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CHARACTERIZATION FOR ENTROPY OF SHIFTS OF

FINITE TYPE ON CAYLEY TREES

JUNG-CHAO BAN AND CHIH-HUNG CHANG*

Abstract. The notion of tree-shifts constitutes an intermediate class in
between one-sided shift spaces and multidimensional ones. This paper
proposes an algorithm for computing of the entropy of a tree-shift of

finite type. Meanwhile, the entropy of a tree-shift of finite type is
1

p
lnλ

for some p ∈ N, where λ is a Perron number. This extends Lind’s work
on one-dimensional shifts of finite type. As an application, the entropy
minimality problem is investigated, and we obtain the necessary and
sufficient condition for a tree-shift of finite type being entropy minimal
with some additional conditions.

1. Introduction

A one-dimensional shift space is a set consisting of right-infinite or bi-

infinite words which avoid words in a so-called forbidden set F . Such a shift

space is denoted by XF . It is no doubt that the most interesting XF which

has been extensively investigated is the shift of finite type (SFT). That is,

the shift space XF such that F is a finite set.

SFT plays an important role in symbolic dynamical systems and some

other fields. For example, Shannon used it as a model of discrete communi-

cation channels [28] in information theory. In dynamical systems, due to the

work of Adler and Weiss [1] and Bowen [8] that any expansive map admits a

Markov partition, SFTs are used to study the hyperbolic dynamics and the

classification theory of the Anosov and Axiom A diffeomorphisms. Mean-

while, SFT is also a useful tool for investigating the Lipschitz equivalence

and thermodynamic properties in fractal geometry [11, 27].

A significant invariant of the SFTs is its topological entropy, which mea-

sures the growth rate of the number of the admissible patterns. Such an

invariant reflects the complexity on its own right, we refer readers to [2]
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for more details. For a one-dimensional SFT, since its topological entropy

is the logarithm of the spectral radius of a certain non-negative integral

matrix [21], the topological entropy are thus being easily calculated. Such

calculation method also leads to the further classification of the SFTs. The

algebraic characterization of the topological entropy for SFTs is given by

D. Lind [20], which reveals that such numbers are Perron numbers. (Recall

that a Perron number is a real algebraic integer greater than 1 and greater

than the modulus of its algebraic conjugates.) More precisely, the entropies

of one-dimensional SFTs are exactly the non-negative rational multiples of

logarithms of Perron numbers.

The scenario for multidimensional cases is dramatically different. For

example, unlike the one-dimensional case, the computations of the topo-

logical entropies for multidimensional SFTs are difficult and there is no

general method. Very few models one can compute their rigorous value of

entropy. Some approximation algorithms can be found in [7, 14, 22, 23, 24].

For the entropy classification theory, the celebrated result of Hochman and

Meyerovitch [17] indicated that the topological entropy of a multidimen-

sional SFT is right recursively enumerable (RRE for short). Roughly speak-

ing, it is the infimum of a monotonic recursive sequence of rational numbers.

Such result has been improved by Hochman [16] to the multidimensional ef-

fective dynamical systems. Later, Pavlov and Schraudner [25] showed that,

for every d ≥ 3 and every Zd full shift, there is a block gluing Zd SFT which

shares identical topological entropy.

It is worth pointing out that the reason which causes these differences

between one- and multidimensional shift spaces are the spatial structure.

One-dimensional lattice Z is a free group with one generator while multidi-

mensional lattice Zd, d ≥ 2, is an abelian group with d generators. Thus, the

investigation of symbolic dynamics on Cayley trees arises naturally. Aubrun

and Béal [3, 4] introduced the notion of tree-shifts, which is a special kind

of Cayley trees, and then studied the classification theory up to conjugacy,

languages, and its application to automaton theory. An important point to

note here is that such a shift constitutes an intermediate class in between

one-sided shifts and multidimensional ones. Thus, it sheds some new light

on the study of multidimensional SFTs. In [5], the formal definition of the

entropy of a tree-shift was given and the authors demonstrated that the

computation of entropy of a tree-shift of finite type (TSFT) is equivalent to

solving a system of nonlinear recursive equations (SNRE), and vice versa.
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Note that the computation of the rigorous value of entropy is not easy due to

the doubly exponential growth rate of the patterns for a TSFT (see Section

2 for more details). Some partial results can be found in [5].

The aim of this paper is to investigate classification theory of entropy.

Our theorem below provides a natural and complete characterization of the

entropy of TSFTs in an algebraic viewpoint.

Theorem 1.1. The set of entropies of tree-shifts of finite type is

(1) E =

{
1

p
lnλ : λ ∈ P, p ≥ 1

}
,

where P stands for the set of Perron numbers.

One may ask whether there is some computation method for the entropy

of TSFTs. The affirmative solution is given in Theorem 1.2, which says

that the entropy is equal to the maximal value of the spectral radius of the

adjacency matrices induced from XF , we refer the reader to Section 2.3 for

more details of the (reduced) system nonlinear recursive equations and the

corresponding adjacency matrix.

Theorem 1.2. Let X be a TSFT and let F be the corresponding system of

nonlinear recursive equations which is defined in (6). Then

(2) h(X) = max{lnλME
: E is a reduced SNRE of F}.

Roughly speaking, the entropy of X is attained on the entropy of some

subsystems of itself. This makes the differences between the classical one-

dimensional SFTs and TSFTs. For the convenience of the reader, we give a

table for the computation method and characterization of the entropy. Let

Ω be a 1-dimensional SFT with the adjacency matrix M and let λ be its

spectral radius.

Entropy \ dimension 1-d SFT TSFT r-d SFT

Formula lnλM Theorem 1.2 None

Algebraic criterion Perrons Theorem 1.1 None

Computational criterion Computable Computable RRE

From the table one can see that for the algebraic characterization of the

entropy for multidimensional SFT is still lacking since there is no general

method for the entropy computation. Our method herein sheds some new

light on it due to the fact that TSFT is an intermediate class between 1-d

and r-d SFTs. After revealing the entropy computation algorithm, we use

it to investigate which TSFT is entropy minimal.
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It is known that an irreducible Z SFT is entropy minimal; that is, any

proper subshift Y ⊂ X has smaller entropy than that of an irreducible SFT

X. For r ≥ 2, every Zr SFT having the mixing property called uniform

filling property is entropy minimal while there is a non-trivial block gluing

Zr SFT which is not entropy minimal. Readers are referred to [9, 21, 26] for

more details. Recently, it is demonstrated that the dimension minimality

of self-affine sets holds for a generic choice in arbitrary dimension. More

specifically, let EA,v =
K⋃
i=1

Ai(EA,v)+vi be a self-affine set corresponding to

A = (A1, . . . , AK) ∈ GLr(R)
K and v = (v1, . . . , vK) ∈ (Rr)K with ‖Ai‖ < 1

for all i. A folklore conjecture asserts that dimH EA′,v′ < dimH EA,v, where

A′ = (A1, . . . , AK−1) and v′ = (v1, . . . , vK−1). There exist simple counter-

examples showing that this cannot be the case for all self-affine sets; however,

the conjecture holds in arbitrary dimension for a generic choice of the matrix

tuple. See [10, 12, 13, 18, 19] and the references therein.

Suppose that XF is a Markov tree-shift (defined later) withF = {u1, . . . , uK}

for some K ∈ N. Proposition 2.10 reveals the necessary and sufficient condi-

tion for XF being entropy minimal. More precisely, h(XF ′) < h(XF ), where

F ′ = {u1, . . . , uK−1}.

The rest of this paper is structured as follows. In Section 2, we set up the

notation and terminology of the TSFTs; previous results in the computation

of the entropy of TSFTs which are useful for the proof of Theorem 1.1 are

also presented therein. Section 2.4 applies Theorem 1.2 to investigate some

restricted entropy minimality problem and reveals the necessary and suffi-

cient condition. The proofs of Theorem 1.1 and Theorem 1.2 are presented

in Section 3.

2. Definitions and Previous results

This section collects some basic definitions of symbolic dynamics on Cay-

ley trees.

2.1. Basic definitions. Let Σ = {0, 1, . . . , d− 1} and let Σ∗ =
⋃

n≥0Σ
n be

the union of finite words over Σ, where Σn = {w1w2 · · ·wn : wi ∈ Σ for 1 ≤

i ≤ n} is the collection of words of length n for n ∈ N and Σ0 = {ǫ} consists

of the empty word ǫ. An infinite tree t over a finite alphabet A is a function

from Σ∗ to A. Denote by a node of an infinite tree a word of Σ∗ and the

empty word relates to the root of the tree. Suppose x is a node of a tree. x

has children xi with i ∈ Σ. A sequence of words (xk)1≤k≤n is called a path
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if, for all k ≤ n − 1, xk+1 = xkik for some ik ∈ Σ. Suppose t is a tree and

let x be a node, we refer tx to t(x) for simplicity. A subset of words L ⊂ Σ∗

is called prefix-closed if each prefix of L belongs to L. A function u defined

on a finite prefix-closed subset L with codomain A is called a pattern, and

L is called the support of the pattern. A subtree of a tree t rooted at a node

x is the tree t′ satisfying t′y = txy for all y ∈ Σ∗ such that xy is a node of t,

where xy = x1 · · · xmy1 · · · yn means the concatenation of x = x1 · · · xm and

y = y1 · · · yn.

Suppose n ∈ N ∪ {0}, Σn =
⋃n

k=0Σ
k denotes the set of words of length

at most n. We say that a pattern u is a block of height n (or n-block) if the

support of u is Σn−1, denoted by height(u) = n. Furthermore, u is a pattern

of a tree t if there exists x ∈ Σ∗ such that uy = txy for every node y of u,

and say that u is a pattern of t rooted at the node x in this case. A tree t

is said to avoid u if u is not a pattern of t. If u is a pattern of t, then u is

called an allowed pattern of t.

Denote by T the set of all infinite trees over A. For i ∈ Σ, the shift

transformations σi from T to itself are defined as follows. For every tree

t ∈ T , σi(t) is the tree rooted at the ith child of t, that is, (σi(t))x = tix for all

x ∈ Σ∗. For the simplification of the notation, we omit the parentheses and

denote σi(t) by σit. The set T equipped with the shift transformations σi is

called the full tree-shift of infinite trees over A. Suppose w = w1 · · ·wn ∈ Σ∗.

Define σw = σwn ◦σwn−1 ◦· · · ◦σw1 . It follows immediately that (σwt)x = twx

for all x ∈ Σ∗.

Given a collection of patterns F , let XF denote the set of all trees avoiding

any element of F . A subset X ⊆ T is called a tree-shift if X = XF for some

F . We say that F is a set of forbidden patterns of X. A tree-shift X = XF

is called a tree-shift of finite type if the forbidden set F is finite. Denote

by Bn(X) the set of all blocks of height n of X, and B(X) the set of all

blocks of X. Suppose u ∈ Bn(X) for some n ≥ 2. Let σiu be the block of

height n− 1 such that (σiu)x = uix for x ∈ Σn−2. The block u is written as

u = (uǫ, σ0u, σ1u, . . . , σd−1u).

SupposeX and Y are two one-dimensional shift spaces, the Curtis-Lyndon-

Hedlund theorem (see [15]) indicates that a map φ : X → Y is a sliding block

code if and only if φ is continuous and φ ◦σx = σY ◦ φ. A similar discussion

extends to tree-shifts; in other words, φ is a sliding block code (between

tree-shifts) if and only if φ is continuous and commutes with all tree-shift

maps σi for i ∈ Σ.
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If a sliding block code φ : X → Y , herein X and Y are tree-shifts, is onto,

then φ is called a factor code from X to Y . A tree-shift Y is a factor of X

if there is a factor code from X onto Y . If φ is one-to-one, then φ is called

an embedding of X into Y . A sliding block code ψ : Y → X is called an

inverse of φ if ψ(φ(x)) = x for all x ∈ X and φ(ψ(y)) = y for all y ∈ Y . In

this case, we say that φ is invertible and write ψ = φ−1.

Definition 2.1. A sliding block code φ : X → Y is a conjugacy from X to

Y if it is invertible. Two tree-shifts X and Y are called conjugate, denoted

by X ∼= Y , if there is a conjugacy from X to Y .

A TSFT X = XF is called a Markov tree-shift if the forbidden set F

consists of 2-blocks. In [6], Ban and Chang showed that every TSFT is con-

jugated to a Markov tree-shift. Therefore, it suffices to investigate Markov

tree-shifts for characterizing the properties of TSFTs.

2.2. Entropy. Let X be a tree-shift. The entropy of X is defined as follows.

Definition 2.2. (1) The entropy of X, denoted by h(X), is defined as

(3) h(X) = lim
n→∞

ln2 |Bn(X)|

n

whenever the limit exists, where | · | stands for the cardinality of a

set and ln2 = ln ◦ ln.

(2) If |Bn(X)| behaves like exp(ακn), such as |Bn(X)| ≈ c exp(ακn) for

instance, where c is a constant, then the value α is called the hidden

entropy (or sub-entropy) of X.

This paper provides an algorithm for the computation of entropy, i.e., the

value κ, and gives a complete characterization of such a value. One question

still unanswered is whether the same results hold for the hidden entropy

α. This question is at present far from being solved, even for the simplest

cases. Namely, the case where (d, k) = (2, 2), the description for the hidden

entropy α of such X is still lacking. However, the computation of the exact

values of |Bn(X)| relies on the both values α and κ.

We introduce the notion of system of nonlinear recursive equations which

is useful for the computation of the entropy.

Definition 2.3. Let A = {a(1), a(2), . . . , a(k)} be the symbol set and suppose

Ad is an ordered set with respect to the lexicographic order, d ∈ N.
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(1) Let F =
∑

a∈Ad faa be a binary combination over Ad, i.e., fa ∈

{0, 1} for a ∈ Ad. The vector vF = (fa)a∈Ad ∈ Rkd is called the

indicator vector of F .

(2) A sequence {a
(1)
n , . . . , a

(k)
n }n∈N is defined by a system of nonlinear

recursive equations (SNRE) of degree (d, k) if

a(i)n = F (i) for n ≥ 2, 1 ≤ i ≤ k,

and a
(i)
1 ∈ N is given for 1 ≤ i ≤ k, where F (1), . . . , F (k) are binary

combinations over {a
(1)
n−1, a

(2)
n−1, . . . , a

(k)
n−1}

d, respectively.

(3) A symbol a(i) ∈ A is called essential if there exists an m ∈ N such

that a
(i)
m ≥ 2; otherwise, a(i) = 1 is called inessential.

(4) Suppose F = {F (i)}ki=1 defines an SNRE. The indicator matrix IF ∈

Mk×kd of F is defined as

(4) IF = (vF (i))ki=1.

It is remarkable that an SNRE defined by F induces a unique indicator

matrix IF , and vice versa (up to permutation). Furthermore, each F (i) is

seen as an ordered binary combination. For example, consider the symbol

set A = {a(1), a(2)} and the following SNRE.

(5)





a
(1)
n = F (1) =

(
a
(1)
n−1

)2
+
(
a
(2)
n−1

)2
,

a
(2)
n = F (2) = a

(1)
n−1a

(2)
n−1 + a

(2)
n−1a

(1)
n−1,

a
(1)
1 = a

(2)
1 = 2.

Then the corresponding indicator matrix is

IF =

(
1 0 0 1
0 1 1 0

)
.

For the rest of this paper, we simply use F to describe the SNRE of

{a
(1)
n , . . . , a

(k)
n }∞n=1. SupposeX = XF is a TSFT over A = {a(1), a(2), . . . , a(k)}.

Let

Xa(i) = {t ∈ X : tǫ = a(i)}

be the set of those trees whose roots are assigned with the symbol a(i), and

let a
(i)
n = |Bn(Xa(i))|, where 1 ≤ i ≤ k. Theorem 2.4 follows immediately.

Theorem 2.4 (See [5]). The values {a
(1)
n , . . . , a

(k)
n }∞n=1 satisfies the following

SNRE.

(6)





a
(i)
n =

∑
(a(i),i1,i2,··· ,id)/∈F

∏d
j=1 a

(ij)
n−1, 1 ≤ i ≤ k, n ≥ 2,

a
(i)
1 = |B2(Xa(i))| , 1 ≤ i ≤ k.
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Notably, the initial condition a
(i)
1 = |B2(Xa(i))| in (6) is the number of

items of F (i) while, generally, the initial condition of an SNRE can be arbi-

trary. Define the entropy, say h(F ), for an SNRE F = {F (i)}ki=1 as

(7) h(F ) = lim
n→∞

ln2
∑k

i=1 a
(i)
n

n
.

Theorem 2.5 indicates that, for any TSFT X, there exists an SNRE F such

that h(X) = h(F ).

Theorem 2.5 (See [5]). The entropy of a tree-shift of finite type is realized as

a system of nonlinear recurrence equations of degree (d, k) for some d, k ≥ 2.

Conversely, every system of nonlinear recurrence equations of degree (d, k)

is corresponding to the entropy of some tree-shifts of finite type.

Let A and B ∈ Mm×n(Z). We say that A ≤ B if A(i, j) ≤ B(i, j) for

1 ≤ i ≤ m and 1 ≤ j ≤ n. Define the reduced SNRE as follows.

2.3. Reduced SNRE. This subsection introduces the notion of reduced

SNRE which enables us to build up a computational method for the entropy

of a TSFT (Theorem 2.4). Let us rewrite the SNRE (6) in the following form.

(8)

{
a
(i)
n = F (i) =

∑kd

j=1 α
(i)
j F

(i)
j ;

a
(i)
1 =

∑kd

j=1 α
(i)
j , 1 ≤ i ≤ k.

Definition 2.6 (Reduced SNRE). Suppose X is a TSFT. Let F be the

SNRE according to Theorem 2.4 and let IF ∈ Mk×kd be its indicator matrix.

We call E a reduced SNRE of F if E is the SNRE defined by some indicator

matrix IE which satisfies the following conditions.

(i) IE ≤ IF ;

(ii) IE has exactly one 1′s in each row;

(iii) the initial condition of E is the same as F .

For example, consider the SNRE F = {F (i)}2i=1 defined in (5); recall that

the indicator matrix is a 2× 4 matrix

IF =

(
1 0 0 1
0 1 1 0

)
.

Then

IE =

(
1 0 0 0
0 1 0 0

)
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defines a reduced SNRE E = {E(i)}2i=1 as follows.




a
(1)
n = E(1) =

(
a
(1)
n−1

)2
,

a
(2)
n = E(2) =

(
a
(1)
n−1

)(
a
(2)
n−1

)
,

a
(1)
1 = a

(2)
1 = 2.

We remark here that the initial condition a
(i)
1 of the reduced SNRE E is no

longer the number of the items of E(i) for i = 1, . . . , k. If an SNRE E which

is defined by some indicator matrix IE satisfying only (ii), then we also call

E a reduced SNRE.

Let F = {F (i)}ki=1 be a reduced SNRE. A k × k non-negative integral

matrix M , called the weighted adjacency matrix of F , is defined as

(9) M(i, j) =

{
m, if a(j) appears in F (i) and the degree of a

(j)
n−1 is m;

0, otherwise.

2.4. Entropy Minimality Problem. The well-known entropy minimality

problem investigates when the entropy of any proper subshift space is strictly

smaller than the entropy of the original shift space. This subsection reveals

the necessary and sufficient condition for the entropy minimality problem

under some additional conditions.

Proposition 2.7. Suppose X = XF is a tree-shift of finite type over A =

{a(1), a(2), . . . , a(k)} with an SNRE F of degree (d, k). If every symbol in A

is essential, then h(X) = ln d.

Proof. It suffices to show that there exists a reduced SNRE E of F such

that h(E) = ln d since h(X) ≤ ln d (cf. [5]). Let E be a reduced SNRE

of F . Then the weighted adjacency matrix ME satisfies
k∑

j=1
ME(i, j) = d

for 1 ≤ i ≤ d. Since every symbol is essential, Theorem 3.3 infers that the

entropy of E is h(E) = ln ρME
, where ρME

is the spectral radius of ME .

This completes the proof since ρME
= d. �

Recall that a TSFT X = XF is called a Markov tree-shift if the height

of each pattern in F is less than or equal to two. In [6], Ban and Chang

demonstrated that every TSFT is topologically conjugated to a Markov tree-

shift. For the rest of this subsection, without loss of generality, we consider

those Markov tree-shifts X = XF over symbol set A such that every symbol

is essential. Proposition 2.7 indicates that h(X) = ln d.

This subsection investigates the entropy minimality problem described as

follows. Let Y = XF ′ be a proper subspace of X such that



10 JUNG-CHAO BAN AND CHIH-HUNG CHANG

(H1) F ( F ′ and F ′ \ F consists of only one pattern;

(H2) if A′ ( A, then Y is not a TSFT over A′.

In other words, the forbidden set of Y is obtained by adding a pattern to

the forbidden set of X, and every symbol which is seen in X remains to be

used in Y .

Problem 2.8. Under the above conditions, what can we say if h(Y ) <

h(X)?

Definition 2.9. Suppose X = XF is a TSFT over A. A symbol a ∈ A is

called a saving symbol for X if, for each pattern (α,α1, α2, . . . , αd) /∈ F such

that α 6= a, there exists 1 ≤ i ≤ d such that αi = a.

Proposition 2.10. Suppose X = XF is a TSFT over A with a saving

symbol a. If Y = XF ′ is a proper subspace of X satisfying (H1) and (H2),

then h(Y ) < h(X) if and only if a is an inessential symbol for Y .

Remark 2.11. Proposition 2.10 can be rephrased as follows. h(Y ) < h(X)

if and only if there is exact two patterns in F which start with a, F ′ =

F
⋃
{(a, a1, . . . , ad)} with ai 6= a for some i, and (a, a, . . . , a) /∈ F ′. In other

words, we can only remove the pattern (of height 2) that starts with a saving

symbol and make it an inessential saving symbol.

Proof of Proposition 2.10. Suppose that a is an inessential saving symbol

for Y . It follows immediately that (a, α1, . . . , αd) ∈ F ′ if and only if αi 6= a

for some 1 ≤ i ≤ d. Let F̂ be the corresponding SNRE of Y and let E be a

reduced SNRE of F̂ . Remark 3.2 and Theorem 3.3 infers that h(E) = ln ρA,

where ρA is the spectral radius of A and A is the (k − 1) × (k − 1) matrix

obtained by deleting the row and column indexed by a. Since a is a saving

symbol,
k−1∑
j=1

A(i, j) ≤ d − 1 for 1 ≤ i ≤ k − 1. This demonstrates that

ρA ≤ d− 1. Hence, h(Y ) ≤ ln(d− 1) < h(X).

Conversely, h(Y ) < h(X) and Proposition 2.7 assert that there is a symbol

s ∈ A such that s is inessential for Y . We claim that there are exactly two

patterns of height 2 which start with s and are accessible in X. Indeed,

the assumptions (H1) and (H2) infer that there are at least two accessible

patterns (of height 2) in X which start with s. Furthermore, s is inessential

for Y derives that there are at most two accessible patterns in X which start

with s. The Claim then follows.

Suppose that (s, α1, . . . , αd), (s, β1, . . . , βd) /∈ F and (s, α1, . . . , αd) ∈ F ′.

Since s is an inessential symbol for Y , it is seen that βi = s for 1 ≤ i ≤ d.
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If s 6= a, then a being a saving symbol concludes that βi = a for some

1 ≤ i ≤ d. The essentiality of a infers that s is essential for Y , which gets a

contradiction. The proof is then complete. �

3. Proofs of Main Results

This section is dedicated to the proofs of Theorems 1.1 and 1.2. Some use-

ful results are presented herein. Proposition 3.1 is a useful tool to compute

h(F ).

3.1. Weighted adjacency matrix and its sprctral radius.

Proposition 3.1. Let F be an SNRE, then

(10) h(F ) = lim
n→∞

ln
∑k

i=1 ln a
(i)
n

n
.

Proof. Since for every n, k ∈ N ,

a(1)n a(2)n · · · a(k)n ≤

(∑k
i=1 a

(i)
n

k

)k

,

we derive that
k∑

i=1

ln a(i)n ≤ k

(
ln

k∑

i=1

a(i)n − ln k

)

and

lim
n→∞

ln
∑k

i=1 ln a
(i)
n

n
≤ lim

n→∞

ln2
∑k

i=1 a
(i)
n

n
= h(F ).

Conversely, let an = max1≤i≤k a
(i)
n . The inequality

an ≤
k∑

i=1

a(i)n ≤ kan,

yields that

(11) lim
n→∞

ln2
∑k

i=1 a
(i)
n

n
= lim

n→∞

ln2 an
n

.

On the other hand, we have

(12)

k∑

i=1

ln a(i)n = ln

k∏

i=1

a(i)n ≥ ln max
1≤i≤k

a(i)n = ln an.

Combining (11) with (12) concludes that

lim
n→∞

ln
∑k

i=1 ln a
(i)
n

n
≥ lim

n→∞

ln2 an
n

= lim
n→∞

ln2
∑k

i=1 a
(i)
n

n
= h(F ).

The proof is thus complete. �
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Remark 3.2. Suppose we partition the symbol set A as

(13) A = AE ∪ AI ,

where AE is the collection of the essential symbols in A and AI collects the

inessential symbols (Definition 2.3), it follows from Proposition 3.1 that

h(F ) = lim
n→∞

ln
∑k

i=1 ln a
(i)
n

n
= lim

n→∞

ln
∑

a(i)∈AE
a
(i)
n

n
.

That is, the entropy h(F ) is the growth rate of the sum of all essential

symbols. In this case, we say that h(F ) is supported on AE.

Let Ω be a one-dimensional subshift of finite type and let A = AΩ be the

corresponding adjacency matrix, the classical result in symbolic dynamics

shows that the topological entropy of Ω is h(Ω) = lnλA, where λA is the

maximal eigenvalue of A (cf. [21]). Theorem 3.3 is an analogous result for

reduced SNREs.

Theorem 3.3. Let F = {F (i)}ki=1 be a reduced SNRE and let M be the

corresponding weighted adjacency matrix which is defined in (9). If there

exists N ∈ N such that a
(i)
n > 1 for all i = 1, . . . , k and n ≥ N , then

h(F ) = lnλM ,

where λM is the spectral radius of M .

Proof. Let F be a reduced SNRE. That is, F is defined by an indicator

matrix IF which satisfies the condition (ii) of Definition 2.6. We write the

SNRE F in the following form.

F = {F (i) =
(
a
(1)
n−1

)m(i)
1
(
a
(2)
n−1

)m(i)
2

· · ·
(
a
(k)
n−1

)m(i)
k
},

where (m
(i)
1 , . . . ,m

(i)
k ) is a non-negative integral k-tuple for all i. Define

bn := (ln a(1)n , . . . , ln a(k)n )T .

It is seen that bn =Mbn−1. Combining the facts of bn =Mn−1b1, (10), and

a
(i)
n > 1 for n large enough yields that

h(F ) = lim
n→∞

ln
∑k

i=1 ln a
(i)
n

n
= lim

n→∞

ln
∑k

i,j=1M
n−1(i, j)

n
= lnλM .

This completes the proof. �
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3.2. Proof of Theorem 1.2. Theorem 3.3 reveals that the computation of

the entropy of a reduced SNRE is analogous to the classical result of SFTs.

Theorem 1.2 provides the method for the computation of h(F ) for general

F ; that is, the entropy of h(X) (Theorem 1.1). The proof of Theorem 1.2

is presented herein.

Proof of Theorem 1.2. Set

h = max{ln λME
: E is reduced from F}.

Let b
(i)
n = ln a

(i)
n for all 1 ≤ i ≤ k and F (i) be arranged as the following form.

(14) F (i) =

ri∑

j=1

β
(i)
j F

(i)
j , β

(i)
j 6= 0, i = 1, . . . , k.

Since the computation of h(F ) is supported on those essential symbols (see

Remark 3.2), without loss of generality, we assume that b
(i)
1 ≥ 2 for i =

1, . . . , k. The existence of the limit of h(X) = h(F ) infers that there is a

subsequence {a
(ji)
nℓ

}ki=1 satisfying

(15) a(j1)nℓ
≥ a(j2)nℓ

≥ · · · ≥ a(jk)nℓ
for ℓ ∈ N

and

h(F ) = lim
nℓ→∞

ln
∑k

i=1 ln a
(ji)
nℓ

nℓ
.

For simplicity, we may assume that ji = i for i = 1, . . . , k and nℓ = ℓ for

ℓ ∈ N. Thus, (14) can be rewritten as follows.

F (i) = F
(i)
1

(
β
(i)
1 +

ri∑

l=2

β
(i)
l

F
(i)
l

F
(i)
1

)
= F

(i)
1 c

(i)
n−1,

where

c
(i)
n−1 = β

(i)
1 +

ri∑

l=2

β
(i)
l

F
(i)
l

F
(i)
1

.

It follows from (15) that

(16) 2 ≤ c
(i)
n−1 ≤

ri∑

l=1

β
(i)
l ≤ C for all n ∈ N,

where

C = rβ, r := max
1≤i≤k

ri and β := max
1≤i≤k,1≤l≤ri

β
(i)
l .
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That is,

(17)





b
(1)
n = ln a

(1)
n = lnF

(1)
1 + ln c

(1)
n−1,

b
(2)
n = ln a

(2)
n = lnF

(2)
1 + ln c

(2)
n−1,

...

b
(k)
n = ln a

(k)
n = lnF

(k)
1 + ln c

(k)
n−1.

Let bn =
(
b
(1)
n , . . . , b

(k)
n

)T
. Notably, for i = 1, . . . , k, F

(i)
1 is of the form

F
(i)
1 =

(
a
(1)
n−1

)m(i)
1

· · ·
(
a
(k)
n−1

)m(i)
k

;

we have

lnF
(i)
1 =

k∑

l=1

m
(i)
l ln a

(l)
n−1 =

k∑

l=1

m
(i)
l b

(l)
n−1.

Thus (17) can be represented as

(18) bn =Mbn−1 + ln cn−1,

where

ln cn = (ln c(1)n , . . . , ln c(k)n )T ,

and M is the weighted adjacency matrix of E = {F
(i)
1 }ki=1. Iterate (18) we

obtain

(19) bn =Mn−1b1 +Mn−2c1 + · · ·+ cn−1.

Let λ = λM it follows from Proposition 4.2.1 of [21] and (16) that

k∑

i=1

b(i)n = ‖bn‖ ≤ d0

∥∥∥∥∥

n−1∑

i=0

M i

∥∥∥∥∥ ≤ d0

n−1∑

i=0

∥∥M i
∥∥

≤ d1

(
n−1∑

i=0

λi

)
≤ d2λ

n,

where d0, d1, and d2 only depend on the dimension of M and k. Thus we

have

(20)

k∑

i=1

b(i)n ≤ d2λ
n.

Combining Proposition 3.1 with (20) infers that

h(F ) = lim
n→∞

ln
∑k

i=1 b
(i)
n

n
≤ lim

n→∞

ln d2λ
n

n
= lnλ.
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Similarly, combining (16), (18) with the fact that b
(i)
1 ≥ 2 for all i we have

k∑

i=1

b(i)n ≥ d3λ
n,

for some d3 > 0, which implies

h(F ) ≥ lnλ.

Thus h(F ) = lnλ. That is h(F ) is the logarithm of the spectral radius

of some integral matirx M which is a weighted adjacency matrix of some

SNRE E reduced from F . Thus we conclude that

(21) h(F ) ≤ h.

For the converse, suppose E is a reduced SNRE of F with h = lnλME
. From

the (i) of Definition 2.6 we have E(i) ≤ F (i) for all i. It implies that

(22) h(F ) ≥ h(E) = lnλME
= h.

Combining (21) with (22) yields (2). The proof is thus completed. �

3.3. Proof of Theorem 1.1. The proof of Theorem 1.1 is presented.

Proof of Theorem 1.1. Let X be a TSFT and let F be its SNRE. Since

h(XB) = h(F ) from Theorem 2.4, thus it follows from Theorem 1.2 that

h(X) = h(F ) = h(E) = lnλME
=: lnλE

for some reduced SNRE E of F . If the weighted adjacency matrix ME

is primitive, the Perron-Frobenius theorem concludes that λE ∈ P. That

is, lnλE ∈ E (recall (1)). If ME is irreducible or reducible, Corollary of

Theorem 3 of [20] shows that that λE = λ
1
p for some λ ∈ P and 1 < p ∈ N.

Thus, lnλE ∈ E . Conversely, we set h = lnλ
1
p ∈ E . If p = 1, then Theorem

1 of [20] is applied to show that there is a primitive non-negative integral

matrix with λ is its spectral radius. More precisely, there is an m × m

primitive non-negative integral matrix M such that λ is its spectral radius.

Construct a new matrix V = VM as follows. Denote by

(23) d := d(M) = max
1≤i≤k

k∑

j=1

M(i, j).

Define a (k + 1)× (k + 1) non-negative integral matrix V as follows.

V (i, j) =





M(i, j), if 1 ≤ i ≤ k, 1 ≤ j ≤ k;
d−

∑r
j=1M(i, j), if 1 ≤ i ≤ k, j = k + 1;

0, if i = k + 1, 1 ≤ j ≤ k;
d, if i = k + 1, j = k + 1.
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It can be easily checked that

k+1∑

j=1

V (i, j) = d for 1 ≤ i ≤ k + 1.

Introduce the symbol set A and an SNRE F = {F (i)}k+1
i=1 according to V as

follows. Let

A = {a(i)}ki=1 ∪ {a(k+1)}.

For i = 1, . . . , k, we define

F (i) =
(
a
(1)
n−1

)V (i,1)
· · ·
(
a
(k)
n−1

)V (i,k) (
a
(k+1)
n−1

)d−V (i,k+1)
+
(
a
(k+1)
n−1

)d
,

F (k+1) =
(
a
(k+1)
n−1

)d
.

Since
∑k

j=1 V (i, j) = d for all i, each F (i) is a polynomial of degree d. It

implies that F = {F (i)}k+1
i=1 is a (d, k + 1)-SNRE with the initial conditions

of F is

(24) a
(i)
1 = 2 for 1 ≤ i ≤ k and a

(k+1)
1 = 1.

Combining (24) with the fact that a
(k+1)
n = 1 for all n (since a

(k+1)
n only

connect to itself), we conclude that a
(k+1)
n must be the least element with

respect to the lexicographic order defined in the proof of Theorem 1.2 (since

a
(i)
1 ≥ 2 ≥ a

(1)
1 for i = 1, . . . , k and a

(k+1)
n = 1). Therefore, we obtain that

the entropy h(F ) is attained at the logarithm of the spectral radius of the

weighted adjacency matrix M corresponding to a reduced SNRE E of F ,

where E = {E(i)}k+1
i=1 is as follows.

E(i) =
(
a
(1)
n−1

)V (i,1)
· · ·
(
a
(k)
n−1

)V (i,k) (
a
(k+1)
n−1

)d−V (i,k+1)
, 1 ≤ i ≤ k,

E(k+1) =
(
a
(k+1)
n−1

)d
.

Meanwhile, M is of the form

ME =

(
M U
0 d

)
,

where U is a k × 1 matrix with entries are U(i, k + 1) = d− V (i, k + 1) for

1 ≤ i ≤ k.
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Let

B =




(a(i),

V (i,1)-times︷ ︸︸ ︷
a(1), · · · , a(1), · · · ,

d−V (i,k+1)-times︷ ︸︸ ︷
a(k+1), · · · , a(k+1))





k

i=1

⋃



(a(i),

d-times︷ ︸︸ ︷
a(k+1), · · · , a(k+1))





k

i=1

⋃



a(k+1),

d-times︷ ︸︸ ︷
a(k+1), · · · , a(k+1)





and let F = Ad \ B. We claim that the TSFT X = XF carries entropy

h(X) = lnλ. Indeed, it follows from Proposition 3.1, Theorems 1.2 and 2.4,

and the fact of a
(k+1)
n = 1 for all n that

h(X) = h(F ) = lim
n→∞

ln
∑k

i=1 ln a
(i)
n

n
= h(E) = lnλ = h.

This shows that h is a entropy of some tree SFT X. Hence, the claim holds.

Finally, if p > 1, i.e., h = lnλ
1
p ∈ E , we first note that the above argument

of the constructing the TSFT X is also applied to the case where M is

a non-negative irreducible integral matrix. Theorem 3 of [20] says that a

positive number is the spectral radius of an irreducible non-negative integral

matrix if and only if some positive integral power of it is a Perron number.

Since
(
λ

1
p

)p
= λ ∈ P, λ

1
p must be a a spectral radius of some non-negative

irreducible integral matrix, say M . Using the same argument as above one

could construct a TSFT X such that h(X) = h(F ) = lnλ. The proof is thus

complete. �

3.4. Example.

Example 3.4. Let h = lnλ, where λ is the spectral radius of

M =




1 1 0
0 0 1
2 1 0


 ∈ M3×3.

Since d = 3 (defined in (23)), we construct a 4× 4 matrix V as

V =




1 1 0 1
0 0 1 2
2 1 0 0
0 0 0 3


 =

(
M U
0 3

)
.
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The (3, 4)-SNRE can be constructed as follows.




a
(1)
n = a

(1)
n−1a

(2)
n−1a

(4)
n−1 +

(
a
(4)
n−1

)3
, a

(1)
2 = 2

a
(2)
n = a

(3)
n−1

(
a
(4)
n−1

)2
+
(
a
(4)
n−1

)3
, a

(2)
2 = 2

a
(3)
n =

(
a
(1)
n−1

)2
a
(2)
n−1 +

(
a
(4)
n−1

)3
, a

(3)
2 = 2

a
(4)
n =

(
a
(4)
n−1

)3
, a

(4)
2 = 1.

Meanwhile, the corresponding set B can also be defined as

B =

{
(a(1), a(1), a(2), a(4)), (a(1), a(4), a(4), a(4)), (a(2), a(3), a(4), a(4)),

(a(2), a(4), a(4), a(4)), (a(3), a(1), a(1), a(2)), (a(3), a(4), a(4), a(4)),

(a(4), a(4), a(4), a(4))

}
.

The same argument as seen in the proof of Theorem 1.1 shows that the

TSFT X = XF with F = A4 \ B is capable of the entropy lnλ.
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