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Abstract—In traditional active learning, one of the most well-
known strategies is to select the most uncertain data for annota-
tion. By doing that, we acquire as most as we can obtain from the
labeling oracle so that the training in the next run can be much
more effective than the one from this run once the informative
labeled data are added to training. The strategy however, may
not be suitable when deep learning become one of the dominant
modeling techniques. Deep learning is notorious for its failure to
achieve a certain degree of effectiveness under the adversarial
environment. Often we see the sparsity in deep learning training
space which gives us a result with low confidence. Moreover,
to have some adversarial inputs to fool the deep learners, we
should have an active learning strategy that can deal with the
aforementioned difficulties. We propose a novel Active Learning
strategy based on Virtual Adversarial Training (VAT) and the
computation of local distributional roughness (LDR). Instead of
selecting the data that are closest to the decision boundaries, we
select the data that are located in a place with rough enough
surface if measured by the posterior probability. The proposed
strategy called Virtual Adversarial Active Learning (VAAL) can
help us to find the data with rough surface, reshape the model
with smooth posterior distribution output thanks to the active
learning framework. Moreover, we shall prefer the labeling
data that own enough confidence once they are annotated from
an oracle. In VAAL, we have the VAT that can not only be
used as a regularization term but also helps us effectively and
actively choose the valuable samples for active learning labeling.
Experiment results show that the proposed VAAL strategy can
guide the convolutional networks model converging efficiently on
several well-known datasets.

Index Terms—Active Learning, Adversarial Examples, Virtual
Adversarial Training, Adversarial Training

I. INTRODUCTION

In recent years, various Deep Neural Networks (DNN)
have made significant achievement in many complex tasks.
Especially, on image analysis, we have GoogLeNet which
performed the new state-of-the-art standard on object de-
tection and classification given the ImageNet Large-Scale
Visual Recognition Challenge 2014 & 2015 (ILSVRC 2014 &
2015) [1], [2]. However, it is well known that the successful
DNN modeling requires a great deal of annotation data in
the model training phase. Even in the era of big data, data
annotation still creates a bottleneck in most data analysis
research. Active learning provides an efficient and actionable
solution for diverse machine learning tasks. For instance, in
the field of medical imaging, autonomous driving, text mining
and more, we can be benefited by augmenting the machine
learning framework with an active learning extension.

Active learning is one of the well-known methods to reduce
the labeling cost during training. It provides a strategy to seek
valuable samples automatically in a large amount of unlabeled
data, which can cut down the need for human annotation
overall, shown in Fig. 1. As DNN being developed vigorously,
how to apply active learning to the DNN type of models
gradually draws attention from the community. Minimizing
the number of required labeled data during the DNN training
has become one of the most important research topics in recent
years. In the high-dimensional space of DNN, some classical
active learning may be difficult to implement. That motivates
us for proposing an effective active learning method given
DNN models.

In active learning, uncertainty sampling [3] is one of the
simplest and most popular query framework in a wide range
of applications. In the framework, active learner queries the
most uncertain instances for labeling. For example, for binary
classification uncertainty sampling simply queries the instance
which has the predicted value around 0.5 (if the prediction falls
into the range between 0 and 1) as valuable data [3]. After
that, Scheffer [4], [5] introduced margin sampling to extend
the work to deal with multi-class situations. Another issue in
active learning is to choose between selecting one sample at
a time or a set of samples for querying oracle. Given a set of
samples for querying, we have other criteria for unlabeled data
selection such as the consideration on diversity and represen-
tativeness. Brinker [6] proposed selection strategy for batches,
which considers the diversity among instances in a query set
to avoid the overlapping in information among instances in
a batch. Du et al. [7] proposed an integrated criterion which
combines representativeness and informativeness to choose the
most suitable instances to be included in modeling. Huang et
al. [8] considered a set of similar information based on a min-
max view of active learning.

Most of the aforementioned criteria may run into trouble in
the adversarial environment [9], [10]. While samples close to
the boundary or the uncertainty samples may be valuable for
selection in active learning, a little perturbation [11] on those
samples with labeling errors may result in a wrongly trained
model [12]. On the other hand, pay too much attention to
the samples close to boundaries may suggest an overfitting
model. In short, we have to be a little conservative rather
than aggressive on choosing the samples for oracle querying.
A regularization strategy named Virtual Adversarial Training
(VAT) [13] was recently proposed for supervised and semi-
supervised learning that asks for the smoothness on model
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Fig. 1. The active learning framework. We start with a small number of
initial labeled samples, select one or a batch of the most informative samples
through a pre-defined query function, ask the oracle for labeling, then use the
new labeled samples to train the classifier in the next round. The procedure
may proceed until a stopping criterion is reached.

distribution. We borrow the idea and propose Virtual Adversar-
ial Active Learning (VAAL) for effective active learning with
an adversarial environment. In a nutshell, instead of choosing
the samples that are close to boundaries via a margin-based
active learning strategy [14], we choose the samples nearby
the rough surface for robust modeling.

We summarize the main ideas and contributions of this work
as follows.

• We present a novel active learning method for deep nets,
called the Virtual Adversarial Active Learning (VAAL).
The active learning strategy is assumed more effective
than others when the base model is deep models. Deep
models are notorious for their unstable behavior for small
perturbations on the input data. To address that, how
about to find the valuable data to label if the valuable
data are associated with unstable behavior. Via VAAL,
we look for an active learning strategy that is particularly
designed for deep learning style models.

• To focus on an active learning problem with data of
form (x, y) for an attribute set x and its label y, in
VAAL, we measure Local Distributional Roughness (or
LDR) to decide an area where the posterior distribution
p(y | x) is rough or not for varying x. We then choose
unlabeled data to label if the data are considered “rough”
enough in this sense. It is apparently different from the
typical active learning strategy that usually focuses on
uncertainty measurement.

• Unlike the uncertainty measure-based active learning
methods, VAAL is no longer choosing query samples

when the samples are in the boundaries and it may
have introduce some “preference” on certain classes.
With that, we need to pre-specify the prior knowledge
p(y) control the proportion of samples between different
labels. We may simply choose uniform distribution or
the distribution close to the one from the estimation of
posterior probability p(y | x).

The rest of the work is presented as follows. First, we dis-
cuss the related work from the past years after the introduction
in Sec. II. It is followed by the presentation of the proposed
method with all details in Sec. III. To evaluate the proposed
method, we show the experiment results in Sec. IV. In the
end, we conclude the work in Sec. V.

II. RELATED WORK

Active learning has a rich set of prior work since decades
ago. One can refer to Settles [15] for a summarization view.
The past work mostly focused on constructing a suitable mea-
sure to select informative unlabeled data for oracle to label,
such as uncertainty, diversity [6], and representiveness [8],
[16] to name a few according to various aspects on efficiently
building an effective learner with as few labeled data as
possible. Given the aforementioned efforts on active learning
research, we have an alternative research branch according to
the recent progress on deep learning.

In general, when a deep learning method is adopted for a
classification task, we often worry about the possible overfit-
ting in model generalization, especially when only a relatively
small training set is available. We may say that deep learning
is notorious for its instability given only a small perturbation
on the training set [9]. Therefore, instead of asking for the
most informative data to annotate, we may need to sacrifice a
bit on either of the aforementioned measures. Model stability,
or formally called local distributional smoothness is a notion
to consider when choosing the next unlabeled data to label,
further discussed below.

A. Virtual Adversarial Training

Virtual Adversarial Training (VAT) [13] is a regularization
approach based on Local Distributional Smoothness compu-
tation (LDS) [13], which is defined as the KL-divergence
based smoothness of the model distribution following local
perturbation around input data. Therefore, we say that VAT
considers local smoothing in the corresponding neighborhood
rather than only enhance the global smoothing of the distri-
bution with L2 regularization [13]. On the other hand, VAT
is similar to Adversarial Training (AT) [17] which trains the
model by assigning the label to adversarial examples. Both
of them consider the local relationship between inputs and
outputs to smooth the model such that the model generalization
power can be enhanced. However, VAT has these advantages:
• In VAT, we craft the adversarial samples without the label

information.
• The approximate gradient of virtual adversarial loss can

be calculated with fewer pairs of forward and back-
propagation than AT [18].
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B. Deep-Fool Active Learning

Ducoffe et al. [12] demonstrated that margin-based active
learning for DNN can be implemented more efficient based
on the adversarial attack which was originally designed to
approximate the adversarial perturbation to cross the decision
boundary and perturb the model. Deep-Fool Active Learning
(DFAL) [12] uses the Deep-Fool [19] which calculate the
minimal norm adversarial perturbation for the given images
in an iterative approach to craft adversarial examples, and
select the queried samples in the unlabeled set which can
successfully perturb the model in the smallest perturbation.
DFAL can automatically choose the samples close to the
decision boundary. In addition, DFAL label the adversarial
samples for corresponding samples and add to the training set
such that the model will regularize on the adversarial examples
to some degree.

III. METHODOLOGY

In this section, we present the linchpin ideas and insights
behind VAAL. One of the well-known active learning strategy
is called margin-based method that requires computing the
distance of the data to decision boundaries to decide whether
the data is valuable enough for annotation. A method proposed
by Ducoffe et al. [12] aims to approximate the projection
of data to decision boundaries by their smallest adversarial
attacks. We consider an alternative approach that checks local
model roughness for valuable data ranking. We claim that the
local model roughness is more suitable than the distance to
the decision boundaries on revealing whether or not a sample
is worth to query its label and propose VAAL, a Virtual
Adversarial based Active Learning strategy for valuable data
ranking in active learning. Afterwards, we introduce the two
key concepts in the proposed method: Local Distribution
Roughness (LDR) and the Virtual Adversarial Active Learning
(VAAL) to complete the active learning task.

Notation

In the following text, we adopt a set of notations for the
sake of active learning task. First, we start from a labeled data
set,

L = {(x(`), y(`)) | x(`) ∈ Rd, y(`) ∈ O, ` = 1, . . . , L} ,

where x is in a d-dimensional space, O stands for an output
space and for a classification task with L labeled set in model
training. From time to time, we also have an unlabeled set on
the side, namely,

U = {(x(u)) | x(u) ∈ Rd, u = 1, . . . , U} ,

for a semi-supervised learning. Given both of the labeled and
unlabeled data D ≡ L∪U , a total of N = L+U data samples,
we can proceed to estimate the posterior probability p(y |
x) = p(y | x, θ) where θ denotes the model parameters in a
probabilistic approach. Note that we can use only the labeled
set or both of the labeled and unlabeled data to estimate p(y |
x).

A common uncertainty measure computes entropy of the
posterior probability, written by

H(Y | X) = −
∑

p(y | x) log p(y | x) ,

with X and Y denote the random variables for the attribute
set and the target. Given two distributions p and q, we can
compute their KL-divergence, given by

Dkl(p‖q) =
∑

p(x) log

(
p(x)

q(x)

)
.

In practice, one may add a small amount of uniform distri-
bution to avoid the zero value in the denominator to decrease
the unsuitable emphasis when the denominator is close to zero.
Moreover, a symmetrical version

DKL(p, q) = Dkl(p‖q) +Dkl(q‖p) ,

may be preferred when someone asks for a nice mathematical
property in derivation.

A. Local Distribution Roughness

In general, model smoothness is a common and effective
strategy when we need regularization to avoid overfitting
in model learning. To achieve the goal, Miyato et al. [13]
proposed Local Distributional Smoothness for the purpose.
That is, we compute the distributional distance between before
and after making a small perturbation r, as:

DKL(r,x
(`), θ) ≡ DKL(p(y | x(`), θ) ‖ p(y | x(`) + r, θ))

r
(`)
v-adv ≡ argmax

r
{DKL(r,x

(`), θ) : ‖r‖2 ≤ ε} (1)

where r
(`)
v-adv represents the optimal virtual adversarial

perturbation. LDS is defined by Miyato et al. [13] as:

LDS(x(`), θ) ≡ −DKL(r
(`)
v−adv,x

(`), θ) , (2)

saying a local area is smooth if the perturbation creates very
little modification on p(y | x) if measured by KL divergence.
Summarily we can approximate rv-adv by resorting the power
iteration method [20] to the repeated application of the fol-
lowing update as:

u← ∇rDKL(r,x, θ)|r=ξu ,

where u is a randomly sampled unit vector and ξ 6= 0. The
number of iterations of the power method can be denoted by
Ip.

To combine the contribution from both of the labeled and
the unlabeled data set, we may consider the computation when
we run through all sample indices, namely ` and u, for the
labeled and unlabeled parts respectively. In this case, we use
index n to emphasize that the computation covers both of the
labeled and unlabeled data. We have formulated the LDS, and
continue the goal of VAT based on the LDS, afterwards, we
acquire the following Loss function with λ > 0:

Lce(x
(`), θ)− λ

N

N∑
n=1

LDS(x(n), θ) , (3)
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where Lce is the cross-entropy loss for L. To measure local
model roughness, we define Local Distribution Roughness
(LDR) as:

LDR(x(`), θ) ≡ −LDS(x(`), θ) . (4)

After all, the result of LDR can be controlled by two
hyerparameters, ξ and Ip. We choose ξ = 2, following the
setting of the original paper and the best choice of Ip should
be discussed in the Subsection IV-B2.

B. Virtual Adversarial Active Learning

In VAT, we see the benefit of adding regularization by LDS
for robust modeling when we focus on modeling by deep
learning-style models. When moving to the active learning
topic, we use the similar idea to guide us finding the best
strategy to find unlabeled data to label and that is the key of
VAAL. Based on the LDR computation (4), we can rank the
local model roughness for each unlabeled samples in the query
pool and select the one with the appropriate LDR to be the
candidate for querying its label in the next-run active learning.
By doing it, VAAL enforces the deep model to enhance its
local smoothness and generalization power. There are a few
items that we need to pay attention to, state as follows.

First, we need to decide the threshold such as when can
call an unlabeled sample the one with enough roughness in
terms of LDR. The proposed strategy is to find appropriate
percentile rank threshold, called PRT if all the unlabeled
sample in the pool are ranked by their LDR measure. After
that, we can select the unlabeled data to label if they have
enough roughness based on the chosen threshold PRT . We
will discuss the tuning of PRT in Subsubsection IV-B1.

Second, unlike other active learning strategies that focus on
uncertainty measure to decide the best unlabeled data to label,
alternatively, we focus on LDR measurement. Given the LDR
measurement, we may inevitably choose the samples that show
some “polarity”, e.g., to either positive or negative preference
for a binary classification task. By having that, we need to take
into account the prior knowledge such as the sample size with
different labels to decide the next query samples. For instance,
we may query a total of 100 samples by querying 50 samples
in each, or some other ratio between different classes for a
binary classification task. In this work, we simply choose the
uniform choice for different classes, having the same number
of unlabeled data to label in an iteration. One reason to make
sure decision is because we do not have the prior knowledge
about the ratio between different classes. Having the same
number of unlabeled data between different classes to label
could be an appropriate or a safe strategy. At the last, we
use the pseudo labels such as p(y | x) of unlabeled data to
estimate the number of data in different classes.

The algorithm is executed as follows. First, we initialize the
setting for active learning, such as deciding the initial labeled
set and unlabeled set. For each iteration, instead of finding the
unlabeled samples with high uncertainty, we look for unlabeled
samples that own high enough LDR measure, and add them
to the query set for oracle to query. After that, we add the

Algorithm 1 VAAL: Virtual Adversarial Active Learning
Require: Initial labeled training samples L
Require: Pool of initial unlabeled training samples U
Require: Model θ
Require: The number of samples to query in an iteration nq
Require: The number of total samples to query N
Require: The set of classes C
Require: The number of classes nc
Require: Percentage rank threshold PRT based on LDR
k = 0, L0 = L, U0 = U // initialization
Z0 = training(θ,L0) // train the model by L0

while k < N do
Q←∅
for i in 0, 1, . . . , C do
p←{x ∈ Uk | argmax(p(y | x, θ) == i}
// find pseudo labels
pq0←{x ∈ p | LDR(x, θ) > PRT}
for j in 0, 1, . . . , (nq/nc)− 1 do
Aj←{x ∈ pqj | LDR(x, θ) ≤ LDR(x′, θ),
∀x′ ∈ pqj}
Q←Q∪Aj
pqj+1←pqj \Aj

end for
// query size nq/nc samples start from PRT

end for
Lk+nq←Lk ∪Q
Uk+nq

←Uk \ Q
// update the labeled dataset and unlabeled dataset
k = k + nq
Zk = training(θ,Lk) // update the model

end while

newly acquired labeled data for the training of the next run.
Note that the selection of unlabeled candidates follows the
pre-specified ratio on the number of data that own different
labels and the label ownership is decided by the conditional
probability estimation p(y | x). The algorithm in detail is
shown in Algorithm 1. The tuning of several hyperparameters
is not included in the algorithm. Further details can be found
in Section IV.

IV. EXPERIMENT

We conduct the experiments starting from some toy ex-
amples. The toy sets are adopted to demonstrate the main
concept of the proposed method. Afterwards, we move on to
deal with the real-world datasets, MNIST, SVHN and Cifar-
10, which are well-known in image analysis and evaluation.
For the real-world datasets, we canvass how to choose the
best hyperparameters, such as percentage rank threshold PRT
and the number of iterations Ip. Following that is the key
evaluation, to compare the proposed method to the state-of-
the-art approaches.

A. Evaluation via Synthetic Datasets
In the first series of experiments, we demonstrate the

essential idea of VAAL by performing the active learning
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Fig. 2. We generate data points for the (a) Circles and (b) Moons cases.
Red circles and blue triangles stand for the instances with label 1 and 0,
respectively. Data with label 1 and label 0 are generated uniformly in the
pre-defined locations in both datasets.

on two binary classification tasks, the classification on two
synthesized datasets, Circles and Moons [13]. We compare
the classification result from the proposed VAAL strategy and
the result from random sampling. In Fig. 2, we show the two
synthetic datasets, Circles and Moons where the data were
uniformly generated on two orbits or two arcs on R2 for the
Circles and Moons dataset respectively.

In each of the datasets, we have 1000 original data and
they are divided into 800 training and 200 test instances.
Given the dataset, We randomly sample 10 initial labeled data
L from the training set to train an initial model and follow
the common active learning procedure to continuously find
informative unlabeled data to label based on a pre-defined
criterion and add the data to be part of the training data for
the training of the next run. As mentioned before, the focused
base model in this work is a neural network-style model, or
a deep learning-style model in general. However, to deal with
the toy datasets, using shallow models could be enough. We
adopt a neural network of two hidden layers which consist
of 1024 hidden units each to deal with the toy datasets. The
activation functions in all but the last layer are chosen to be the
ReLU [21] function and the last layer is associated with the
softmax function to transform the real value to one between 0
and 1. The dropout ratio is set to be 0.5 for all experiments.

We compared the proposed VAAL to a baseline method with
one query of ten data, namely, nq = 10. In each iteration of
finding informative data to label, we chose the query samples
with the percentile rank (PR) higher than the percentile rank
threshold PRT = 70. The number of iteration is set to be 5 or
Ip = 5. Fig. 4 and Fig. 3 show the contour plot of the posterior
distribution p(y | x). We can see from the figures that VAAL
drew a better decision boundary for both datasets. After all,
Fig. 5 shows the test error for up to 100 updates from both of
the random and VAAL strategies. VAAL shows significantly
smaller error rate compared to the random strategy on both of
the Circles and Moons datasets.

B. Experimental Settings and Parameter Tuning

The rest of the experiments is focused on several real-
world datasets. We conducted the experiments based on a two-
convolution-layer and one-fully-connected-layer CNN [22]
with leaky ReLU [21] as the activation function. The number
of hidden nodes is 1024 and the dropout coefficient is set to
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(c) Querying instances by VAAL
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(d) After training with the queried
instances by VAAL

Fig. 3. The classification task on a synthetic Circles dataset: (a) & (b) before
and after random sampling strategy being applied; (c) & (d) before and after
the proposed VAAL being applied. The contours of p(y = 1|x, θ) show
how the posterior distributions are shifted after the active learning re-training.
Black lines stand for the contour of value 0.5. Remember that red circles and
blue triangles stand for the instances with label 1 and 0, respectively, and
green ones represent the unlabeled data that are chosen as the candidates for
labeling and adding to the training next run.
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Fig. 4. Similar experiment to Fig. 3, but for the Moons dataset.

be 0.5 again. We choose 100 labeled images as the initial set
to train the first model and the rest of the data statistics can be
found in TABLE I. Before we go on to evaluate the proposed
method, let us use a few experiments to decide what could be
the best choice of parameters. We discuss the tuning on PRT ,
the roughness threshold on p(y | x), to decide what data to
label based on how rough of the surface the data are at. After
that, we choose the number of iteration to decide rv−adv.

1) The tuning of PRT : In this section, we look for what
could be the best choice of PRT , the one to control how
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Fig. 5. Comparison of random sampling and VAAL in terms of error rate
given 100 epochs. We have 10 initial data and 10 queried data, a total of 20
data for training.

TABLE I
THE DATASETS FOR EVALUATION

Dataset Training size # of initial set # Test data

MNIST 55000 100 10000
SVHN 73257 100 26032
Cifar-10 50000 100 10000

to accept an unlabeled data candidate based on its location’s
roughness on the surface p(y | x) We compare the result by
choosing various values of PRT , such as PRT = 70, PRT =
80, PRT = 90 to PRT = 99 when selecting unlabeled data
to label. That is, we choose unlabeled data when their PR
values are greater than PRT and we stop collecting more if
the number of data is enough. With VAAL, we query 10 times
and each with nq = 100 data or totally queryN% = 100·10 =
1000 data. We use the MNIST dataset, which consists of 0 to
9 labels and 28× 28 pixels images of handwritten digits.

To some extent, we consider that LDR can help us to
understand the local model roughness on the surface p(y | x)
for different unlabeled data. Therefore, assigning a larger
PRT implies that we accept unlabeled data to be active
learning candidates only if they own enough model roughness
locally. In Fig. 6, we obtain the VAAL result with different
assignment of PRT , such as PRT = 70, 80, 90, 99. Basically,
we observe that selecting a high PRT usually gives us better
result than selecting a low PRT . Surprisingly, we also observe
that the result from PRT = 90 other than the result from
PRT = 99 gives us the best result. It indicates that choosing
data with higher LDR may not be the best strategy. Some
possible reasons for this include: 1) Other hidden factors
exist and the best unlabeled candidates should take LDR
and other factors all together to make the final decision; 2)
The early-stage model of active learning may be far from
perfect and using p(y | x) to compute LDR may introduce
noises. Allowing some randomness in deciding the unlabeled
candidates, especially in the early stage of active learning
could be a wise decision.

2) The tuning of iteration number to decide rv−adv: In this
part, we compare the result with different number of iterations
Ip in approximating rv−adv for LDR computation given some
classification tasks on MNIST dataset. With VAAL, we use the
same setting as before, except that we choose a fixed PRT =

PRT
PRT
PRT
PRT

Fig. 6. Comparison of the transitions of test accuracy in 10 times query with
PRT = 70 to PRT = 99.

TABLE II
THE PERFORMANCE ON MNIST BY VARIOUS ACTIVE LEARNING

METHODS.

Accuracy (%)

# Annotations 100 300 500 700 1000

VAAL 91.16 95.50 96.89 97.45 97.85
RANDOM 87.29 89.17 91.00 92.02 94.71
DFAL 88.04 92.79 95.69 96.03 96.81
UNCERTAINTY 83.26 91.74 94.73 95.93 96.82
VAAL+VAT 96.10 97.55 97.98 98.29 98.48

90. In a series of experiments, we take turn to choose Ip =
1, 2, . . . , 6 with the MNIST dataset. In Fig. 7, we have the test
accuracy with different Ip assignment. In general, we observe
that Ip = 1 performs the worst while Ip = 5 performs the
best among all. The test accuracy jumps rapidly with only
100 annotations at the beginning stage. For the rest of this
article, we choose Ip = 5.

C. Evaluation via Real-world Datasets

In this part, we evaluate various active learning strategies on
classification tasks given several real-world datasets: MNIST,
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Fig. 7. Comparison of the transitions of test accuracy in 10 times query with
1 to 6 of Ip.

TABLE III
THE PERFORMANCE ON SVHN BY VARIOUS ACTIVE LEARNING METHODS.

Accuracy (%)

# Annotations 100 300 500 700 1000

VAAL 47.43 62.01 66.92 71.83 72.69
RANDOM 33.69 40.73 49.81 57.09 59.43
DFAL 37.08 58.37 63.43 67.27 70.21
UNCERTAINTY 36.17 52.57 61.84 62.28 62.59
VAAL+VAT 45.35 62.99 68.46 71.18 73.66

SVHN and Cifar-10:

• SVHN: This dataset is similar to MNIST. Instead of
providing handwritten digits, all digits are from house
numbers in Google Street View RGB images which
consist of a fixed resolution of 32× 32× 3 pixels and of
0 to 9 labels.

• Cifar-10: In Cifar-10, we deal with a diverse set of
objects: (airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, truck). The network that is needed in this
learning task is considered more complicated than the
one for MNIST or SVHN.

We compare the VAAL active learning strategy to the
following well-known or state-of-the-art approaches:

• VAAL: With Ip = 5, and selecting samples to query start
from PRT = 90.
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Fig. 8. Evaluating five active learning techniques (VAAL, RANDOM, DFAL,
UNCERTAINTY, and VAAL+VAT) in terms of test accuracy.

Authorized licensed use limited to: National Cheng Chi University. Downloaded on July 29,2021 at 06:46:01 UTC from IEEE Xplore.  Restrictions apply. 



5330

TABLE IV
THE PERFORMANCE ON CIFAR-10 BY VARIOUS ACTIVE LEARNING

METHODS.

Accuracy (%)

# Annotations 100 300 500 700 1000

VAAL 31.63 35.56 37.62 40.21 42.97
RANDOM 31.09 32.03 33.72 34.28 37.03
DFAL 27.28 32.70 34.42 36.03 39.12
UNCERTAINTY 25.64 31.37 33.51 34.21 35.74
VAAL+VAT 32.70 36.41 39.59 41.70 43.37

• RANDOM: We randomly select nq data from the whole
unlabeled set to label on each run of active learning.

• DFAL [12]: Selecting nq data with the smallest L2-
norm perturbation if calculated by Deep-Fool. The initial
number of labeled data is the same to that of the proposed
VAAL.

• UNCERTAINTY: Selecting nq data with the highest
entropy values.

• VAAL+VAT: A hybrid approach between VAAL and VAT
by adding virtual adversarial training data following the
computation in Eq. (3), with a fixed λ = 1.

Fig. 8 shows the test accuracy from several active learn-
ing methods for the number of annotations from 100 to
1000, given three datasets: MNIST, SVHN, & Cifar-10. An
interesting observation is that, independently from various
different methods or different datasets, VAAL gets a head start
overwhelmingly in the first query, and continues performing
better than others in almost all cases. On the other hand, VAAL
performs the top one among all active learning methods when
adding VAT. Overall, VAAL can be considered robust as the
accuracy does not oscillate much when more and more data
are provided in the re-training and model refinement.

TABLE II, TABLE III and TABLE IV show the test
accuracy achieved by various active learning method for
the number of annotations equal to 100, 300, 500, 700, or
1000, given three datasets, MNIST, SVHN, Cifar-10. First,
we observe that random sampling performs poorly, but not
always the worst in several categories. Randomness strategy
could be a good choice in some occasions. Other than that,
as we see in several methods, the tuning on hyperparameters
may not be trivial and we may not see the best performance
for the methods. On the other hand, VAAL contains only two
parameters and it is not difficult to obtain the result with a
best setting on those parameters. After all, VAAL performs
the best in all situations in the experiments.

D. Unbalanced Sampling with VAAL and Others

In VAAL, we sample unlabeled data for oracle labeling
based on LDR computation instead of a measure like uncer-
tainty. In this case, the most valuable unlabeled data, those
that may help the most for the modeling in the next run come
from ones with high enough LDR result. On the other hand, we
also learn that the those associated with the highest LDR result
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uniform sampling
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form sampling

Fig. 9. Comparison of the loss and accuracy (a) without, (b) with uniform
sampling according to p(y | x).
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Fig. 10. Comparison of the transitions of test accuracy in 10 times query

may not be the perfect candidates for oracle labeling. Based
on the experiments, the unlabeled data that own the PR values
just greater than 90 contribute the most when compared to the
result from other settings. When choosing the data for labeling,
we may find the data that are associated with a non-uniformly
distributed p(y | x). That is even more so if the data have
the PR value not very high. To have this, we need to consider
how to fairly acquire data when the data own different y’s or
non-uniformly distributed p(y | x).

Two choices are reasonable to consider. First, we may con-
sider sample data uniformly even they own different “pseudo
labels”. The second strategy is to sample data without consid-
ering the uniform sampling according to p(y | x) and therefore
without the information of p(y | x). We use MNIST dataset
to evaluate the performance with different settings. Fig. 9(a)
and Fig.9(b) show the result of test loss, training loss, and
test accuracy without or with the uniform sampling according
to p(y | x). After all, we observe that the performance with
uniform sampling works slightly better than the one without
uniform sampling. Similarly, in Fig. 10, we have the test
accuracy where the one with uniformly sampling is considered
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better than the one without uniform sampling. Note that, the
one without uniform sampling may experience overfitting in
some early stage of the model training.

V. CONCLUSION

In this paper, we proposed a new active learning method,
called VAAL for deep networks. Given the progress of deep
learning in nowadays, proposing an effective active learning
method that is particularly suitable for deep learning is the
main goal of this work. Based on the evaluation on three real-
world datasets, MNIST, SVHN, Cifar-10, the proposed VAAL
method outperformed many recent active learning strategies
when deep learning is the chosen model. In the experiments,
we showed that measuring the roughness of boundaries is as
important as many other active learning measures, e.g., the
distance-based measuring such as uncertainty when we need
to find valuable samples. Ranking the valuable samples based
on boundary roughness is another delicate issue. We believe
that different data sets may have different degree of roughness
in their boundaries. Therefore, we need to tune the parameter
PRT to make the best choice. Overall, choosing PRT = 90
suggests the best performance for almost all data sets that we
discussed in this work. Other than using LDR to choose the
most wanted samples for the next-run training, the opposite
LDR (LDS) itself serves as a regularization term in modeling.
Therefore, combining VAAL and VAT performed the best if
compared to various prior work when deep learning is given
for the active learning task. The approximating computation
for LDR was also adopted for efficient computation.
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