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Abstract—We present a research work on autonomous visual 

navigation for aerial inspection on man-made construction. In 

particular, we focus on developing orbital inspection of pole-like 

objects. Our technical contribution is in two folds. First, we 

address the problem from a system perspective and design a 

complete technical solution. Second, we implement the technical 

design, integrate all functional components, and employ the 

developed system on a quadrotor for field test.  

Keywords-vision-based navigation; orbit inspection 

I.  INTRODUCTION 

In recent years, there has been increasing research interest 
in taking advantage of aerial inspection with drone platform for 
real-world applications. While manually operated or semi-
automated navigation approaches [1][2] have partially 
demonstrated the potential value of aerial inspection on man-
made construction, some obstacles still exist for widespread 
use. In this paper, we present a research work on autonomous 
visual navigation for orbital inspection of pole-like objects.  

II. AUTONOMOUS ORBITAL NAVIGATION SYSTEM 

ARCHITECURE 

Our technical agenda is to provide a fully automated drone 
control system without human pilot assistance or intervention 
in any step of the orbital inspection process. The functional 
division of the navigation process includes target object image 
matching, mapping and localization, trajectory derivation, 
navigation control, and failure (error) recovery. All functional 
components are integrated with behavior tree as the control 
architecture for real time execution. 

A. Object Image Matching and Visual Simultaneous 

Localization And Mapping 

An inspection task starts with a designated object and a 
specified task requirement of image coverage of the object. 
Given a distant image of the target object, the drone would 
visually identify the target object after taking-off and fly 
toward the object. For this functional component of object 
identification, we adopt the image feature matching technique. 
In particular, we use the Scale Invariant Feature Transform 
(SIFT) algorithm from OpenCV library.  

In order to successfully and safely navigate itself around the 
target object, the drone would need to rely on a map of the 

environment and a way to position itself in the map. The map 
would lay out perceivable landmarks as scene feature points. 
By knowing its continuously updated location on the map, the 
drone can dynamically calculate a suitable trajectory around the 
target in the environment so as to perform the assigned 
inspection task. We use ORB-SLAM [3] for its functional 
versatility and sensory simplicity. We also use drone’s IMU 
data to transform ORB-SLAM map scale to real-world 
coordinate scale. 

B. Orbit Derivation and Navigation Control 

Orbit derivation is a technical step to calculate an orbital 
path around the target object. Given that we have positioned 
the drone in front of the target object by object image matching, 
we can further infer that a central region of feature points in 
ORB-SLAM map represents the collective location of the 
target object. The mean coordinate of this region of feature 
points is calculated and used as the virtual centroid of the target 
object. The distance between the edge of feature point region 
and the mean coordinate is also estimated as the radius of the 
pole-like target object. An orbital radius is then calculated by 
adding a pre-determined orbit-to-object-surface distance to the 
object radius. 

In an ideal world, this circular orbital path can be followed 
perfectly by executing the corresponding translational and 
rotational movement. However, wind conditions and less 
precise motor driven movement cause constant deviation. 
Navigation control performs dynamic correction on drone 
position in order to rectify occurring deviation from the target 
orbital path. At each tick of navigation control cycle, the drone 
would estimate its current location with respect to the target 
object and compare to the planned orbital path.  

C. Failure Recovery and Behavior Tree 

In order for the drone to be resilient to unexpected 
conditions in real world environments and the imperfect 
algorithmic outcomes, an autonomous system must also be able 
to recover from potential failures. When tracking loss happens, 
ORB-SLAM needs to re-localize itself with previous key 
frames. During orbital flight, unchanged pose estimation by 
ORB-SLAM after a movement command signifies a tracking 
loss. A reversal movement command is then given to navigate 
the drone back to its previous location and help ORB-SLAM 
recover.  
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We use the behavior trees [4] control architecture as the 
sense-and-act mechanism. With a tree-like representation, a 
behavior tree embeds a logical structure to switch among 
behaviors under various conditions. As a design method, a 
subtree represents a modular designed behavior and can easily 
be reused and composed with a larger behavior tree. As a 
control architecture, the dynamic behavior of an artificial agent 
in a situated environment is directed and regulated by the 
procedural logic embedded in the tree-like structure.  

III. EXPERIMENTAL RESULTS 

The task environment is a riverside park. We select a bridge 
pier as the target object of orbital inspection task. The size of 
the bridge pier is about 1.0 meter in width and 6.2 meter in 
height. The experiments include three subsets of autonomous 
task flights with a different orbital radius. The orbital radius is 
set to be 2, 3, and 4 meters, from the structure surface of the 
bridge pier. Each subset of a fixed orbital radius involves a 
total repeat of 10 flights so as to establish an indicative level of 
performance. The overall performance index is to observe 
whether an orbital inspection task can be successfully 
completed. Two additional performance metrics, distance 
deviation and orientation deviation, are used to provide a 
quality measurement of the orbital flight, as shown in Figure 1.  

 

Figure 1. Both lateral deviation and orientation deviation are measured in 
camera image 

The overall performance index is to observe the task 
completion rate. For each subset of 10 flights on orbit radius of 
2 meters, 3 meters, and 4 meters, the success rate is 80%, 90%, 
and 100%. Two flights, one each on 2-meter orbit and 3-meter 
orbit, were not completed due to ORB-SLAM lost track and the 
failure recovery actions could not rectify the errors. Another 
failed flight on the 2-meter orbit resulted from the operator’s 
manual control interruption based on safety concern.  

TABLE I.  PERFORMANCE ON LATERAL/ORIENTATION DEVIATION  

Orbit 

Radius 

Lateral/Orientation Deviation 

Overall average 

distance/derivation 

Maximum average 

distance/derivation 

Maximum point 

distance/deviation 

2 m 0.33m/71.77px 0.44m/118.1px 0.75m/257px 

3 m 0.31m/64.63px 0.54m/98.21px 0.89m/254px 

4 m 0.38m/51.98px 0.59m/61.31px 1.1m/125px 

 

The results in Table I shows the lateral and orientation 
deviation performance. In general, orbiting larger radius 
produces larger lateral deviation during path traversal. This 
orbit following performance is not satisfactory in accuracy but 
may be sufficient for practical use. The low image resolution 

may adversely affect the ORB-SLAM localization, especially 
in further distance away. The overall trend that shorter orbit 
radius causes more orientation deviation is consistent with the 
geometry that an angular movement at closer range creates 
wider view shifting. In general, the average target view shifting 
around 10% of image width from image centroid provides 
evidence to capable orbit inspection. The developed system 
successfully show the ability to perceive the orientation 
deviation, adapt to the deviation, and dynamically adjust the 
drone’s orientation so as to continue the orbit traversal. 

We also provide a top-down view of representative actual 
orbital trajectories in Figure 2. The actual orbital trajectories in 
real-world coordinate scale were derived by a transformation 
from ORB-SLAM map coordinate with the drone’s IMU data. 
Overall, the trajectory observation shows that, despite not being 
perfect, an autonomous orbital navigation is achieved. 

Figure 2. A top-down view on representative actual orbit trajectories  

IV. CONCLUSION  

This work presents a technical approach to develop a vision-
based autonomous navigation system for orbital inspection 
tasks on pole-like objects. We use behavior tree to integrate 
various functional modules, from object image matching, 
ORB-SLAM, orbit derivation, to failure recovery. The 
developed system has been implemented on a quadrotor and 
field tested on a real bridge pier in an outdoor environment. 
Extensive experiments show successful system autonomy and 
task performance.  
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