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Abstract
Amultiplicative integer subshift X� derived from the subshift� is invariant undermultiplica-
tive integer action, which is closely related to the level set of multiple ergodic average. The
complexity of X� is usually measured by entropy (or box dimension). This work concerns
on two types of multi-dimensional multiplicative integer subshifts (MMIS) with different
coupling constraints, and then obtains their entropy formulae.

Keywords Entropy · Multiplicative integer subshift · Multiple ergodic average · Box
dimension

1 Introduction

1.1 Motivations

Before stating our main theorem, let us now briefly explain the connection between the
studies of MMIS and multifractal analysis. Multifractal analysis, which was introduced by
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Mandelbrot’s works onmultiplicative chaos in 1970’s [25], plays a crucial role in physics and
mathematics. The multifractal analysis has now become a set of tools applicable in physics,
analysis, ergodic theory, fractal geometry, and other sciences.

Given adynamical system, it is of interest to study themultifractal analysis of the (Birkhoff)
ergodic averages. The aim of multifractal analysis of ergodic averages is to calculate the
Hausdorff dimensions or topological entropy of the level sets consisting of the points whose
limits of ergodic averages are given as levels. We will not attempt to review the extensive
literature here, referring only to [5,13,29,30] for background and references.

Motivated by his famous ergodic proof of Szemerédi’s Theorem, Furstenberg [20] studied
themultiple ergodic averages. Later,manymathematicians includingConze andLesigne [13],
Bourgain [6], Host andKra [22] andmany others have studied the convergence of themultiple
ergodic averages. The multifractal analysis of the multiple ergodic averages was initiated by
Fan, Liao and Ma [16], which can be described as follows. Let (X , ρ) be a metric space,
{Ti : X → X}di=1 be maps from X to X and { fi : X → R}di=1 be maps from X into R. Let
F = ( f1, . . . , fd), the multiple Birkhoff ergodic averages of F are defined by

AnF(x) = 1

n

n−1∑

k=0

f1(T
k
1 x) f2(T

k
2 x) · · · fd(T k

d x).

TheHausdorff dimension multifractal spectrum of the multiple ergodic averageswith respect
to F is defined by

dH (α) = dimH EF(α), α ∈ R,

where

EF(α) =
{
x ∈ X : lim

n→∞AnF(x) = α
}
. (1)

The set X (1,2)
2 (defined in next subsection), considered in [16], is a special subset of

EF(0) and of the same Hausdorff dimension as EF(0). The authors of [16] compute the box
dimension of X (1,2)

2 and since then, the research on the subject has been very active. Many

works focus on the dimension formula of the generalizations of X (1,2)
2 (called multiplicative

subshifts, see Subsect. 1.2) [4,23,24], the multifractal spectrum α �→ dH (α) [17,18,28] and
its relation to the non-linear transfer operators and thermodynamic formalism [31], and the
multiplicative Ising model in statistical physics [9,10]. The results related to our works will
be presented rigorously in next subsection. However, the problem of multifractal analysis on
multiple Birkhoff averages is at present far from being solved.

The topological entropy of a dynamical system was introduced by Adler, Konheim and
McAndrew [1] in 1965. The topological entropy of any subset K in a topological dynamical
system (X , T ), denoted by hB

top(K ), was firstly introduced by Bowen [7] using the method of
spanning sets. Note that the set K is not necessary compact or invariant (see also Section 7.2 of
[32] formore details of the definition hB

top(K )). In [19], Feng andHuang introduced the upper

capacity topological entropy of T restricted on K , say hUC
top (K ), which is a generalization

of the Adler-Konheim-McAndrew and Bowen topological entropy to arbitrary subset K . In
the same spirit of the entropy hUC

top (K ), the concept of entropy for MMIS is also defined
by the formula (12) in Subsect. 1.2 and our goal is to establish the entropy formula of the
multidimensional version of the multiplicative subshifts, namely, the MMIS. We emphasize
that in the symbolic dynamical system (X , σ ), where X is the space {0, 1, . . . ,m − 1}N
endowed with the classical metric (see (6) in Subsect. 1.2), and σ is the usual shift map,
the topological entropy of any subset is exactly its box dimension multiplied by logm. In
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fact, let dn(x, y) := max{d(T k(x), T k(y)) : k = 0, 1, . . . , n − 1}. Then the (n, ε)-Bowen
balls Bn(x, ε) := {y ∈ X : dn(x, y) < ε} when ε > 0 is small enough. Thus we have
hB
top(K ) = dimB(K ) logm.
There is a close connection between MMIS and statistical physics. In [9,10], the authors

study the multiple ergodic averages (also called nonconventional averages) in the context of
lattice spin systems and construct the multiplicative Ising model. More precisely, they define
the multiplicative Ising model as the lattice spin system on {−1, 1}N (i.e., the lattice spin
system with Ising ±1 spins on N) with Hamiltonian

H(σ ) = −β

(
∑

i∈N
Jσiσ2i +

∑

i∈N
hσi

)
, (2)

where σ ∈ {−1, 1}N is a spin configuration. The parameters β, J and h stand for the inverse
temperature, coupling strength andmagnetic field, respectively. Meanwhile, the Hamiltonian
of the classical Ising model on the lattice [0, N ] with boundary condition ±1 on the right
and free on the left on {−1, 1}N is defined by

HN (σ[0,N ]) = −β

(
N−1∑

i=0

Jσiσi+1 +
N∑

i=0

hσi + σN (±1)

)
. (3)

In [9], the authors study the thermodynamic limit of the free energy function Fp(λ) =
limN→∞ 1

N logEp(eλSN ) associated to the sum SN = ∑N
i=1 σiσ2i by choosing Pp to be a

product of Bernoulli with the parameter p on two symbols {+,−}. They prove the large
deviation principle and central limit theorem therein. Later, the thermodynamic formalism
such as existence of pressure and entropies of the multiplicative Ising model are established
in [10]. In contrast with the Hamiltonian defined in (3), the multiplicative Ising model is to
study the Hamiltonian

∑N
i=1 σiσ2i . It is described in [9]:

The sum
∑N

i=1 σiσi+1 is simply a nearest neighbor translation-invariant interaction,
whereas the sum

∑N
i=1 σiσ2i is a long-range non-translation invariant interaction.

Therefore, from the point of view of computing partition functions, the Hamiltonian∑N
i=1 σiσ2i will be much harder to deal with.

They also mentioned that when the sum is of the type
∑N

i=1 σiσ2i · · · σki for k > 2, the
dimension of the corresponding lattice spin system is related to the number of primes in
{2, . . . , k}, e.g., k = 3 (k = 5) corresponds to a 2-dimensional (3 -dimensional) nearest-
neighbor spin system (Sect. 5, [9]). It is seen that the MMIS studied in this paper is a kind
of multiplicative Ising model defined in N

d for d ≥ 1. Therefore, the present paper could be
a starting point for the research on multidimensional multiplicative Ising models in statistic
physics.

1.2 Main Results

Let 	m = {0, 1, . . . ,m − 1} be a finite alphabet, N be the set of positive integers,
N0 = N ∪ {0}, and N≥k = {n ∈ N : n ≥ k}. Let p1,p2, . . . ,pk−1 ∈ N

d and for
any two vectors i, j ∈ N

d , we denote the coordinate-wise product vector of i and j as
i·j, i.e., i·j = (i1 j1, i2 j2, . . . , id jd) for i = (i1, i2, . . . , id) and j = ( j1, j2, . . . , jd). The
(d, k)-multidimensional multiplicative integer subshift X (d,k)

p1,p2,...,pk−1 ⊆ 	N
d

m ((d, k)-MMIS)
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is defined as

X (d,k)
p1,p2,...,pk−1

= {(xi)i∈Nd ∈ 	N
d

m : xixi·p1 · · · xi·pk−1
= 0 for all i ∈ N

d}. (4)

Themotivation for studying the (d, k)-MMIS comes fromFan et al. [16], where the authors
investigated the box dimension of (4) for d = 1, k = m = 2 and p1 = 2 (since d = 1,
p1 = p1 is scalar), i.e., they considered

X (1,2)
2 = {(xk)∞k=1 ∈ {0, 1}N : xkx2k = 0 for all k ∈ N} (5)

with the metric

ρ(x, y) = 2−min{k≥1:xk 	=yk } (6)

for x, y ∈ {0, 1}N and obtained the box dimension for X (1,2)
2 as

dimB X (1,2)
2 = 1

2 log 2

∞∑

n=1

log Fn
2n

,

where Fn is the Fibonacci sequence with F1 = 2, F2 = 3, and Fn+2 = Fn+1 + Fn for all
n ∈ N. Subsequently, Kenyon et al. [23,24] noted that (5) can be expressed as

X (q)
� = {(xk)∞k=1 ∈ 	N

m : (xiq
 )
∞

=1 ∈ � for all i, q � i}, (7)

where q = m = 2; and � = 	G is the one-dimensional golden mean shift, i.e., the subshift
of finite type in 	

N0
2 with forbidden set F = {11}. Equation (7) has the same form as (4)

for d = 1, k = m = 2, and p1 = q when � = 	G . Kenyon et al. also developed the
box dimension formula and extended it to general cases. Let q,m ≥ 2 and � ⊆ 	

N0
m be a

subshift, then

dimB X (q)
� = (q − 1)2

q logm

∞∑

n=1

log |Prefn(�)|
qn

, (8)

where Prefn(�) = {u ∈ {0, 1, . . . ,m − 1}n : � ∩ [u] 	= ∅}. In particular, if � is a shift of
finite type with transition matrix A, then (8) can also be expressed as

dimB X (q)
� = (q − 1)2

q logm

∞∑

n=1

log |An−1|
qn

.

Kenyon et al. called (7) amultiplicative subshi f t , since (7) is invariant undermultiplicative
integer action, i.e., if (xk)∞k=1 ∈ X (q)

� , then (xrk)∞k=1 ∈ X (q)
� for all r ∈ N.

Peres et al. [28] considered the more general case,

X (S)
� = {(xk)∞k=1 ∈ 	N

m : x |i S ∈ � for all i ∈ N, gcd(i, S) = 1}, (9)

where S is semigroup generated by primes p1, p2, . . . , pk , and gcd(i, S) = 1 means
gcd(i, s) = 1 for all s ∈ S. A typical example of (9) is

X (1,3)
2,3 = {(xk)∞k=1 ∈ 	N

2 : xkx2k x3k = 0 for all k ∈ N}, (10)

where S is the semigroup generated by 2 and 3. Equation (10) also has the form of (4) for
d = 1, k = 3, m = 2 and p1 = 2, p2 = 3. The box dimension formula for (9) is

dimB X (S)
� = 1

logm

[
k∏

i=1

(1 − 1

pi
)

] ∞∑

n=1

(
1


n
− 1


n+1
) log |Prefn(�)|,
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where S = {1 = 
1 < 
2 < . . .}. As we have explained in Subsect. 1.1, in the case of
symbolic dynamical systems, the entropy is just the box dimension multiplied by logm. Ban
et al. [4] obtained entropy for general cases as

X (1,d+1)
p1,p2,...,pd = {(xk)∞k=1 ∈ 	N

2 : xkxp1k x p2k · · · xpdk = 0 for all k ∈ N},
which have the form of (4) for d = 1, k = d + 1, m = 2 and pi ≥ 2 for all i = 1, 2, . . . , d .
Since all results presented concern about the (d, k)-MMIS for d = 1, the question arises:
what is the entropy (box dimension) of (d, k)-MMIS for d ≥ 2? This paper considers two
types of (d, k)-MMISs : one with the form (4) for d ≥ 2; and the other is

X̄ (d,k)
p1,p2,...,pk−1

= {(xi)i∈Nd ∈ 	N
d

m : xixi·p j
1

· · · xi·p j
k−1

= 0 for all 1 ≤ j ≤ d and i ∈ N
d},
(11)

where p j
i ∈ N

d is the vector that the j-th component is the j-th component (pi ) j of pi and
all other components are 1. It is clear that

X̄ (d,k)
p1,p2,...,pk−1

=
d⋂

j=1

X (d,k)

p j
1 ,p j

2 ,...,p j
k−1

,

where the multiplicative constraint of X (d,k)

p j
1 ,p j

2 ,...,p j
k−1

is only built on the j-th components of

p1,p2, . . . ,pk−1.

Remark 1.1 For d = m = 2, k = 3, p1 = (2, 3) and p2 = (5, 7),

1. Type I is

X (d,k)
p1,p2 = {(x(i, j))

∞
i, j=1 ∈ {0, 1}N2 : x(i, j)x(2i,3 j)x(5i,7 j) = 0 for all (i, j) ∈ N

2}.
2. Type II is

X̄ (d,k)
p1,p2 = {(x(i, j))

∞
i, j=1 ∈ {0, 1}N2 : x(i, j)x(2i, j)x(5i, j) = 0 for all (i, j) ∈ N

2}
∩{(x(i, j))

∞
i, j=1 ∈ {0, 1}N2 : x(i, j)x(i,3 j)x(i,7 j) = 0 for all (i, j) ∈ N

2}.
3. We consider these two types because their coupling constraints are different, e.g. for

type I, the positions in N
2 that will be affected by (1,1) are {(2α5β, 3α7β) : α, β ≥ 0},

whereas {(2α15β1 , 3α27β2) : α1, β1, α2, β2 ≥ 0} are affected for type II (see Fig. 1). Thus
the constraints of the Type I MMIS are tighter than those of the Type II MMIS, and hence
produce different expressions for entropy. We use these two types to show that different
coupling constraints cause different entropy formulae for higher dimensional cases.

4. Both Type I and II have the same form when d = 1.

This paper extends the entropy formula of (d, k)-MMIS for d ≥ 2. For simplicity, we
only consider m = 2.

The entropy of a (d, k)-MMIS X is defined as

h(X) = lim sup
k,
→∞

log�k×
(X)

k

, (12)

where �k×
(X) is the number of admissible patterns on k×
 lattice. The results of our study
are summarized in the following theorems.
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Fig. 1 The points with symbol triangle are affected by (1, 1); the points with symbol circle are affected by
(2, 1); the points with symbol diamond are affected by (3, 1)

Theorem 1.2 Let p = (p, q) ∈ N
2≥2, then the entropy of X (2,2)

p is

h(X (2,2)
p ) = (pq − 1)

(
1 − 1

pq

) ∞∑

m=1

log Fm
(pq)m

,

where Fm is the Fibonacci sequence with F1 = 2, F2 = 3, and Fm+2 = Fm+1 + Fm for all
m ∈ N.

When p = (2, 3), h(X (2,2)
p ) ≈ 0.6479. The following theorem covers the general case for

d ≥ 3.

Theorem 1.3 Let p = (p1, p2, . . . , pd) ∈ N
d≥2, then the entropy of X

(d,2)
p is

h(X (d,2)
p ) = (p1 p2 . . . pd − 1)

(
1 − 1

p1 p2 . . . pd

) ∞∑

m=1

log Fm
(p1 p2 . . . pd)m

.

We define {ei : 1 ≤ i ≤ d} as the standard basis for R
d , for example, e1 = (1, 0) and

e2 = (0, 1) for d = 2.

Theorem 1.4 Let p1 = (p1, p2) and p2 = (q1, q2) ∈ N
2≥2 with gcd(p1, q1) =

gcd(p2, q2) = 1, then the entropy of X (2,3)
p1,p2 is

h(X (2,3)
p1,p2) =

(
1 − 1

p1 p2

)(
1 − 1

q1q2

)
×

∞∑

M,N=1

(
1

rM
− 1

rM+1

)(
1

r ′
N

− 1

r ′
N+1

)
log bM,N ,

where bM,N is the number of admissible patterns on LM,N lattice in N
2
0 with forbidden set

F = {x0 = xe1 = xe2 = 1} (see Definition 2.5 for definitions of LM,N and rM , r ′
M).

When p1 = (2, 3) and p2 = (5, 7), h(X (2,3)
p1,p2) ≈ 0.5353. The following theorem covers

the general case for d ≥ 2 and k ≥ 2.
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Theorem 1.5 For k ≥ 2, let pi = (pi,1, pi,2, . . . , pi,d) ∈ N
d≥2, 1 ≤ i ≤ k − 1. Assume

gcd(pi,
, p j,
) = 1 for all 1 ≤ i < j ≤ k − 1 and 1 ≤ 
 ≤ d, then the entropy of

X (d,k)
p1,p2,··· ,pk−1 is

h(X (d,k)
p1,p2) =

[
k−1∏

i=1

(
1 − 1

pi,1 pi,2 · · · pi,d
)]

×

∞∑

M1,M2,...,Md=1

[
d∏

i=1

(
1

r (i)
Mi

− 1

r (i)
Mi+1

)

]
log bM1,M2,...,Md ,

where bM1,M2,...,Md is the number of admissible patterns on the lattice LM1,M2,...,Md in N
k−1
0

with forbidden set F = {x0 = xe1 = xe2 = · · · = xek−1 = 1} (see Definition 2.6 for

definitions of LM1,M2,...,Md and r
(i)
Mi+1).

We develop the entropy formula for (11) as follows.

Theorem 1.6 Let p = (p, q) ∈ N
2≥2, then the entropy of X̄ (2,2)

p is

h(X̄ (2,2)
p ) = (p − 1)(q − 1)(1 − 1

p
)(1 − 1

q
)

∞∑

m,n=1

log am,n

pmqn
,

where am,n is the number of admissible patterns on m × n lattice in N
2
0 with forbidden set

F = {x0 = xe1 = 1, x0 = xe2 = 1}.

When p = (2, 3), h(X̄ (2,2)
p ) ≈ 0.5212. The following theorem covers the general case for

d ≥ 3 and k = 2.

Theorem 1.7 Let p = (p1, p2, . . . , pd) ∈ N
d≥2. The entropy of X̄

(d,2)
p1 is

h(X̄ (d,2)
p1 ) =

[
d∏

i=1

(pi − 1)(1 − 1

pi
)

] ∞∑

m1,m2,...,md=1

log am1,m2,...,md

p1m1 p2m2 · · · pdmd
,

where am1,m2,...,md is the number of admissible patterns on m1 × m2 × · · · × md lattice in
N
d
0 with forbidden set F = {x0 = xe1 = 1, x0 = xe2 = 1, . . . , x0 = xed = 1}.

For d = 2 and k = 3, we have the following theorem.

Theorem 1.8 Let p1 = (p1, p2) and p2 = (q1, q2) ∈ N
d≥2 with gcd(p1, q1) =

gcd(p2, q2) = 1. The entropy of X (2,3)
p1,p2 is

h(X (2,3)
p1,p2) =

(
1 − 1

p1

)(
1 − 1

p2

)(
1 − 1

q1

)(
1 − 1

q2

)
×

∞∑

M,N=1

(
1

rM
− 1

rM+1

)(
1

r ′
N

− 1

r ′
N+1

)
log cM,N ,

where cM,N is the number of admissible patterns on L̄M,N in N
4
0 with forbidden set F =

{x0 = xe1 = xe2 = 1, x0 = xe3 = xe4 = 1} (see Definition 3.7 for definitions of L̄M,N and
rM , r ′

M).
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When p1 = (2, 3) and p2 = (5, 7), h(X̄ (2,2)
p1 ) ≈ 0.4077. The following theorem covers

the general case for d ≥ 2 and k ≥ 2.

Theorem 1.9 For k ≥ 2, let pi = (pi,1, pi,2, . . . , pi,d) ∈ N
d≥2, 1 ≤ i ≤ k − 1. Assume

gcd(pi,
, p j,
) = 1 for all 1 ≤ i < j ≤ k − 1 and 1 ≤ 
 ≤ d, then the entropy of

X̄ (d,k)
p1,p2,··· ,pk−1 is

h(X̄ (d,k)
p1,p2) =

[
k−1∏

i=1

d∏


=1

(1 − 1

pi,

)

]
×

∞∑

M1,M2,...,Md=1

[
d∏

i=1

(
1

r (i)
Mi

− 1

r (i)
Mi+1

)

]
log cM1,M2,...,Md ,

where cM1,M2,...,Md is the number of admissible patterns on L̄M1,M2,...,Md in N
(k−1)d
0 with

forbidden set

F = {x0 = xe j = xe j+1 = · · · xe j+k−2 = 1, j = m(k − 1) + 1, 0 ≤ m ≤ d − 1}
(see Definition 3.9 for definitions of L̄M1,M2,...,Md and r

(i)
Mi
).

Although Theorems 1.2 to 1.9 provide some entropy formulae for (d, k)-MMISs,
exact values are extremely difficult to calculate because we need to calculate the num-
ber of admissible patterns on their underlying lattices for a multidimensional SFT �

[2,3,8,11,12,15,21,26,27,33].

Remark 1.10 1. The entropy formula in Theorem 1.5 for d = 2 and k = 2 is

h(X (2,2)
p1 ) =

(
1 − 1

p1,1 p1,2

) ∞∑

M1,M2=1

[
2∏

i=1

(
1

pMi−1
1,i

− 1

pMi
1,i

)]
log Fmin{M1,M2}.

By taking m = min{M1, M2}, it can be shown that

h(X (2,2)
p1 ) =

(
1 − 1

p1,1 p1,2

) ∞∑

m=1

(
1

(p1,1 p1,2)m−1 − 1

(p1,1 p1,2)m

)
log Fm,

which coincides with the entropy formula in Theorem 1.2. Similarly, the entropy formula
in Theorem 1.5 (or Theorem 1.9) for k = 2 can be simplified to that in Theorem 1.3 (or
Theorem 1.7), respectively.

2. In Theorem 1.4, we have the condition gcd(p1, q1) = gcd(p2, q2) = 1. Our method
is highly dependent on a ‘nice’ partition of N

2 as in Lemma 2.4, whose elements
Mp,q(i, j), (i, j) ∈ Ip,q, (see Definition 2.3) are not affected by each other under
the coupling constraint x(i, j)x(i p1, jq1)x(i p2, jq2) = 0 and have some structural similari-
ties inside. Without the condition, the partition in Lemma 2.4 fails, for example, when
p1 = (2, 3) and p2 = (2, 5), it can be checked that Mp,q(i, j) ∩ Mp,q(i ′, j ′) 	= ∅ for
(i, j) = (2m − 1, 3n) and (i ′, j ′) = (2m − 1, 5n) in Ip,q, m, n ≥ 1. Therefore, our
approach cannot work in this circumstances, and further study is needed for obtaining a
nice partition and entropy formula. The situation for Theorem 1.8 is similar.

The remainder of this paper is organized as follows. Sections 2 and 3 collect the necessary
materials to calculate the entropies of (4) and (11). Section 2 also provides proofs for Theo-
rems 1.2 and 1.4. Since the proofs for the general cases (Theorems 1.3 and 1.5) are similar
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to those for Theorems 1.2 and 1.4, respectively, we provide the necessary definitions rather
than their detail proofs. Section 3 provides detailed proofs for Theorems 1.6 and 1.8, and we
similarly omit the proofs for Theorems 1.7 and 1.9.

2 Proofs for Theorems 1.2 and 1.4

The following definitions and lemmas are required to prove Theorem 1.2. Given p, q ≥ 2,
let Mp,q = {(pm, qm) : m ≥ 0} be a subset of N

2, denoting Mp,q(i, j) = {(i pm, jqm) :
m ≥ 0} as the lattice Mp,q starts at (i, j), and let Ip,q = {(i, j) : p � i or q � j} be the

complementary index set of X (2,2)
p .

The idea of proofs of Theorems 1.2 and 1.4 can be divided into three parts.

(I) Identify the partition of N
2 by index set Ip,q and lattices Mp,q (Lemmas 2.1, 2.4, 3.2

and 3.6). Then for an admissible global pattern U ∈ X (2,2)
p the restriction of U on

Mp,q(i, j) (denoted by U |Mp,q (i, j)) and the restriction of U on Mp,q(i ′, j ′) (denoted
by U |Mp,q (i ′, j ′)) are independent for all (i, j) 	= (i ′, j ′) ∈ Ip,q .

(II) Compute the density limit for independent lattices Mp,q(i, j) with the same size in the
k × 
 lattice (Lemmas 2.2, 2.7, 3.4 and 3.8).

(III) Determine the set of all admissible patterns onMp,q(i, j) with sizem ≥ 1 and compute
their numbers e.g. Fm in Theorem 1.2.

The following lemma shows that Mp,q(i, j) forms a partition of N
2.

Lemma 2.1 For p, q ≥ 2,

N
2 =

∐

(i, j)∈Ip,q

Mp,q(i, j).

Proof We first claim that for all (i, j) 	= (i ′, j ′) ∈ Ip,q , Mp,q(i, j) ∩ Mp,q(i ′, j ′) = ∅.
Suppose this did not hold. Then there exist (i, j) 	= (i ′, j ′) ∈ Ip,q such that Mp,q(i, j) ∩
Mp,q(i ′, j ′) 	= ∅. Since (i, j) 	= (i ′, j ′), then there exist m1 	= m2 ≥ 0 such that
(i pm1 , jqm1) = (i ′ pm2 , j ′qm2). Without loss of generality we assume m1 > m2, then
i pm1−m2 = i ′ and jqm1−m2 = j ′ gives p|i ′ and q| j ′, which contradict (i ′, j ′) ∈ Ip,q . It
remains to show that the equality holds. For (i, j) ∈ N

2, then i = i ′ pα and j = j ′qβ

for some p � i ′, q � j ′ and α, β ≥ 0. Take γ = min{α, β}, then ( i
pγ ,

j
qγ ) ∈ Ip,q ,

(i, j) ∈ Mp,q(
i
pγ ,

j
qγ ), and converse is clear. ��

For part (II), we need more definitions to characterize the partition in k × 
 lattice. For
k, 
 ≥ 1, let Nk×
 = {(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ 
} be a k × 
 lattice and Lk×
(i, j) =
Mp,q(i, j)∩Nk×
 be the subset ofMp,q(i, j) in k × 
 lattice. For m ≥ 1, define Jk×
;m =
{(i, j) ∈ Nk×
 : |Lk×
(i, j)| = m} as the set of points such that Mp,q(i, j) in k × 


lattice with length exactly m, where | · | denotes cardinal numbers. Let Kk×
;m = {(i, j) ∈
Ip,q ∩ Nk×
 : |Lk×
(i, j)| = m} denote the set of points in Ip,q that Mp,q(i, j) in k × 


lattice with length exactly m. In the following lemma, we compute the limit of density of
Kk×
;m .

Lemma 2.2 For k, 
, and m ≥ 1, we have the following assertions.

1.|Jk×
;m | =
⌊

k

pm−1

⌋⌊



qm−1

⌋
−
⌊

k

pm

⌋⌊



qm

⌋
.
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2. lim
k,
→∞

|Kk×
;m |
|Jk×
;m | = 1 − 1

pq
.

3. lim
k,
→∞

1

k


k
∑

m=1

|Kk×
;m | log Fm =
∞∑

m=1

lim
k,
→∞

1

k

|Kk×
;m | log Fm .

Proof 1. Since |Lk×
(i, j)| = m, then by definition we have Jk×
;m = {(i, j) : i pm−1 ≤
k and jqm−1 ≤ 
} ∩ {(i, j) : i pm > k or jqm > 
}.

Thus, there are three disjoint cases to consider:

I. {(i, j) : i pm−1 ≤ k and jqm−1 ≤ 
} ∩ {(i, j) : i pm > k and jqm > 
};
II. {(i, j) : i pm−1 ≤ k and jqm−1 ≤ 
} ∩ {(i, j) : i pm > k and jqm ≤ 
};
III. {(i, j) : i pm−1 ≤ k and jqm−1 ≤ 
} ∩ {(i . j) : i pm ≤ k and jqm > 
}.

Then,

|Jk×
;m | = |{(i, j) ∈ Nk×
 : |Lk×
(i, j)| = m}|

=
|{(i, j) : (

k

pm
< i ≤ k

pm−1 ) and (



qm
< j ≤ 


qm−1 )}|
︸ ︷︷ ︸
I

+
|{(i, j) : (

k

pm
< i ≤ k

pm−1 ) and ( j ≤ 


qm
)}|

︸ ︷︷ ︸
II

+
|{(i, j) : (i ≤ k

pm
) and (




qm
< j ≤ 


qm−1 )}|
︸ ︷︷ ︸
III

=
(⌊

k

pm−1

⌋
−
⌊

k

pm

⌋)(⌊



qm−1

⌋
−
⌊




qm

⌋)

+
(⌊

k

pm−1

⌋
−
⌊

k

pm

⌋)⌊



qm

⌋
+
⌊

k

pm

⌋(⌊



qm−1

⌋
−
⌊




qm

⌋)

=
⌊

k

pm−1

⌋⌊



qm−1

⌋
−
⌊

k

pm

⌋⌊



qm

⌋
.

2. For m2 > m1 ≥ 1 and n2 > n1 ≥ 1, let

Rm1,m2;n1,n2 = {
(i, j) ∈ N

2 : m1 ≤ i ≤ m2 and n1 ≤ j ≤ n2
}

be a rectangle lattice. Clearly, the complement of Ip,q is Ic
p,q = {(i, j) : p | i and q | j}

and

|Rm1,m2;n1,n2 ∩ Ip,q | = |Rm1,m2;n1,n2 | − |Rm1,m2;n1,n2 ∩ Ic
p,q |.

Thus,

|Rm1,m2;n1,n2 ∩ Ip,q | ≥ |Rm1,m2;n1,n2 | − 1

pq
|Rm1,m2+2p;n1,n2+2q |

and

|Rm1,m2;n1,n2 ∩ Ip,q | ≤ |Rm1,m2;n1,n2 | − 1

pq
|Rm1,m2−2p;n1,n2−2q |.
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Then, by the Squeeze theorem,

lim
m2−m1→∞
n2−n1→∞

|Rm1,m2;n1,n2 ∩ Ip,q |
|Rm1,m2;n1,n2 |

= 1 − 1

pq
.

Since the regions I, II, and III are rectangular, and both the length and width of each of
the three rectangles approach ∞ as k, l → ∞. Therefore,

lim
k,
→∞

|Kk×
;m |
|Jk×
;m | = lim

k,
→∞
|Jk×
;m ∩ Ip,q |

|Jk×
;m |
= 1 − 1

pq
.

3. Define

K̄k×
;m =
{ |Kk×
;m | if m ≤ k
,
0 if m > k
.

Then

lim
k,
→∞

1

k


k
∑

m=1

|Kk×
;m | log Fm = lim
k,
→∞

1

k


∞∑

m=1

K̄k×
;m log Fm .

Hence from Weierstrass M-test with

1

k


∣∣K̄k×
;m log Fm
∣∣ ≤ 1

k
 |Jk×
;m | log Fm
= 1

kl

(⌊
k

pm−1

⌋⌊



qm−1

⌋
−
⌊

k
pm

⌋⌊


qm

⌋)
log Fm

≤ 1
k


(
k


pm−1qm−1

)
log Fm

= 1
(pq)m−1 log Fm

for all k, 
 ∈ N and
∞∑

m=1

log Fm
(pq)m−1 < ∞, we deduce that

∞∑

m=1

K̄k×
;m log Fm
k


converges

uniformly in k, 
. Then,

lim
k,
→∞

1

k


k
∑

m=1

|Kk×
;m | log Fm = lim
k,
→∞

1

k


∞∑

m=1

K̄k×
;m log Fm

=
∞∑

m=1

lim
k,
→∞

1

k

K̄k×
;m log Fm

=
∞∑

m=1

lim
k,
→∞

1

k

|Kk×
;m | log Fm .

The proof is complete.

��
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For part (III), from Lemma 2.1, (i, j) 	= (i ′, j ′) ∈ Ip,q , X (2,2)
p |Mp,q (i, j) and

X (2,2)
p |Mp,q (i ′, j ′) are independent, which means there are no restrictions on each other. Then,

�k×
(X
(2,2)
p ) = |X (2,2)

p |Nk×

| =

∏

(i, j)∈Ip,q∩Nk×


|X (2,2)
p |Mp,q (i, j)∩Nk×


|.

Clearly, X (2,2)
p |Mp,q (i, j)∩Nk×


are independent and |Mp,q(i, j)∩Nk×
| = m for all (i, j) ∈
Kk×
;m . Therefore, we have

�k×
(X
(2,2)
p ) =

k
∏

m=1

F
|Kk×
;m |
m ,

which is crucial in proving Theorem 1.2.

Proof for Theorem 1.2 Since

h(X (2,2)
p ) = lim sup

k,
→∞
1

k

log�k×
(X

(2,2)
p )

= lim sup
k,
→∞

1

k

log

k
∏

m=1

F
|Kk×
;m |
m

= lim sup
k,
→∞

1

k


k
∑

m=1

|Kk×
;m | log Fm .

(13)

Combining Lemma 2.2 and (13), the limit for (13) exists, and

h(X (2,2)
p ) =

∞∑

m=1

lim
k,
→∞

1

k

|Kk×
;m | log Fm

=
∞∑

m=1

lim
k,
→∞

1

k

|Jk×
;m |(1 − 1

pq
) log Fm

=
∞∑

m=1

1

pm
1

qm
(pq − 1)(1 − 1

pq
) log Fm

= (pq − 1)(1 − 1

pq
)

∞∑

m=1

log Fm
(pq)m

.

(14)

The proof is complete. ��
The proof for Theorem 1.4 proceeds similarly, as follows.

Definition 2.3 Let p = (p1, p2) and q = (q1, q2) ∈ N
2≥2, then

1. Ip,q = {(i, j) : (p1 � i or p2 � j) and (q1 � i or q2 � j)}.
2. Mp,q = {(pα

1 q
β
1 , pα

2 q
β
2 ) : α, β ≥ 0}.

3. Mp,q(i, j) = {(i pα
1 q

β
1 , j pα

2 q
β
2 ) : α, β ≥ 0} denote the lattice Mp,q starts at (i, j).

The following lemma gives the partition of N
2.

Lemma 2.4 For p,q ∈ N
2≥2 with gcd(p1, q1) = 1 and gcd(p2, q2) = 1,

N
2 =

∐

(i, j)∈Ip,q

Mp,q(i, j).
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Proof We first claim that for all (i, j) 	= (i ′, j ′) ∈ Ip,q, Mp,q(i, j) ∩ Mp,q(i ′, j ′) = ∅.
Suppose not, then there exist (i, j) 	= (i ′, j ′) ∈ Ip,q such thatMp,q(i, j)∩Mp,q(i ′, j ′) 	=

∅. Since (i, j) 	= (i ′, j ′),

(i pα1
1 qβ1

1 , j pα1
2 qβ1

2 ) = (i ′ pα2
1 qβ2

1 , j ′ pα2
2 qβ2

2 )

for some α1, α2, β1, β2 ≥ 0 with α1 	= α2 or β1 	= β2. Without loss of generality, we may
assume α1 > α2. Then since i pα1−α2

1 qβ1
1 = i ′qβ2

1 , j pα1−α2
2 qβ1

2 = j ′qβ2
2 and gcd(p1, q1) =

gcd(p2, q2) = 1; p1|i ′, and p2| j ′, which contradicts (i ′, j ′) ∈ Ip,q.
It remains to show that the equality holds. For (i, j) ∈ N

2, there exist α1, α2, β1, β2 ≥ 0
such that (i, j) = (i ′ pα1

1 qβ1
1 , j ′ pα2

2 qβ2
2 ), where p1, q1 � i ′, and p2, q2 � j ′. Take

α = min{α1, α2} and β = min{β1, β2}. Then, we have (i, j) ∈ Mp,q(
i

pα
1 q

β
1

,
j

pα
2 q

β
2

) and

( i
pα
1 q

β
1

,
j

pα
2 q

β
2

) ∈ Ip,q. The converse is then clear. ��

Similar to the proof of Theorem 1.2, the following definitions and lemmas are needed.

Definition 2.5 For k, 
, M, and N ≥ 1, let

1. Mp1,q1 = {pα
1 q

β
1 : α, β ≥ 0} = {r1 < r2 < · · · } and

Mp2,q2 = {pα
2 q

β
2 : α, β ≥ 0} = {r ′

1 < r ′
2 < · · · }.

2. Jk×
;M,N = {(i, j) ∈ Nk×
 : irM ≤ k < irM+1 and jr ′
N ≤ 
 < jr ′

N+1} be the subset
of Nk×
 which satisfies irM ≤ k < irM+1 and jr ′

N ≤ 
 < jr ′
N+1.

3. Kk×
;M,N = {(i, j) ∈ Ip,q ∩ Nk×
 : irM ≤ k < irM+1 and jr ′
N ≤ 
 < jr ′

N+1} be the
subset of Jk×
;M,N , which belongs to Ip,q.

4. For M, N ≥ 1, we define LM,N as

LM,N := {(α, β) : pα
1 q

β
1 ≤ rM } ∩ {(α, β) : pα

2 q
β
2 ≤ r ′

N }.
The latticeLM1,M2,...,Md , which is used in Theorem 1.5, for d, k ≥ 2 is defined as follows.

Definition 2.6 For d, k ≥ 2 and M1, M2, . . . , Md ≥ 1, the lattice

LM1,M2,...,Md :=
d⋂

i=1

{(α1, α2, · · · , αk−1) : pα1
1,i p

α2
2,i p

αk−1
k−1,i · · · ≤ r (i)

Mi
},

where

Mp1, j ,p2, j ,··· ,pk−1, j = {pα1
1, j p

α2
2, j · · · pαk−1

k−1, j : α1, α2, · · · , αk−1 ≥ 0} = {r ( j)
1 < r ( j)

2 < · · · }
for all j = 1, 2, . . . , d.

Lemma 2.7 For k, 
, M, and N ≥ 1, we have the following assertions.

1. |Jk×
;M,N | =
(⌊

k

rM

⌋
−
⌊

k

rM+1

⌋)(⌊



r ′
N

⌋
−
⌊




r ′
N+1

⌋)
.

2. lim
k,
→∞

|Kk×
;M,N |
|Jk×
;M,N | = 1 − (

1

p1 p2
+ 1

q1q2
− 1

p1 p2q1q2
).

3. lim
k,
→∞

1

k


k∑

M=1


∑

N=1

|Kk×
;M,N | log bM,N =
∞∑

M,N=1

lim
k,
→∞

1

k

|Kk×
;M,N | log bM,N ,
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where bM,N is the number of admissible patterns on the lattice LM,N of two-dimensional

subshift with forbidden set F = {x0 = xe1 = xe2 = 1}.
Proof 1. Since (i, j) ∈ Jk×
;M,N if and only if irM ≤ k < irM+1 and jr ′

N ≤ 
 < jr ′
N+1.

It follows that k
rM+1

< i ≤ k
rM

and 

r ′
M+1

< j ≤ 

r ′
M
.

Therefore

|Jk×
;M,N | =
(⌊

k

rM

⌋
−
⌊

k

rM+1

⌋)(⌊



r ′
N

⌋
−
⌊




r ′
N+1

⌋)
.

2. Let the complement of Ip,q be

Ic
p,q = S1 ∪ S2 = {(i, j) : p1|i and p2| j} ∪ {(i, j) : q1|i and q2| j)}.

Since gcd(p1, q1) = gcd(p2, q2) = 1, we have

S1 ∩ S2 = {(i, j) : p1q1|i and p2q2| j}.
Then, as in the proof of Lemma 2.2,

lim
k,
→∞

|Kk×
;M,N |
|Jk×
;M,N | = lim

k,
→∞
|Jk×
;M,N ∩ Ip,q|

|Jk×
;M,N |
= lim

k,
→∞1 − |Jk×
;M,N ∩ Ic
p,q|

|Jk×
;M,N |
= lim

k,
→∞1 −
( |Jk×
;M,N ∩ S1|

|Jk×
;M,N | + |Jk×
;M,N ∩ S2|
|Jk×
;M,N | − |Jk×
;M,N ∩ S1 ∩ S2|

|Jk×
;M,N |
)

= 1 − (
1

p1 p2
+ 1

q1q2
− 1

p1 p2q1q2
).

3. The result follows the same argument as that of Lemma 3.4.
The proof is complete. ��
Proof for Theorem 1.4 By Lemma 2.4,

h(X (2,3)
p1,p2) = lim sup

k,
→∞
1

k

log�k×
(X

(2,3)
p1,p2)

= lim sup
k,
→∞

1

k

log

k∏

M=1


∏

N=1

b
|Kk×
;M,N |
M,N

= lim sup
k,
→∞

1

k


k∑

M=1


∑

N=1

|Kk×
;M,N | log bM,N .

(15)

Combining Lemma 2.7 and (15), we have

h(X (2,3)
p1,p2 ) =

∞∑

M,N=1

lim
k,
→∞

1

k

|Kk×
;M,N | log bM,N

=
∞∑

M,N=1

lim
k,
→∞

1

k

|Jk×
;M,N |

[
1 − (

1

p1 p2
+ 1

q1q2
− 1

p1 p2q1q2
)

]
log bM,N

=
∞∑

M,N=1

(
1

rM
− 1

rM+1
)(

1

r ′
N

− 1

r ′
N+1

)

[
1 − (

1

p1 p2
+ 1

q1q2
− 1

p1 p2q1q2
)

]
log bM,N

=
[
1 − (

1

p1 p2
+ 1

q1q2
− 1

p1 p2q1q2
)

] ∞∑

M,N=1

(
1

rM
− 1

rM+1
)(

1

r ′
N

− 1

r ′
N+1

) log bM,N ,

(16)

which completes the proof. ��
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3 Proofs for Theorems 1.6 and 1.8

Similar to the above proofs. We gives the necessary definitions for the proof of the second
type (d, k)-MMIS. For the step (I), we need the following definitions.

Definition 3.1 Given p, q ≥ 2,

1.Īp,q = {(i, j) : p � i and q � j} = {i : p � i} × { j : q � j} = Ip × Iq .
2.M̄p,q = {(pα, qβ) : α, β ≥ 0} = {pα : α ≥ 0} × {qβ : β ≥ 0} = Mp × Mq .

3.M̄p,q(i, j) = {(i pα, jqβ) : α, β ≥ 0} denote the lattice M̄p,q starts at (i, j).

The following lemma is analogous to Lemma 2.1.

Lemma 3.2 For p, q ≥ 2,

N
2 =

∐

(i, j)∈Īp,q

M̄p,q(i, j).

Proof We first claim that for all (i, j) 	= (i ′, j ′) ∈ Īp,q , M̄p,q(i, j) ∩ M̄p,q(i ′, j ′) = ∅.
Suppose not, then there exist (i, j) 	= (i ′, j ′) such that M̄p,q(i, j) ∩ M̄p,q(i ′, j ′) 	= ∅.
Then, there exist α1, α2, β1, β2 ≥ 0 with α1 	= α2 or β1 	= β2 such that (i pα1 , jqβ1) =
(i ′ pα2 , j ′qβ2). Without loss of generality, we may assume α1 > α2. Therefore, i pα1−α2 = i ′,
and hence p|i ′, which contradicts (i ′, j ′) ∈ Īp,q .

It remains to show that the equality holds. For (i, j) ∈ N
2, (i, j) = (i ′ pα, j ′qβ), where

p � i ′ and q � j ′, hence (i, j) ∈ M̄p,q(i ′, j ′). The converse is then clear. ��
We need several more definitions for the step (II).

Definition 3.3 For k, 
, and m ≥ 1,

1. Nk = {i |1 ≤ i ≤ k}.
2. Lp;k(i) = Mp(i) ∩ Nk denote the subset of Mp(i) in the k lattice, and

Lq;
( j) = Mq( j) ∩ N
 denote the subset of Mq( j) in the 
 lattice.

3. L̄k×
(i, j) = Lp;k(i) × Lq;
( j).
4. J̄k×
;m,n = {(i, j) ∈ Nk×
 : |Lp;k(i)| = m and |Lq;
( j)| = n}
= {i ∈ Nk : |Lp;k(i)| = m} × { j ∈ N
 : |Lq;
( j)| = n}.
5. K̄k×
;m,n = {(i, j) ∈ Īp,q ∩ Nk×
 : |Lp;k(i)| = m and |Lq;
( j)| = n}
= {i ∈ Ip ∩ Nk : |Lp;k(i)| = m} × { j ∈ Iq ∩ N
 : |Lq;
( j)| = n}.

We similarly compute the density limit for the independent lattices.

Lemma 3.4 For k, 
,m, and n ≥ 1, we have the following assertions.

1.|J̄k×
;m,n | =
(⌊

k

pm−1

⌋
−
⌊

k

pm

⌋)(⌊



qn−1

⌋
−
⌊




qn

⌋)
.

2. lim
k,
→∞

|K̄k×
;m,n |
|J̄k×
;m,n | = (1 − 1

p
)(1 − 1

q
).

3. lim
k,
→∞

1

k


k∑

m=1


∑

n=1

|K̄k×
;m,n | log am,n =
∞∑

m,n=1

lim
k,
→∞

1

k

|K̄k×
;m,n | log am,n .
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Proof 1. Since (i, j) satisfies |Lp;k(i)| = m and |Lq;
( j)| = n if and only if (i, j) satisfies
i pm−1 ≤ k < i pm and jqn−1 ≤ 
 < jqn . Then (i, j) satisfies k

pm < i ≤ k
pm−1 and



qn < j ≤ 


qn−1 . Therefore

|J̄k×
;m,n | = |{i ∈ Nk : |Lp;k(i)| = m}||{ j ∈ N
 : |Lq;
( j)| = n}|
=
(⌊

k

pm−1

⌋
−
⌊

k

pm

⌋)(⌊



qn−1

⌋
−
⌊




qn

⌋)
.

2. The proof is similar to that for Lemma 2.2.
3. Define

K̂k×
;m,n =
{ |K̄k×
;m,n |, if m ≤ k and n ≤ 
,

0, otherwise.

Then

lim
k,
→∞

1

k


k∑

m=1


∑

n=1

|K̄k×
;m,n | log am,n = lim
k,
→∞

1

k


∞∑

m,n=1

K̂k×
;m,n log am,n .

We claim that
∞∑

m,n=1

K̂k×
;m,n log am,n

k

converges uniformly in k, 
 by Weierstrass M-test

with

∣∣∣∣∣
K̂k×
;m,n log am,n

k


∣∣∣∣∣ ≤
∣∣∣∣
|J̄k×
;m,n | log am,n

k


∣∣∣∣ ≤ 1

pm−1qn−1 log am,n

for all k, 
 ≥ 1 and

∞∑

m,n=1

1

pm−1qn−1 log am,n ≤
∞∑

m,n=1

1

pm−1qn−1 log 2mn

= log 2
∞∑

m,n=1

mn

pm−1qn−1

= log 2(
∞∑

m=1

m

pm−1 )(

∞∑

n=1

n

qn−1 ) < ∞.

Thus,
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lim
k,
→∞

1

k


k∑

m=1


∑

n=1

|K̄k×
;m,n | log am,n = lim
k,
→∞

1

k


∞∑

m,n=1

K̂k×
;m,n log am,n

=
∞∑

m,n=1

lim
k,
→∞

1

k

K̂k×
;m,n log am,n

=
∞∑

m,n=1

lim
k,
→∞

1

k

|K̄k×
;m,n | log am,n .

The proof is complete. ��
Proof for Theorem 1.6 By Lemma 3.2, we have

h(X̄ (2,2)
p1 ) = lim sup

k,
→∞
1

k

log�k×
(X̄

(2,2)
p1 )

= lim sup
k,
→∞

1

k

log

k∏

m=1


∏

n=1

a
|K̄k×
;m,n |
m,n

= lim sup
k,
→∞

1

k


k∑

m=1


∑

n=1

|K̄k×
;m,n | log am,n .

(17)

Combining Lemma 3.4 and (17), we have

h(X̄ (2,2)
p1 ) =

∞∑

m,n=1

lim
k,
→∞

1

k

|K̄k×
;m,n | log am,n

=
∞∑

m,n=1

lim
k,
→∞

1

k

|J̄k×
;m,n |(1 − 1

p
)(1 − 1

q
) log am,n

=
∞∑

m,n=1

1

pm
1

qn
(p − 1)(q − 1)(1 − 1

p
)(1 − 1

q
) log am,n

= (p − 1)(q − 1)(1 − 1

p
)(1 − 1

q
)

∞∑

m,n=1

log am,n

pmqn
.

(18)

The proof is complete. ��
We need the following definitions to prove Theorem 1.8, parts (I) and (II).

Definition 3.5 Let p = (p1, p2) and q = (q1, q2) be two vectors in N
2≥2,

1. Īp,q = {(i, j) : (p1 � i and p2 � j) and (q1 � i and q2 � j)}.
2. M̄p,q = {(pα1

1 qβ1
1 , pα2

2 qβ2
2 ) : α1, β1, α2, β2 ≥ 0}.

3. M̄p,q(i, j) = {(i pα1
1 qβ1

1 , j pα2
2 qβ2

2 ) : α1, β1, α2, β2 ≥ 0}.
The partition of N

2 can be expressed as follows.

Lemma 3.6 For p,q ∈ N
2≥2 with gcd(p1, q1) = 1 and gcd(p2, q2) = 1,

N
2 =

∐

(i, j)∈Īp,q

M̄p,q(i, j).
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Proof We first claim that for all (i, j) 	= (i ′, j ′) ∈ Īp,q, M̄p,q(i, j) ∩ M̄p,q(i ′, j ′) = ∅.
Suppose not, then there exist (i, j) 	= (i ′, j ′) ∈ Īp,q such thatM̄p,q(i, j)∩M̄p,q(i ′, j ′) 	= ∅.
Then there exist α1, α2, β1, β2, α

′
1, α

′
2, β

′
1, β

′
2 ≥ 0 with pα1

1 qβ1
1 	= p

α′
1

1 q
β ′
1

1 or pα2
2 qβ2

2 	=
p

α′
2

2 q
β ′
2

2 such that (i pα1
1 qβ1

1 , j pα2
2 qβ2

2 ) = (i ′ pα′
1

1 q
β ′
1

1 , j ′ pα′
2

2 q
β ′
2

2 ). Since gcd(p1, q1) = 1 and
gcd(p2, q2) = 1, α1 	= α′

1 or β1 	= β ′
1 or α2 	= α′

2 or β ′
2 	= β ′

2. Without loss of generality,

we may assume α1 > α′
1. Then by i p

α1−α′
1

1 qβ1
1 = i ′qβ ′

1
1 and gcd(p1, q1) = 1, p1|i ′, which

contradicts (i ′, j ′) ∈ Ip,q.
It remains to show that the equality holds. For (i, j) ∈ N

2, there exist α1, α2, β1, β2 ≥ 0
with p1, q1 � i ′ and p2, q2 � j ′ such that (i, j) = (i ′ pα1

1 qβ1
1 , j ′ pα2

2 qβ2
2 ). Hence (i, j) ∈

M̄p,q(i ′, j ′) and (i ′, j ′) ∈ Īp,q. The converse is then clear. ��
Definition 3.7 Let k, 
, M , and N be integers larger than 1.

1. Mp1,q1 = {pα
1 q

β
1 : α, β ≥ 0} = {r1 < r2 < · · · } and

Mp2,q2 = {pα
2 q

β
2 : α, β ≥ 0} = {r ′

1 < r ′
2 < · · · }.

2. J̄k×
;M,N = {(i, j) ∈ Nk×
 : irM ≤ k < irM+1 and jr ′
N ≤ 
 < jr ′

N+1}.
3. K̄k×
;M,N = {(i, j) ∈ Īp,q ∩ Nk×
 : irM ≤ k < irM+1 and jr ′

N ≤ 
 < jr ′
N+1}.

4. For M, N ≥ 1, we define L̄M,N as

L̄M,N := {(α1, β1, α2, β2) : pα1
1 qβ1

1 ≤ rM and pα2
2 qβ2

2 ≤ r ′
N }.

We also have the limit of density for the independent lattice in the following lemma.

Lemma 3.8 For k, 
, M, and N ≥ 1, we have the following assertions.

1. |J̄k×
;M,N | =
(⌊

k

rM

⌋
−
⌊

k

rM+1

⌋)(⌊



r ′
N

⌋
−
⌊




r ′
N+1

⌋)
.

2. lim
k,
→∞

|K̄k×
;M,N |
|J̄k×
;M,N | = (1 − 1

p1
)(1 − 1

p2
)(1 − 1

q1
)(1 − 1

q2
).

3. lim
k,
→∞

1

k


k∑

M=1


∑

N=1

|K̄k×
;M,N | log cM,N =
∞∑

M,N=1

lim
k,
→∞

1

k

|K̄k×
;M,N | log cM,N ,

where cM,N is the number of admissible patterns on L̄M,N lattice of 4 dimensional subshift

with forbidden set F = {x0 = xe1 = xe2 = 1, x0 = xe3 = xe4 = 1}.
Proof The proof is similar to that of Lemma 2.7. ��

Similar to Definition 2.6, the lattice for d, k ≥ 2 is defined as follows.

Definition 3.9 For d, k ≥ 2 and M1, M2, . . . , Md ≥ 1, the lattice

L̄M1,M2,...,Md := { (α1,1, α2,1, · · · , αk−1,1, α1,2, α2,2, · · · , αk−1,2, · · · , α1,d , α2,d , · · · , αk−1,d ) :
p

α1,

1,
 p

α2,

2,
 · · · pαk−1,


k−1,
 ≤ r (
)
M


, 1 ≤ 
 ≤ d},
where

Mp1, j ,p2, j ,··· ,pk−1, j = {pα1, j
1, j p

α2, j
2, j · · · pαk−1, j

k−1, j : αi, j ≥ 0 for 1 ≤ i ≤ k − 1} = {r ( j)
1 < r ( j)

2 < · · · }
for all j = 1, 2, . . . , d.
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Proof for Theorem 1.8 By Lemma 3.6,

h(X̄ (2,3)
p1,p2) = lim sup

k,
→∞
1

k

log�k×
(X̄

(2,3)
p1,p2)

= lim sup
k,
→∞

1

k

log

k∏

M=1


∏

N=1

c
|K̄k×
;M,N |
M,N

= lim sup
k,
→∞

1

k


k∑

M=1


∑

N=1

|K̄k×
;M,N | log cM,N .

(19)

Applying Lemma 3.8 and (19), we have

17

h(X̄ (2,3)
p1,p2) =

∞∑

M,N=1

lim
k,
→∞

1

k

|K̄k×
;M,N | log cM,N

=
∞∑

M,N=1

lim
k,
→∞

1

k

|J̄k×
;M,N |(1 − 1

p1
)(1 − 1

p2
)(1 − 1

q1
)(1 − 1

q2
) log cM,N

=
∞∑

M,N=1

(
1

rM
− 1

rM+1
)(

1

r ′
N

− 1

r ′
N+1

)(1 − 1

p1
)(1 − 1

p2
)(1 − 1

q1
)(1 − 1

q2
) log cM,N

= (1 − 1

p1
)(1 − 1

p2
)(1 − 1

q1
)(1 − 1

q2
)

∞∑

M,N=1

(
1

rM
− 1

rM+1
)(

1

r ′
N

− 1

r ′
N+1

) log cM,N .

The proof is complete. ��
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