄𝑅2
$
←SQR(𝛼, 𝑟1, 𝐺, 𝑆)

 

 

and another prover knows a secret value 𝑚′ ∈ [𝑎, 𝑏] and uses another shared key 𝑆′ 

to produce the proof  

 

𝜋′ = (
𝑐, 𝑐′, 𝑐′′, 𝑐1

′ , 𝑐2
′ ,

𝑟, 𝑒𝑙, 𝑠𝑞𝑟1, 𝑠𝑞𝑟2
) :

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑠, 𝑠′, 𝑠′′, 𝜓, 𝛽, 𝑠2 ← ℤ𝑞
∗ ;

𝑐 = 𝑚′𝐺 + 𝑠𝑆′;
𝑐′ = (𝑏 −𝑚′ + 1)𝑐 + 𝑠′𝑆′;

𝑐′′ = 𝜓2𝑐′ + 𝑠′′𝑆′;

𝑐1
′ = 𝛽2𝐺 + (𝜓2((𝑏 −𝑚′ + 1)𝑠 + 𝑠′) + 𝑠′′ − 𝑠2)𝑆

′;

𝑐2
′ = 𝑠2𝑆

′;

𝑟 = 𝜓2(𝑚′ − 𝑎 + 1)(𝑏 − 𝑚′ + 1) − 𝛽2;

𝑒𝑙
$
←EL(𝑏 − 𝑚′ + 1,−𝑠, 𝑠′, 𝐺, 𝑆′, 𝐶 − (𝑎 − 1)𝐺, 𝑆′);

𝑠𝑞𝑟1
$
←SQR(𝜓, 𝑠′′, 𝑐′, 𝑆′);

𝑠𝑞𝑟2
$
←SQR(𝛽, 𝑠1, 𝐺, 𝑆

′)

. 

 

Let 𝜋̂ = (𝐶̂, 𝐶̂′, 𝐶̂′′, 𝐶̂1
′ , 𝐶̂2

′ , 𝑅̂, 𝐸𝐿̂, 𝑆𝑄𝑅1̂, 𝑆𝑄𝑅2̂) be a randomly chosen proof in the set 

of all valid proofs. The probability  

 

Pr[𝜋 = 𝜋̂] = Pr [

𝑟, 𝑟′, 𝑟′′, 𝜔, 𝛼, 𝑟2 ∈ ℤ𝑞
∗ ;

𝐶 = 𝐶̂, 𝐶′ = 𝐶̂′, 𝐶′′ = 𝐶̂′′, 𝐶1
′ = 𝐶̂1

′ , 𝐶2
′ = 𝐶̂2

′ ,

𝑅 = 𝑅̂, 𝐸𝐿 = 𝐸𝐿̂, 𝑆𝑄𝑅1 = 𝑆𝑄𝑅1̂, 𝑆𝑄𝑅2 = 𝑆𝑄𝑅2̂

] =
1

(𝑞 − 1)6
 

 

and the probability 

 

Pr[𝜋′ = 𝜋̂] = Pr [

𝑠, 𝑠′, 𝑠′′, 𝜓, 𝛽, 𝑠2 ∈ ℤ𝑞
∗ ;

𝑐 = 𝐶̂, 𝑐′ = 𝐶̂′, 𝑐′′ = 𝐶̂′′, 𝑐1
′ = 𝐶̂1

′ , 𝑐2
′ = 𝐶̂2

′ ,

𝑟 = 𝑅̂, 𝐸𝐿 = 𝑒𝑙̂, 𝑆𝑄𝑅1 = 𝑠𝑞𝑟1̂ , 𝑠𝑞𝑟2 = 𝑆𝑄𝑅2̂

] =
1

(𝑞 − 1)6
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are equal, i.e., 𝜋 and 𝜋′ are indistinguishable. Therefore, Theorem 8 is proved. The 

SDV-EC-ZKRP scheme satisfies the strong designated verifier property. 
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5 Efficiency Analysis 

 

In this chapter, we evaluate the efficiency of our scheme and compare our scheme 

with other existing ZKRP schemes. 

 

 In Table 3, we compare our scheme with some related ZKRP schemes [1][24][28]. 

The comparison focuses on the provable range, the execution time and the proof size. 

The modular exponentiation is a type of exponentiation that performed over a modulus, 

i.e.,  

 

𝑦 = 𝑥𝑖  mod 𝑁. 

 

In the schemes [1][24][28], since most of their steps are kind of the modular 

exponentiation, we count the times of the modular exponentiation to represent the 

execution time of these schemes; the execution time of our scheme is to count the times 

of the point multiplication, i.e.,  

 

𝑌 = 𝑖 ∙ 𝑋, 

 

where 𝑋 and 𝑌 are the two points on an elliptic curve. In addition, we set 1024 bits 

as the security parameter size to estimate the proof size produced by the schemes. 

According to the analysis of the National Institute of Standards and Technology (NIST) 

[4], since our scheme is based on the elliptic-curve cryptography (ECC), we set 160 

bits as the security parameter size to estimate the proof size produced by the schemes 

so that the security strength of our scheme can be the same as other schemes which are 

based on integer-factorization cryptography (IFC). 
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Scheme Cryptography 

Security 

Parameter 

Size (bit) 

Provable 

Range 

Computation 

Times 

Proof 

Size 

(byte) 

[1] IFC1 1024 
Arbitrary: 

[0,21024] 
40 896 

[24] IFC1 1024 
Arbitrary: 

[0,21024] 
33 1280 

[28] IFC1 1024 
Arbitrary: 

[0,21024] 
30 2560 

Our scheme ECC2 160 
Arbitrary: 

[0,2160] 
30 400 

Table 3: Comparison of Our ZKRP Scheme with Other Related Schemes 
1 IFC: integer-factorization cryptography 
2 ECC: elliptic-curve cryptography 

 

It can be seen from Table 3 that the execution time of our scheme is the same as 

the scheme proposed by Tsai et al. [28], but only a 160-bit security parameter size is 

required to meet the same security strength. At this level of the security strength, the 

proof produced by [28] is about 6.4 times different from the proof produced by our 

scheme.  

 

Besides, these four schemes have an arbitrary provable range: the prover can 

determine the secret range by themselves but the range cannot be outside the security 

parameter. Since our scheme is constructed with the elliptic-curve cryptography, the 

number of points on a curve can be counted by the Schoof’s algorithm [26]. If the range 

of the secret value that the prover wants to prove is over the number of elements, the 

proof produced followed our scheme cannot convinces the verifier that the secret value 

is in the specified range even if the proof can pass the verification. However, the length 

of 160 bits is about 1.46 × 1048. Taking a 160-bit length as the range is quite sufficient 

when using the ZKRP scheme in practice, such as the cryptocurrency transactions and 

the application scenarios as described in Chapter 6.  

 

More importantly, if the ZKRP schemes that are used in practice requires the higher 

security strength, the security parameter size must be set at least 2048 bits or more for 

the schemes [1][24][28], but only need to set a 224-bit security parameter size for our 

scheme to meet the same level of the security strength, and the 224-bit length is about 

2.7 × 1067 . In addition, at this level of the security strength, the size of the proof 

produced by our scheme is about 560 bytes. The gap of the proof size can be quite wide: 
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it is about 9.14 times different from the scheme proposed by Tsai et al. [28].  

 

Therefore, our ZKRP scheme has a shorter execution time, a smaller security 

parameter, and a smaller proof size among the four schemes. By applying our scheme 

to the cryptocurrency, the transaction cost can be reduced effectively. 
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6 Application Scenarios 

 

Our non-interactive EC-ZKRP scheme can be applied to not only the 

cryptocurrency on the blockchain to hide the transaction amount, but also other 

scenarios in practice. In this chapter, we describe some application scenarios, the 

procedure of which is shown in Figure 4. 

 

To produce the ZKRP proof, the prover starts by applying for the ZKRP proof 

documents to the corresponding issuer. When applying, it is necessary to send the 

documents that can prove one’s identity and the range of the secret value for producing 

the proof. After the issuer confirms the identity, the issuer produces the ZKRP proof 

document and sends it to the applicant. Then the prover sends the document to the 

verifier to determine whether the verification is passed or not. By following this 

procedure, the prover can convince the verifier that the secret value is in the specified 

range without providing the exact secret value. We describe some practical examples 

as below. 

 

Scenario 1: Alice wants to apply to a company for a new job. The company 

specifies that the language test score must reach a certain score. Alice knows that his 

test score has reached the certain score, but she does not want to provide the exact test 

score to the company. Therefore, Alice applies to the test center for the ZKRP proof 

document of the score, and then the test center produced the document and sends to 

Alice. As a result, instead of providing the exact test score to the company, Alice only 

needs to send the ZKRP proof document so that the company can be convinced that her 

test score has reached the certain score. 

 

Scenario 2: Bob wants to donate blood. However, Bob wants to know whether his 

physical condition is suitable for blood donation, so Bob starts by going to a health 

facility to make a blood test report. If the health facility approves that Bob can donate 

blood, then Bob can apply to the health facility for the ZKRP proof of the blood draw 

report. Therefore, by sending the ZKRP proof of the blood draw report, Bob can directly 

answer some important questions from the collecting agency instead of sending the 

complete blood draw report. 

 

Scenario 3: Cindy is a student whose family is a low-income family. She wants to 

apply to her school for the tuition and miscellaneous fees exemption, so Cindy starts by 

applying to the social welfare organization for the ZKRP proof document of the family 
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income. Then all students are required by the school to submit the document. Therefore, 

the school cannot know the family income of all students, but it can still determine 

which students meet the condition. 

 

 

Figure 4: Schematic Diagram of ZKRP Application Scenarios 
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7 Conclusions 

 

We propose the EC-ZKRP scheme. By applying the elliptic curve, our scheme has 

a shorter execution time, a smaller key size and a smaller proof size at the same level 

of the security strength compared to existing ZKRP schemes such that the transaction 

cost can be reduced. In addition, by using the trapdoor commitment scheme [13] and 

ECDH [5], we propose a designated verifier ZKRP scheme and a strong designated 

verifier ZKRP scheme based on EC-ZKRP without adding any extra computation steps 

during producing proofs. The designated verifier ZKRP scheme allows the only 

designated verifier to be able to verify the proof, and the verifier cannot convince any 

other third party of the verification result; the strong designated verifier ZKRP scheme 

makes any third party cannot verify the proof. Besides, these ZKRP schemes can be 

optional and flexible: we can choose a suitable scheme to produce a ZKRP proof 

according to the confidentiality of the secret value. Furthermore, we argue the security 

proofs of our schemes completely and rigorously so that our schemes can satisfy 

necessary security properties, e.g., correctness, soundness, zero-knowledge, designated 

verifier and strong designated verifier. Finally, we provide the efficiency analysis 

compared to other existing ZKRP schemes and list some application scenarios that uses 

ZKRP schemes. Our ZKRP schemes can be applied to not only the cryptocurrency on 

the blockchain, but also other scenarios in practice. By applying ZKRP widely, our 

privacy can be more protected. 
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