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Abstract

Let 5S¢ = x + Zn: X, be the n-step random walk on Z starting at x, where X/s
are independent iggétically distributed random vectors with distribution D(z). In
the thesis, we suppose that the distribution D(x) is symmetric on Z¢ and the rate of
decay is of order |z|™*"* as || — oo with o € (0,00) \ {2} and d > a A 2, where
a/A\b = min{a,b}. The purpose of the thesis is to investigate asymptotic behaviors
of the long-range random walk. First of all, we get the asymptotic behavior of the
Green function. Moreover, we obtain the coefficient of the main term and its rates
of convergence. Secondly, we discuss the asymptotic behavior of the capacity for

the long-range random walk. Moreover, we derive the Wiener’s Criterion for the

long-range random walk.

Keywords : Green Function » Capacity » Long-Range Random Walk
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Chapter 1

Introduction and The Main Results

1.1 Introduction

The term “random walk™ was first proposed by Karl Pearson in 1905 (c.f. [6]). In
mathematics, a random walk is a stochastic process whose formation is a successive summation
of independent and identically distributed random variables, and it is one of the most extensively
reasearched and interesting topics in probability. For example, the movement of the gas
molecule during a small time inteval, tracking the feeding path of an animal, the price of
a fluctuating stock or the financial difficulties of a gambler can all be approximated by
random walk models. Other pertinent examples include, various diluted spin system, random
copolymers (c.f. [8]), spin glasses (c.f. [2] [9]), random-graph models (c.f. [1]), etc.

The most interesting and important random walk model is the random walk on d-
dimensional integer lattice Z¢ whose probability distribution of going from a point to another
point in each point is symmetry. In particular, a random walk is called a simple random walk if
in the walk one can only jump to neighbours of the lattice Z¢ with the equal probability. A d-
dimensional simple random walk is usually assumed to be the Markov chain or Markov process,
which is very closed to Brownian motion on Z¢. Brownian motion was first discovered by the
biologist Robert Brown in 1827 (c.f. [10]), when pollen grains suspended in water performed a
continuous swarming motion. On the theoretical side, Brownian motion is a Guassian Markov
process with stationary independent increments. It is well-known that the Brownian motion on
7% is a scaled limit of a simple random walk on 7% for all d > 1.

The simple random walk on Z¢ lattice is studied sufficiently. In the thesis, we will consider
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the model of a long-range random walk on Z¢, where the 1-step distribution D(x) is symmetry
and D(z) = |z|"*“, where the notation f(x) = ¢(x) means that there exist 0 < ¢ < ¢ < 0o

such that cg(z) < f(x) < dg(x) for all z. For example,

|$|—d—a
D(x) = ———=- (1.1.1)
>yl
y€Z4

where |z| = /23 4+ 23+ -+ + 22 and a € (0,00)\ {2}. Itis easy to see that D(z) is symmetry

and the rate of decay is of order ||++a.
T

1.2 Main Results

First, we will investigate the behavior of the Green’s function of the long-range random
walk for d > a A 2. The Green function was introduced in a famous paper by Geoge Green in

1828 (c.f. [3]), and its definition for a random walk is as follows:
Gly) = E{Z I{Ss:=y}] =D Ellisg=p] = > _PIS; =),
n=0 n=0 n=0

where S = x4+ i X is the n-step random walk on Z starting from z and X /s are i.i.d random
vectors with theks:aine distribution D(z) for z € Z4,i.e, P(X; = x) = D(x), Vo € Z¢. That
is, G*(y) is equal to the mean number of the visits to y starting from x and we let S = S,, and
G%(z) = G(z) for convenience.

Let D and D*" be the Fourier transform and the n-fold convolution of D, respectively:

D(k) = Z e**D(x), k € [-n, 7]

zEeZ4d
6&17 n/::O7
D*n —
)= S Do vgpE—y), >,
yezZd

where ¢ is the Kronecker delta function.
We assume that D(x) satisfies the following assumptions and will show all the assumptions hold

if D is as defined in (1.1.1) in Appendix A.
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Assumption 1.2.1. We require the 1-step distribution D(x) to be bounded as

1
D(l‘) ’x|d+a

Assumption 1.2.2. (Properties of ﬁ)

(a) Given R > 0 small and for |k| < R, there exist v,, € (0,00) and € € (0, 1) such that
1 — D(k') = v, ’k’a/\Q + O<|k’a/\2+6)

In particular, if o« > 2, it is easy to see that v, = %, where 0> = 3 |z|* D(z) € (0, 0).
z€Zd

(b) For |k| > R and k € [—m,7|% there exists A € (0, 1) such that

<2-A,
1 —D(k)
> A,

Assumption 1.2.3. (Bounds on D*™")

Forn € Nand x € 7,

1D < O(1)n~ 52

Using the inverse formula for any dimension d > (a A 2), « # 2, we have
[e’e) d oo
— D*" _ —zk: :c nddk,
S0 =(5) X[ b

_ (%)d /[m]d nf% e[ D ()] dk

1 d —ikx
:(—) / 4%k < o,
20 ) Jiwma 1 = D(k)

since

1 d—1
T %~ / — _d%~0(1 / ——dr,
/[ ot 1= D) TR W=
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the Green function of long-range random walk does not exist if d < (a A 2).

We have the first main result as following which will be proved in Section 2.2.

Theorem 1.2.4. Let d > o A 2 and assume all assumptions of D(x) as above, then there exists

i€ (0, A 2) such that for |x| > 1,
Chq o1
G(x) = d—g/\Q (1 + (u))v
7] |z

where .
P —aA2
Oa d — ( 2

@ 20‘/\271'%1—‘(047/\2)2}0[ .

Next, we investigate the capacity of the long-range random walk on Z¢. For any intergers
m and n, we define the range R[m, n] to be the set of the visited sites in the time interval [m, n],
Le.

Rim,n| = {Smn, -+, 5.}

The capacity of a finite set A C Z% is defined to be

cap(A) = Z Esa(x) = ZPI(TZ = ),
€A T€EA
where Esy(z) = P, (74 = 00)I{zea; is the escape probability from a finite set A C Z? and
74 =min{n > 1: X, € A} is the first return time to A. The study of the capacity of the range
of'a walk has a long history. For simple random walk, Jain and Orey proved (c.f. [4]), some fifty

years ago, that cap(R[0, n|) satisfies a law of large numbers for all d > 3. i.e. almost surely

lim 2B
n—o00 n

Moreover, they showed that oy > 0 if and only if d > 5. In the eighties, Lawler established
estimates on intersection probabilities for random walks, which are relevant tools for estimating
the expected capacity of the range (c.f. [5]). As for the capacity of the d-dimensional discrete
ball centered at 0, B(R) := B(0; R), the capacity in simple random walk is of order R? (c.f. [7]);
In the thesis, we are going to investigate the asymptotic of capacity in long-range random walk

as the following theorem.
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Theorem 1.2.5. Letd > a N 2,
cap(B(R)) < R as R — 0.

Lastly, we will investigate the Wiener s Criterion, the result for simple random walk was
introduced by Serguei Popov (c.f. [7]). In the thesis, we say that a set A C Z? is recurrent if
P,(74 < c0) = 1forallz € Z%; Otherwise, we call the set A is transient. And we will derive an
extension to the model of long-range random walk in which 1-step distribution D(z) is defined

in (1.1.1).

Theorem 1.2.6 (Wiener’s Criterion).
Ford > a A2, A C Z%is recurrent if and only if
= cap(Ay) B
Z (d—an2)k 0,
k=1

where Ay = {x € A : 281 < |o| < 2%} is the intersection of A with the annulus B(2F) \
B(2F1).

The organization of this paper is as follows: in the next chapter, we will prove Theorem
1.2.4. In Chapter 3, we will show Theorem 1.2.5 for d > o A 2. In Chapter 4, we use the
previous analysis to prove Theorem 1.2.6. In Appendix A, we will show the D(x) defined in

(1.1.1) satisties all the assumptions.
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Chapter 2

Proof of Theorem 1.2.4

2.1 Propositions of Green function

It is important to note that some basic propositions of G*(y). First, in the case © = y we
do count this as ”initial” visit (so, in particular, G*(x) > 1). Moreover, by symmetry, it holds
that G*(y) = GY(x).

Proposition 2.1.1.

(@) D*"(z) = D™ (—x)

(b) G*(z) > 1

(© G*(y) = G(x)

Proof.

(a) Forn = 1, if x # 0, it is trivial by definition.
Suppose it holds for n = k for some k& € N.
Claim: n = k£ + 1, it holds.

D0 (@) = 37 D*(y)D(w —y) = 3 DM(=y)D(~x ~ (~y)) = 3_ DM (w)D(~z ~ u)

yeZd yEeZ ueZd

_ D*(k:—‘rl) (—{I})

(b) G=(z) = f}op[sg — o] = PST = o] + f;lp[s;g — =1+ ilp[i X, — o} >,

since

n=1

ip[ixkzo] )
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(c) To prove it, we first observe that G*(y) = G°(y — z) := G(y—x) and using G (y) = G(—y),

since

n=1
ZIP’ P[Sy = y] +ZIPS =y] =Ig= 0}+ZP[ZXI<:—1U}
n=1
— Iy, 0}+ZD*" =TIy 0}+ZD*" ) = G(—y),
n=1 n=1

where [ is indicator function.

Hence, we get G*(y) = G(y — z) = G(z — y) = GY(z). O
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2.2 Proof of Theorem 1.2.4

By the inverse formula, we have

Using the following identity

and let T = |z ") with 4 = dfj\ﬂi, we have
2
d poo
T i / / —[1-D(k)]t ,—ik :vddk,dt
2m 0 [—m,m
=1+ 1,
where

d poco
ad i / / —[1- Dk)]t —ik: mddkdt
2 T [ 7Tﬂ.]al
1\* (T
I, = (_) / / —[1- Dk)]t —ik: xddkdt
2 0 [ T”r]d

First, we consider I,

1 k)t otk g
= — A kdt
h (271') / /[Wﬂ]dz

t"D*"(x)
_ —t
_/ € Z ! Lat.
0 n=0 ’
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By Assumption 1.2.3, we get

) o(1) T2
h < / tz (nl | |d+a/\2)dt = W? (221)

Next, we consider I,

1 d © a2 - 5
== —vat|k]| 71k-zddkdt I
() [ Loemneomars 3

Jj=2

for any R € (0, 7), where

1\* (7 Az
27'[' 0 Rd
1\* -
I = (_> / / o ik (e’“’D(k)]t . efvat\k|m\2)ddkdt
2r ) Jr Jik<r
1\ [ 4 -
T [—m,m]¢
1\ [
2n) Jr Jisr

Using the identity

> *’Uat‘k‘&/\Q A 1 . ]. /OO a/\2 -1 _|k| t
e dt = = t 2 dt,
/0 va [K[* - val'(%5%) Jo

we obtain

1 d e al2 : 1 20 an2 1 d : 2
(2_> / / efvat\k\ efzk-xddkdt: F(a/\g)/ t21/ (2_> efzk-x7t|k| ddkdt
™ 0 R4 Va 5 0 R4 ™
= ! /mt°‘92—1 \ﬁ de_%dt
(2o, I(242) o t ’
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where the last equation holds by the inverse formula of Gaussian distribution. Then by the

substituition with u = lal® we have

4t

e 1 < e\ T |
/ / —vat| k| —1k xddkdt / Ll e v

3
F(dfg/\Q) 1
2002y WgF(aTAQ) ||
As a result, we arrive at
Ca d ° F(dia/&)
Gr)= —— + I;, Coq= 2 .
9= e * 2t ot = o i

Then it remains to estimate [ J‘s which are error terms for ¢ = 2,3, 4, 5.

First, we estimate /5 by substitution u = 22 | .

12| = <2 ) / / etk =i g gy
™ R4

2d Qg - d—aN2 ~1 7’Lt
= w2 du
|2

2d7r§vaf(a/\2) || 12
d—aAn2

4T
r d—aN2 1 2 > 12
(557) <‘x’) e i, 2.2.2)

20M2p, s I'(22) |z|4m "2\ AT

IN

Next, we estimate /3, for small R, whose value will be determined shortly, we use

Assumption 1.2.2 and Taylor expansion to obtain

6—[1—D(k)]t . e—vat|k|°m2 < O(l)t |k|a/\2+5 G_Uat|k|a/\2.

10

DOI:10.6814/NCCU202101556



Therefore,

d 00 .
|]3| — (%) / / e—ik’-x (6—[1—D(k)}t . e—vat|k|o‘/\2)ddkdt
Q |k|<R
/ / K2 e N gl
lk|<R
+o¢/\2+e 1 UatRa/\2 d+a/\2+€
T Va [0
< 0(1) / tuat™ane dt
T
= O(1)T“ars
Since T = |z 201 = %, we have
|I3| S O(l) |m|—(1—,u)(d—a/\2+e)
- O(l) |x‘—(d—a/\2)*6% .
Note that
d—aN?2

> 0.

2d—aNn2)+e

And then, we keep going on estimating /. By Assumption 1.2.2, we have

( )/ / e *Te ]I{|k|>R}d kdt
/ /[ y (%) T s mydkdt

0(1) /T e~ dt = O(1)e T,

14| =

(2.2.3)

(2.2.4)

Finally, we estimate [5 by substitution v = v, T’ |lf|°‘A2 and the following inequality

o0
/ P le7tdt < MPe ™.
M

11
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Then we have

1\¢ [~ . Az
|]5| — | (_) / / e—zk-x—vat|k)| ddkdt
2 ) Jr Jksr
d—aAN

2
< o) Ly / wanet e dy
Vo (e A 2) \ v, T vo TRON2

d—aAN2
O(1) ( 1 ) anz (v T];L,aAz)%ewaTRaA2

~ va(an2)\ v, T
O()  ni-an2,—vaTRor?
— @ Va ) 2.2.5
va(a A 2) R ‘ ( )

Hence, we found that (2.2.1) to (2.2.5) are error terms.

Then we complete the proof of Theorem 1.2.4.

12
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Chapter 3

Proof of Theorem 1.2.5

For a finite set A, the notation 74 is the first hitting time of A, which is defined as

Ta=min{n >0: X, € A}.

3.1 Propositions of Capacity

Proposition 3.1.1.
+(Ta4 < 00) ZG’” VEsa(y ZGm YEsa(y
yeA y€Z4

Proof. For the proof, we use an important idea called the last-visit decomposition (c.f. [7]).
On the event {74 < o0}, let 0 = max{n: S, € A} be the moment of last visit to A.

The probability that the random walk visits y € A for exactly k times and then escapes to infinity

13
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is

P, [ exactly k visits to y, S, = y)

P, | {exactly k visits to y} N {5, = y})

P, ( {exactly k visits to y} N U ({mvisits toy} N {7} = oo}I{yeA}))

m=0

P, ( at least k visits to y) P, ({TX = OO}I{yeA})

P

(
(
(
P, ({at least k visits to y} N {7} = oo}l{yeA})
(
(

at least k visits to y) Esa(y).

This means that for any y € A and & > 1, it holds that
P, (exactly k visits toy, S, = y) =P, (at least k visits to y) Esa(y). (3.1.1)
Then, summing (3.1.1) over k from 1 to co, we obtain

P, (74 < 00,5, =y) = ZIP’x(Ny > k)Esa(y), where N, = # visit to y.

k=1
Now, we are going to prove
G"(y) =Y Pu(N, > k)
k=1
G*(3) = x| 3 Tision | = Eol) = PN, =)
k=1 k=1
[e%) k [e%) k 0
= (Z 1>P$(Ny —B) =Y S BN, = k) = SR (N, > m)
k=1 m=1 m=1k=m m=1
So we have
P,(ra < 00,8, =y) =Y Pu(N, > k) Esa(y) = G"(y) Esa(y). (3.1.2)
k=1
14
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Then summing (3.1.2) over y € A, we obtain

TA<OO ZG”C Esaly

yeA
O
Now, we are able to obtain the following useful proposition.
Proposition 3.1.2.
cap(A) rzrgllG (2) < Py(1a <o0) < cap(A) r?eaj(G (2)
Proof. By Proposition 3.1.1, we have
IP TA < oo Z G*(y)Esa(y
yEZI
Then it is easy to understand that
1 €T < < xX .
ryrgllG (y) Esaly) < Po(14a <o0) < rzfleajiG (v) Esa(y)
yeA yeA
Then we get
G”* A < P, < G* A).
min G*(y) cap(4) < Py (7a < 00) < maxG*(y) cap(4)
]

15
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3.2 Proof of Theorem 1.2.5

Since we know that the volume of a d-dimensional discrete ball B(%) is of order R?, we

have

R
R = ’B<§>’ = Z Pm(TE(R) = oo) + Z IP’:E(T;F(R) < oo)

eB(£)\{0} eB(£)\{0}

8

Calculating the first summation, we have

Y. P(mm=0)= ) >, D= > ‘d—l-a

veB(2)\{0} veB(2)\{0} [yl>B(%) veB(£)\{o} yl>B(£)
d 1 1 .
= Z L rd_i_ad?"?( Z ﬁXRd
eB(E)\foy veB(2)\(0}

Therefore, we know that the second summation is of order R?. i.e.

zeB(2)\{0}

Considering the second summation and by Proposition 3.1.1, we obtain

Z Py (TE(R) < OO) = Z Z G*(y) Espr)(y)

eB(£)\{0) ren(2)\foy VEBIOWO}

1
lyl” (In Jy[)”
that G(y) =< W, where d > (a A 2). We get

We suppose that Fsa(y) =< for some 3 and v, and by Theorem 1.2.4, we know

1 1 5
Z Py (TE(R) < oo) = Z d—(ar2) Z ZAJ’

\ v ,
xeB(g)\{O} xeB(g)\{o}yeB \{0} |?/‘ (Infy|)” [z — y| xeB<§)\{o}g:1

16

DOI:10.6814/NCCU202101556



where

1 1
Al - Z |d (an2)

5 ol (nly]) o —
vl =yl > Slal

y#0
1 1
A2 - a
; 2 5 ol (nfy)” o -y
y: §|x| > |l —y| > Z|x|
y#0
1 1
As = .
2 5 lul” (nfy))” o =y

v |z —y| < ZW
y7#0

First, we are going to estimate Ay,

A 2 1 D\ < /R i
1= o = (o
3 lyl” (nfy])? o — y|"= "D 2| @D Jlg| rP(Inr)
v |z =yl > 5l
y#0
4 Rd—ﬂ
— d>
(InR)»’ p
1
— d=87>1
R CTE
X—|x|d_(aAz> Inln R, d=Bv=1
(InR)'™, d=pg,y<1
|7
d <.
 (nfal)” ’
Next, for A,,
1 1 ]_ 2|x| rd_]-
3 Z 5 |y‘ﬂ (ln\y|)7 |x—y|d ( /\2) | | N2) %|x| T,B(h,”,)y
v gle] = Ii; yl > ;]
Yy
(="
d
N Y 77

<@ ) (e}, d= By £
\lnln|x], d=p,v=1.

17
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Then, for As,

9
1 1 1 4 ‘.’L” /rd_l
Aq = = / ———dr
3 > 5 lul” (nly)) o =y 2 S ()
v |z —y| < S|z
y7#0
r d—p
&7 d > /6
In |x|
1 1, d=p,v>1
<@ | llnja, d=4,y=1
(Infz[)'™, d=p8,7v<1
\1, d<p.
Summarizing A; to A3, we obtain that
4 Rd_[j ‘x|d—,3
d >
(R (nal)” 0
(Infz)'=7 + 1, d=p,v>1
1
Py (5m) < 00) < ) Inln R + Inln |z], d=B,v=1 (3.2.1)
(InR)'™7 + (Infz))' ™7, d=p,y<1
||
1 d .
(infaly? <7

Then we have

1 R&A gt
> Py (g < 00) =X > FECS Llan + TR ,ford > 3,
veB(2)\{0} veB(£)\{0}

since

veB(2)\{0}

. . d—p . )
Now, consider that if R—7 of the first case is the main term, we get

(InR)

1 Rd—ﬁ Rd—,@ R Td_l Rd—B—I—aAQ
+ - - -
Z Py (TB(R) < OO) - Z d—an2 (ln R>7 - (1n R)“f / pd—an2 dr = (ln R)’y )
veB(£)\{0} zeB(£)\{o} 12 !

18
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Then we obtain 5 = a A 2,7 = 0.
d—p3
If LW of the first case is the main term, we get
(Inz[)

d—p R an2-p
Z IP’I(Tg(R) < 00) = Z 1| x/ gy
1

2|2 (In )Y (In7)
zeB(£)\{0} veB(2)\{0}
( Rd+a/\2—ﬁ

In(In R), y=1d+aNn2—-F=0

)

(InR)'"™7, y<l,d+an2—-B=0

LG y>1l,d+aAN2—-[5=0.

which can be true only in the first case.

Therefore, for both cases, we obtain that 5 = a A 2,y = 0.
So,

1
Espmr(y) < W

and

1 R Td_l Y
cap(B(R)) = Z Espmr(y) < HTAQ = / —rcmdr — Ri—an2.
yeB(R)\{0} yeB(R)\{0} 1Y !

19
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Chapter 4

Proof of Theorem 1.2.6

Assume that

cap(Ay)
2(d—an2)k ?
k=1

and as we know before from Proposition 3.1.2

Cap(A) %11141 fo(z) < ]P)x (TA < OO) < Cap(A) Teaj( Gx(z) (401)
Then we have
iPO (TA < OO anp (Ax) maXG i p(Ay) max Cad )
s k — z€A} - 2€A, ‘Z’d—a/\Q

A
8

2C,
<anpAk < (d— a/\[; )

By Borel-Cantelli Lemma, we obtain Py (74, < 00 i.0.) = 0.
So, Py (TA =00 eventually) =1.i.e.]Py (TA < oo) < 1. Hence, A is transient.
This is contradicted to the assumption.

On the other hand, we can write

S cap(Ag) e cap A4]+z -
Z (d—an2)k ZZ (d—an2)(4j+i)

k=1 7j=1 =0

20

DOI:10.6814/NCCU202101556



We may assume that ¢ = (0. Then we have

i cap(Ay;) B
(d—an2)(45)

=1

First, for j > n, y € B(2*~2) and by (4.0.1), we have

Py(7a,, < 00) > cap(As;) min G¥(z) > cap(Ay;) min (L)

2EAy; 2€A4; |Z o y|d—0¢/\2

Cy 3

> cap(z‘hy)ma where Cy = 7L

Next, for 2 € 9B(2%12) and by (4.0.1), we have

P. (74, < 00) < cap(Ay;) max GY(z) < cap(As;) max (lL)
o

y€A4j Z€A4j

Cy

< CGP(AM)M,

where Cy = 3C, 4.

Since we know that

{TA4j < 7‘33(24.7+2)} U {7‘33(24j+2) < Tay <0 } = {TA4j < OO}

Then for y € OB(29772), we get

Cy

Py(TaB(24-7+2) < TA4]. < OO) S sup ]PZ (TA4j < OO) S C(Ip(A4J)W

2€OB(245+2)

Therefore,

Py (TA4j < TaB(24j+2)) > Py (TA4j < OO) - ]P)y (783(24j+2) < Tay < OO)

Cy — Oy
2 cap(Ayj) priaany -
21
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Then we obtain

PO(TA4]. > 733(24j+2),Vj > n) < HP0(7A4]- > 753(24j+2))

Hence,

Then we have

jzn

01 - 02
<I] (1 — CGP(AM)W)

j>n

&
Sexp( anp Ayj) 24Jd am)) = 0.

j>n

PO (TA4j < TaB(24j+2) ZO) =1.

PO(TX < TAy; < ToB(24i+2) ZO) = 1.

So, A C Z% is recurrent. In other words, Py (74 < o0) = 1.
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Appendix A

In this appendix, we prove that for z € Z¢,

__h®)
l)<$)<—-—§j—ﬁz§5 —-chh(x),
yeZd
where O(la])
1+0(z|™”
———= . #£0
h(z) = |
0, z=0
and

which satisfies all the assumptions in Section 1.2. It is clearly that D(z) satisfies Assumption
1.2.1.

Then, we prove D(z) satisfies Assumption 1.2.2. First, we show that (a) in Assumption
1.2.2 holds. For o > 2, by the Taylor expansion of 1 — cos(k-x) and using the Z¢-symmetry of

D, we obtain

A

L= D(k) = 3 (1 = cos(k-2)) D() = % S e D)+ 01) 3 Jaf e

z€Z x€Z4 x€Z4

2

holds provided that ¢ € (0, — 2). This proves that v, = g—d, where 02 = 3 |#|° D(x) €
x€Z4

(0, 00).

Then it remains to prove o < 2. By definition, we note that for z € Z<,

D(z) = cph(x),
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where

Taking the Fourier transform yields

1= D(k) =cn »_ (1 —cos(k - x))h(x)

z€Z4
¢ )
- k—hd{]k\d > (- cos(ek.y))h<m>},
k| ly|>|k|
where ej, = % As |k| — 0 and by the Riemann sum approximation, we obtain
A cn(1+O(|k
1—D(k) = en(1+ O(lkD) d(| D) / (1-— cos(eyy))h(ﬁ) d®y
|| lyI[K] ||
1 k
/ Ch( + Od(| |)) / (1 . Cosyl)h<i>ddy
|| lyI>[#] 14

— ca |k[* (1 + O(Jk))) /

[y >k

1 O([k°) \ .
(1-— cosy1)< ~+ = |d%.
N

where the second equation holds by symmetry of A.

We note that

1—cosyr 1—cosyr 1—cosyr
/ e 4y = | e Ay~ — a4y
wi=lkl Y] Rt |yl wi<ikl |yl

where we have used |k| < 1 to estimate the error terms. Moreover,

1—cosyr 4 / 1 —cosyr / 1—cosyr
—dy = —dy + —d%
d+a+ d+a+ d+o+ ’
/y|zk [yl izt [yl R 7

where

(O(l), p<2—a

1 —cosyr 4 ( 1 )
gy, L o(log—), p=2-a
/|k|S|y|S1 jy| et K|

[OUK ), p>2-a.
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This proves (a) in Assumption 1.2.2 with0 < e < 1 A (2 — ) A p and

1 —cos
Vo = ch/ Taylddy.
Rt |yl

Next, to prove the lower bound of 1 — D(z) in (b), we suppose that ||k||. > R to obtain

ZD )(1 — cos(k - x)—l—ZD )cos(k - x)

zﬁd 3" D(x)cos(k - z) -
Y o

jol< 7
=1- [g D(z) — mg D(x)]

Similarly, for the upper bound, we have

1—D(x)=1- )Y D(x)cos(k - z)

<1- zeg D(z)cos(k - x)
o> 2%
<1+ Z D(x)
2] >
=1+ {% D(x) — % D(w)}
:I—Z;D@)
<2_A2R

Let
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Then we have done the proof of Assumption 1.2.2.

Lastly, we show Assumption 1.2.3 as follows. We prove the bound of || D*" ||, first.
By definition, it is trivial when n = 1.
Forn = 2, we let

R={ke[-mnx]*: |kl <1,D(k) >0},

so that ‘f)(k)‘ =1—(1—D(k)) < e @=DP®) for k € R, and that 0 < ‘ﬁ(k)‘ < 1— A for

k ¢ R, due to the bound on 1 — D(k) in Assumption 1.2.2.

Therefore, for any x € Z4,

where the integral over k € R® = [—m, w1]%\ R is bounded by || D||o (1 — A)"2 < O(1)n"a%e.

For the integral over k € R, we use the bounds on 1 — D(k) in Assumption 1.2.2. If o # 2,

then

00 d
[ L [ e |
2 -
R 0

r (a A2)(cn)are’
for some ¢, ¢ € (0,00), where r = |k|. This completes the proof of the bound on || D*"||« in
Assumption 1.2.3.

Now, we prove the bound of D*"(x) and seperate it into the following two cases.

(i) the contribution from the walk that have at least one step which is longer than ¢ |x| for given

¢ > 0is bounded by O(1)/|2|**®. In this case, D*"(z) < O(ilg
T

(ii) the contribution from the walks whose n steps are all shorter than ¢ |x| is bounded, due to

the local CLT, by O(ﬁn)‘g exp(— o‘gi)) < E‘(;)fg (times an exponentially small normalization

constant), where © is the variance of the truncated 1-step distribution D(y) = D(y)1qyi<clapy

and equals

o= |y’ D(y) <0(1)
yez! 1, a>2.

For v # 2, the inequality is a discrete space-time version of the heat-kernal bound on the
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transition density ps(z) of an a-stable / Guassian process:

_ 1 ! —ik-z—s|k|*"? id O(S)
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