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Abstract
The Neolithic transition began the spread of early agriculture throughout Europe
through interactions between farmers and hunter-gatherers about 10,000 years ago.
Archeological evidences indicate that the expanding velocity of farming into a region
occupied by hunter-gatherers is roughly constant all over Europe. In the late twentieth
century, from the contribution of the radiocarbon dating, it could be found that there
are two types of farmers: one is the original farmer and the other is the converted
farmer which is genetically hunter-gatherers but learned agriculture from neighbour-
ing farmers. Then this raises the following questions: Which farming populations play
a key role in the expansion of farmer populations in Europe? and what is the fate
of hunter-gatherers (e.g., become extinct, or live in lower density, or live in agricul-
tural life-style)? We consider a three-component reaction–diffusion system proposed
by Aoki, Shida and Shigesada, which describes the interactions among the original
farmers, the converted farmers, and the hunter-gatherers. In order to resolve these
two questions, we discuss traveling wave solutions which give the information of
the expanding velocity of farmer populations. The main result is that two types of
traveling wave solutions exist, depending on the growth rate of the original farmer
population and the conversion rate of the hunter-gatherer population to the converted
farmer population. The profiles of traveling wave solutions indicate that the expansion
of farmer populations is determined by the growth rate of the original farmer and the
(maximal) carrying capacity of the converted farmer, and the fate of hunter-gatherers
is determined by the growth rate of the hunter-gatherer and the conversion rate of the
hunter-gatherer to the converted farmer. Thus, our results provide a partial answer to
the above two questions.
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1 Introduction

The Neolithic transition began the spread of early agriculture throughout Europe
through interactions between farmers and hunter-gatherers about 10,000 years ago.
Archeological evidences indicate that the expanding velocity of farming into a region
occupied by hunter-gatherers is roughly constant all over Europe. In order to under-
stand theoretically this expanding velocity, Ammerman and Cavalli-Sforza proposed a
two-component reaction–diffusion system for farmers and hunter-gatherers (Ammer-
man and Cavalli-Sforza 1971, 1973, 1984)

{
Ft = d f Fxx + r f

(
1 − F/K f

)
F + eFH ,

Ht = dhHxx + rh
(
1 − H/Kh

)
H − eFH ,

(1.1)

where the subscripts x and t denote partial differentiation with respect to x and t ,
respectively. Here F(x, t) and H(x, t) represent the densities of farmers and hunter-
gatherers at position x and time t , respectively; d f and dh are the diffusion constants
of farmers and hunter-gatherers, respectively; r f and rh are the intrinsic growth rates
of farmers and hunter-gatherers, respectively; K f and Kh are the carrying capacities
of farmers and hunter-gatherers, respectively; and e is the conversion rate from hunter-
gatherers to farmers. Consider the initial value problem for (1.1) in the whole interval
R where the initial function F(·, 0) is non-negative and compactly supported and
H(·, 0) = Kh on R. Such an initial condition corresponds to the expansion of farmer
into the region inhabited by hunter-gatherers at the level of the carrying capacity. Then
numerical results (Kabir et al. 2018) indicate that the farmer F asymptotically expands
into the region of H(x, t) with constant velocity, and that the hunter-gatherer H goes
extinct if eK f > rh , while lives in lower density if eK f < rh .

In the late twentieth century, the radiocarbon dating research (Mellars 1996) sug-
gested that there were two types of farmers: one is the original farmer, and the other is
the converted one which is genetically the same as hunter-gatherers but learned agri-
culture from neighbouring farmers directly and indirectly. It is already reported that
farmers expanded into the region of hunter-gatherers. Then this raises the following
two questions:

(Q1) Which farming population plays a key role of expanding farmer populations?
(Q2) What is the fate of the hunter-gatherers?

Particularly, the question (Q1) cannot be answered from the Ammerman–Cavalli-
Sforza model (1.1). In order to answer these two questions, we consider a three-
component reaction–diffusion system for two farming populations and a hunting-
gathering one which was proposed by Aoki et al. (1996). The system, in the one-
dimensional habitat, is described by

⎧⎨
⎩

Ft = d f Fxx + r f F
(
1 − (F + C)/K f

)
,

Ct = d f Cxx + rcC (1 − (F + C)/Kc) + e(F + C)H ,

Ht = dhHxx + rhH (1 − H/Kh) − e(F + C)H ,

(1.2)

where F(x, t), C(x, t), and H(x, t) represent the densities of original farmers, con-
verted farmers, and hunter-gatherers at position x and time t , respectively; d f and dh
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are the diffusion constants of farmers and hunter-gatherers, respectively; r f , rc, and
rh are the intrinsic growth rates of original farmers, converted farmers, and hunter-
gatherers, respectively; K f = Kc = K and Kh are the carrying capacities of farmers
and hunter-gatherers, respectively; and e is the conversion rate of hunter-gatherers to
farmers. All parameters are assumed to be positive. By introducing the dimensionless
quantities

t̄ = rct, x̄ =
√

rc
d f

x,

F̄(x, t) = F(x, t)/K , C̄(x, t) = C(x, t)/K , H̄(x, t) = H(x, t)/Kh,

d = dh/d f , a = r f /rc, b = rh/rc, s = eKh/rc, g = eK/rc,

and omitting the bars for notational simplicity, system (1.2) is transferred to the fol-
lowing ⎧⎨

⎩
Ft = Fxx + aF (1 − F − C) ,

Ct = Cxx + C (1 − F − C) + s(F + C)H ,

Ht = dHxx + bH(1 − H) − g(F + C)H .

(1.3)

As we will see, the dynamics of (1.3) strongly depends on the ratios a/(1 + s) and
g/b. We remark that d > 1 (or dh > d f ) should be assumed from the archeological
point of view. But most of our analysis does not need this archeological constraint.

Now we address the questions (Q1) and (Q2). These questions are related to the
asymptotical behavior of solutions of model (1.3). To do this, we consider the ini-
tial and boundary value problem for (1.3) in a finite interval [0, L]. Motivated by
the requirement of farmers and hunter-gatherers at the early stage of the Neolithic
transition, we impose the initial conditions as

(F,C, H)(x, 0) = (F0,C0, H0)(x), 0 ≤ x ≤ L, (1.4)

where F0 is non-negative and compactly supported, the converted farmer C0 is totally
zero in the whole habitat, and the hunter-gather H0 is uniform at the level of the
carrying capacity of hunter-gathers, that is H0 ≡ 1. We also impose the boundary
conditions as the Neumann boundary conditions, i.e.

(Fx ,Cx , Hx )(x, t) = 0, t > 0, x = 0 and L. (1.5)

Then the recent results by Eliaš et al. (2021) have answered to (Q2), that is, if 0 <

g < b, the solution (F,C, H)(x, t) of (1.3)–(1.5) converges to (0, c∗, h∗) as t → ∞,
where c∗ and h∗ are constants satisfying 1 − c∗ + sh∗ = 0 and b(1 − h∗) − gc∗ = 0
which is equivalent to c∗ = b(1+ s)/(b+ sg) and h∗ = (b− g)/(b+ sg), and that if
g ≥ b, (F,C, H)(x, t) converges to (λ∗, 1 − λ∗, 0) as t → ∞ for some constant λ∗
satisfying 0 ≤ λ∗ ≤ 1. Archeologically speaking, when the conversion rate of hunter-
gatherers to farmers is less than the growth rates of hunter-gatherers (g < b), the
original farmers fade out, while the converted farmers exist and the hunter-gatherers
do not fade out but exist in lower density. On the other hand, for the opposite case
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Fig. 1 Time-evolution of the solution (F,C, H) of system (1.3)–(1.5) with L = 200. The initial data is
that F0(x) = 0(0 ≤ x ≤ 190) and 1(190 < x ≤ 200), C0(x) = 0(0 ≤ x ≤ 200), and H0(x) = 1(0 ≤
x ≤ 200). Here the parameters are d = 1.2, a = 1.0, s = 0.2, b = 0.8, and g = 0.3

(g ≥ b), the hunter-gatherers fade out, while the total farmers (F +C)(x, t) exist and
tend to the carrying capacity 1 as t → ∞.

Next we address the question (Q1). This question is related to the transient behavior
of solutions of the model (1.3). For this, we first numerically consider the transient
behavior of the solution (F,C, H) of (1.3)–(1.5). To begin with, note that the recent
results by Mori and Xiao (2019) indicate that the spreading velocity of the solution
(F,C, H) of (1.3)–(1.5) is given by max{2√a, 2

√
1 + s}. This implies that a = 1+s

is the critical value of spreading velocities. With this in mind, we first consider the
case where g < b for which the original farmer F tends to zero. Indeed, when g = 0.3
and b = 0.8, a = 1.0 and s = 0.2 (a < 1 + s), and the initial conditions are
specified as in Fig. 1a, b–d exhibit that the F-component fades out and the (C, H)

propagates as if it were a traveling wave with constant speed and fixed profiles. For
the same set of parameters except for a = 1.5 (a > 1 + s), Fig. 2b–d exhibit that
the propagating behavior for (F,C, H) appears as if it were a traveling wave solution
(F,C, H) where the F-component possesses a pulse-like profile. These two cases
suggest the existence of two different types of traveling waves. Second, consider the
case where g > b for which the hunter-gathers H tends to zero. When g = 1.0 and
b = 0.8, and a = 1.0 and s = 0.2 (a < 1+ s), Fig. 3b–d exhibit that the propagating
behavior of (F,C, H) appears as if it were a traveling wave solution (F,C, H) with
the F-component being identically zero. Although F is left at the right-hand side in
Fig. 3c, d, it slowly fades out after large time. Finally, for the same set of parameters
except for a = 1.5 (a > 1 + s), Fig. 4b–d exhibit that the propagating behavior of
(F,C, H) appears as if it were a traveling wave. The numerical results motivate us
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Fig. 2 Time-evolution of the solution (F,C, H) of system (1.3)–(1.5) with L = 200. The initial data
(F0,C0, H0) is the same as the one in Fig. 1. Here the parameters in (1.3) are d = 1.2, a = 1.5, s =
0.2, b = 0.8, and g = 0.3
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Fig. 3 Time-evolution of the solution (F,C, H) of system (1.3)–(1.5) with L = 2000. The initial data
is that F0(x) = 0(0 ≤ x ≤ 1800) and 0.1(1800 < x ≤ 200), C0(x) = 0(0 ≤ x ≤ 2000), and
H0(x) = 1(0 ≤ x ≤ 2000). Here the parameters in (1.3) are d = 1.2, a = 1, s = 0.2, b = 0.8, and
g = 1.0

123



26 Page 6 of 35 S.-C. Fu et al.

0 500 1000 1500 2000
0

0.25

0.5

0.75

1
F C H

(a)

0 500 1000 1500 2000
0

0.25

0.5

0.75

1
F C H

(b)

0 500 1000 1500 2000
0

0.25

0.5

0.75

1
F C H

(c)
0 500 1000 1500 2000

0

0.25

0.5

0.75

1
F C H

(d)

Fig. 4 Time-evolution of the solution (F,C, H) of system (1.3)–(1.5) with L = 2000. The initial data
(F0,C0, H0) is the same as the one in Fig. 3. Here the parameters in (1.3) are d = 1.2, a = 1.5, s =
0.2, b = 0.8, and g = 1

to show the existence of two types of traveling wave solutions of (1.3), depending on
parameters, that is, one is the three-component traveling wave for (F,C, H) and the
other is the (reduced) two-component one for (C, H) with F ≡ 0.

Traveling waves andmain results

The aforementioned numerical results suggest that traveling wave solutions of (1.3)
and their associated wave profiles can partially answer the questions (Q1) and (Q2).
On the other hand, the main disadvantage of numerical studies is th,at one can never
know how much the results are dependent solely on the particular values chosen for
the parameters. Hence, we will employ analytical approaches to investigate traveling
wave solutions of (1.3).

To begin with, we give the definition of traveling wave solutions of (1.3). Indeed,
a traveling wave solution of system (1.3) is a nonnegative solution of system (1.3) of
the form

(F(x, t),C(x, t), H(x, t)) = ( f (z), c(z), h(z)), z = x + vt,

with v being the velocity of the wave. Upon substituting the ansatz on ( f , c, h) into
(1.3), we are led to the governing system for ( f , c, h) as follows:
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f ′′ − v f ′ + a f (1 − f − c) = 0, (1.6a)

c′′ − vc′ + c(1 − f − c) + s( f + c)h = 0, −∞ < z < ∞, (1.6b)

dh′′ − vh′ + bh(1 − h) − g( f + c)h = 0, (1.6c)

together with the boundary conditions

( f , c, h)(−∞) = (0, 0, 1) and ( f , c, h)(+∞) = E∞. (1.7)

Here the prime indicates differentiation with respect to z, and the constant steady state
E∞ of (1.3) is

E∞ =
{

(0, c∗, h∗), if 0 < g < b,
( f �, c�, 0), if g ≥ b,

where

c∗ := b(1 + s)

b + sg
and h∗ := b − g

b + sg
,

and f � and c� are some nonnegative constants satisfying f � + c� = 1. We remark
that the boundary condition for ( f , c, h) at −∞ is motivated by the requirement of
farmers and hunter-gatherers at the early stage of the Neolithic transition. We refer the
readers to the discussion (Sect. 4) for the choice of initial conditions (1.4).

Note that if f ≡ 0 on R, then the traveling problem (1.6)–(1.7) is reduced to the
following traveling wave problem for (c, h):

⎧⎨
⎩

vcz = czz + c(1 − c) + sch,

vhz = dhzz + bh(1 − h) − gch,

(c, h)(−∞) = (0, 1), (c, h)(∞) = e∞,

(1.8)

where

e∞ =
{

(1, 0), for g ≥ b,
(c∗, h∗), for g < b.

(1.9)

Here (c∗, h∗) is defined as in the definition of E∞. The traveling wave problem (1.8)–
(1.9) exactly corresponds to that for the Ammerman–Cavalli-Sforza model (1.1). In
fact, recently, Tsai et al. (2020) have shown that the traveling wave problem (1.8)
and (1.9) admits a positive solution (c, h) iff v ≥ 2

√
1 + s. In addition, the solution

satisfies 0 < c < 1+ s, 0 < h < 1 and h′ < 0 on R. It follows that, for all a > 0, the
traveling problem (1.6) and (1.7) admits a nonnegative solution (0, c, h) with c > 0
and h > 0 iff v ≥ 2

√
1 + s. Here, we call such a solution a trivial traveling wave

solution.
Now we turn to the existence of nontrivial traveling wave solutions (i.e., positive

traveling wave solutions). To proceed, consider the quadratic polynomial

P(λ) := λ2 − vλ + a. (1.10)
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Letλ1 andλ2 denote two roots of P(λ) = 0withRe(λ1) ≤ Re(λ2). If v > v∗ := 2
√
a,

then 0 < λ1 < λ2 and P(λ) < 0 when λ ∈ (λ1, λ2). If v = v∗, then λ1 = λ2 = v∗/2.
In the sequel, we retain the notations λ1, λ2, and v∗. Also we call the λ1 (resp. λ2) as
the slow-rate (resp. fast-rate).

We first consider the case 0 < a ≤ 1 + s. For this case, we recall that in gen-
eral, travelingwaveswith non-minimal speed inmonostable reaction–diffusion system
always tend to the unstable equilibrium along the “slow-rate direction” (the eigendirec-
tion associated with the slow-rate), while traveling waves with minimal speed always
tend to the unstable equilibrium along the “fast-rate direction” (the eigendirection
associated with the fast-rate) . When applying to a nonnegative solution ( f , g, h) of
the traveling problem (1.6) and (1.7), this suggests that for non-minimal speed case,
f (z)e−λ1z ∼ C for some C > 0 and for all z close to −∞, while for minimal speed
case, f (z)|z|−1e−λ1z ∼ C for some C > 0 and for all z close to −∞. However,
our analysis from Lemma 2.1 suggests that there are no such positive wave solutions
which tend to (0, 0, 1) along the “slow-rate direction” near negative infinity. Thus,
we may conclude that for 0 < a ≤ 1 + s, there are no positive solutions ( f , c, h)

of the traveling problem (1.6) and (1.7). Furthermore, our numerical study (Figs. 1
and 3 for the case a < 1 + s) indicates that any nonnegative solution ( f , c, h) of the
traveling problem (1.6) and (1.7) must satisfy f ≡ 0 on R (i.e., only trivial traveling
wave solutions exist).

We next consider the case a > 1 + s. For this case, we establish the existence of
traveling waves for system (1.3) in the following theorem.

Theorem 1.1 Assume a > 1 + s. Then problem (1.6) and (1.7) admits a positive
solution ( f , c, h) iff v ≥ v∗. Moreover, f � and c� are positive if g > b, and ( f , c, h)

satisfies the following properties:

(i) 0 < f , h < 1, c > 0, and 0 < f + c < 1 + s over R.
(ii) As z → −∞, we have

f (z) =
{O(eλ1z), if v > v∗,
O(−zeλ1z), if v = v∗.

We remark that there are no assumptions imposed on the (dimensionless) diffusivity
of the hunter-gathers for the conclusion of Theorem 1.1. Note also that for g ≥ b,
the exact expression of ( f �, c�) is not derived here. However, numerical evidences
suggest that the value of ( f �, c�) depends on model parameters. In order to answer the
questions (Q1) and (Q2), we need to gain more information about the wave profiles
( f , c, h). For this, consider the total population of farmers F := f + c (we will call
F as the total farmer for short), and define the following two sets:

A := {F ∈ C2(R)| 0 < F < 1 and F′ > 0 over R, and F(∞) = 1},
B := {F ∈ C2(R)|∃zF ∈ R such that F(zF) = 1,F′

> 0 in (−∞, zF], and F > 1 in (zF,∞)}.

In the sequel, we retain the notation zF.
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Fig. 5 Traveling wave profiles (F,C, H) of system (1.3) with g ∈ (0, b) a minimal velocity (c∗ ≈ 2.449)
and b non-minimal velocity (c ≈ 4.102) where the parameters in (1.3) are d = 1.2, a = 1.5, s = 0.2, b =
0.8, and g = 0.3. The arrow indicates the propagating direction
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Fig. 6 Traveling wave profiles (F,C, H) of system (1.3) with g ≥ b and total farmer F ∈ B a minimal
velocity (c∗ ≈ 2.449) and b non-minimal velocity (c ≈ 3.200) where the parameters in (1.3) are the same
as the ones in Fig. 5 except g = 1. The arrow indicates the propagating direction

600 700 800 900 1000
0

0.25

0.5

0.75

1
F C H

(a)

600 700 800 900 1000
0

0.25

0.5

0.75

1
F C H

(b)

Fig. 7 Traveling wave profiles (F,C, H) of system (1.3) with g ≥ b and total farmer F ∈ A a minimal
velocity (c∗ ≈ 2.449) and b non-minimal velocity (c ≈ 3.200) where the parameters in (1.3) are the same
as the ones in Fig. 5 except g = 2. The arrow indicates the propagating direction

Proposition 1.1 Assume that a > 1+ s. Let ( f , c, h) be the solution of (1.6) and (1.7)
given in Theorem 1.1.

Then the following hold:

(i) The total farmer F belongs to A ∪ B. In addition, if either g ∈ (0, b), or g ∈
[b, 1+b) and d ≥ 1, then F lies in the set B (See Figs. 5 and 6 for an illustration).

(ii) If F ∈ A, then f ′ > 0 and c′ > 0 over R.
(iii) If F ∈ B, then there exists a z f < zF such that f ′ > 0 on (−∞, z f ) and f ′ < 0

on (z f ,∞), where zF is the point defined in the definition of the set B.
(iv) If g ≥ b, then h′ < 0 over R; if g ∈ (0, b), then h′ < 0 on (−∞, zF).
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Traveling wave solutions with minimal velocity v∗ and non-minimal velocity v(>

v∗) for (ii), (iii) and (iv) are numerically shown in Figs. 5, 6 and 7, respectively.
We make five remarks. (i) According to Theorem 1.1, F(∞) = f (∞) + c(∞) =
b(1+s)/(b+sg) > 1 when g ∈ (0, b), and F(∞) = f (∞)+c(∞) = 1 when g ≥ b.
(ii) Numerical experiments indicate that h′ < 0 over R for 0 < g < b. However, due
to technical difficulty, we just prove that h′ < 0 on (−∞, zF). (iii) We are unable
to identify any sufficient condition under which F lies in the set A. From numerical
experiments, we conjecture that there exists a constant g∗ ≥ b + 1 such that F ∈ B if
0 < g < g∗ and F ∈ A if g ≥ g∗. (iv) The behavior of the back of the traveling waves
indicates that for the case g < b, the hunter-gatherers can exist with lower density,
while for the case g ≥ b, the hunter-gatherers are converted into farmers completely.
(v) Although the existence result of traveling waves of system (1.3) is similar to that of
the well-known Fisher–KPP equations (Fisher 1937; Kolmogorov et al. 1937), we do
not solve the uniqueness of the profiles of traveling waves. The main difficulty is due
to the fact that system (1.3) does not enjoy the comparison principle. Also there are
very few uniqueness results on wave profiles in non-cooperative Fisher–KPP systems,
and nonlocal Fisher–KPP equations which could be reduced from a parabolic system
(Bouin and Calvez 2014; Bouin et al. 2017). We will address the uniqueness of wave
profiles of system (1.3) in our future work.

Finally, we outline the organization of the paper. The main difficulty of math-
ematical analysis for system (1.3) is due to the fact that it is a three-component
reaction–diffusion system without comparison principle. The proof of Theorem 1.1
consists of two steps. For the first step which is given in Sect. 2, we first use the
fixed point approach, motivated by Berestycki et al. (2005), to obtain the solution of
a truncated problem whose boundary values are determined by a pair of upper/lower-
solutions. Then with the use of a limiting argument, we can get a solution ( f , c, h) of
(1.6) with ( f , c, h)(−∞) = (0, 0, 1). For ( f , c, h) to be a traveling wave, one needs
to verify that ( f , c, h)(∞) = E∞. Due to this reason, we call ( f , c, h) as a semi-wave
before the completion of the second step. For the second step which is given in Sect. 3,
we verify ( f , c, h)(∞) = E∞. This step is divided into two cases: (i) g ∈ (0, b), and
(ii) g ≥ b. In order to proceed with this step, we introduce the total farmer F := f +c,
and convert (1.6) into a system governed by ( f ,F, h) [see system (3.1)]. This idea
of introducing the total farmers F is crucial for the analysis of the second step. This
idea seems to be new for the analysis of a three-component system. Then we study
the basic properties of the total farmer F in Sect. 3.2. Next, in Sect. 3.3 we construct
a Lyapunov functional to verify ( f , c, h)(∞) = E∞ for the case g ∈ (0, b), while
the verification of ( f , c, h)(∞) = E∞ for the case g ≥ b is discussed in Sect. 3.4
via a direct analysis. Also some properties of traveling waves are shown in Sect. 3.4.
Finally, a conclusion is given in Sect. 4.

2 Existence of semi-waves

2.1 Necessary conditions for existence of positive traveling wave solutions

In the following lemma, we will establish that positive traveling wave solutions of
(1.3) exist only if v ≥ v∗, and that for a ∈ (0, 1 + s], there exist no positive traveling
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wave solutions of (1.3) tending to the unstable equilibrium (0, 0, 1) along the “slow-
rate direction” (i.e., the eigendirection associated with the smaller eigenvalue λ1). The
later assertion suggests that for a ∈ (0, 1+ s], only trivial traveling wave solutions of
(1.3) exist.

Lemma 2.1 Recall that λ1 = (v − √
v2 − 4a)/2 and v∗ = 2

√
a. Then the followings

hold:

(i) For a > 0 and v < v∗, if ( f , c, h) is a nonnegative bounded solution of (1.6) and
(1.7), then f ≡ 0 on R.

(ii) For a ∈ (0, 1 + s] and v ≥ v∗, there exists no nonnegative bounded solution
( f , c, h) of (1.6) and (1.7) with f (z)|z|−me−λ1z ∼ C for some C > 0 and for all
z close to −∞. Here m = 0 if v > v∗, and m = 1 if v = v∗.

Proof Let ( f , c, h) be a nonnegative bounded solution of the traveling wave problem
(1.6) and (1.7). Then by Hartman–Grobman theorem (Hartman 1982), the dynamical
behavior of ( f , c, h) around z = −∞ is determined by a solution ( f̂ , ĉ, ĥ) of the
linearied system of (1.6) around (0, 0, 1) which is given by

⎧⎨
⎩

f̂ ′′ − v f̂ ′ + a f̂ = 0,
ĉ′′ − vĉ′ + (1 + s)ĉ + s f̂ = 0, −∞ < z < ∞,

dĥ′′ − vĥ′ − g f̂ − gĉ − bĥ = 0.
(2.1a)

In the remainder of the proof,wewill use the linear system (2.1) to deduce the assertions
of this lemma.

First, we consider the assertion (i). Indeed, if v ≤ −v∗ or |v| < v∗, then the f̂ -
component of a solution ( f̂ , ĉ, ĥ) of (2.1) is either unbounded or not of a single sign
for z near −∞ unless f̂ = 0. This proves the assertion (i).

Next, we turn to prove the assertion (ii). Note thatλ±
c = (v±√

v2 − 4(1 + s))/2 are
two zeros of Pc(λ) := λ2−vλ+(1+s).We first consider the case where a ∈ (0, 1+s)
and v ≥ v∗. For contradiction, assume that there is such a solution ( f , c, h) of (1.6)
and (1.7). Then due to v ≥ 2

√
a, the f̂ -component of the associated solution ( f̂ , ĉ, ĥ)

of (2.1) is given by f̂ (z) = k1|z|meλ1z + k2eλ2z with k1 > 0 and k2 ∈ R, and m being
defined as in the assertion (ii). A direct analysis of (2.1a) gives

ĉ(z) = −sk1
Pc(λ1)

|z|meλ1z + −sk2
Pc(λ2)

eλ2z + l−eλ−
c z + l+zneλ+

c z, l± ∈ R,

where n = 0 if v > 2
√
1 + s, and n = 1 if v > 2

√
1 + s. Due to a < 1 + s and

v ≥ 2
√
a, we have Pc(λ1) > 0 and λ1 < Re(λ−

c ) ≤ Re(λ+
c ) < λ2 where Re(λ) is

the real part of λ ∈ C. Thus, the first term in the expression of ĉ(z) is negative and
dominates the other three terms, and so ĉ(z) < 0 for z close to −∞. This in turn
implies c(z) < 0 for z close to −∞. This is a contradiction, and thus establishing the
assertion (ii) for the case where a ∈ (0, 1 + s) and v ≥ v∗.

Now, we prove the assertion (ii) for the case where a = 1 + s and v > v∗. For
contradiction, assume that there is such a solution ( f , c, h) of (1.6) and (1.7). Then
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the f̂ -component of the associated solution ( f̂ , ĉ, ĥ) of (2.1) is given by f̂ (z) =
k1eλ1z + k2eλ2z with k1 > 0 and k2 ∈ R. Now a direct analysis of (2.1a) gives

ĉ(z) = sk1√
v2 − 4a

zeλ1z + sk2√
v2 − 4a

zeλ2z + l−eλ−
c z + l+eλ+

c z, l± ∈ R.

Note that λ1 = λ−
c < λ2 = λ+

c since a = 1+s. Thus, the first term in the expression of
ĉ(z) is negative for all z < 0 and dominates the other three terms, and so ĉ(z) < 0 for z
close to −∞. This in turn implies c(z) < 0 for z close to −∞. This is a contradiction,
and thus proving the assertion (ii) for the case where a = 1 + s and v > v∗.

Finally, we prove the assertion (ii) for the case where a = 1 + s and v = v∗.
For contradiction, assume that there is such a solution ( f , c, h) of (1.6) and (1.7).
Then the f̂ -component of the associated solution ( f̂ , ĉ, ĥ) of (2.1) is given by f̂ (z) =
k1zeλ1z + k2eλ1z with k1 < 0 and k2 ∈ R. Now a direct analysis of (2.1a) gives

ĉ(z) = − sk1
6

zeλ1z − sk2
2

eλ1z + l−eλ−
c z + l+zeλ+

c z, l± ∈ R.

Note that λ1 = λ2 = λ±
c since a = 1 + s and v = v∗. Thus, the first term in the

expression of ĉ(z) is negative for z < 0 and dominates the other three terms, and so
ĉ(z) < 0 for z close to −∞. This is a contradiction, and thus proving the assertion (ii)
for the case where a = 1+ s and v = v∗. The proof of this lemma is thus completed.

��
Remark By exactly the same phase-plane arguments as those in this lemma, one

can show that there are no “trivial” traveling waves solutions of (1.3) with wave speed
v < 2

√
1 + s.

In the remainder of this paper, we always assume that a > 1 + s and v ≥ v∗.

2.2 Upper and lower solutions

In this subsection, we will construct a pair of upper and lower solutions of (1.6). To
begin with, we define upper and lower solutions of (1.6) as follows:

Definition 2.1 ( f̄ , c̄, h̄) and ( f , c, h) are called a pair of upper and lower solutions of

(1.6) on R if ( f̄ , c̄, h̄) and ( f , c, h) are continuous functions on R satisfying

f̄ ′′ − v f̄ ′ + a f̄ (1 − f̄ ) − a f̄ c ≤ 0, (2.2a)

f ′′ − v f ′ + a f (1 − f ) − a f c̄ ≥ 0, (2.2b)

c̄′′ − vc̄′ + c̄(1 − f − c) + s( f̄ + c̄)h̄ ≤ 0, (2.2c)

c′′ − vc′ + c(1 − f̄ − c̄) + s( f + c)h ≥ 0 (2.2d)

dh̄′′ − vh̄′ + bh̄(1 − h̄) − g( f + c)h̄ ≤ 0, (2.2e)

dh′′ − vh′ + bh(1 − h) − g( f̄ + c̄)h ≥ 0, (2.2f)

except for finitely many points in R.
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2.2.1 The non-critical case v > v∗

To construct upper–lower solutions, we select positive constants A, η and σ such that

A > s/(a − 1 − s), (2.3)

η < min{λ1, λ2 − λ1}, (2.4)

and
σ < min(v/d, λ1, η). (2.5)

Then we pick positive constants L and M such that M > L > 1,

− LP(λ1 + η) ≥ a(A + 1), (2.6)

and
Mσ(v − dσ) ≥ g(A + 1). (2.7)

Now we define ( f̄ , c̄, h̄) and ( f , c, h) by

f̄ (z) :=
{
eλ1z, z ≤ z0 := 0,
1, z > z0,

f (z) :=
{(

1 − Leηz
)
eλ1z, z ≤ z1 := − ln L/η < 0

0, z > z1,

c̄(z) := Aeλ1z,

c(z) := 0,

h̄(z) := 1,

h(z) :=
{
1 − Meσ z, z ≤ z2 := − lnM/σ < 0,
0, z > z2.

Note that z2 < z1 since M > L and η > σ . It is obvious that h̄ and c satisfy (2.2e)
and (2.2d) respectively. In the following, we will show that ( f̄ , c̄, h̄) and ( f , c, h) are
a pair of upper and lower solutions of (1.6) on R.

Lemma 2.2 The function f̄ satisfies (2.2a) for all z �= z0.

Proof For z > z0, f̄ (z) = 1 and (2.2a) holds obviously. For z < z0, f̄ (z) = eλ1z .
Since P(λ1) = 0, it follows that

f̄ ′′ − v f̄ ′ + a f̄ (1 − f̄ ) − a f̄ c ≤ f̄ ′′ − v f̄ ′ + a f̄ = P(λ1)e
λ1z = 0.

This completes the proof of this lemma. ��

Lemma 2.3 The function c̄ satisfies (2.2c) for all z ∈ R.
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Proof Since h̄ ≡ 1 on R and P(λ1) = 0, it follows that for each z ∈ R,

c̄′′ − vc̄′ + c̄(1 − f − c) + s( f̄ + c̄)h̄

≤ [c̄′′ − vc̄′ + c̄ + sc̄] + s f̄

≤ [P(λ1) − a + 1 + s]Aeλ1z + seλ1z

= [A(s + 1 − a) + s]eλ1z

≤ 0 (by (2.3)).

The proof of this lemma is thus completed. ��
Lemma 2.4 The function f satisfies (2.2b) for all z �= z1.

Proof For z > z1, since f ≡ 0 in (z1,∞), the inequality (2.2b) follows. For z < z1,
we can use the fact P(λ1) = 0 and (2.6) to deduce that

f ′′ − v f ′ + a f (1 − f ) − a f c̄

≥ f ′′ − v f ′ + a f − a f̄ ( f̄ + c̄)

= e(λ1+η)z[−LP(λ1 + η) − a(A + 1)e(λ1−η)z]
≥ 0 (by (2.4) and (2.6)).

Hence (2.2b) holds. ��
Lemma 2.5 The function h satisfies (2.2f) for all z �= z2.

Proof For z > z2, (2.2f) holds immediately since h ≡ 0 in (z2,∞). For z < z2, we
have

dh′′ − vh′ + bh(1 − h) − g( f̄ + c̄)h

≥ dh′′ − vh′ − g( f̄ + c̄)h̄

= eσ z[Mσ(v − dσ) − g(A + 1)e(λ1−σ)z]
≥ 0 (by (2.5) and (2.7)).

The proof of this lemma is therefore completed. ��

2.2.2 The critical case v = v∗

We select 0 < ν < λ1 such that P(ν) < a − s − 1, and choose z0 < −1 such that

(P(ν) + s + 1 − a) − sze(λ1−ν)z ≤ 0 ∀z ≤ z0. (2.8)

Then we set ρ := −(1/z0)e−λ1z0 . Pick A such that

A > max
{
ρ, se−νz0/(a − s − 1 − P(ν))

}
. (2.9)
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Noting that

lim
z→−∞

[
aρ2(−z)7/2eλ1z − aρA(−z)5/2eνz

]
= 0,

there exists a number z1 < z0 such that

aρ2(−z)7/2eλ1z + aρA(−z)5/2eνz <
1

4
∀z ≤ z1. (2.10)

Set L := ρ
√−z1 > 1 and pick a positive number σ such that σ < min(ν, v/d, λ1).

Since ze(λ1−σ)z → 0 and e(ν−σ)z → 0 as z → −∞, there exists z2 < z1 such that

σ(v − dσ) − g(−ρze(λ1−σ)z + Ae(ν−σ)z) > 0 ∀z ≤ z2. (2.11)

Set M := e−σ z2 . Then M > 1 since z2 < 0.
Now we define ( f̄ , c̄, h̄) and ( f , c, h) by

f̄ (z) :=
{−ρzeλ1z, z ≤ z0,
1, z > z0,

f (z) :=
{[−ρz − L(−z)1/2

]
eλ1z, z ≤ z1

0, z > z1,

c̄(z) := Aeνz,

c(z) := 0,

h̄(z) := 1,

h(z) :=
{
1 − Meσ z, z ≤ z2,
0, z > z2.

In the following, we will show that ( f̄ , c̄, h̄) and ( f , c, h) are a pair of upper and
lower solutions of (1.6) on R.

Lemma 2.6 The function f̄ satisfies (2.2a) for all z �= z0.

Proof For z > z0, f̄ (z) ≡ 1 and (2.2a) holds obviously. For z < z0, f̄ (z) = −ρzeλ1z .
Since P(λ1) = 0 and λ1 = v/2, it follows that

f̄ ′′ − v f̄ ′ + a f̄ (1 − f̄ ) − a f̄ c ≤ f̄ ′′ − v f̄ ′ + a f̄

= −ρzeλ1z P(λ1)e
λ1z + ρ(v − 2λ1)e

λ1z = 0.

The proof of this lemma is thus completed. ��
Lemma 2.7 The function c̄ satisfies (2.2c) for all z ∈ R.

Proof Since h̄ ≡ 1 on R, ν < λ1, and P(ν) < a − s − 1, it follows that for z < z0,

c̄′′ − vc̄′ + c̄(1 − f − c) + s( f̄ + c̄)h̄
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≤ [c̄′′ − vc̄′ + c̄ + sc̄] + s f̄

= [P(ν) − a + 1 + s]Aeνz − sρzeλ1z

≤ [(P(ν) + s + 1 − a)ρ − sρze(λ1−ν)z]eνz (Using A > ρ)

≤ 0 (by (2.8)),

and for z > z0,

c̄′′ − vc̄′ + c̄(1 − f − c) + s( f̄ + c̄)h̄

≤ [c̄′′ − vc̄′ + c̄ + sc̄] + s f̄

= [P(ν) − a + 1 + s]Aeνz + s

≤ [P(ν) + s + 1 − a]Aeνz0 + s

≤ 0 (by (2.9)),

which completes the proof of this lemma. ��
Lemma 2.8 The function f satisfies (2.2b) for all z �= z1.

Proof For z > z1, since f ≡ 0 in (z1,∞), the inequality (2.2b) follows. For z < z1,

f (z) = f̄ (z) − L(−z)1/2eλ1z . A simple computation gives that

f ′(z) = f̄ ′(z) + Leλ1z
[
1

2
(−z)−1/2 − λ1(−z)1/2

]
, (2.12)

and

f ′′(z) = f̄ ′′(z) + Leλ1z
[
1

4
(−z)−3/2 + λ1(−z)−1/2 − (λ1)

2(−z)1/2
]

. (2.13)

Thus for z < z1,

f ′′ − v f ′ + a f (1 − f ) − a f c̄

≥ f ′′ − v f ′ + a f − a f̄ ( f̄ + c̄)

= (−z)−3/2eλ1z
[
L

4
− aρ2(−z)7/2eλ1z − aρA(−z)5/2eνz

]

≥ 0 (Using L > 1 and (2.10)).

Hence (2.2b) holds. The proof of this lemma is therefore completed. ��
Lemma 2.9 The function h satisfies (2.2f) for all z �= z2.

Proof For z > z2, the inequality (2.2f) holds immediately since h ≡ 0 in (z2,∞). For
z < z2, we have

dh′′ − vh′ + bh(1 − h) − g( f̄ + c̄)h
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≥ dh′′ − vh′ − g( f̄ + c̄)h̄

= eσ z
[
Mσ(v − dσ) − g(−ρze(λ1−σ)z + Ae(ν−σ)z)

]
≥ 0 (UsingM > 1 and (2.11)).

The proof of this lemma is therefore completed. ��

Remark 2.10 Although the values of z0, z1, and z2 for v > v∗ are different from those
for v = v∗, the use of the same notations z0, z1, and z2 makes that the constructed
upper/lower solutions satisfies the same set of inequalities for each v ≥ v∗, as shown
in the lemmas of this subsection. We will retain the notations of z0, z1, and z2 in the
remainder of this section.

2.3 A truncated problem

In this subsection, we consider the following truncated problem:

f ′′ − v f ′ + a f (1 − f − c) = 0 in Il , (2.14a)

c′′ − vc′ + c − c( f + c) + s( f + c)h = 0 in Il , (2.14b)

dh′′ − vh′ + bh(1 − h) − g( f + c)h = 0 in Il , (2.14c)

f (z) = f (z), c(z) = c(z), h(z) = h(z) in (−∞,−l] ∪ [l,∞), (2.14d)

where a > 1 + s, v ≥ v∗ and Il := (−l, l) with l > max{|z1|, |z2|}.
For convenience, setting

X := C(R) × C(R) × C(R) and Y := C2(Il) × C2(Il) × C2(Il),

then X is a Banach space equipped with the norm ‖(φ1, φ2, φ3)‖X = ‖φ1‖C(R) +
‖φ2‖C(R) + ‖φ3‖C(R). We will apply the Schauder fixed point theorem to show that
there exists a triple of functions ( f , c, h) ∈ X ∩ Y satisfying (2.14). To this end, let

E := {( f , c, h) ∈ X | f ≤ f ≤ f̄ , c ≤ c ≤ c̄, and h ≤ h ≤ h̄ in R},

which is a closed convex set in X . Define the mapping F : E → X as follows: given
( f0, c0, h0) ∈ E ,

F( f0, c0, h0) := ( f , c, h),

where ( f , c, h) is the unique triple of functions ( f , c, h) ∈ X ∩ Y satisfying

f ′′ − v f ′ + a f0(1 − f ) − ac0 f = 0 in Il , (2.15a)

c′′ − vc′ + c0 − ( f0 + c0)c + s( f0 + c0)h0 = 0 in Il , (2.15b)

dh′′ − vh′ + bh0(1 − h) − g( f0 + c0)h = 0 in Il , (2.15c)

f (z) = f (z), c(z) = c(z), h(z) = h(z) in (−∞,−l] ∪ [l,∞). (2.15d)

123



26 Page 18 of 35 S.-C. Fu et al.

Since (2.15) is a decoupled system and the equations for f , c, and h are inhomogeneous
linear equations, the existence and uniqueness of ( f , c, h) can be directly obtained
by Theorem 3.1 of Chapter 12 in the book of Hartman (1982). Obviously, any fixed
point ofF is a triple of functions ( f , c, h) ∈ X ∩Y satisfying (2.14). In the following,
we will verify that the mapping F satisfies the conditions of the Schauder fixed point
theorem.

Lemma 2.11 FE ⊂ E; that is, for a given ( f0, c0, h0) ∈ E, the solution ( f , c, h) of
(2.15) satisfies f ≤ f ≤ f̄ , c ≤ c ≤ c̄, and h ≤ h ≤ h̄ in R.

Proof First, we note that by the maximum principle, we have that f , c, and h are
positive in Il . Since c ≡ 0 and c is nonnegative, c ≤ c is obvious. Since f̂ := 1 and
h̄ ≡ 1 satisfy

dh̄′′ − vh̄′ + bh0(1 − h̄) − gh̄( f0 + c0) ≤ 0,

f̂ ′′ − v f̂ ′ + a f0(1 − f̂ ) − a f̂ c0 ≤ 0

in Il , it follows from the comparison principle that f ≤ f̂ ≡ 1 and h ≤ h̄ ≡ 1 over
R.

Due to ( f0, c0, h0) ∈ E , we can use (2.15) to deduce that

f ′′ − v f ′ + a f̄ (1 − f ) − a f c ≥ 0, (2.16)

f ′′ − v f ′ + a f (1 − f ) − a f c̄ ≤ 0, (2.17)

c′′ − vc′ + c̄ − c( f + c) + s( f̄ + c̄)h̄ ≥ 0, (2.18)

dh′′ − vh′ + bh(1 − h) − gh( f̄ + c̄) ≤ 0 (2.19)

in Il . Now we claim that f ≤ f over R. Recall that f is positive in Il . Together with
(2.15d) and the fact that f ≡ 0 in [z1,∞) and z1 ∈ Il , we see that

f ≤ f in (−∞,−l] ∪ [z1,∞). (2.20)

So it suffices to show that f ≤ f in (−l, z1). By (2.2b) and (2.17), the function

 := f − f satisfies


 ′′ − v
 ′ − a f 
 − ac̄
 ≤ 0

in (−l, z1). In addition, using (2.20), we have 
(−l) ≥ 0 and 
(z1) ≥ 0. Therefore
it follows from the maximum principle that 
 ≥ 0 in (−l, z1). This gives that f ≤ f

in (−l, z1). Similarly, one can easily show that f ≤ f̄ , c ≤ c̄, and h ≤ h over R.
Hence the proof of this lemma is completed. ��

Finally, since it is standard to show that themappingF is continuous andprecompact
[e.g., see the proofs of Lemma 4.4 and Lemma 4.5 of Fu (2014)], we omit the proofs.
Nowwecan apply theSchauder fixed point theorem to conclude thatF has afixed point
( fl , cl , hl) ∈ X ∩ Y , which is a triple of functions satisfying (2.14) and f ≤ f ≤ f̄ ,
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c ≤ c ≤ c̄, and h ≤ h ≤ h̄ over R. From the above discussion, we have the following
existence result for the truncated problem (2.14).

Lemma 2.12 Let v ≥ v∗. For each l > max{|z1|, |z2|}, there exists a triple of functions
( fl , cl , hl) ∈ X ∩ Y satisfying (2.14). Moreover,

0 ≤ f ≤ fl ≤ f̄ ≤ 1, 0 = c ≤ cl ≤ c̄, 0 ≤ h ≤ hl ≤ h̄ ≡ 1 on R. (2.21)

2.4 Proof of existence of semi-waves

In this subsection, we will establish the existence of semi-waves of system (1.3) by
using the solution ( fl , cl , hl) of the truncated problem (2.14) and a limiting argument.

Lemma 2.13 Assume that a > 1 + s. If v ≥ v∗, then system (1.6) admits a positive
solution ( f , c, h) satisfying

( f , c, h)(−∞) = (0, 0, 1) (2.22)

and
0 ≤ f ≤ f ≤ f̄ ≤ 1, 0 ≤ c ≤ c ≤ c̄, 0 ≤ h ≤ h ≤ h̄ ≡ 1 (2.23)

on R. Moreover, c > 0 and 0 < f , h < 1 over R, and as z → −∞, we have

f (z) =
{O(eλ1z), if v > v∗,
O(−zeλ1z), if v = v∗. (2.24)

Proof Let {ln}n∈N be an increasing sequence in R such that l1 > max{|z1|, |z2|} and
ln → ∞ as n → ∞, and let ( fn, cn, hn) be a triple of functions in X ∩ Y satisfying
(2.14) with l = ln and (2.21) on R. For any fixed N ∈ N, since the function c̄
is bounded above in [−lN , lN ], it follows from (2.21) that the sequences { fn}n≥N ,
{cn}n≥N , {hn}n≥N , {a fn(1 − fn − cn)}n≥N , {cn − cn( fn + cn) + s( fn + cn)hn}n≥N ,
and {bhn(1− hn) − g( fn + cn)hn}n≥N are uniformly bounded in [−lN , lN ]. Then we
can Lemma 3.3 of Fu (2014) to infer that the sequences

{ f ′
n}n≥N , {c′

n}n≥N and {h′
n}n≥N

are also uniformly bounded in [−lN , lN ]. Using (2.14), we can express f ′′
n , c

′′
n , and h

′′
n

in terms of fn , cn , hn , f ′
n , c

′
n , and h′

n . Differentiating (2.14), we can use the resulting
equations to express f ′′′

n , c′′′
n , and h

′′′
n in terms of fn , cn , hn , f ′

n , c
′
n , h

′
n , f

′′
n , c

′′
n , and h

′′
n .

Consequently, the sequences

{ f ′′
n }n≥N , {c′′

n}n≥N , {h′′
n}n≥N , { f ′′′

n }n≥N , {c′′′
n }n≥N , and {h′′′

n }n≥N

are uniformly bounded in [−lN , lN ]. With the aid of Arzela–Ascoli theorem and a
diagonal process, we can get a subsequence of {( fn, cn, hn)}n∈N which converges
uniformly to a triple of functions ( f , c, h) ∈ C2(R)×C2(R)×C2(R) in any compact
interval of R as n → ∞. Then it is easy to see that ( f , c, h) is a nonnegative solution
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of system (1.6) and satisfies (2.23) over R. Together with definitions of ( f̄ , c̄, h̄) and
( f , c, h) , we get (2.22) and (2.24).

Furthermore, we claim that 0 < f , h < 1 and c > 0 over R. For contradiction, we
assume that f (z̃1) = 0 for some z̃1 ∈ R. Then f ′(z̃1) = 0. Therefore the uniqueness
theory of ordinary differential equations gives that f ≡ 0, which contradicts the fact
that f ≥ f > 0 on (−∞, z1). Hence f > 0 over R. Similarly, we also have h > 0
over R. Now suppose c(z̃2) = 0 for some z̃2 ∈ R. Then c′(z̃2) = 0 and c′′(z̃2) ≥ 0,
which contradicts (1.6b) with z = z̃2. Hence c > 0 over R. To prove f < 1 over R,
we also use a contradictory argument and assume that f (z̃3) = 1 for some z̃3 ∈ R.
In this case, f ′(z̃3) = 0 and f ′′(z̃3) ≤ 0. This contradicts (1.6a) with z = z̃3. Hence
f < 1 overR. By a similar way, we also have h < 1 overR. This completes the proof
of this lemma. ��

3 Existence of traveling waves

In this section, we show that semi-waves established in Lemma 2.13 are actually
traveling waves. To see this, let ( f , c, h) be a semi-wave of system (1.6) obtained in
Lemma 2.13. We will verify that the limit ( f , c, h)(∞) exists and f + c < 1 + s on
R. To this end, we set F := f + c. Then (1.6) becomes

f ′′ − v f ′ + a(1 − F) f = 0, (3.1a)

F′′ − vF′ + F(1 + sh − F) + (a − 1)(1 − F) f = 0, (3.1b)

dh′′ − vh′ + bh(1 − h) − gFh = 0. (3.1c)

Throughout this section, we will retain the notations f , c, F, and h.

3.1 Auxiliary lemmas

In this section, we will use the Barbălat’s Lemma (Barbălat 1959) to show the con-
vergence of semi-waves. For readers’ convenience, we state the Barbălat’s lemma
below.

Lemma 3.1 [Barbălat’s Lemma of Barbălat (1959)] Suppose w ∈ C1(b,∞) and
limt→∞ w(t) exists. If w′ is uniformly continuous, then limt→∞ w′(t) = 0.

The following a priori estimates for the second-order differential equations are
useful in the remainder of the proof.

Lemma 3.2 Let B be a positive number and G ∈ C(R). Suppose that w ∈ C2(R) is a
solution of

w′′ − Bw′ = G(z) (3.2)

in R. If w and G are bounded in R, then so are w′ and w′′. Moreover,

‖w′‖L∞(R) ≤ ‖G‖L∞(R)

B
(3.3)
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and
‖w′′‖L∞(R) ≤ 2‖G‖L∞(R). (3.4)

Proof We claim that (3.3) holds. For contradiction, we assume that there exists z̃0 ∈ R

such that

|w′(z̃0)| >
‖G‖L∞(R)

B
.

Multiplying (3.2) by e−Bz and then integrating both sides of the resulting equation
from z̃0 to z, we get that for all z ≥ z̃0,

e−Bzw′(z) − e−Bz̃0w′(z̃0) =
∫ z

z̃0
e−BξG(ξ)dξ

and therefore,

|w′(z)| ≥ eBz
(
e−Bz̃0 |w′(z̃0)| −

∫ z

z̃0
e−Bξ |G(ξ)|dξ

)

≥ eBz
(
e−Bz̃0 |w′(z̃0)| − ‖G‖L∞(R)

∫ z

z̃0
e−Bξdξ

)

≥ eB(z−z̃0)
(

|w′(z̃0)| − ‖G‖L∞(R)

B

)

≥ |w′(z̃0)| − ‖G‖L∞(R)

B
> 0 ∀z ≥ z̃0,

which contradicts the boundedness of w. Hence (3.3) holds. Finally, (3.4) follows
from (3.2) and (3.3). The proof of the lemma is thus completed. ��

To gain more details about the profile of F, we need the following estimate.

Lemma 3.3 Let D, v and k be positive constants. Suppose that u : R → R is of class
C2 in (zu,∞), and satisfies

Duzz − vuz − ku ≤ 0 on [zu,∞)

for some zu ∈ R and u(z) → 0 as z → ∞. Then we have

u(z) ≥ u(zu)e
v−

√
v2+4Dk
2D (z−zu) for z ≥ zu .

Proof The proof is motivated by the argument of (Berestycki et al. 2009, Proposi-
tion 4.1). For any l > 0, we consider the boundary value problem

{
Dφl

zz − vφl
z − kφl = 0, z ∈ (zu, zu + l),

φl(zu) = u(zu), φl(zu + l) = u(zu + l).
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A direct calculation gives

φl(z) =
(u(zu + l) − u(zu)eρ−l

eρ+l − eρ−l

)
eρ+(z−zu) +

(u(zu)eρ+l − u(zu + l)

eρ+l − eρ−l

)
eρ−(z−zu)

with ρ± = (v ± √
v2 + 4Dk)/2D. From the u-equation and comparison principle, it

follows that

u(z) ≥ φl(z) for z ∈ [zu, zu + l].

Note that u(zu + l) → 0 as l → ∞. Then, by fixing z > zu and taking the limit of the
above inequality as l → ∞, u(z) ≥ u(zu)eρ−(z−zu) holds for z ≥ zu . This completes
the proof. ��

3.2 Basic properties of total farmers F(·)

Lemma 3.4 0 < F(z) < 1 + s for all z ∈ R.

Proof By (3.1b) and the fact that h(z) ∈ (0, 1) for z ∈ R, we see that F′′ > 0 as long
as F′ ≥ 0 and F ≥ 1 + s. Recall that F(−∞) = 0. For contradiction, we assume that
z̃1 := inf{z ∈ R| F(z) ≥ 1+ s} exists. Then, by checking the standard first-order and
second-order derivatives condition at any critical point, we find that the first critical
point on the right of z̃1 is necessarily a strict local minimum. Since this is impossible,
F > 1 + s and F′ > 0 in (z̃1,∞).

We claim that
F′ <

v

2
F (3.5)

in (z̃1,∞). To see this, we consider the functionψ := F′ − (v/2)F. For contradiction,
suppose that there exists z̃2 > z̃1 such that ψ(z̃2) ≥ 0. Recall that h(z) ∈ (0, 1) for
z ∈ R. Then since

ψ ′ − v

2
ψ = F′′ − vF′ + v2

4
F

= F(F − 1 − sh) + (a − 1)(F − 1) f + v2

4
F

≥ F(F − 1 − s) + (a − 1)(F − 1) f + v2

4
F,

it follows thatψ ′(z)− v
2ψ(z) > 0 for all z ≥ z̃2. Together with the fact thatψ(z̃2) ≥ 0,

one can easily verify that ψ(z) > 0 for all z > z̃2. So we have F′(z) > v
2F(z)

for all z > z̃2, which implies that F(z) > e
v
2 (z−z̃2)F(z̃2) for all z > z̃2. On the

other hand, if v > v∗, then it follows from (2.23) and definition of f̄ and c̄ that
F(z) ≤ f̄ (z) + c̄(z) ≤ (A + 1)eλ1z over R. Since λ1 < v

2 , we get a contradiction.
Similarly, if v = v∗, then F(z) ≤ f̄ (z) + c̄(z) ≤ (A + 1)eνz for all z > 0. Since
ν < λ1 = v/2, we get a contradiction again. Hence (3.5) holds.
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Now we pick a number z̃3 > z̃1. Then F′(z̃3)/F(z̃3) > 0. By (3.1b) and the fact
that F(z) > 1 + s for z > z̃1 and h(z) ∈ (0, 1) for z ∈ R, we know that p := F′/F
satisfies

p′ = vp + (F − 1 − sh) − (a − 1)(1/F − 1) f − p2 > vp − p2

in (z̃1,∞). Then q := 1/p satisfies the first-order linear differential inequality q ′ +
vq < 1 in (z̃1,∞). Hence we deduce that

q(z) < q(z̃3)e
v(z̃3−z) + 1

v

(
1 − ev(z̃3−z)

)

and so, by q > 0,

p(z) >
p(z̃3)vevz

vev z̃3 + p(z̃3)(evz − ev z̃3)

for all z > z̃3. Therefore, lim inf z→∞ p(z) ≥ v, which contradicts (3.5). Hence the
proof of this lemma is completed. ��
Lemma 3.5 The nth derivatives f (n), F(n), and h(n) are bounded in R for all n ∈ N.

Proof Since f , F, and h are bounded in R, it follows from Lemma 3.2 that the deriva-
tives f ′, F′, h′, f ′′, F′′, and h′′ are bounded inR. Differentiating (3.1a)–(3.1c), we see
that f ′′′, F′′′, and h′′′ are also bounded in R. Then by induction, we can conclude that
the nth derivatives f (n), F(n), and h(n) are bounded inR for all n ∈ N. This completes
the proof of this lemma. ��

For the readers’ convenience, we recall that

A := {F ∈ C2(R)| 0 < F < 1 and F′ > 0 over R, and F(∞) = 1},
B := {F ∈ C2(R)|∃zF ∈ R such that F(zF) = 1,F′ > 0 in (−∞, zF], and F > 1 in (zF,∞)}.

We will show that F ∈ A ∪ B in the following lemma.

Lemma 3.6 F ∈ A ∪ B.
Proof From (3.1b), we see that F cannot take a local minimum whenever F ≤ 1.
Further, we claim that F also cannot take a local maximum whenever F ≤ 1. To see
this, wewill use a contradictory argument, and so assume thatF takes a localmaximum
at z̃1 and F(z̃1) ≤ 1. By (3.1b) and the fact that h > 0 over R, we have F′′(z̃1) < 0.
Observe that F′′(z) < 0 as long as F′(z) ≤ 0 and 0 < F(z) ≤ 1. Taken together, it
follows from (3.1b) that F′′(z) < 0 for all z ≥ z̃1, which contradicts the positivity of
F. This proves the assertion of the claim.

Since F(−∞) = 0 and F cannot take local extrema whenever F ≤ 1, it holds that
either F′ > 0 and 0 < F < 1 over R, or there exists zF ∈ R such that F(zF) = 1, and
F′ > 0 in (−∞, zF). For the former case, F(∞) exists and F(∞) ∈ (0, 1]. Moreover,
by Lemma 3.5, F′, F′′, and F′′′ are bounded over R. Then it follows from Barbălat’s
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lemma that F′(∞) = F′′(∞) = 0. Thus, by (3.1b) and the fact that h > 0 over R,
we see that F(∞) /∈ (0, 1). Hence F(∞) = 1 and F ∈ A. For the latter case, we
claim that F > 1 in (zF,∞). For contradiction, suppose that there exists z̃F ≥ zF such
that F(z̃F) = 1 and F′(z̃F) ≤ 0. Then using the argument for the claim in the first
paragraph, we can infer that F′′(z) < 0 for all z ≥ z̃F, which contradicts the positivity
of F. Further, the argument also gives that F′(zF) > 0. Thus F ∈ B. The proof of this
lemma is thus completed. ��

The following two lemmas characterize the wave profiles ( f , c), which give the
proofs of Propositions 1.1(ii) and 1.1(iii).

Lemma 3.7 If F ∈ A, then f ′ > 0 and c′ > 0 over R.

Proof Since 0 < F < 1 over R, it follows from (3.1a) that

f ′′ − v f ′ < 0 (3.6)

over R. We claim that f ′ > 0 over R. For contradiction, we assume that f ′(ẑ0) ≤ 0
for some ẑ0 ∈ R. For the case f ′(ẑ0) < 0, since (3.6) gives that (e−vz f ′(z))′ < 0
over R, it follows that for z > ẑ0, e−vz f ′(z) < e−v ẑ0 f ′(ẑ0), and therefore

f ′(z) < ev(z−ẑ0) f ′(ẑ0). (3.7)

So f ′(z) → −∞ as z → ∞, which contradicts the boundedness of f ′. For the case
f ′(ẑ0) = 0, since (3.7) yields that f ′(z) < 0 for z > ẑ0, we can get a contradiction
from the assertion of the previous case. Hence f ′ > 0 over R. Similarly, since (1.6b)
gives that c′′ − vc′ < 0 over R, it implies that c′ > 0 over R. ��
Lemma 3.8 If F ∈ B, then there exists a z f < zF such that f ′ > 0 on (−∞, z f ) and
f ′ < 0 on (z f ,∞).

Proof First, by (3.1a) and the fact that F > 1 in (zF,∞), we deduce that f ′′ −v f ′ > 0
in (zF,∞). Then using the argument of Lemma 3.7, we get f ′ < 0 in (zF,∞).

Next, we claim that f cannot take an extreme value at zF. Suppose that this is not
true. Then by (3.1a) and the fact that F(zF) = 1, we have f ′(zF) = f ′′(zF) = 0. From
the definition of the set B, we have F′(zF) > 0. Then by differentiating (3.1a), we get
f ′′′(zF) = a f (zF)F′(zF) > 0. Thus, f ′(z) > 0 for z > zF and z close to zF. This is a
contradiction to the fact that f ′ < 0 in (zF,∞). Thus f cannot take an extreme value
at zF.

Finally, we recall that f (−∞) = 0. Note that, by (3.1a), f cannot take a local
minimal value at any z̄ < zF. Taken together, the assertion of this lemma holds. ��

The following lemma provides a sufficient condition under which F lies in the set
B, which, together with Lemma 3.6, gives the proof of Proposition 1.1(i).

Lemma 3.9 Suppose one of the following conditions holds:

(i) g ∈ (0, b);
(ii) g ∈ [b, 1 + b) and d ≥ 1.
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Then F must belong to the set B.
Proof For contradiction, we assume that F ∈ A. Then, by definition of the set A,
we see that F(∞) = 1. So it follows from Lemma 3.5 and Barbălat’s lemma that
F′(∞) = 0 and F′′(∞) = 0. Together with (3.1b), we get that h(∞) = 0.

Suppose g ∈ (0, b). Choose a g̃ ∈ (g/b, 1). Since F(∞) = 1 and h(∞) = 0, we
can find a zh � 1 such that h′(zh) < 0 and (g/b)F(z) + h(z) − 1 < g̃ − 1 < 0 for
all z ≥ zh . Then, by (3.1c), we have h′′(zh) < 0. Moreover, if z ≥ zh , then h′′(z) < 0
as long as h′(z) ≤ 0. Taken together, it follows that h′′(z) < 0 for all z ≥ zh , which
contradicts the positivity of h. Hence F ∈ B.

Suppose g ∈ [b, 1 + b) and d ≥ 1. Since F ∈ A, it follows that F(z) ∈ (0, 1) for
z ∈ R. Set f0 := limz→∞ f (z) and w(z) := sh(z)− (F(z)−1)− (a−1)( f (z)− f0)
for z ∈ R. Fix a ε0 ∈ (0, 1+b−g

1+b ). From h(∞) = 0, F(∞) = 1, and g ∈ [b, 1 + b),
we can choose a large zh such that the inequalities

{ |h(z) + (g/b)(F(z) − 1)| < ε0, |w(z)| < ε0,

b( gb − 1) − 1 + (1 + b)ε0 < 0,
(3.8)

hold for z ≥ zh .
Set F̃ := F − 1 on R. Then using (3.1c) and (3.8), h satisfies the inequality

dh′′ − vh′ − b((g/b) − 1 + ε0)h = b(h + (g/b)F̃ − ε0)h ≤ 0

for z ≥ zh . Then an application of Lemma 3.3 to the above inequality yields

h(z) ≥ h(zh)e
ρh(z−zh) for z ≥ zh, (3.9)

where ρh = (v − √
v2 + 4db[(g/b) − 1 + ε0])/2d < 0.

Note that F̃(z) < 0 for z ∈ R. Then using (3.1b) and the second inequality of (3.8),
F̃ satisfies the inequality

F̃ ′′ − v F̃ ′ − (1 + (a − 1) f0 − ε0)F̃ = −sh − (w(z) − ε0)F̃ < −sh

for z ≥ zh , which, together with (3.9), yields

F̃ ′′ − v F̃ ′ − (1 + (a − 1) f0 − ε0)F̃ + sh(zh)e
ρh(z−zh) < 0 (3.10)

for z ≥ zh . Now set

k = − sh(zh)

ρ2
h − vρh − (1 + (a − 1) f0 − ε0)

and ρF̃ = v − √
v2 + 4(1 + (a − 1) f0 − ε0)

2
.

In view of d ≥ 1, it follows from the third inequality of (3.8) that

ρ2
h − vρh − (1 + (a − 1) f0 − ε0) ≤ dρ2

h − vρh − (1 + (a − 1) f0 − ε0)

= [b(g
b

− 1) − 1 + (1 + b)ε0] − (a − 1) f0 < 0.

123



26 Page 26 of 35 S.-C. Fu et al.

Then k > 0, and, due to d ≥ 1, we have 0 > ρh > ρF̃ . Now P(z) = keρh(z−zh)

satisfies the equation

P ′′ − vP ′ − (1 + (a − 1) f0 − ε0)P = 0

for z ≥ zh , which, together with (3.10), yields

(F̃ − P)′′ − v(F̃ − P)′ − (1 + (a − 1) f0 − ε0)(F̃ − P) < 0

for z ≥ zh . It then follows from Lemma 3.3 that

(F̃ − P)(z) ≥ (F̃ − P)(zh)e
ρF̃ (z−zh)

holds for z ≥ zh . This in turn implies thatF(z) ≥ 1+keρh(z−zh)+(F̃−P)(zh)eρF̃ (z−zh)

for z ≥ zh . Since k > 0 and 0 > ρh > ρF̃ , we have F(z) > 1 for all z ≥ z̄ and for
some large z̄ ≥ zh . This contradicts the assumption that F(z) < 1 for z ∈ R. The
proof of the lemma is thus completed. ��

3.3 Traveling waves for the case g ∈ (0, b)

Recall that c∗ = b(1+ s)/(b+ sg) and h∗ = (b− g)/(b+ sg). In order to show that
( f , c, h)(∞) = (0, c∗, h∗), we define the Lyapunov functionalL byL( f ,F, h)(z) :=
L1( f ,F, h)(z) + (s/g) · L2( f ,F, h)(z), where

L1( f ,F, h)(z) := −F′ + vF + c∗
(
F′

F

)
− c∗v ln

(
F
c∗

)

− (a − 1)
∫ z

0

(
1 − c∗

F(θ)

)
f (θ)(1 − F(θ))dθ

and

L2( f ,F, h)(z) := −dh′ + vh + h∗d
(
h′

h

)
− h∗v ln

(
h

h∗

)
.

Along the solution χ(z) := ( f (z),F(z), h(z)) of (3.1), we use (3.1b) and (3.1c) to
deduce

d

dz
L1(χ(z)) = −(F′′ − vF′) + c∗

[
F′′ − vF′

F
−

(
F′

F

)2
]

−
(
1 − c∗

F

)
(a − 1) f (1 − F)

=
(
c∗

F
− 1

)
(F′′ − vF′) − c∗

(
F′

F

)2

−
(
1 − c∗

F

)
(a − 1) f (1 − F)

=
(
1 − c∗

F

)
[F(1 + sh − F) + (a − 1) f (1 − F)] − c∗

(
F′

F

)2

−
(
1 − c∗

F

)
(a − 1) f (1 − F)
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= s(F − c∗)(h − h∗) − (F − c∗)2 − c∗
(
F′

F

)2

,

and

d

dz
L2(χ(z)) = −(dh′′ − vh′) + h∗

[
dh′′ − vh′

h
− d

(
h′

h

)2
]

=
(
h∗

h
− 1

)
(dh′′ − vh′) − h∗d

(
h′

h

)2

= b(h − h∗)(1 − h − (g/b)F) − h∗d
(
h′

h

)2

= −g(F − c∗)(h − h∗) − b(h − h∗)2 − h∗d
(
h′

h

)2

.

Thus, we have

d

dz
L(χ(z)) = −(F − c∗)2 − c∗

(
F′

F

)2

− sb

g
(h − h∗)2 − sh∗d

g

(
h′

h

)2

≤ 0.

In the following, we will use the Barbălat’s Lemma to show that d
dzL(χ(z)) → 0

as z → ∞, from which F(∞) = c∗ and h(∞) = h∗ follow.

Lemma 3.10 Suppose g ∈ (0, b). Then ( f , c, h)(∞) = (0, c∗, h∗).

Proof Since g ∈ (0, b), it follows from Lemma 3.9 that F ∈ B. We divide the proof
into five steps.
Step 1: we claim that f (∞) = 0. By Lemmas 3.8 and 3.9, f (∞) exists. So it follows
from Lemma 3.5 and Barbălat’s Lemma that f ′(∞) = f ′′(∞) = 0. By (3.1a), we
have f (∞) = 0 or F(∞) = 1. From the proof of Lemma 3.9 for the case g < b, we
see that F(∞) �= 1. Hence f (∞) = 0.
Step 2: we claim that h′/h is bounded overR. Since 0 < F < 1+ s and 0 < h < 1 on
R, it follows that gF + b(h − 1) < C0, where C0 := g(1 + s). Let q := h′/h. Then
by (3.1c), we have

dq ′ = vq−dq2 + gF+b(h−1) < vq−dq2 +C0 = −d(q−q−)(q−q+), (3.11)

where q− := (v −√
v2 + 4C0d)/(2d) < 0 and q+ := (v +√

v2 + 4C0d)/(2d) > 0.
Weclaim thatq < q+ overR. Note thatq(−∞) = 0 due to the fact that h(−∞) = 1

and h′(−∞) = 0. If the claim is not true, then z̆q := inf{z ∈ R| q(z) ≥ q+} exists.
Obviously, q(z̆q) = q+ and q ′(z̆q) ≥ 0. On the other hand, by (3.11), we have that
q ′(z̆q) < −(q(z̆q) − q−)(q(z̆q) − q+) = 0 which is a contradiction. Hence q < q+
over R.

Now we fix a q0 < q− such that

vξ − dξ2 + C0 < −dξ2/2 ∀ξ ≤ q0. (3.12)
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We claim that q > q0 over R. For contradiction, we assume that there exists zq ∈ R

such that q(zq) ≤ q0 < q−. Since (3.11) gives that q ′ < 0 as long as q < q−, it
follows that q < q0 in (zq ,∞). Using (3.11) and (3.12), we get q ′ < −(1/2)q2, which
leads to

q(z) < q̃(z) := 2q(zq)

q(zq)(z − zq) + 2

for z > zq . Note that q̃(z) → −∞ as z → z̃q
−, where z̃q := zq − 2/q(zq) > zq .

This contradicts the global existence of q. Hence q0 < q.
Finally, since q is bounded over R, the assertion of the claim is established.

Step 3: we claim that
∫ z
0 (1 − c∗/F(θ)) f (θ)(1 − F(θ))dθ is bounded in (zF,∞).

Integrating both sides of (3.1a) from zF to z and rearranging the resulting equation,
we get

a
∫ z

zF
f (η)(F(η) − 1)dη = f ′(z) − f ′(zF) − v( f (z) − f (zF)).

Since f (F − 1) is positive in (zF,∞), and f ′ and f are bounded in (zF,∞), the
above equality gives that f (F − 1) lies in L1(zF,∞). Finally, since |1 − c∗/F(θ)| ≤
1 + c∗/F(θ) ≤ 1 + c∗ for θ ≥ zF, it follows that

|
∫ z

zF

(
1 − c∗

F(θ)

)
f (θ)(1 − F(θ))dθ | ≤ (1 + c∗)

∫ ∞

zF
f (θ)(F(θ) − 1)dθ < ∞.

Hence
∫ z
0 (1 − c∗/F(θ)) f (θ)(1 − F(θ))dθ is bounded in (zF,∞).

Step 4: we claim that h has a positive lower bound. For contradiction, we assume that
inf z>zF h(z) = 0. Recall from Lemmas 3.4 and 3.5 that 1 < F < 1 + s and F′ is
bounded in (zF,∞). It follows that F′/F and ln(F/c∗) are bounded in (zF,∞). Recall
that h, h′, h′/h, and

∫ z
0 (1 − c∗/F(θ)) f (θ)(1−F(θ))dθ are also bounded in (zF,∞).

Taken together, we see that all terms of L(χ(z)) except −h∗v ln
( h
h∗

)
are bounded

in (zF,∞). Therefore inf z>zF h(z) = 0 implies that supz>zF L(χ(z)) = ∞, which
contradicts the fact that L(χ(z)) ≤ L(χ(zF)) < ∞ in (zF,∞).
Step 5: we claim that c(∞) = c∗ and h(∞) = h∗. Since h < 1, it follows that
−h∗v ln

( h
h∗

)
is bounded below in (zF,∞). So we conclude that L(χ(z)) is bounded

below in (zF,∞). Together with the fact that L(χ(z)) is nonincreasing in z, we see
that limz→∞ L(χ(z)) exists. Besides, Lemma 3.5, step 2, step 4, and the boundedness
of ( f ,F, h) yield that d

dzL(χ(z)) and d2

dz2
L(χ(z)) are bounded in (zF,∞). Hence, by

applying the Barbălat’s Lemma, we get d
dzL(χ(z)) → 0 as z → ∞, which leads to

F(∞) = c∗ and h(∞) = h∗. Hence c(∞) = F(∞) − f (∞) = c∗. The proof of this
lemma is completed. ��

Now Lemmas 2.13, 3.4 and 3.10 together give the following lemma, which also
provides the proofs of Theorem 1.1 for g ∈ (0, b).
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Lemma 3.11 Suppose g ∈ (0, b). If v ≥ v∗, then system (1.6) and (1.7) admits a pos-
itive solution ( f , c, h) with E∞ = (0, c∗, h∗). Moreover, ( f , c, h) has the following
properties:

(i) 0 < f , h < 1, c > 0, and 0 < f + c < 1 + s over R.
(ii) As z → −∞, (2.24) holds.

3.4 Traveling waves for the case g ≥ b

The following lemma and Lemma 2.13 together give the proofs of Theorem 1.1 for
g ≥ b.

Lemma 3.12 Suppose g ≥ b. Then ( f , c, h)(∞) exists with f (∞) + c(∞) = 1 and
h(∞) = 0. Moreover, if g > b, then f (∞) and c(∞) are positive.

Proof Recall that F ∈ A ∪ B. Suppose F ∈ A. Since F(∞) = 1, it follows from
Barbălat’s lemma and Lemma 3.5 that F′(∞) = 0 and F′′(∞) = 0. Together with
(3.1b), we get that h(∞) = 0. By Lemma 3.7, f ′ > 0 and c′ > 0 overR and so f (∞)

and c(∞) exist. Further, due toF(∞) = 1 andF = f +c, we have f (∞)+c(∞) = 1.
Suppose F ∈ B. By (3.1c) and the fact that h ∈ (0, 1) and F > 1 in (zF,∞), and

g ≥ b, we have dh′′ − vh′ > 0 in (zF,∞). Then using the argument of Lemma 3.7,
we get h′ < 0 in (zF,∞) and therefore h(∞) exists. Thus by Barbălat’s lemma and
Lemma 3.5, we have h′(∞) = 0 and h′′(∞) = 0. Together with (3.1c), we get that
either h(∞) = 0 or 1−h(∞)−(g/b)F(∞) = 0. Indeed, since g ≥ b, (g/b)F(∞) ≥ 1
and then 1 − h(∞) − (g/b)F(∞) ≤ −h(∞). Hence h(∞) �= 0 implies h(∞) < 0,
which is obviously contradictory, so that h(∞) = 0.

Since f ′′ − v f ′ > 0 in (zF,∞), which implies that f ′ < 0 in (zF,∞) and there-
fore f (∞) exists. Then by Barbălat’s lemma and Lemma 3.5, we have f ′(∞) = 0
and f ′′(∞) = 0. Together with (3.1a), we get f (∞) = 0 or F(∞) = 1. We
claim that F(∞) = 1. For contradiction, we assume lim supz→∞ F(z) > 1. Then
f (∞) = 0 and there are two cases for F: either F(∞) exists with F(∞) > 1 or
1 ≤ lim inf z→∞ F(z) < lim supz→∞ F(z). For the former case, we can use Barbălat’s
lemma and Lemma 3.5 to get that F′(∞) = 0 and F′′(∞) = 0. Together with (3.1b),
we get a contradiction. For the latter case, we set ζ := lim supz→∞ F(z) > 1. Then
there exists a sequence of numbers {ẑn} ↗ ∞ such that F′(ẑn) = 0, F′′(ẑn) ≤ 0, and
limn→∞ F(ẑn) = ζ . Together with (3.1b) and the fact that f (∞) = h(∞) = 0, we
get a contradiction again. Hence F(∞) = 1. Recall that f (∞) exists. Taken together,
we see that c(∞) also exists and f (∞) + c(∞) = F(∞) = 1.

Now we claim that f (∞) and c(∞) are positive if g > b. Suppose F ∈ A. Since
f ′ > 0 and c′ > 0 over R, it follows that f (∞) and c(∞) are positive. Suppose
F ∈ B. We first claim that F − 1 ∈ L1(zF,∞). By (3.1c), we have

dh′′ − vh − (g − b)h = bh2 + gh(F − 1) > 0
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in [zF,∞). Using the argument of Lemma 3.3, we deduce that

h(z) ≤ h(zF) exp

(
v − √

v2 + 4d(g − b)

2d
· (z − zF)

)

for all z ∈ [zF,∞). Hence h ∈ L1(zF,∞). Now we integrate (3.1a) from zF to ∞ to
get

a
∫ ∞

zF
f (1 − F)dz = f ′(zF) − v f (zF).

By (3.1b) and Lemma 3.4, we have

F(F − 1) ≤ F′′ − vF′ + s(1 + s)h + (a − 1) f (1 − F).

Integrating the above inequality from zF to∞ and noting F(zF) = F(∞) = 1, we get

∫ ∞

zF
(F − 1)dz ≤

∫ ∞

zF
F(F − 1)dz ≤ −F′(zF) + s(1 + s)

∫ ∞

zF
hdz

+ (a − 1)
∫ ∞

zF
f (1 − F)dz < ∞.

Hence F − 1 ∈ L1(zF,∞) holds.
Next, we claim that f ′/ f > −L for some positive constant L sufficiently large

such that f ′(zF) + L f (zF) > 0, vL > as, and L2 + vL − as > 0.
Let

�(z) := f ′(z) + L f (z).

It suffices to show that�(z) > 0 for all z ≥ zF.Note that�(zF) > 0. For contradiction,
we assume that there exists ẑ1 > zF such that �(ẑ1) = 0 and �′(ẑ1) ≤ 0. Then there
are two possibilities: either

�(z) ≤ 0 ∀z ≥ ẑ1 (3.13)

or
�(ẑ2) = 0 and �′(ẑ2) ≥ 0, (3.14)

for some ẑ2 ≥ ẑ1. For the first case, (3.13) gives

f ′(z) ≤ −L f (z) ∀z ≥ ẑ1.

Together with the fact that F < 1 + s, we deduce from (1.6a) that

f ′′(z) = v f ′(z) + a(F(z) − 1) f (z) < (as − vL) f (z) < 0 ∀z ≥ ẑ1,
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which implies that f ′ is decreasing in [ẑ1,∞). Hence f ′(z) ≤ f ′(ẑ1) ≤ −L f (ẑ1) < 0
for all z ≥ ẑ1, which contradicts the boundedness of f . For the second case, (3.14)
yields that

f ′(ẑ2) = −L f (ẑ2) < 0 and f ′′(ẑ2) ≥ −L f ′(ẑ2) > 0. (3.15)

Using (1.6a), we deduce that

0 = f ′′(ẑ2) − v f ′(ẑ2) + a(1 − F(ẑ2)) f (ẑ2)

≥ (L2 + vL − as) f (ẑ2) (by (3.15), and the fact thatF < 1 + s)

> 0 (by definition of L),

which is a contradiction again. Hence f ′/ f > −L .
Finally, by dividing (1.6a) by f and then integrating the resulting equation from zF

to z, we get

f ′(z)
f (z)

− f ′(zF)

f (zF)
+

∫ z

zF

(
f ′

f

)2

dz − v ln f (z) + v ln f (zF) = a
∫ z

zF
(F − 1)dz.

If f (∞) = 0, then
∫ z
zF

(F − 1)dz = ∞, a contradiction. Hence f (∞) > 0. On
the other hand, by Lemma 3.8, we infer that f (∞) < 1. Together with the fact that
f (∞) + c(∞) = 1, we get c(∞) > 0. The proof is thus completed. ��
Now Lemmas 2.13, 3.12 and 3.4 together give the following lemma, which also

provides the proofs of Theorem 1.1 for g ≥ b.

Lemma 3.13 Suppose g ≥ b. If v ≥ v∗, then system (1.6) and (1.7) admits a positive
solution ( f , c, h) with E∞ = ( f �, c�, 0), where f � and c� are nonnegative constants
with f � + c� = 1. In addition, f � and c� are positive if g > b, and ( f , c, h) satisfies
the following properties:

(i) 0 < f , h < 1, c > 0, and 0 < f + c < 1 + s over R.
(ii) As z → −∞, (2.24) holds.

Finally, by the following two lemmas we show the monotonicity of h, which com-
pletes the proof of Proposition 1.1(iv).

3.5 Monotonicity of h

Lemma 3.14 Suppose g ≥ b. Then h′ < 0 over R.

Proof First, since 0 < h < 1 on R and h(−∞) = 1, we have h′(z) < 0 for z < 0 and
large −z. We claim that h′ ≤ 0 over R. To establish the claim, we use a contradictory
argument. Thus we assume z̃0 := inf{z ∈ R| h′(z) > 0} exists. Then h′(z̃0) = 0 and
h′′(z̃0) ≥ 0, and from (3.1c), it follows that gF(z̃0) + bh(z̃0) ≥ b. On the other hand,
since h(∞) = 0, we can find a z̃1 > z̃0 such that h′ > 0 on (z̃0, z̃1) and h′(z̃1) = 0.
Thus, we have h′′(z̃1) ≤ 0, and due to (3.1c), gF(z̃1) + bh(z̃1) ≤ b. Since g ≥ b,
F(z̃1) ∈ (0, 1) holds. Recall that F(z) is increasing as long as F(z) ∈ (0, 1). Thus we
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can deduce that F(z̃1) > F(z̃0). Together with the fact that h(z̃1) > h(z̃0), if follows
that gF(z̃1)+bh(z̃1) > gF(z̃0)+bh(z̃0) ≥ b. This is a contradiction, and thus h′ ≤ 0
over R.

Further, we claim that h′ < 0 overR. For contradiction, we assume that h′(z̃2) = 0
for some z̃2 ∈ R. Then h′′(z̃2) = 0. Recall that F ∈ A ∪ B. Suppose F ∈ A. Then
F′ > 0 over R. Differentiating (3.1c) and using the fact h′(z̃2) = h′′(z̃2) = 0 and
F′(z̃2) > 0, we get h′′′(z̃2) > 0, which gives that h′′ is increasing in (z̃2 − δ, z̃2) for
some δ > 0. Together with h′′(z̃2) = 0, we obtain that h′′ < 0 in (z̃2 − δ, z̃2) and so
h′ is decreasing in (z̃2 − δ, z̃2). Together with h′(z̃2) = 0, we conclude that h′ > 0
in (z0 − δ z̃2), a contradiction. Suppose F ∈ B. Recall that F′ > 0 in (−∞, zF) and
F ≥ 1 in [zF,∞). Suppose z̃2 < zF. Then following the proof for the case F ∈ A,
we get a contradiction. Suppose z̃2 ≥ zF. Then using (3.1c) and the fact that h > 0
and h′(z̃2) = h′′(z̃2) = 0, we get that b = bh(z̃2) + gF(z̃2). Together with the fact
that F(z̃2) ≥ 1 and h(z̃2) > 0, we get b > g, which contradicts the assumption that
g ≥ b. So the proof of this lemma is completed. ��
Lemma 3.15 Suppose g < b. Then h′ < 0 in (−∞, zF).

Proof First, we claim that h′ ≤ 0 in (−∞, zF). For contradiction, we assume z̃0 :=
inf{z < zF| h′(z) > 0} exists. Arguing as the proof of Lemma 3.14, we have gF(z̃0)+
bh(z̃0) ≥ b. Together with F(z̃0) ≤ 1, we get h(z̃0) ≥ (b − g)/b > h∗. In addition,
since h(∞) = h∗, we can find a z̃1 > z̃0 such that h′ > 0 on (z̃0, z̃1) and h′(z̃1) = 0,
and gF(z̃1) + bh(z̃1) ≤ b. So gF(z̃1) + bh(z̃1) ≤ gF(z̃0) + bh(z̃0). Together with
h(z̃0) < h(z̃1), we get F(z̃1) < F(z̃0) ≤ 1, which contradicts the fact that F(z) is
increasing as long as F(z) ∈ (0, 1). Hence h′ ≤ 0 in (−∞, zF).

Further, following the proof of Lemma 3.14 for the case F ∈ A, we can show that
h′ < 0 in (−∞, zF). The proof of this lemma is therefore completed. ��

4 Conclusion

We have shown that (1.3) possesses two different types of traveling wave solutions
( f , c, h)(z) (z = x + vt) with velocity v under the boundary conditions

( f , c, h)(−∞) = (0, 0, 1) and ( f , c, h)(+∞) = E∞,

defined by (1.7).
For any a > 0, there exists a traveling wave solution (0, c, h) of (1.3) where (c, h)

satisfies
vcz = czz + c(1 − c) + sch,

vhz = dhzz + bh(1 − h) − gch,
− ∞ < z < +∞

subject to the boundary conditions (c, h)(−∞) = (0, 1) and (c, h)(+∞) = e∞, as in
(1.8). In fact, it is shown by Tsai et al. (2020) that the above traveling wave problem
admits positive solutions for arbitrary v ≥ 2

√
1 + s where 2

√
1 + s is called the

minimal velocity. When a < 1 + s, Figs. 1, 2, 3 and 4 suggest that the expansion of
farmers is given by the converted farmers propagating with velocity 2

√
1 + s.
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Fig. 8 Traveling wave solution (F,C, H) of system (1.6) and (1.7) with the minimal velocity, where the
parameters are d = 1.2, s = 0.2, b = 0.8, and g = 0.3 and a varies and is given in the caption

On the other hand, when a > 1 + s, there exists another traveling wave solution
of (1.3) and (1.7) for v ≥ 2

√
a which is a triple of functions ( f , c, h) with nonzero

f -component. Here we note that for a > 1 + s, although this type of traveling wave
solutions consist of three components ( f , c, h), the associated minimal velocity (or
spreading velocity) is given by 2

√
a. Surprisingly, this velocity is the same as the

minimal velocity of travelingwave solutions of the Fisher–KPP equation (Fisher 1937;
Kolmogorov et al. 1937)

Ft = Fxx + a(1 − F)F .

Therefore, this suggests that the propagating velocity of the farmers is dominated by
the original farmers.

In the abstract, two questions (Q1) and (Q2) are raised. For the question (Q1), we
can infer the following from the wave profiles of traveling wave solutions of the model
(1.3):

(1) When a < 1+ s, the original farmer F fades out, and so only the converted farmer
C dominates the expansion into the region occupied by hunter-gatherers.

(2) When a > 1 + s, both of the original and converted farmers are involved in the
expansion of farming populations into the region occupied by hunter-gatherers.

Next, for the question (Q2), we showed the two possibilities on the asymptotical
behavior of hunter-gatherer populations: (i) The population becomes extinct com-
pletely when g ≥ b; and (ii) it continues to live in lower density when g < b.

We finally note that the family of travelingwave solutions (0, c, h)with theminimal
velocity 2

√
1 + s exists for any a > 0, while the other family of traveling wave

solutions ( f , c, h) with the minimal velocity 2
√
a exists for a > 1 + s. We may

say that (0, c, h) is a trivial traveling wave solution, while ( f , c, h) is a non-trivial
one. Now, we numerically study the stability property of the trivial traveling wave
solutions.We consider (1.3) in a finite but rather long interval with Neumann boundary
conditions. The initial function (F0,C0, H0) is specified in the way that F0 is a small
and compactly supported perturbation of F = 0, and (C0, H0) is almost approximated
by the trivial traveling wave solutions. Then, for a < 1 + s, the F-component of the
solution (F,C, H) tends to zero and (C, H) tends to the trivial travelingwave solution
(c, h)(x + vt) with v = 2

√
1 + s, while for a > 1 + s, the solution (F,C, H) tends

to the non-trivial traveling wave solution with velocity v = 2
√
a, as if the non-trivial

traveling wave solution with minimal velocity was bifurcated from the trivial one with
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minimal velocity, as shown in Figure 4.1. Of course, this conjecture is obtained by
numerical speculation. So, we should discuss it analytically. It is left for our future
work.
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