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Abstract

A multiplicative integer subshift X derived from the subshift €2 is invariant under multiplica-
tive integer action, which is closely related to the level set of multiple ergodic average. The
complexity of X is usually measured by entropy (or box dimension). This work concerns
on two types of multi-dimensional multiplicative integer subshifts (MMIS) with different
coupling constraints, and then obtains their entropy formulae.

Keywords Entropy - Multiplicative integer subshift - Multiple ergodic average - Box
dimension

1 Introduction

1.1 Motivations

Before stating our main theorem, let us now briefly explain the connection between the
studies of MMIS and multifractal analysis. Multifractal analysis, which was introduced by
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Mandelbrot’s works on multiplicative chaos in 1970’s [25], plays a crucial role in physics and
mathematics. The multifractal analysis has now become a set of tools applicable in physics,
analysis, ergodic theory, fractal geometry, and other sciences.

Given adynamical system, itis of interest to study the multifractal analysis of the (Birkhoff)
ergodic averages. The aim of multifractal analysis of ergodic averages is to calculate the
Hausdorff dimensions or topological entropy of the level sets consisting of the points whose
limits of ergodic averages are given as levels. We will not attempt to review the extensive
literature here, referring only to [5,13,29,30] for background and references.

Motivated by his famous ergodic proof of Szemerédi’s Theorem, Furstenberg [20] studied
the multiple ergodic averages. Later, many mathematicians including Conze and Lesigne [13],
Bourgain [6], Host and Kra [22] and many others have studied the convergence of the multiple
ergodic averages. The multifractal analysis of the multiple ergodic averages was initiated by
Fan, Liao and Ma [16], which can be described as follows. Let (X, p) be a metric space,
{T; : X —> X}?:l be maps from X to X and {f; : X — ]R};i:] be maps from X into R. Let
F=(f1,..., fa), the multiple Birkhoff ergodic averages of F are defined by

1 n—1
AFG) = 37 AT (T - fa(Tf).
k=0

The Hausdorf{f dimension multifractal spectrum of the multiple ergodic averages with respect
to [ is defined by

dy(a) =dimy Ep(a), a € R,
where

Er(a) = {x € X : lim A,F(x) = oz] . (1

The set X;l’z) (defined in next subsection), considered in [16], is a special subset of
Er(0) and of the same Hausdorff dimension as Er(0). The authors of [16] compute the box

dimension of X ;1’2) and since then, the research on the subject has been very active. Many

works focus on the dimension formula of the generalizations of X él 2) (called multiplicative
subshifts, see Subsect. 1.2) [4,23,24], the multifractal spectrum « +— dy () [17,18,28] and
its relation to the non-linear transfer operators and thermodynamic formalism [31], and the
multiplicative Ising model in statistical physics [9,10]. The results related to our works will
be presented rigorously in next subsection. However, the problem of multifractal analysis on
multiple Birkhoff averages is at present far from being solved.

The topological entropy of a dynamical system was introduced by Adler, Konheim and
McAndrew [1] in 1965. The topological entropy of any subset K in a topological dynamical
system (X, T), denoted by h2 »(K), was firstly introduced by Bowen [7] using the method of
spanning sets. Note that the set K is not necessary compact or invariant (see also Section 7.2 of
[32] for more details of the definition A ﬁ,p (K)).In[19], Feng and Huang introduced the upper
capacity topological entropy of T restricted on K, say h%g(K ), which is a generalization
of the Adler-Konheim-McAndrew and Bowen topological entropy to arbitrary subset K. In
the same spirit of the entropy h,UUg(K ), the concept of entropy for MMIS is also defined
by the formula (12) in Subsect. 1.2 and our goal is to establish the entropy formula of the
multidimensional version of the multiplicative subshifts, namely, the MMIS. We emphasize
that in the symbolic dynamical system (X, o), where X is the space {0,1,...,m — 1}
endowed with the classical metric (see (6) in Subsect. 1.2), and o is the usual shift map,

the topological entropy of any subset is exactly its box dimension multiplied by logm. In
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fact, let d, (x, y) := max{d(T*(x), T*(y)) : k = 0,1,...,n — 1}. Then the (n, €)-Bowen
balls B,(x,€) := {y € X : d,(x,y) < €} when € > 0 is small enough. Thus we have
hf),(K) = dimp(K) logm.

There is a close connection between MMIS and statistical physics. In [9,10], the authors
study the multiple ergodic averages (also called nonconventional averages) in the context of
lattice spin systems and construct the multiplicative Ising model. More precisely, they define
the multiplicative Ising model as the lattice spin system on {—1, 1}V (i.e., the lattice spin
system with Ising £1 spins on N) with Hamiltonian

H(o) =B (Z Joioni + th’f) , 2

ieN ieN

where o € {—1, 1} is a spin configuration. The parameters 8, J and / stand for the inverse
temperature, coupling strength and magnetic field, respectively. Meanwhile, the Hamiltonian
of the classical Ising model on the lattice [0, N] with boundary condition 1 on the right
and free on the left on {—1, 1}V is defined by

N-1 N
Hy (oj0.81) = —B (Z Joioip1+ Y hoi + UN(il)> : 3)
i=0 i=0

In [9], the authors study the thermodynamic limit of the free energy function F,(1) =
limy_ o % logE, (e*5N) associated to the sum Sy = ZIN=1 0;03; by choosing P}, to be a
product of Bernoulli with the parameter p on two symbols {4, —}. They prove the large
deviation principle and central limit theorem therein. Later, the thermodynamic formalism
such as existence of pressure and entropies of the multiplicative Ising model are established
in [10]. In contrast with the Hamiltonian defined in (3), the multiplicative Ising model is to
study the Hamiltonian ZlN: 1 0i02;. It is described in [9]:

The sum Z,N: 1 0i0i+1 is simply a nearest neighbor translation-invariant interaction,
whereas the sum Z,N: 1 0i02; is a long-range non-translation invariant interaction.
Therefore, from the point of view of computing partition functions, the Hamiltonian
ZzN=1 o;op; will be much harder to deal with.

They also mentioned that when the sum is of the type ZINZ 1 0i02; -0k for k > 2, the
dimension of the corresponding lattice spin system is related to the number of primes in
{2,...,k}, eg., k = 3 (k = 5) corresponds to a 2-dimensional (3 -dimensional) nearest-
neighbor spin system (Sect. 5, [9]). It is seen that the MMIS studied in this paper is a kind
of multiplicative Ising model defined in N for d > 1. Therefore, the present paper could be
a starting point for the research on multidimensional multiplicative Ising models in statistic
physics.

1.2 Main Results

Let ¥, = {0,1,...,m — 1} be a finite alphabet, N be the set of positive integers,
No = NU{0}, and N>y = {n € N : n > k}. Let p1,p2,...,Pk—1 € N¢ and for
any two vectors i,j € N9, we denote the coordinate-wise product vector of i and j as
i-j, ie.,ij = (i1j1,02j2,..-,1qjq) fori = (i1,i2,...,ig) and j = (J1, j2,.--, ja)- The
(d, k)-multidimensional multiplicative integer subshift X‘(,'{:]f,)z pe1 S E}Ed ((d, k)-MMIS)

,,,,,
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is defined as
d .
Xy = i € D iy, oy = OforalieNY). @)

The motivation for studying the (d, k)-MMIS comes from Fan et al. [16], where the authors
investigated the box dimension of (4) ford = 1,k = m = 2 and p; = 2 (sinced = 1,
Pp1 = p1 is scalar), i.e., they considered

Xél’z) — {(xk)l?il e {0, ]}N s xxxor = 0 for all k € N} S
with the metric
p(x,y) =2~ min{k>1:xg #yi } (6)

for x, y € {0, 1}V and obtained the box dimension for X él’z) as

1 XlogF,
dimp X(1 L Z % L
210g2n:1 n

where F, is the Fibonacci sequence with F; = 2, F, = 3, and F,,4p = F,4+1 + F, for all
n € N. Subsequently, Kenyon et al. [23,24] noted that (5) can be expressed as

XY = (@, € BN (0%, € Qforalli g ti}, @)

where ¢ = m = 2; and Q2 = X is the one-dimensional golden mean shift, i.e., the subshift
of finite type in 25  with forbidden set F = {11}. Equation (7) has the same form as (4)
ford = 1,k = m = 2,and p;y = q when 2 = X;. Kenyon et al. also developed the
box dimension formula and extended it to general cases. Let g, m > 2 and Q2 C 250 be a
subshift, then

— 1?2 & log |Pref, (22
dimBXg>= g—1 Z og |Pref, ( )I’ ®)
qlogm “— q"

where Pref,, (2) = {u € {0, 1,...,m — 1}" : QN [u] # @}. In particular, if €2 is a shift of
finite type with transition matrix A, then (8) can also be expressed as

[ee}

(g—1)7° 3 log|A"~!]

dimp X(q)
qlogm —  ¢"

Kenyonetal. called (7) amultiplicative subshif't, since (7) is invariant under multiplicative

integer action, i.e., if (xk)k | € X;Z), then (er)k | € X(q) forall » € N.

Peres et al. [28] considered the more general case,

X8 = {0, € =N xlis € Qforalli € N, ged(i, S) = 1}, ©)
where S is semigroup generated by primes pi, p2, ..., pk, and gcd(i, S) = 1 means

ged(i, s) = 1 forall s € S. A typical example of (9) is
XY = {2, € =t xpxaraze = 0 forall k € N}, (10)

where S is the semigroup generated by 2 and 3. Equation (10) also has the form of (4) for
d=1,k=3,m=2and p; =2, pp = 3. The box dimension formula for (9) is

1
dimp X&) = logm {]‘[(1 - p)} Z(* - —)mg |Pref,, ()],
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where S = {l = ¢; < ¢, < ...}. As we have explained in Subsect. 1.1, in the case of
symbolic dynamical systems, the entropy is just the box dimension multiplied by log m. Ban
et al. [4] obtained entropy for general cases as

oo = (O € 25t XX pX ok -+ Xpgk = O for all k € N},

which have the form of (4) ford =1,k =d+1,m =2and p; >2foralli =1,2,...,d.
Since all results presented concern about the (d, k)-MMIS for d = 1, the question arises:
what is the entropy (box dimension) of (d, k)-MMIS for d > 27 This paper considers two
types of (d, k)-MMISs : one with the form (4) for d > 2; and the other is

- d . .
XER oy = 1(iene € 2y Pk, =0foralll < j <dandie N9y,
an

where pl-j e N¢ is the vector that the j-th component is the j-th component (p;) j of p; and
all other components are 1. It is clear that

d
i (d k) _ (d.k)
XPI,P2~,~--7P/<71 - m X J oy ’
i PP Py
j_
where the multiplicative constraint of X (d}k) ; is only built on the j-th components of

Py Py Py
P1,P2, -5 Pk—1-

Remark 1.1 Ford =m =2,k =3,p;1 = (2,3)andp2 = (5,7),

1. Typelis

2 PR
Xl(;qu))z = {(X(,‘,j))ioyojzl S {0, I}N C XL )HXQi37)X(5i,75) = 0 for all (l, j) S Nz}.

2. TypeIlis

v 2 . .
Xl()(f’]];)z = {(x(i,j));?,ojzl € {0, 1}N L XL XL XSG = 0 for all (l, j) (S Nz}

2 . .
m{(x(i,j))ioszl € {0, I}N DXG, jHXi3)Xa,7j) = 0forall (i, j) € Nz}.

3. We consider these two types because their coupling constraints are different, e.g. for
type I, the positions in N? that will be affected by (1,1) are {2458, 3%7#) : a, 8 > 0},
whereas {(2%15P1 322782y« o | Bi1, a2, B2 > 0} are affected for type II (see Fig. 1). Thus
the constraints of the Type l MMIS are tighter than those of the Type I MMIS, and hence
produce different expressions for entropy. We use these two types to show that different
coupling constraints cause different entropy formulae for higher dimensional cases.

4. Both Type I and II have the same form whend = 1.

This paper extends the entropy formula of (d, k)-MMIS for d > 2. For simplicity, we
only consider m = 2.
The entropy of a (d, k)-MMIS X is defined as

logI" X
h(X) = lim sup 28T kxeX)

(12)
k,—o00 kt

where [y ¢ (X) is the number of admissible patterns on k x ¢ lattice. The results of our study
are summarized in the following theorems.
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Type I & Type 1T T

Fig. 1 The points with symbol triangle are affected by (1, 1); the points with symbol circle are affected by
(2, 1); the points with symbol diamond are affected by (3, 1)

Theorem 1.2 Let p = (p. q) € N2, then the entropy of X3*) is

1\ X log Fyy
R B ot

m=1

where Fy, is the Fibonacci sequence with F\ =2, Fp =3, and Fy, 12 = Fyy1 + Fy, for all
m e N.

When p = (2, 3), h(X 52’2)) =~ 0.6479. The following theorem covers the general case for
d>3.

Theorem 1.3 Letp = (p1, p2, ..., pa) € N‘éz, then the entropy 0le(,d’2) is

1 > log F,
h(X$5P) = (pip2...pa—1) (1 - 7> —
P pip2---Dd mZ::l(Plpzmpd)’”

We define {e; : 1 < i < d} as the standard basis for R?, for example, e; = (1, 0) and
er = (0,1) ford = 2.

Theorem 1.4 Let py = (p1.p2) and p2 = (q1.q2) € N2, with ged(pi.q1) =
gcd(pa2, q2) = 1, then the entropy of Xl(,zl’j,)z is

1 1
23y _
M Xpilp:) = (l B P1P2> (1 - qlqz) x
> 1 1 1 1
Z = - — - | logbm N,
M.N=I m M +1 'n rN+1

where by n is the number of admissible patterns on Ly n lattice in N% with forbidden set
F = {x0 = Xxe, = Xe, = 1} (see Definition 2.5 for definitions of Ly n and ry, rl’VI).

When p; = (2,3) and po = (5, 7), h(Xl(,zl'j,)z) ~ 0.5353. The following theorem covers

the general case ford > 2 and k > 2.
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Theorem 1.5 For k > 2, let p; = (pi.1, Pi2,---» Pid) € N>2, < k — 1. Assume

L <
ged(pie, pje) = lforalll <i < j <k—-1landl < { < d, then the entropy of
(d.k)
pr.p2pe—1 1S

k—1 1
h(X 0y < 7> X
P p2) ie1 Di,1Pi,2" " Pid

oo

Z |:1_[(r(1) NO) ):|10ng1st ,,,,, My>
d 1 i

M\ My, ..., TM;+1

where by, m, ... M, iS the number of admissible patterns on the lattice Ly, m,,... M, in N/(‘)_l
with forbidden set F = {xo = xel = Xe, = -+ = Xe_, = l} (see Definition 2.6 for
definitions of Lyt ms,... .M, and rM +1)

.....

We develop the entropy formula for (11) as follows.

Theorem 1.6 Letp = (p,q) € N>2, then the entropy ofX(2 2

_ > 1 m,n
h(X$?) = (p— 1)<q—1)<1—f>(1—*> > (fmaqé ’

m,n=1

where ap, ,, is the number of admissible patterns on m X n lattice in N(z) with forbidden set
= {xo = xe; =1, x0 = xe, = 1}.

When p = (2, 3), h(X ](,2’2) ) = 0.5212. The following theorem covers the general case for
d>3and k =2.

Theorem 1.7 Letp = (p1. pa. ..., pa) € N¢ S2- The entropy ofX(d 2

h(X5?) = []‘[(pl ~ (1 - p)} ) loga"”'"fjj“’ -

my My mg’
i=1 my,my,....,mg=1 p1 p2 pd

where Qm, ;... .m, 1S the number of admissible patterns on my X my x --- X mgy lattice in
Ng with forbidden set F = {xg = Xe; = 1,x0 = Xe, = 1, ..., X0 = Xe, = 1}.

For d = 2 and k = 3, we have the following theorem.

Theorem 1.8 Let p1 = (p1, p2) and P = (q1.q2) € N&, with ged(pr,q1) =
gcd(pa, g2) = 1. The entropy opr] p IS

1 1 1 1
=12 (-2)(-)(-2)-
p1 D2 q1 q2
> 1 1 1 1
> (—- R, logem
M.N=1 ™ 'M+1 r'n "N+ '

where cpy,n is the number of admissible patterns on H_AM, N in Nﬁ with forbidden set F =

{x0 = Xe; = Xe, = 1, X0 = Xe; = Xe, = 1} (see Definition 3.7 for definitions Of]I:M_N and
M, Thy)-
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When p; = (2,3) and py = (5,7), h(X4r?) & 0.4077. The following theorem covers
the general case ford > 2 and k > 2.

Theorem 1.9 For k > 2, let p; = (pi.1, Pi2s---» Did) € N‘;, 1 <i <k—1. Assume
ged(pie, pje) = 1foralll <i < j <k—1and1 < £ < d, then the entropy of
& (d k) .

pr.p2..pe—1 B8

_ k—1 d
h<xf:f:’.az>—[ I }
1

i=1¢=1

00

Z |:1_[( (O RN0) ):| logemy My, My
My, M3, ... Mg=1 M; M;+1

D ith

..........

Sforbidden set

:{x0:xej:xej+1 :-~-Xej+k72:l,j:m(k—])+l,0§m§d—]}

(see Definition 3.9 for definitions ofILM, M

.....

M, and r1(|2 ).

Although Theorems 1.2 to 1.9 provide some entropy formulae for (d, k)-MMISs,
exact values are extremely difficult to calculate because we need to calculate the num-
ber of admissible patterns on their underlying lattices for a multidimensional SFT
[2,3,8,11,12,15,21,26,27,33].

Remark 1.10 1. The entropy formula in Theorem 1.5 ford =2 and k =2 is

1 o0 2 | 1
h(XI()ZIJ)) = <1 — ) Z |:1_[ ( M1 M‘>i| log Fmin{Ml,Mz}-
PLIPLY ) py by=1 Pii PL

By taking m = min{M|, M}, it can be shown that

1 > 1 1
h(X(z’Z)) — (1 _ ) E ( — >lOgF ,
P P11P12 (pripi2)" ' (pripi2)™ "

m=1

which coincides with the entropy formula in Theorem 1.2. Similarly, the entropy formula
in Theorem 1.5 (or Theorem 1.9) for k = 2 can be simplified to that in Theorem 1.3 (or
Theorem 1.7), respectively.

2. In Theorem 1.4, we have the condition gcd(pi, g1) = ged(p2, g2) = 1. Our method
is highly dependent on a ‘nice’ partition of N? as in Lemma 2.4, whose elements
Mpq(i, j), (i,j) € Ipq, (see Definition 2.3) are not affected by each other under
the coupling constraint X, j)X(ip,,jq1)X(ips,jq») = 0 and have some structural similari-
ties inside. Without the condition, the partition in Lemma 2.4 fails, for example, when

= (2,3) and p2 = (2, 5), it can be checked that My (i, j) N Mp (', j/) # @ for
@, j) = @2m—1,3" and (', j) = 2m — 1,5") in Ip g, m,n > 1. Therefore, our
approach cannot work in this circumstances, and further study is needed for obtaining a
nice partition and entropy formula. The situation for Theorem 1.8 is similar.

The remainder of this paper is organized as follows. Sections 2 and 3 collect the necessary
materials to calculate the entropies of (4) and (11). Section 2 also provides proofs for Theo-
rems 1.2 and 1.4. Since the proofs for the general cases (Theorems 1.3 and 1.5) are similar
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to those for Theorems 1.2 and 1.4, respectively, we provide the necessary definitions rather
than their detail proofs. Section 3 provides detailed proofs for Theorems 1.6 and 1.8, and we
similarly omit the proofs for Theorems 1.7 and 1.9.

2 Proofs for Theorems 1.2 and 1.4

The following definitions and lemmas are required to prove Theorem 1.2. Given p, g > 2,
let M 4 = {(p™,q™) : m > 0} be a subset of N2, denoting M, 4 (i, j) = {Gp™, jq™) :
m > 0} as the lattice M, ; starts at (i, j), and let Z, , = {(i, j) : pfiorg 1t j} bethe

. 2,2)
complementary index set of X",
The idea of proofs of Theorems 1.2 and 1.4 can be divided into three parts.

(I) Identify the partition of N? by index set 7 p.q and lattices M, , (Lemmas 2.1, 2.4, 3.2
and 3.6). Then for an admissible global pattern U € Xl(,z’z) the restriction of U on
Mp.4(i, j) (denoted by U|am,, . j)) and the restriction of U on M, 4(i’, j') (denoted
by Ulm, ') are independent for all (i, j) # (', ) eIy

(II) Compute the density limit for independent lattices M, , (i, j) with the same size in the
k x ¢ lattice (Lemmas 2.2, 2.7, 3.4 and 3.8).

(IIl) Determine the set of all admissible patterns on M, 4 (i, j) with size m > 1 and compute
their numbers e.g. F,,, in Theorem 1.2.

The following lemma shows that M, (i, j) forms a partition of N2,

Lemma 2.1 For p,q > 2,

N = [ Mpgl. i)
(.)€Tpq

Proof We first claim that for all (i, j) # (', j') € Zp 4, Mp g, ) N M, 4G, j) = 0.
Suppose this did not hold. Then there exist (i, j) # (i, j') € Zp 4 such that M, ,(i, j) N
Mp @', j) # @. Since (i, j) # (@', j’), then there exist m; # my > 0 such that
@ip™, jq™) = (i'p™2, j'q™?). Without loss of generality we assume m| > mj, then
ip™~" =" and jq™ ™ = j’ gives pli’ and ¢|;’, which contradict (i’, j') € Z, 4. It
remains to show that the equality holds. For (i, j) € N2, then i = i’ p*and j = j q?
for some p 1 i’,q T j' and a, 8 > 0. Take y = min{«, B}, then (p’—y, qiy) € Ipg,
(i, ) € /\/l,,,q(p’—y, q%), and converse is clear. O

For part (II), we need more definitions to characterize the partition in k x ¢ lattice. For
k> 1, let Nie = {(i,j) : 1 <i <k,1 <j <{}beak x £lattice and Lx¢ (i, j) =
M (i, j) N Nixe be the subset of M, , (i, j) ink x £ lattice. For m > 1, define Jixe;m =
{G, ) € Nixe © |Lkxe(, j)| = m} as the set of points such that M, ,(i, j) in k x £
lattice with length exactly m, where | - | denotes cardinal numbers. Let KCy .., = {(i, j) €
Tp.g N Nixe : |Lkxe(i, j)I = m} denote the set of points in Z,, , that M, ,(i, j) ink x £
lattice with length exactly m. In the following lemma, we compute the limit of density of
’Ckxf;m~

Lemma 2.2 Fork,{, and m > 1, we have the following assertions.

k ¢ k|| ¢
L Jxce:m] = {ﬁJ {ﬁJ - {7J {TnJ
P q p" | Lq
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31 Page100f20 J-C.Banetal.

Krws. 1
2. fim Mkl 1
k,6— 00 |kaz~m| Pq

. hm - Z [Kkxe;m|1og Fin = Z hm |1Ckx€;m|10g Fi.

Proof 1. Since |Lyx¢(i, j)| = m, then by definition we have Jyx¢.m = {(i, j) : ip"! <
kand jg" ' <e}n{G, j) :ip™ > kor jg™ > ¢}.
Thus, there are three disjoint cases to consider:
L {G, ):ip" ' <kand jg™ ' <€} N{G, ) :ip™ > kand jg" > £};
IL {G, j): m U'<kand jg" ' <€}n{G, j): lp > kand jg™ < ¢};

1. {@, j): m U'<kand jg" ' <&}n{G.j):ip™ <kand jg" > £}.
Then,

| Tixcem| = I{G, J) € Nixe t [Lkxe(, J)| = m}]

k k l
M < s e and (< s )l
p q

m—1

I

ok Kk ot
G ) s (5 <i = ) and (= )]
+ p V4 q

I

L.k 1 , ¢
+|{(l,1):(lSpfm)and(qfn<15qm_l

2.Formy >my > 1landny > n; > 1, let
.. 2 . .
Ronymyimyomy = {(, ) €N imy <i <mpandn; < j <ny}

be a rectangle lattice. Clearly, the complement of Z), , is I;’q ={G,j):pliandgq | j}

and
|Rm1,m2;n1,n2 mIp,q| = |Rm1,m2;n1,n2| - |Rm1,m2;n1,n2 mI;,qL
Thus,
1
|Rm1,m2;n|,n2 mIp,ql = |Rm1,m2;n1,nz| - 7|'le,m2+2p;n1,n2+2q|
and
1

|Rm1,m2;n1,n2 m:Z-p,q| = |Rm1,m2;nl,nz| - Elle,m272p;n1,n272q|-
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Then, by the Squeeze theorem,

lim 1,ma;n1,ny pal _q_ '
e [Rony,masnyna | prq
np—n|p—oo

Since the regions I, II, and III are rectangular, and both the length and width of each of
the three rectangles approach oo as k, [ — oo. Therefore,

Wioem! lim |Jkxtzm N Zp gl
k. t—00 | Tk t;m| k,t—00 | Tk xt3m|
1
— 1 -
P‘]
3. Define
K _ |’Ck><i;m| ifm <k,
xtm =10 itm > ke.
Then

ke
> [Kixtzmllog Fyy = lim —ZkaemlogFm

m=1

kZa ke

Hence from Weierstrass M-test with

Kixesm 10g | < &1 Tkxcezm| log Fin
1 k 4 k 14
=h ([ [ ] - [ ] [ ) e P

< ﬁ (*pm T )10gFm

kt

= (pq)lm—l log Fm
og F, K lo
forall k, £ € N and Z _log Fu_ < 00, we deduce that Z Kiextim 108 Fn converges
m=1 (pq)™~ ! m=1 ke
uniformly in k, £. Then,
| X
Jim 2> Kxenllog By = lim - Z Kiextom 10g Fy
’ m=1
oo
Z kae m 10g Fiy
"
Z |/ckxz ml1og Fy.
The proof is complete.
O
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For part (Il), from Lemma 2.1, (i, j) # ('j") € Zpqn X5 I, 6. and
X l()2,2) |m,, .7y are independent, which means there are no restrictions on each other. Then,

2.2 2,2 2,2
Tt (X5P) = 1X52 N | = 1_[ 1X 82 My g o) WNie |-
(i»j)el-p,qm-/\/'kxl

Clearly, X](,Z’Z)|/\/1p_q(,~,j)m\/kﬂZ are independent and M, ; (i, j) N Nixe| = m forall (i, j) €
Kixe:m- Therefore, we have

kt

|]C X,‘Yll‘

Tise (X ?) = [] B
m=1

which is crucial in proving Theorem 1.2.

Proof for Theorem 1.2 Since

1
h(Xl(,z’Z)) = lim supﬁ log Fkxg(X(lz))

k,l—o00
1 [Krexe;m|
= lim sup-~ log Fp "
k,t—o0 k€ n!_ll (13)
.24

1
= lim sup— Krse:m|log Fy,.
k,zﬁ:gkﬁ n;' k><K,m| g I'm

Combining Lemma 2.2 and (13), the limit for (13) exists, and

00
2.2 o1
h(X]() ' )) = Z kylzll)nooﬁuckxﬁ;mu()g Fm

m=
oo

. 1 1
= hm 7|s7k><(3;m|(1 - 7)10g Fu

(14)
= Z——(pq - - —>logF
m= l
log Fy,
=(pqg — D1 - —) .
Z " (pg)™
The proof is complete. o

The proof for Theorem 1.4 proceeds similarly, as follows.
Definition 2.3 Let p = (p1, p2) and q = (g1, q2) € N2,, then
L. Zyq=1{G. j): (prfiorpatfj)and(qifiorgxt )}
2. Mp.q = ((pfar. P§a3) e p = 0.
3. Mp G, j) = {(ip‘l"q1 , ]pzqz) a, B = 0} denote the lattice My, q starts at (i, j).
The following lemma gives the partition of N2,
Lemma24 Forp,q € N S with gcd(p1, q1) = 1 and ged(p2, g2) = 1,

N = [ Mpal. i)
(i,j)€Tpq
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Proof We first claim that for all (i, j) # (i’, j') € Ip.q. Mp.q(i, J) N Mp q(', j/) = 0.
Suppose not, then there exist (i, j) # (i, j') € Zp q suchthat My o(i, ))NMp o', j)) #
@. Since (i, j) # (', j),
o ar i o B2 ﬂ2)

(py'q)". jpy'ay') = (' pi*qy”, i pyiah

for some o1, a2, B1, B2 > 0 with oy # ap or f1 # P2. Without loss of generality, we may
a—ar i ) a—ar pi B2

assume a1 > ay. Then since ip) q, =1i'q,",jp,; q, = j'q,” and gcd(p1,q1) =
ged(p2, g2) = 1; p1li’, and py|j’, which contradicts (i, j') € Zp q.

It remains to show that the equality holds. For (i, j) € N2, there exist o, a2, B1, B2 >0
such that (i, j)) = ('p{'q f',} pzzqu) where p1,q; {1 i/, and pz,qz 1 j Take

a = min{ay, a2} and B = min{f;, B2}. Then, we have (i, j) € My, q( ik B) and
qy Py

i Jj
(p?q Ay ég) € Zp,q- The converse is then clear. ]

Similar to the proof of Theorem 1.2, the following definitions and lemmas are needed.

Definition 2.5 For k, £, M, and N > 1, let
LMoo :{plql a,p=0={r1 <rp<---}and

Mp, 4 ={p2q2 ca, B0 ={r <1y <.}
2. Tice:m,N ={(, j) € Nkxe tiryy <k <irpyyand jry <€ < jry, ) be the subset
of Njx¢ which satisfies iry < k < iry41 and jry <€ < jry,,.
3. Kixe:m,n = (i, j) € Tpq NV Nixe tiry <k <irpyyrand jry <€ < jry,,}bethe
subset of Jix¢;m,n, Which belongs to Zp 4.
4. For M, N > 1, we define L/ y as

Lay == {(a, B) : plql <ru}n{(@ B): p§qf <riy).

The lattice Ly, p,,..., m,, whichis used in Theorem 1.5, for d, k > 2 is defined as follows.

.....

Definition 2.6 Ford,k > 2 and My, M>, ..., My > 1, the lattice
d

Ly Mo, My :=ﬂ{(a1,az,--- ap-1) : pl,pz,pk 1, --<r(’)}
i=l1

{rl(j) < rz('i) <.}

_ ) Q) Ok—1 —
My = AP Pyt @, e a1 = 0 =

forall j=1,2,...,d.

Lemma 2.7 Fork,{, M, and N > 1, we have the following assertions.

eant= (15| ) (1) |5 )

Kixe: 1 1 1
> lim kxemn 1 + _

).
ke=00 | Tiesco; M N | Pip2 4192 pip2qiq2
1 k ¢ 00 1
lim = >0 D Weemnlloghyy = Y lim -~ |Kixemnlloghy,n,

" kt—ocokl k,t— o0
M=1N=1 M.N=1
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where by n is the number of admissible patterns on the lattice Ly v of two-dimensional
subshift with forbidden set F = {xg = Xe; = Xe, = 1}.
Proof 1. Since (i, j) € Jkxe;m.n if and only if iryy < k < iryy1and jry <€ < jry.,.

It follows that —&— < i < *_and A j =< £
"M+ ™ "M+ "M

st = ([ |- ) (1] 2 ])

2. Let the complement of 7, 4 be

Therefore

Ipq=S1US ={(, j): pili and po|j} U{G, j) : q1]i and g2]))}.
Since ged(p1, 1) = ged(pa, g2) = 1, we have
S1NS& = {0, J): piqili and pago|j}.
Then, as in the proof of Lemma 2.2,
IKxemn| lim | Tiexe;m,n N Zpq]

kt—oo | Tese:m Nl kt—=oo  [Tixe:M NI
| Tiesce; v NI g

= lim 1—
k,¢—00 [ Tkxe; M N |
— tm 1— (Ikaz;M,N NSl | |Tixemn NSl | Texesmn NS m$2|>
ke=00 | Tiexce; M N | [Tixce:m,N| | Tkexce:m.N |
1 1 1

piP2  q192 pip2qiq’

3. The result follows the same argument as that of Lemma 3.4.
The proof is complete. O

Proof for Theorem 1.4 By Lemma 2.4,

1
h(X 2] %)2) = lim supﬁ log Fkxg(X(2 3) )

k.l—o00 P1.P2
\kazMNl
= lim sup—log 1_[ l_[ by (15)
ko0 k€ M=IN=
¢

1
= hmsup—e Z Z [Khsce:m n|1ogbpy N
k@—)OO M=1N=1

Combining Lemma 2.7 and (15), we have

o0

1
(2.3)y _ .o L ,
hXprp) = D lim o Kom vl logby,n
M,N=1
> 1 1
= Y lim —ukxz;M.m[l—( ——7)]long,N
My ket kt pPiP2 Q192 Pip2q1q2
- (16)
1 1 1 1 1 1 1
=Y (——— N7 -7 |1=(——+—————) |loghu n
Ml ™ ML TN Ty Pip2 - q192  p1p29192
1 1 1 1 1 1
={1—< +——7>] D (— = ——)(5 — ——)loghux.,
pip2 192 pipaqiqe O TM TM ry N+1
which completes the proof. O
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3 Proofs for Theorems 1.6 and 1.8

Similar to the above proofs. We gives the necessary definitions for the proof of the second
type (d, k)-MMIS. For the step (I), we need the following definitions.

Definition 3.1 Given p, g > 2,
LI, ={G, )):ptiandgtjl=1{i:pti}x{j:qtj}=1pxT,
2.Mpg =((p*.q") 1o =0} = (p* 1 = 0} x " : B = 0} = M), x My.
3.M, 4G, j) = {Gp®, jq¥) : a, B > 0} denote the lattice M, , starts at (i, j).
The following lemma is analogous to Lemma 2.1.

Lemma3.2 For p,q > 2,
N'= [ MpqG. .
(,))€Tpq
Proof We first claim that for all (i, j) # (i, j') € Zp.q» Mpg(i, j) N M,y 4G, j") = 0.
Suppose not, then there exist (i, j) # (', j') such that M, 4@, j) N M, 4@, j)) # 0.
Then, there exist a1, a2, B1. B2 > O with & # a3 or B; # B, such that (ip®!, jqP) =
(i’ p*2, j'qP?). Without loss of generality, we may assume o > ay. Therefore, ip® =2 = i ’
and hence pli’, which contradicts (i’, j') € Z, 4.
It remains to show that the equality holds. For (i, j) € N2, (i, j) = (i'p®, j'qP), where
p1i’and gt j’, hence (i, j) € M, 4(i’, j'). The converse is then clear. O
We need several more definitions for the step (II).
Definition 3.3 For k, ¢, and m > 1,
LNy ={i|ll <i <k}
2. Ly () = Mp@)N N denote the subset of M (i) in the k lattice, and
Lg:¢(j) = My (j) NN denote the subset of M, (j) in the £ lattice.
3. Lixe(is j) = Lpik @) X Lgze(j).
4. jkxl;m,n ={(@, ) € Nixe : |['p k()| = m and |£q ()| = n}
={i e Nkt [Lpk (D) = m} x {j € Ng: |Lge ()| = n}.
5. lekxl;m,n ={@,j)e jp,q N Niexe |£p;k(i)| = m and |£q;€(j)| =n}
={i € Zp NNk : [Lp (D) =m} x {j € I, N Ne : |Lge(j)| = n}.
We similarly compute the density limit for the independent lattices.

Lemma3.4 Fork,{,m,andn > 1, we have the following assertions.

it = (| = ) [ - [)

K 1 1
2 lim |_k><Kmn| ( _7)(1_7).
ké"oo|«7kx€mn|
> 1
3klzlglooﬁ22|’ckx£mn|logamn— Z k%lm *“Ckx@mn'l()gamn
m n m,n=
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Proof 1. Since (i, j) satisfies |Lp.x(i)| = m and |L;¢(j)| = n if and only if (i, j) satisfies
ip"~! < k < ip™ and jg"~' < £ < jq". Then (i, j) satisfies me <i <
4

7 < Jj =< qf_l . Therefore

and

pm—l

| Tixctzmon| = 1{i € Nic 2 |Lpik (D) = m}|I{j € Ne 2 [Lg:e(j)] = n}|
- -l D (7= -5
- pm—l pm qn—l q" .

2. The proof is similar to that for Lemma 2.2.

3. Define
K |’Ck><Kmn| ifm <kandn <¢,
fxtmn =1 0, otherwise.
Then
1 k l | .
k. gﬁookg Z Z |K:/<><K m.n|10g amn = hmooﬁ Z Kixe:mn10g am,n.-
m=1n=1 mn=1

Kk><£ m,n 10€ G

o0
We claim that Z 7

m,n=1

converges uniformly in k, ¢ by Weierstrass M-test

with

Iekxé;m,n log Am,n |jk><€;m,n| log Am,n 1 1
ke ke = pm—lqn—] 08 dm,n
forall k, £ > 1 and
> 1 1
Z ————logamn < Z ————log2™"
1 1 1 1
m,n=1 pm qn m,n=1 pm q'l
10g2 Z n om—1,n—1
m,n= 1

o0
m n
= log 2( E mil)(g —7) < 0.
m=1 p n=1 q

Thus,
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1 &
kilgloog ZZ"CkxlmnHOgamn = hmooﬁ Z Kixo;mnlogam n

m=1n=1 m,n=1

> 1

= lim — Kpxp:mnloga
Z [ ) kxt;m,n 108 Am.n
m,n=1
> 1

= lim — | Ko loga,, n.
Z k,[~>ook£| kxl,m,n| 2 dm,n
m,n=

The proof is complete. o

Proof for Theorem 1.6 By Lemma 3.2, we have

h(X(2 2)) = lim supk— log Fkxg(X( 2))

k,£— 00
- I’Ckxé mnl
hm sup—log H l_[ amn
m=1n=1
k¢
= lim sup— Z Z |Kkxt;m.n] 108 i .
k, Z%oo

m=1 n=1

Combining Lemma 3.4 and (17), we have

oo
. 1 -
/’L(X(2 2)) = Z kélglooﬁ“ckxf;m,nlIOgam,n
m,n=1
=3 tim Gl = Sy =
= k,(flglookf kx{l;m,n P 4 0gam.n
m,n=1
o 11 1 1 (18)
= > g P~ D@ =D = 1 = ) logan,
P q
m,n=1
loga
=(p—1>(q—1>(1—7><1—7>2 Z
i — p"q"
The proof is complete. O

We need the following definitions to prove Theorem 1.8, parts (I) and (II).
Definition 3.5 Let p = (p1, p2) and q = (g1, ¢2) be two vectors in N222,
1. Zpq = {(, /) : (p1 fiand p> { j) and (g1 i and g2 { /)}.
2. Mp.q = {(p'a}" p324h™) e, i e, B2 = O).
3. Mp.qli, ) = (GpS'al", jpSPal®)  en, Broea, B2 = 0).
The partition of N can be expressed as follows.
Lemma3.6 Forp,q € N2, with ged(p1. q1) = 1 and ged(p2, q2) = 1,

N = ] Mpal. p.
(i./)€Zpq
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Proof We first claim that for all (i, j) # (i’, ];/) € Ipg /\;lg,q(i, jn /\;_lp,q(i/, i =0
Suppose not, then there exist (i, j) # (i’, j') € Zp q suchthat Mp, (i, j)ﬂ./\/lp q@’, j) # 0.

Then there exist a1, @2, B1, B2, @}, &}, B], B} > 0 with p‘l’”qf‘ £ pM1gf or p2glt #

! 'Bl i ’ ﬂ/ . !
pgtzqz2 such that (lp‘f'q{gl,]pz qu) = (l’p‘lx'q1 l,j’pgzqzz). Since ged(p1, q1) = 1 and

ged(pa, q2) = 1, a1 # af or B # Bj orax # b or B # ;. Without loss of generality,

we may assume «; > o]. Then by ip1 1qf3' = z/qf‘ and ged(p1, q1) = 1, p1li’, which

contradicts (i’, j') € Zp.q.

It remains to show that the equality holds. For (i, j) € N2, there exist oy, a2, B1,82=>0
ar Bio. o P

with py, g1 fi" and pa,q2 1 j" such that (i, j) = ('pi'q;", j'Py°q;°). Hence (i, j) €
My q(@@’, j) and (i, j') € Zp 4. The converse is then clear. m}
Definition 3.7 Let k, £, M, and N be integers larger than 1.
L. Mpyg = (p8qF ca, =01 =1{ri <r<--}and
Mpygr = {p%qf ta, B0 ={r <y <.}
2. Tise:mn =13, j) € Nixe tiry <k <irygrand jry <0< jryg )
3. Kixe:mn = (G, j) € Tp.qg N Nixe :iry <k <iryyr and jry <€ < Jryit
4. For M, N > 1, we deﬁne]iMN as
Loty = {(er, fr.e2. B2) : pi'qf" < ru and p3g5® < riy).

We also have the limit of density for the independent lattice in the following lemma.

Lemma 3.8 Fork,{, M, and N > 1, we have the following assertions.

et = (| 4] ) MMHJ)-

. | Kkxe:m, N
2. lim == = U—fm——m——m_%
ke—>°°|u7k><€'M NI
> 1
Z%ookﬂ Zl NX:I \Kiescem NI log ey, v = M;_lk,%‘inooﬁ"c"”m”' logcp v,

where ¢y is the number of admissible patterns on Ly y lattice of 4 dimensional subshift

with forbidden set F = {xog = X¢; = Xe, = 1, X0 = Xey; = Xe, = 1}.

Proof The proof is similar to that of Lemma 2.7. O
Similar to Definition 2.6, the lattice for d, k > 2 is defined as follows.

Definition 3.9 Ford, k > 2 and M, M», ..., M; > 1, the lattice

Lty Mooy =L (@11, 00,15 0 Q=115 002, @22, + o 5 Q125" s XL ds A2 ds " s OWk—1,d)
al e Q24 Of—1,0

s {4
Pie Pag " Pr—1 f'"](ui,lfgfd},

N ‘ ) ) .
Moy ipajpiry = {pl]j’p2 J’ pkkllj’ toj=0forl <i<k—1}= {r{J) < rz(j) <.}

forall j =1,2,...,d.
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Proof for Theorem 1.8 By Lemma 3.6,

2.3 . 1 =
h(X‘(,1 p)z) = hrzl supﬁ log FkXZ(Xl(le:i))z)
= lim sup— 10g 1_[ l_[ ‘]CleMNl (19)
k(%oo M=1 N=1
¢
= hmsup— Z Z |Kixe:m.nllogepm n.
k(%oo 1 N=
Applying Lemma 3.8 and (19), we have
17
> 1
2.3) _ . -
h(Xprp) = Z kélinooﬁ“CkXZ;M,NHOch,N
M,N=1
e B 1 1 1 1
= Y lim —|Jemnl(l— —)(1 = —)(1 = —)(1 — —)logcu,n
Moy et ookt p1 p2 91 7
S| 11
= > (—=—)(5F
M.N=1 ™ T™+1 Ty N+1 P1
1 1 1
=(1——>(1 - —)(1 - —)(1— L Z (— - - L ogenn.
q2 M.N=1 ™ rM+1 Ty N+l
The proof is complete. O
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