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中文摘要

本研究由三篇關於保險業資產負債管理議題的論文所構成。本文第二章檢視在
台灣地區銷售之典型利率變動型壽險之公平定價問題。假設資產過程滿足 Heston
隨機變動模型、利率過程為 CIR 模型，保險給付將為一系列遠期起點期權之總和。
本文就台灣財務市場之資料進行模型參數估計，再利用蒙地卡羅法計算契約公平價
格，同時計算風險值（VaR, ES）。本文第三章闡述國際板債券評價系統的實作細
節。台灣保險業總資產近兩成之國際板債券在 IFRS-9 會計準則下非為純債務工
具，必須以公允價值衡量。在此我們敘述以美國固定期限公債收益率或美元 LIBOR
及 ICE 利率交換率校正的利率期限結構，配合芝加哥期貨交易所的歐式利率交換
選擇權隱含波動度資料估計 Hull-White 短期利率模型之評價理論細節，並使用開
放原始碼程式語言 Python 與函式庫 QuantLib 及三元樹演算法實作國際板債券
評價系統。除與櫃買中心系統價格輸出結果相比較外，我們展示本系統在給定利率
期限結構與市場現有商品規格下可贖回債券期初價值與隱含年利率、不可贖回期間
與可贖回頻率關係之計算。本文第四章探討 copula-GARCH 模型在變額年金保證
價值計算上的應用。有效的風險管理前提在於推估各種資產間的機率關係，並計算
反映系統狀態的各種定量指標的能力。現代計算技術的進步使得更符合實際、不須
過份簡化的多變量機率模型運用變為可能，而 copula 正是如此的多變量機率模型。
結合 GARCH 時間序列模型，我們利用一系列基於無母數統計與經驗過程理論的
穩健統計檢定方法，針對給定 S&P500 與 S&P600 指數時間序列選擇並匹配最適
copula-GARCH 模型，進而推估變額年金保證價值。

關鍵詞：利率變動型壽險、隨機變動模型、蒙地卡羅模擬、國際板債券、變額年金、
copula-GARCH。
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Abstract

This study focuses on the management of the three most challenging topics life
insurers in Taiwan currently face, namely the life insurance policy with the highest annual
gross premium income, the dominating asset on the life insurer’s balance sheet, and
the development of a model which faithfully captures the dependency between multiple
underlying assets within the life insurer’s portfolio. We first examine the fair pricing of
interest rate sensitive life insurance policies that are commonly sold in Taiwan. With the
reference portfolio following Heston’s stochastic volatility process, the payoff function of
these policies consists of a series of forward-start options. Although the option to surrender
are standard features of these policies, policyholders incur heavy penalties should they
exercise such option. Given certain policyholder behaviour, we study the impact of the
minimum guaranteed interest rate, and the annually declared bonus rate on the issuing
company’s solvency. The need for pricing transparency and a reliable source of reference
is of utmost importance in view of the sheer volume of the international bonds listed
on the Taipei Exchange that the life insurers in Taiwan hold and the lack of a liquid
secondary market. We provide the life insurers the means to evaluate the mark-to-market
value of these callable bonds without having to rely on third parties to do so. We are
able to collate publicly available data and make use of open source software to construct a
bespoke system that can independently price the international bonds. The copula concept
with its multivariate time-series model generalization, namely the copula-GARCH model,
and robust statistical inference procedures based on the empirical processes theory are
investigated in depth. A vast majority of existing literature on applications of copula
often makes assumptions without justification or conducts inadequate statistical tests
for verifications. Here we demonstrate what we believed to be the preferred way of
using copula for financial and risk management applications by the detailed valuation of
guarantees embedded in variable annuities with multiple underlying assets.

Keywords: interest sensitive life insurance, stochastic volatility, Monte-Carlo simulation,
international bond, variable annuities, copula-GARCH
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1
Introduction

This study focuses on the management of the three most challenging topics life
insurers in Taiwan currently face, namely the life insurance policy with the highest annual
gross premium income, the dominating asset on the life insurer’s balance sheet, and
the development of a model which faithfully captures the dependency between multiple
underlying assets within the life insurer’s portfolio.

Following the discontinuation of participating policies as instructed by the Financial
Supervisory Commission (FSC) of Taiwan, the new generation of alternative products such
as the interest rate sensitive life (ISL) policy has emerged. Due to the quick rollout of ISLs,
their pricing are based on the already discontinued participating policies. However, the life
insurers did not anticipate it to take up over 40% of their product line, the need to properly
price the product has become a main concern for life insurers. Traditional actuarial
approach of policy design and evaluation is fundamentally deterministic, therefore it
is no longer adequate when encountered with rapidly changing economic climate. We
thus adopt a stochastic interest rate model which follows the Cox-Ingersoll-Ross (CIR)
process, and the stock model obeys the Heston stochastic volatility process. Based on
these premises, our ISL policy pricing employ Monte Carlo methodology to simulate and
assess whether the bonus declaration mechanism or product structure is sustainable.

As required by current legislation, assets that are not classified as pure debt
instrument must be reported at fair value by life insurers in Taiwan. Over one fifth of
the life insurer’s assets are allocated to international bonds which are listed on the Taipei
Exchange (TPEx). As a result, the fair pricing of these international bonds are of utmost
importance. To the best of our knowledge, the few available publications regarding the
pricing of these international bonds are less than transparent and lack technical details,
furthermore, there exists anomalies in the published price. In this part of the research, we
collate and summarize the theories pertaining to the fair pricing of typical international
bonds, and develop a software based on these principles.

Developments of modern computing technologies have enabled the transition from
traditional simplistic models to full-fledged stochastic ones with real-world considerations;

1



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101641

multivariate probability models that can faithfully characterize their elements are in
ever greater need. Given that the life insurer’s portfolio consists of an array of various
underlying assets, it is crucial to be able to find a model best suited to quantify the
dependency between them and effectively manage such risks. The copula is such a
multivariate probability distribution for which the marginal probability distribution of
each variable is uniform. The copula approach could be useful to high-dimensional
statistical applications as one is allowed to estimate the distribution of random vectors
by estimating marginals and copula separately. For time series applications the copula
concept could be extended to reflect the model dynamics. In this part of the research, we
review the essence of the copula-GARCH model and the associated statistical tests; as an
illustration, we show that the co-movement of the monthly S&P500 and S&P600 indices
is best described by a certain copula-GARCH model and applying said probability model
for the evaluation of corresponding variable annuity product.

2



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101641

2
Interest Sensitive Life Policy

∗ This chapter is based on Hsuan & Chang (2018b).

2.1 Introduction
The sharp decline of interest rates and the most recent 2008 financial crisis had

elicited discussions and attention on the management, fair valuation, and default risks
of interest sensitive life insurance policies, where most of these type of policies offer an
explicit interest rate guarantee that the policyholder’s account will be credited on an
annual basis, together with any excess return from the reference portfolio. In the case of
participating life policies, this excess return may be in the form of a certain percentage,
say 70% of the performance on the reference portfolio or in the case of interest sensitive
life policies, the positive difference between the return on the reference portfolio and that
of the guaranteed interest rate.

The study of this chapter will focus on the life insurance policy with cliquet-
style guarantees that has the highest annual gross premium income in Taiwan, namely,
the interest sensitive life (ISL) insurance policy, under which the minimum surrender
conditions are dictated by law and its guidelines; however, our analysis can also be applied
to similar insurance markets that offer life insurance policies with minimum interest rate
guarantees and / or with an initial surrender restriction period with penalties. Given the
exceptional growth in new businesses written on ISLs and their share with respect to the
entire product line of Taiwanese life insurers of 5%, 19%, and 44% in 2012, 2013, and 2014
respectively 1, it is imperative that the financial risks on these ISLs are fairly assessed.

The traditional life insurance policies in Taiwan had predominantly been participating
or with-profits policies. Following the stock market drop after the financial crisis caused by
the burst of the dot-com bubble and the sharp decline in the interest rate environment,
from over 6% pre-2001 to under 2% in 2004 on the 2-year fixed deposit rate, market
interest rates have sunk to new lows. Life insurers were unable to meet the mandatory

1According to the data from the Life Insurance Association of the Republic of China (LIAROC).

3
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requirements, such as the 70%2 participating rate on excess profits to be distributed over
the years on the participating policies. The Financial Supervisory Commission (FSC) of
Taiwan then instructed the life insurers to discontinue any sales of participating policies
in 2004. Given the generally low interest rates and the investors’ search for yield, the
status quo in the life insurance market is that the life insurers started offering alternative
products, such as ISL policies which has a guaranteed minimum interest rate and returns
that are much more competitive than fixed term deposits offered by the banks. The
minimum guaranteed interest rate offered on the ISLs are usually on par with the market
interest rates. However, these life insurers offering products with minimum guarantees
are also under additional pressure due to the regulation imposing the limit and restriction
on the percentage and type of asset class it can invest in3.

Extensive studies has been done on the fair valuation and risk management of
life insurance policies with minimum interest rate guarantees, for example, Briys &
de Varenne (1994, 1997), Bacinello (2001); Bacinello & Ortu (1996), Grosen & Jørgensen
(2002); Jensen et al. (2001), Miltersen & Persson (2003), Tanskanen & Lukkarinen (2003),
Barbarin & Devolder (2005), Bauer et al. (2006), Bernard et al. (2006), Gatzert & Kling
(2007), Kling et al. (2007), and Graf et al. (2011) to cite a few.

To the best of our knowledge, with the ISLs being a relatively new product that was
launched in 2012, the life insurers had relied on past experiences on the participating life
policies and the actuarial method to price the ISLs. In this study we apply the arbitrage
free pricing methodology to the ISL policies that are currently in-force in Taiwan. In
particular, our interest rate structure follows the framework of Cox et al. (1985) and the
reference portfolio follow a stochastic volatility process as described in Heston (1993).
As illustrated in Wilmott (2002), one would potentially underestimate the cost of the
underlying when only constant volatility is considered. The parameters of both the Cox
et al. (1985) and Heston (1993) are derived using Taiwan market data.

2.2 The interest sensitive life policy
Although similar to participating policies at first glance, ISLs in Taiwan can generally

be characterized as an endowment, whole life, or pension (retirement) with a guaranteed
interest rate, namely the ”headline rate” and the potential to earn in excess of the
guaranteed rate. The shortest maturity currently seen on the endowment and retirement
plans are 13 years, and the longest is 30 years. Currently these ISL policies also offer
maturity or living benefits, death and funeral expense benefit, and disability benefit as
standard policy packages.

There is also an imposed vesting period of six years on the ISLs where the policyholder

2This percentage was established by the Financial Supervisory Commission (FSC) of Taiwan.
3See Article 146 of the Insurance Act of the Republic of China.

4
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incur penalties on the early surrendering of the contract. The cost of the early surrender
is determined by Article 119 of the Insurance Act 4 where the minimum surrender value
”... may not be less than three-quarters of the non-forfeiture value that the proposer is
entitled to receive”, together with the minimum surrender charge levied on the ISLs being
at least 1% per annum for a minimum of six years, as set forth by the applicable Orders,
and Directions of the FSC.

The guaranteed interest rate is the minimum annual return set at the inception of the
contract. This contractual guaranteed interest rate would remain fixed for the coverage
period or the term of the contract. Any reference portfolio return with excess over the
guaranteed interest rate would be credited to the policyholder’s account. As such, these
products with interest rate guarantees are not only sensitive to interest rate movements,
but also the returns achievable under the prevailing market conditions.

2.3 The model framework
More recently, Gatzert & Schmeiser (2013) has provided a comprehensive overview

of the different forms of traditional and innovative new life insurance products and Graf
et al. (2012) in the methodologies in assessing these products that are commonly found
in old-age provision products in practice.

Although the participating policies are not in issue anymore, however, they also offer
minimum interest rate guarantees and are similar in nature to the ISLs. Given that the
majority of the life insurance policies currently sold in Taiwan are ISLs, for the purpose
of simplicity, we will categorise the existing participating policies as ISLs and assume
that the balance sheet of a life insurance company would be a reflection of the assets and
liabilities of the ISL. It is a statutory requirement that life insurance policies in Taiwan
offer products with 100% guarantee of the contributions made. Hence, we do not consider
products offering less or more than 100% guarantee.

Furthermore, we also assume that the policyholder will survive till the end of the
contract’s term with certainty, thus we do not consider mortality risk in our model.

2.3.1 The asset model

Policies underwritten by life insurers are often of a long-term nature, and it is the
life insurer’s obligation to manage its assets adequately to ensure its ability to meet
future policyholder claims. It is not uncommon for life insurers to hold certain positions
in fixed-income type assets and other risky assets on their balance sheet. We thus use
the following three classic asset classes, bonds, stocks, and money market account in

4http://law.tii.org.tw/Eng/FLAWDAT0201.asp?No=1A0020001&lsid=FL006746&hasChar=True&
btnType=0&rlType=

5
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constructing a generic asset portfolio for the purpose of this study.
It is implied that the models and frameworks adopted in this chapter are functions

of time, t, unless otherwise stated. For example, we will drop the time index subscript
and write r = rt, and Zr = Zr,t for notational convenience.

The value of the money market account M grows according to

dM = rMdt, (2.3.1)

where r is the risk-free interest rate. The interest rate r follows the Cox et al. (1985)
(CIR) process, and under the risk neutral probability measure, the interest rate dynamics
of the CIR process is read as

dr = κr(θr − r) dt+ σr
√
r dZr, (2.3.2)

where κr, θr > 0 represents the speed of adjustment and the long-run mean of the interest
rate respectively, σr denotes the interest rate volatility, and Zr denotes a Wiener process.

The bond price B(t, T ) at time t with maturity T in the CIR model is

B(t, T ) = b1(t, T ) exp{−b2(t, T )r},

where (cf. Brigo & Mercurio (2006)(3.25))

b1(t, T ) =

(
2he((κr+h)(T−t))/2

2h+ (κr + h) (eh(T−t) − 1)

) 2κrθr
σ2
r

,

b2(t, T ) =
2
(
eh(T−t) − 1

)
2h+ (κr + h) (eh(T−t) − 1)

,

h =
√
κ2r + 2σ2

r .

The differential form is written as

dB(t, T )

B(t, T )
= r dt− b2(t, T )σr

√
r dZr. (2.3.3)

We let the stock price follow a stochastic volatility process as described in Heston
(1993). Then under the risk-neutral measure, the process can be express as

dS = µS dt+
√
νS dZS, (2.3.4)

dν = κν (θν − ν) dt+ σν
√
ν dZν , (2.3.5)

where µ is the long-term mean or the drift process of the asset price, ν is the variance of
the underlying asset price, which is a random variable. κν is the mean reverting speed for

6
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the variance. θν is the mean reversion level for the variance. The correlation coefficient
between ZS and Zν is ρ, while Zr is independent of ZS and Zν .

Following from the above, the reference asset portfolio At thus consists of bonds,
stocks and money market account. We assume the life insurer invests a constant
proportion of wB in bonds, wS in stocks, and the balance wM in the money market account.
These proportions are kept constant by continuous rebalancing, and wB + wS + wM =

1. Let ϕB denote the number of units the life insurer holds in bonds, ϕS be the
number of units held in stock and ϕM the number of units held in the money market
account. This yields, wB = ϕBB(t,T )

A
, wS = ϕSS

A
and wM = ϕMM

A
. Thus we get

A = ϕBB(t, T ) + ϕSS + ϕMM .
We further assume the life insurer’s reference asset portfolio is self-financing, thus we

obtain dA = ϕBdB(t, T )+ϕSdS+ϕMdM . The dynamics of the reference asset portfolio,
which is also the portfolio return rA of the ISL can then be written as

rA =
dA
A

= wB
dB(t, T )

B(t, T )
+ wS

dS
S

+ wM
dM
M

. (2.3.6)

2.3.2 The liability model

Let us consider a generic set up of an ISL product. The life insurer provides an annual
minimum guaranteed interest rate for the term of the policy at inception; furthermore, at
the policy’s annual anniversary any excess return generated from its reference portfolio is
distributed to its policyholders at the discretion of the life insurer’s management. Thus,
the annual portfolio return credited to the policyholders’ account cannot be less than
the guaranteed interest rate as stated in the contract. Any living or death benefit
received would be the higher of the account value or a predetermined multiple of the
initial premium paid.

In practice, there is a lock-in period for these ISLs, and ranges between 6 to 10
years, where the surrender charge during this period is much higher than the portfolio
return credited, which alternatively acted as a deterrent for early surrenders. This is not
dissimilar to an European cliquet option with a maturity of T -years. The use of options to
price corporate liabilities or life insurance contracts are not of a foreign nature, as can be
seen in Black & Scholes (1973), Brennan & Schwartz (1976), Grosen & Jørgensen (1997,
2000, 2002), Bacinello (2001), and Bauer et al. (2006) etc. We thus use the fair valuation
of a European cliquet option as our point of departure for the valuation of our liabilities
as opposed to the actuarial approach.

Let P be the lump sum premium paid at the inception of the contract or policy
and L be the liability at time t, such that the life insurer’s liability is equivalent to
the premium paid by the policyholder P = L0. rP is the policy interest rate credited
to the policy account in year t; it is determined at each of the valuation dates i, i =

7



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101641

1, 2, . . . , n, as the lesser of the policy portfolio’s asset return, rA, in additional to any
market related adjustments, ζ, and the policy portfolio’s performance benchmark, K, plus
any benchmark adjustments ξ. Define rP,t = max (min (K + ξ, rA,t − ζ) , rG) or rP,t =

rG+max (min (K + ξ, rA,t − ζ)− rG, 0), then the policy interest rate and its relation with
the liability can be expressed as

LT = L0

{
1 +

n∑
t=1

rP,t

}
. (2.3.7)

rP,t is guaranteed to never fall below rG, the guaranteed interest rate, which is specified in
the policy contracts, and that rG ∈ [0.75%, 1.50%] as seen of the guaranteed interest rates
currently declared amongst the life insurers in Taiwan. Depending on the life insurer’s
investment strategy, the benchmark K of these ISL policies can be as short-dated as the
2-year fixed deposit rate to one with a longer term such as Taiwan’s 10-year Government
Bond. The market and benchmark adjustors ζ ∈ [0.00%, 7.00%] and ξ ∈ [−3.00%, 3.00%]

can vary considerably and are exercised at the management’s discretion.

2.3.2.1 The liability reserve

In practice, the ISLs are subject to monthly valuations and bonus declarations, we
thus implement this in our liability model set up. Let the value of the liability reserve (or
the cost of writing an ISL) be p per unit dollar insured. Under the risk neutral pricing
principle, this value of the bonus option at time 0 can be expressed as (cf. Graf et al.
(2012))

p = EQ

{
exp

(
−
∫ T

0

r(τ) dτ
)
· max [min (K + ξ, rA,t − ζ) , rG]

}
=

12T∑
t=1

{
EQ

[
exp

(
−
∫ t

12

0

r(τ) dτ
)

· rP, t
12

]}
. (2.3.8)

2.3.2.2 The bonus stabilization reserve

Since the value of the bonus option is directly dependent on the investment
performance in the capital market, the policyholder has the right to claim from the life
insurer at maturity, the life insurer would also need to assess its ability of providing for
such terms. Introducing

rs,t =


rA − rP rA ⩾ rP ,
rA − rG rA ⩽ rG,
0 otherwise

8
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we define ps, the bonus stabilization reserve (BSR), as

ps =
12T∑
t=1

{
EQ

[
exp

(
−
∫ t

12

0

r(τ) dτ
)

· rS, t
12

]}
. (2.3.9)

For positive ps, there exists a surplus after the distribution of the policy interest rate
rP given the level of rG as set at the inception of the policy; for negative ps the bonus
stabilization reserve is in deficit.

2.4 Numerical simulation and illustration

2.4.1 Parameter estimation

All parameters appear in our models, namely the CIR process of interest rate and the
Heston model of stock, should be estimated from actual market data before proceeding.
The maximum likelihood estimation (MLE) method is applied to the parameter estimation
problem of CIR process; the loss function approach is used for the Heston model.

2.4.1.1 Parameter estimation of the CIR process

The MLE method is taken from Iacus (2008), Kladıvko (2007). Given the n

observations of interest rate time series {rti}, i = 1, 2, . . . , n at observation time ti with
equally spaced interval ∆t, the likelihood function F (ϑ), ϑ ≡ (κ̂r, θ̂r, σ̂r) is formed as

F (ϑ) =
n∏

i=1

p(rti+1
|rti ;ϑ), (2.4.1)

where the conditional density p(·|·) is (cf. Feller (1951))

p(rti+1
|rti ;ϑ) = c e−u−v

(v
u

)2
Iq(2

√
uv) (2.4.2)

with

c =
2κ̂r

σ̂r
2(1− e−κ̂r∆t)

u = c rtie
−κr∆t

v = c rti+1
q =

2κ̂rθ̂r

σ̂r
2 − 1

and Iq, the modified Bessel function of the first kind and order q. The maximizer of F (ϑ)
is the sought-after parameter set.

In practice one often use the iterative Newton-type algorithm to numerically optimize
logF (ϑ); the problems of inherent overflow in the modified Bessel function implementation

9
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and the proper selection of the initial value must be addressed. For the latter, Kladıvko
(2007) suggests the ordinary least square method which runs as follows. Discretize the
CIR process as

rti+1
− rti = κr(θr − rti)∆t+ σr

√
rti ϵti ,

where ϵ is normally distributed with mean 0 and variance ∆t. The above can be written
as

rti+1
− rti√
rti

=
κr θr√
rti

∆t− κr
√
rti∆t+ σr ϵti ,

then the initial value (κ̂, θ̂) is determined by

(κ̂, θ̂) = argmin
κ,θ

n−1∑
i=1

(
rti+1

− rti√
rti

− κ θ
√
rti

∆t+ κ
√
rti∆t

)
(2.4.3)

and the initial value of σ̂ is derived as the standard deviation of the residuals after
substituting (κ̂, θ̂).

The data used in the calibration of the CIR process consist of 3,179 available daily
observations on the 10-year Government Bond of Taiwan over the period of August 2002
to January 2015, as quoted from the Taiwan Economic Journal (TEJ) DataBank.

2.4.1.2 Parameter estimation of the Heston process

We use the loss function approach to estimate the parameters in the Heston process.
The loss function is defined as the error between the market prices quoted and the prices
that are computed from the model; model parameters are determined to minimize the
value of this loss function, so that the model price are as close as possible to the ones
as observed in the market. The loss function approach is demonstrated in e.g. Gilli &
Schumann (2010), chapter 6 of Rouah (2013), which we follow closely hereafter.

To be precise, the price C of the European call option under the Heston process is
(cf. Bakshi & Madan (2000))

C = e−qτS0P1 − e−rτXP2 (2.4.4)

where S0, X, r, q and τ are the spot price, the strike price, the risk free rate, the dividend

10
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yield and the time to expiration, respectively; P1, P2 are given as

P1 =
1

2
+

1

π

∫ ∞

0

<
(
e−iy logXφ(y − i)

i y φ(i)

)
dy (2.4.5)

P2 =
1

2
+

1

π

∫ ∞

0

<
(
e−iy logXφ(y)

i y

)
dy (2.4.6)

In the above integrals <(·) denotes the real part function, and the characteristic function
φ(y) is (cf. Heston (1993))

φ(y) = exp {A1(y) + A2(y) + A3(y)} (2.4.7)

where

A1(y) = iyS0 + iy(r − q)τ (2.4.8)

A2(y) =
θνκν
σ2
ν

(
(κν − iρσνy − d) τ − 2 log

(
1− ge−dτ

1− g

))
(2.4.9)

A3(y) =

ν0
σ2
ν
(κν − iρσνy − d)

(
1− e−dτ

)
1− ge−dτ

(2.4.10)

and

d =

√
(iρσνy − κν)

2 + σ2
ν(iy + y2) (2.4.11)

g =
κν − iρσνy − d

κν − iρσνy + d
(2.4.12)

Now suppose we have a set of known market prices Cm(τt, Xk) with the corresponding
maturities τt, t = 1, 2, . . . , NT and strikes Xk, k = 1, 2, . . . NX . Theoretical prices
according to formula (2.4.4) with corresponding maturity-strike combinations and
parameters to be determined κν , θν , σν , ν0, ρ are denoted by C(τt, Xk). The sought-after
parameter estimation of the underlying Heston process is obtained via the minimization
problem

argmin
κν ,θν ,σν ,ν0,ρ

∑
t,k

|Cm(τt, Xk)− C(τt, Xk)|
Cm(τt, Xk)

(2.4.13)

The objective function appeared above is called the loss function. Apparently the loss
function is complicated and not convex with respect to its arguments, hence traditional
gradient-based methods will have difficulties finding the global minimizer. Here we adopt
the differential evolution (Storn & Price (1997), Price et al. (2005)) heuristic to solve
this problem. The differential evolution heuristic is a stochastic search strategy which
updates the candidates by creating a new member according to some random scheme,
compares the resulting objective values and selects the best among the candidates; the

11
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process repeats until some stopping criteria is met.
For the estimation of the Heston process, we use the data of TAIEX options 5. The

data consist of 48,938 entries, 248 trading days in 2014.

Table 2.1: Parameter definition and base values

Parameters Descriptions Values
r0 Initial instantaneous interest rate 0.020
κr Drift term of interest rate 0.032
θr Mean reverting speed of interest rate 1.540
σr Interest rate volatility 0.038

µ Drift term of stock price 0.020
κν Long-run mean of the stock price variation 0.607
θν Mean reverting speed of the stock price variation 0.070
σν Variation of ν 0.293
ν0 Estimated initial value of ν 0.065
ρ Correlation coefficient of stock price and volatility -0.757

wB Weight of bond 0.700
wS Weight of stock 0.200

2.4.2 Risk measures

The two most common risk measures are the value at risk (VaR) and the expected
shortfall (ES). VaR asks the question ”How bad can things get?”, expected shortfall asks
”If things do get bad, how much can the company expect to lose?”. ES is the expected
loss at the end of the period conditional on the loss being worse than the VaR loss Hull
(2018). The ES is used since it includes both the probability and the severity of adverse
losses in the surplus distribution. The α value at risk for a random variable Y is the α
quantile of the cumulative distribution function FY :

VaRα(Y ) = inf{Y : FY (VaRα) ≥ α}.

The corresponding expected shortfall is given by

ESα (Y ) = E (Y | Y < VaRα) .

5http://www.taifex.com.tw/enl/eng5/optIndxFSP

12
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2.4.3 Simulation

Based on the discrete approximations of the continuous solution of the underlying
stochastic differential equations, simulation methods try to depict the process trajectory
and facilitate the computation of the expected value of certain functionals of the process.
Iacus (2008) provides a detailed overview of this topic.

For the simulation of the CIR process, the Euler scheme (cf. section 2.1 of Iacus
(2008)) is used. However, issues arise when one tries the same approach to the simulation
of the Heston process: the slow convergence of the scheme and the occurrence of negative
variances. Several dedicated schemes have been developed to mitigate the problem;
chapter 7 of Rouah (2013) is an in-depth survey. Here we adopt the Quadratic Exponential
sampling scheme of Andersen (2008) for the Heston process.

The simulation time step ∆t is 1
250

, and with policy maturity T = 10 years, 2, 500
terms are computed for each scenario; 5 × 104 scenarios are generated and stored for
subsequent Monte Carlo computation, the total file size is 3.5 Gb after compression.

2.4.4 Numerical illustrations

In this section we present the results from the numerical analysis of our model,
obtained via Monte Carlo simulation. Consider a policyholder that paid P0 = 100 = L0

units in premium when entering into an ISL contract with an annual guaranteed interest
rate of rG = 1.50% and a maturity of T = 10 years. We set these parameters as the base
case of our study, in line with the ISL products on offer in Taiwan. Current rP declared
by the life insurers are in the range of [2.65%, 2.89%]. Thus, for ease of comparison and
without loss of generality, the market and benchmark adjustors ζ and ξ are set to 0%
and rP ∈ [2.00%, 6.00%]. The effect of benchmark K had been taken into account in rP .
According to the report by the Taiwan Insurance Institute (TII), the average stock and
bond holdings of life insurers are approximately 20% and 70% respectively.

The preliminary results indicate that for an ISL policy with a minimum guarantee
rate of rG = 1.50% and declaring an annual policy interest rate that is capped at rP =

3.00% over the life of the policy, the cost of issuing such a product or the value of the
liability reserve p is 18.4298 per 100 units of premium received (cf. Table 2.3 and Table
2.2); and the bonus stabilization reserve ps of the life insurer at maturity T would be in
deficit of 1.1999 (Table 2.4). In other words, for an ISL policy with a high guaranteed
interest rate rG (upper bound) and declaring a relatively high policy interest rate rP can
easily turn the life insurer into an under-funded position, which is equivalent of a loss
for the issuance of such products; whereas by lowering the policy interest rate rP by 50
basis points, say from 3.00% to 2.50%, not only does it decreases the cost of liability from
18.4298 to 16.5756 by more than 11% but also turned the insurer’s bonus stabilization
reserve ps from an under-funded position into a surplus (profit) of 0.6543 per 100 units of

13
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premium received.
In Figure 2.1 and Figure 2.2, both the guaranteed interest rate rG and the policy

interest rate rP appears to have a positive relation with respect to the value of liability
reserves p. This is not counter-intuitive as given a certain level of guaranteed interest rate,
say rG = 1.50%, one would expect the option price of the liability reserve to cost more
for a policy that declares a higher policy interest rate than one that declares a lower one.
This is to say, that the cost of the guarantee is higher for those ISL policies offering higher
guaranteed interest rates, such as rG = 1.50%, compared to those offering no or minimal
guaranteed interest rates (rG = 0% and 0.50% respectively). The same is true for a given
level of policy interest rate and different levels of guaranteed interest rate. Figure 2.3 and
Figure 2.4 shows rG and rP are decreasing functions of the bonus stabilization reserve ps.

Given the guaranteed interest rate of ISL products in Taiwan are in the range of
0.75% to 1.50%, and their corresponding policy interest rates to be in the range of 2.65%
to 2.85%, one can also interpret Table 2.4 as a guideline to a life insurer’s policy rate
declaration strategy. The results suggest that for an ISL product without any interest
rate guarantee (rG = 0%), the life insurer can declare up to 3.50% in policy interest
without running the risk of being under-funded. However, as rG increase, it is prudent
not to over declare and over distribute its portfolio returns. Table 2.5 shows that for a
life insurer offering ISL products to stay afloat, one should not over declare rP for the
specific levels of rG stipulated in the contract.

The VaR95% and ES95% were computed and represented in Table 2.6 and Table 2.7.

Table 2.2: Liability reserve p for various levels of guaranteed interest rate rG, and policy
interest rate rP . Unit: %.

rP rG = 0.00 0.50 1.00 1.50 2.00
2.00 10.3908 11.5881 12.9482 14.4917 16.2434
2.50 12.4748 13.6720 15.0321 16.5756 18.3273
3.00 14.3289 15.5262 16.8863 18.4298 20.1815
3.50 15.9609 17.1582 18.5183 20.0618 21.8135
4.00 17.3832 18.5804 19.9405 21.4840 23.2357
4.50 18.6089 19.8062 21.1663 22.7098 24.4615
5.00 19.6558 20.8531 22.2132 23.7567 25.5084
5.50 20.5447 21.7420 23.1021 24.6455 26.3973
6.00 21.2931 22.4904 23.8504 25.3939 27.1456

2.5 Concluding remarks
Empirical studies have shown that an asset’s log-return distribution is non-Gaussian.

The fact that many popular models are still based on the assumption of normality is
because of the simplicity that the Gaussian model presents. However, the use of Gaussian

14
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Table 2.3: Liability reserve p for various levels of policy interest rate rP , and guaranteed
interest rate rG. Unit: %.

rG rP = 2.00 3.00 4.00 5.00 6.00
0.00 10.3908 14.3289 17.3832 19.6558 21.2931
0.10 10.6178 14.5559 17.6101 19.8828 21.5200
0.20 10.8509 14.7889 17.8432 20.1158 21.7531
0.30 11.0903 15.0284 18.0826 20.3553 21.9926
0.40 11.3361 15.2742 18.3284 20.6011 22.2384
0.50 11.5881 15.5262 18.5804 20.8531 22.4904
0.60 11.8467 15.7848 18.8390 21.1117 22.7490
0.70 12.1118 16.0499 19.1041 21.3768 23.0140
0.80 12.3836 16.3216 19.3759 21.6485 23.2858
0.90 12.6623 16.6004 19.6546 21.9273 23.5646
1.00 12.9482 16.8863 19.9405 22.2132 23.8504
1.10 13.2413 17.1794 20.2336 22.5063 24.1435
1.20 13.5420 17.4801 20.5343 22.8070 24.4443
1.30 13.8504 17.7884 20.8427 23.1153 24.7526
1.40 14.1668 18.1049 21.1591 23.4318 25.0690
1.50 14.4917 18.4298 21.4840 23.7567 25.3939
1.60 14.8246 18.7627 21.8170 24.0896 25.7269
1.70 15.1661 19.1042 22.1584 24.4311 26.0684
1.80 15.5164 19.4545 22.5087 24.7814 26.4186
1.90 15.8754 19.8135 22.8677 25.1404 26.7777
2.00 16.2434 20.1815 23.2357 25.5084 27.1456

Table 2.4: Bonus stabilization reserve ps for various levels of guaranteed interest rate rG,
and policy interest rate rP . Positive reserve values (profit) are indicated in blue. Unit:
%.

rP rG = 0.00 0.50 1.00 1.50 2.00
2.00 6.8390 5.6417 4.2817 2.7382 0.9865
2.50 4.7551 3.5578 2.1977 0.6543 -1.0975
3.00 2.9009 1.7037 0.3436 -1.1999 -2.9516
3.50 1.2689 0.0716 -1.2884 -2.8319 -4.5836
4.00 -0.1533 -1.3506 -2.7106 -4.2541 -6.0059
4.50 -1.3791 -2.5764 -3.9364 -5.4799 -7.2316
5.00 -2.4260 -3.6232 -4.9833 -6.5268 -8.2785
5.50 -3.3149 -4.5121 -5.8722 -7.4157 -9.1674
6.00 -4.0632 -5.2605 -6.6206 -8.1641 -9.9158
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Table 2.5: Bonus stabilization reserve ps for various levels of policy interest rate rP , and
guaranteed interest rate rG. Unit: %.

rG rP = 2.00 3.00 4.00 5.00 6.00
0.00 6.8390 2.9009 -0.1533 -2.4260 -4.0632
0.10 6.6121 2.6740 -0.3803 -2.6529 -4.2902
0.20 6.3790 2.4409 -0.6133 -2.8860 -4.5232
0.30 6.1395 2.2014 -0.8528 -3.1255 -4.7627
0.40 5.8937 1.9557 -1.0986 -3.3712 -5.0085
0.50 5.6417 1.7037 -1.3506 -3.6232 -5.2605
0.60 5.3831 1.4450 -1.6092 -3.8819 -5.5191
0.70 5.1181 1.1800 -1.8743 -4.1469 -5.7842
0.80 4.8463 0.9082 -2.1460 -4.4187 -6.0560
0.90 4.5675 0.6294 -2.4248 -4.6975 -6.3347
1.00 4.2817 0.3436 -2.7106 -4.9833 -6.6206
1.10 3.9886 0.0505 -3.0038 -5.2764 -6.9137
1.20 3.6878 -0.2503 -3.3045 -5.5772 -7.2144
1.30 3.3795 -0.5586 -3.6128 -5.8855 -7.5227
1.40 3.0631 -0.8750 -3.9292 -6.2019 -7.8392
1.50 2.7382 -1.1999 -4.2541 -6.5268 -8.1641
1.60 2.4052 -1.5329 -4.5871 -6.8598 -8.4970
1.70 2.0637 -1.8744 -4.9286 -7.2013 -8.8385
1.80 1.7135 -2.2246 -5.2788 -7.5515 -9.1888
1.90 1.3544 -2.5837 -5.6379 -7.9106 -9.5478
2.00 0.9865 -2.9516 -6.0059 -8.2785 -9.9158
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Table 2.6: Value-at-Risk (VaR95%) on the per unit issuance of an ISL policy with a 10-year
maturity.

rP rG = 0.0% 0.5% 1.0% 1.5% 2.0%
2.0% 0.0871 0.1071 0.1302 0.1567 0.1875
2.5% 0.1025 0.1224 0.1452 0.1715 0.2020
3.0% 0.1140 0.1338 0.1565 0.1826 0.2127
3.5% 0.1226 0.1424 0.1650 0.1909 0.2208
4.0% 0.1294 0.1492 0.1717 0.1976 0.2272
4.5% 0.1350 0.1548 0.1773 0.2030 0.2325
5.0% 0.1399 0.1598 0.1823 0.2079 0.2371
5.5% 0.1447 0.1646 0.1870 0.2124 0.2414
6.0% 0.1492 0.1691 0.1915 0.2167 0.2454

Table 2.7: Expected shortfall (ES95%) on the per unit issuance of an ISL policy with a
10-year maturity.

rP rG = 0.0% 0.5% 1.0% 1.5% 2.0%
2.0% 0.1305 0.1516 0.1755 0.2027 0.2339
2.5% 0.1464 0.1674 0.1911 0.2179 0.2486
3.0% 0.1593 0.1801 0.2035 0.2300 0.2602
3.5% 0.1694 0.1900 0.2132 0.2394 0.2691
4.0% 0.1767 0.1971 0.2200 0.2460 0.2755
4.5% 0.1808 0.2011 0.2240 0.2499 0.2794
5.0% 0.1817 0.2021 0.2251 0.2513 0.2809
5.5% 0.1800 0.2007 0.2241 0.2507 0.2807
6.0% 0.1769 0.1981 0.2221 0.2490 0.2795

models when the distributions are not normal, could lead to the underestimation of
extreme losses and hugely mispriced derivative products, see Jondeau et al. (2007). We
incorporated the Cox et al. (1985) interest rate model and Heston (1993)’s non-Gaussian
stochastic volatility. We also empirically derived the parameters in our models fitted from
Taiwanese data, and subsequently numerically computed the value of the liability reserve,
i.e. the cost of issuance, the expected surplus / deficit of the bonus stabilization reserve
and standard risk measures such as VaR and ES through Monte Carlo simulations.

Our numerical results show that they are consistent with that of financial option
pricing, in the sense that by offering an ISL policy with both higher guaranteed interest
rate and policy interest rates, its liability reserves would also cost relatively more than
one that does not, which is to say the cost of guarantee is higher for those offering higher
rates. Although our model is constructed to the specifications of the most popular life
insurance policy in Taiwan and its parameters estimated using Taiwanese market data,
it can be easily adopted by other markets with similar products and our results be of
interest to practitioners and the regulatory authorities.
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Figure 2.1: Liability reserve p for various levels of guaranteed interest rate rG, given fixed
level of policy interest rate rP .
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Figure 2.2: Liability reserve p for various levels of policy interest rate rP given fixed level
of guaranteed interest rate rG.
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Figure 2.3: Bonus stabilization reserve ps for various levels of guaranteed interest rate rG,
given fixed level of policy interest rate rP .
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Figure 2.4: Bonus stabilization reserve ps for various levels of policy interest rate rP , given
fixed level of guaranteed interest rate rG.
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3
International Bond Valuation: Theory and

Implementation

∗ This chapter is based on Hsuan & Chang (2019).

3.1 Introduction
The amendment of Article 146-4 of the Insurance Act of the Republic of China on

20 May 2014 stated that,

• The foreign investment value, which shall be approved by the competent authority,
may not exceed 45% of the funds of each of the said insurance enterprises.

• The value for foreign currency denominated listed or over-the-counter certificates of
domestic stocks or bonds that are invested in by insurance enterprises in accordance
with provisions of the Act may not be included as part of the overseas investment
ceiling.

As a result, the amendment prompted the insurance companies’ allocation to foreign or
offshore assets from 43.5%, almost to the statutory cap of 45% in 2013, to 65% in 2017. Of
the increased position in offshore investments, all of which are directed to the international
bonds that are listed on the Taipei Exchange (TPEx), and over 80% are USD-
denominated callable zero coupon bonds (ZCBs) with long term maturities. To emphasise
the importance of asset-liability management of an insurance company, the Financial
Supervisory Commission (FSC) had amended Article 10 of the Regulations Governing
Foreign Investments by Insurance Companies by stipulating that, for investment in bonds
with covenants that the issuer may redeem the bond after a certain period of time, that
period of time shall not be less than 5 years from the date of issue. In order to further
contain the total amount of assets invested into these international bonds by the insurance
companies, on 21 November 2018, the FSC ruled that the total investment amount plus

20



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101641

the foreign investment amount included in the limit for foreign investments shall not
exceed 145% of the insurer’s approved foreign investment limit.

While the latest International Financial Reporting Standards (IFRS) 9 retained the
concept of fair value option from the International Accounting Standards (IAS) 39, they
revised the criteria of financial assets and liabilities - meaning most financial liabilities
are held at amortised cost i.e. the cash flows from the instrument must consists of only
principal and interest, else the instrument must be reported at fair value. To determine
whether a financial liability is classified as a pure debt instrument, it is dependent on
two tests, a contractual cash flow test (Solely Payments of Principal and Interest, SPPI)
and a business model assessment. Unless the asset meets the requirements of both tests,
it is measured at fair value with all changes in fair value reporting in profit and loss
(FVPL). As such, any interests that are linked to options or instrument value derived
from them, contains leveraging, can be converted into shares or counter floating rate
financial instruments does not meet the requirements of the test. Thus, accounting for
almost 20% of the insurance company’s total assets, these international bonds does not
classify as pure debt instrument and must be reported at fair value.

When faced with calculating the fair value of international bonds, one is most likely
to encounter two fundamental problems — one being constructing a term structure of
interest rates that reflect current conditions, the other is the application of risk neutral
evaluation principles, i.e. the calculation of expected values under risk neutral measures.
Due to the complex nature and importance of fixed income financial products, there exist
many texts from basic theory by Blyth (2014); Corb (2012); Fabozzi & Mann (2010);
Hayre (2001); Homer et al. (2013); Hull (2018); Jha (2011); Sundaresan (2009); Tuckman
& Serrat (2012); Veronesi (2010) to more advanced reference books such as Andersen
& Piterbarg (2010a,b,c); Brigo & Mercurio (2006). However, there are only a handful
of domestic literatures that combine actual model parameter estimation with theoretical
value calculation in the same context. In this chapter we set out to do exactly that.
We further the research by Chang & Wu (2016), and applied actual market data to
the theoretical models to calculate the implied option value, thus allowing us to more
accurately determine the fair value of the international bonds.

To the best of our knowledge, TPEx had made available the daily theoretical price
files of these callable ZCBs for download (Dai (2017)) since 18 December 2017. Another
commercialized international bond price calculation system is PRIS of Taiwan Economic
Newspaper Cultural Enterprise Co., Ltd. (TEJ).

In this chapter we provide practitioners with a self-contained solution that merges
theoretical model with open source data and software. We start off by applying the U.S.
Treasury Constant Maturity Rate, the USD LIBOR, and the Intercontinental Exchange
(ICE) Swap Rate to the Hull-White short interest rate model (Hull & White (1990,
1993c)) to construct the term structure of interest rates. Next we use the implied volatility

21
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matrix of the European swaption published by the Chicago Mercantile Exchange (CME)
to calibrate the model parameters. Lastly, the theoretical value of the callable ZCBs can
be computed through the trinomial tree method as in Hull & White (1994a, 2001). One
can implement this process through the use of the open source software QuantLib and its
Python binding (Balaraman & Ballabio (2017); Ballabio (2017)). Our main contribution
is by marrying existing theoretical model with real world data to provide a pricing system
that is based on free, open sourced data and software, such that one would be able to
conduct verification independent of third parties.

The rest of the chapter is organized as follows. Section 3.2 introduces some base
definitions and theorems pertinent to the pricing of bonds in general. Section 3.3 allow us
to illustrate the methodology used to derive the value(s) at each phase, while section 3.4
discusses how one would calibrate the model parameters; how factors such as the internal
rate of return, non-callable period, and the redemption frequency affect a typical callable
ZCB that is listed on the TPEx. Finally, section 3.5 concludes.

3.2 Preliminaries

3.2.1 Zero coupon bonds

Zero coupon bond prices are the basic quantities in interest rate theory, and all
interest rates can be defined in terms of ZCB prices. Thus, we define the following:

Definition 3.2.1 (Zero coupon bond, ZCB). A zero coupon bond with maturity T is
a contract that guarantees its holder the payment of 1 unit of currency at time T , with no
intermediate payments. Let Z(t, T ) be the contract value at current time t with maturity
T , for t ≤ T . By definition Z(T, T ) = 1 for all T .

Definition 3.2.2 (Day count convention). Let α denote the interest accrual factor as
the inverse of the compounding frequecy m times per annum.

Suppose we have semi-annual compounding, implying that interest payments are
made semi-annually, so that m = 2 and α = 1

2
; for quarterly compounding and payments,

m = 4 and α = 1
4
, etc.

There are many different market conventions for calculating the actual accrual factor
used when determining interest or coupon payments for a particular period. One can
refer to Blyth (2014); Brigo & Mercurio (2006); Hull (2018) for detailed discussions on
the various day count conventions. We mention the following three examples of the day
count conventions commonly used in practice regarding fixed income instruments.

• Actual/360. With this convention a year is assumed to be 360 days long and the
year fraction between two dates is the actual number of days between them divided
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by 360. Used on money market instruments in the United States. LIBOR is also
quoted on an actual/360 for all currencies except sterling, for which it is quoted
on an actual/365 basis.

• Actual/Actual. Here, the ratio is based on the actual number of days elapsed
to the actual number of days in the period between interest payments. This day
count convention is used for Treasury bonds in the United States; also, sterling and
Euro-denominated bonds.

• 30/360. With this convention, it assumes that there are 30 days in each month,
and 360 days in each year. This is used for corporate and municipal bonds in the
United States.

Table 3.1 illustrates the differences in the accrual factor for the day count convention
mentioned above.

Table 3.1: Daycount conventions and accrual factors.

Day count convention α for 16 December 2011 to 16 March 2012
act/365 91/365 = 0.2493
act/act 15/365 + 76/366 = 0.2487
30/360 1/4 = 0.25

Definition 3.2.3 (Zero coupon curve). The zero coupon curve at time t is the graph
of the function

T 7→

{
L(t, T ) t < T ≤ t+ 1 (years),
Y (t, T ) T > t+ 1 (years).

where L(t, T ) and Y (t, T ) are the simple-compounded spot interest rate and the annually
compounded spot interest rate at time t for the maturity T respectively.

A zero coupon curve is also referred to as the term structure of interest rates or simply
the yield curve at time t. It is a plot at time t made up of simple-compounded interest
rates for all maturities T up to and including one year and of annually compounded
rates for maturities T that are more than one year. Long-term interest rates tend to be
higher than short-term interest rates. Thus, the yield curve is mostly upward sloping; it
is downward sloping only when the market expects a steep decline in short-term rates.

3.2.2 Forward rates and LIBOR

Definition 3.2.4 (Forward contract). A forward contract, or simply forward, is an
agreement between two counterparties to trade a specific underlying asset, at a certain

23
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future time T and at a certain price K. Here K is known as the delivery price, and the
specified time T is the maturity.

In other words, at the current time t ≤ T , one counterparty assumes a long position
and agrees to buy the asset at T , for a certain specified price K. The other counterparty
assumes a short position and agrees to sell the asset on the same date for the same price.

Let VK(t, T ) be the value of a long forward contract at current time t ≤ T with
delivery price K and maturity T , and F (t, T ) the forward price at current time t ≤ T

with delivery price K such that VK(t, T ) = 0 (i.e. VF (t,T )(t, T ) = 0). For example,
suppose a stock which pays no dividends has price 10, and interest rates are always 0.
Then F (t, T ) = 10 and VK(t, T ) = 10−K, ∀t ≤ T .

The London Interbank Offered Rate (LIBOR) is an interest rate average calculated
by the Intercontinental Exchange (ICE) from estimates submitted by contributor banks in
London and published at 11:00 A.M. by Thomson Reuters. It is an unsecured short-term
borrowing rate between banks, and is the primary benchmark, along with the Euribor, for
short-term interest rates around the world. The borrowing periods range from one day to
one year. LIBOR is widely used as a reference rate for many financial instruments such
as forward rate agreements (FRA), interest rate swaps (IRS), and swaptions, to name a
few, which we will touch on in the following sections.

Maturities for LIBOR rates may vary, but are commonly 1, 3, 6, and 12 months.
Thus, on any given day t, LIBOR rates for these periods α = 0.25, 0.5, 1, . . . etc. are
published. Let Lt[t, t+α] denote the LIBOR rate at time t for the period t to t+α. The
LIBOR rate Lτ [τ, τ + α] for a future date τ > t is then a random variable. Thus, banks
can deposit (or borrow) notional N at time t and receive (or pay back) N(1+αLt[t, t+α])

at time t+ α. All interest is paid at the maturity of the deposit, and there is no interim
compounding (simple interest).

Definition 3.2.5 (Forward rate agreement, FRA). The forward rate aggreement is
a forward contract to exchange two cashflows. Specifically, the buyer of the FRA with
maturity T and delivery price or fixed rate K agrees at t ≤ T to pay αK and receive
αLT [T, T +α] at time T +α. Thus the payout of the FRA is α(LT [T, T +α]−K) at time
T + α.

We further define Lt[T, T +α] as the forward LIBOR rate, and is the value of K such
that the FRA has zero value at time t ≤ T . Expressed as

Lt[T, T + α] =
Z(t, T )− Z(t, T + α)

αZ(t, T + α)
. (3.2.1)

Proof. Consider a portfolio consisting of long one ZCB with maturity T and short (1+αK)

ZCBs with maturity at (T + α). Then by definition Z(T, T ) = 1 and Z(T, T + α) =
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−(1 + αK); place this 1 unit in a deposit for the period [T, T + α] with interest rate
LT [T, T + α] and accrual factor α.

Therefore, at time (T + α), the portfolio has value

(1 + αLT [T, T + α])− (1 + αK) = α(LT [T, T + α]−K),

which is the payout of a FRA. Let VK(t, T ) be the value of the FRA at time t, then

VK(t, T ) = Z(t, T )− (1 + αK)Z(t, T + α).

Following the definition of a forward LIBOR rate where Lt[T, T + α] is the value of
K such that the FRA has zero value at t ≤ T ,

0 = Z(t, T )− (1 + αLt[T, T + α])Z(t, T + α)

rearranging the terms, we have

Lt[T, T + α] =
Z(t, T )− Z(t, T + α)

αZ(t, T + α)
■

3.2.3 Interest rate swaps

An interest rate swap (IRS) is a contractual agreement between two counterparties
that agree to exchange streams of payment that are made in the same currency over time.
The most typical IRS is the fixed-floating swap or the plain vanilla swap — referring
to a swap where one stream is a fixed rate of interest, and the other is a floating rate
of interest. The floating rate used in most IRS agreements is the LIBOR 3M (3-month
LIBOR).

Suppose when one counterparty expects a decline in interest rates, one can enter into
an IRS agreement with another counterparty (the Bank) to receive a fixed rate payment,
say 5% per annum on a principal of $100 million from the Bank, in exchange for a floating
rate payment i.e. the 3-month LIBOR on the same principal. Effectively transforming
a fixed rate liability into a floating rate liability, thus reducing the cost of capital. The
counterparty (the Bank) paying the fixed rate to and receiving the floating rate from, is
the fixed rate payer (the ”payer”), the other party paying the floating rate is the floating
rate payer (the ”receiver”).

As illustrated in Figure 3.1, let a swap has a start date T0, maturity Tn, and payment
dates Ti, i = 1, . . . , n. Although in practice, the payment dates for the floating and fixed
legs may be of different dates, the day count varies due to the underlying asset and for
each period it is computed. For simplicity, we assume that the payment frequency for the
floating and fixed legs are the same and a constant α for each period, i.e. Ti+1 = Ti + α,
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i = 0, . . . , n − 1. We then have the floating leg of the swap that pays αLTi
[Ti, Ti + α] at

time Ti + α — the LIBOR rate is set at time Ti for the period [Ti, Ti + α] and paid at
Ti + α; and αK paid at time Ti + α for the fixed leg of the swap.

αLT0 [T0, T1] αLT1 [T1, T2] αLTi [Ti, Ti+1] αLTn−1 [Tn−1, Tn]

αK αK αK αK

Floating leg

Fixed leg
t T0 T1 T2 Ti Tn

Figure 3.1: A swap

The value of the fixed leg can be expressed as

V fix(t) = K

n−1∑
i=0

αZ(t, Ti + α)

≡ KPt[T0, Tn],

and the value of the floating leg is

V float(t) =
n−1∑
i=0

Lt[Ti, Ti + α]αZ(t, Ti + α)

=
n−1∑
i=0

Z(t, Ti)− Z(t, Ti + α)

αZ(t, Ti + α)
αZ(t, Ti + α)

=
n−1∑
i=0

(Z(t, Ti)− Z(t, Ti + α)) = Z(t, T0)− Z(t, Tn)

Definition 3.2.6 (Forward swap rate). The forward swap rate at time t for a IRS
from T0 to Tn is defined to be the value yt[T0, Tn] of the fixed rate K such that the IRS at
t is 0.

In other words, yt[T0, Tn] is the rate in the fixed leg of the IRS that makes the IRS
a fair contract at present time t. We have

yt[T0, Tn] =
Z(t, T0)− Z(t, Tn)

Pt[T0, Tn]
.

Therefore, the value of the swap V sw(t) at time t ≤ T0 where one pay a fixed rate K and
receive LIBOR is given by

V sw(t) = (yt[T0, Tn]−K)Pt[T0, Tn]
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3.2.4 Swaptions

Swap options or swaptions are options on swaps, giving the holder the right, but not
the obligation, to enter into a swap. It can be viewed as a type of bond option. Institutions
often use swaptions as a means to benefit from favourable interest rate movements while
acquiring protection from or hedging against unfavourable interest rate movements. There
are two main types of swaptions, a payer swaption and a receiver swaption.

A payer swaption, also known as a put swaption, gives the holder the right to pay
fixed rate K (and receive floating, say LIBOR) in a swap. Whereas a receiver swaption
(a.k.a call swaption) gives the holder the right to receive fixed (and pay floating) in a
swap.

The payer swaption will only be exercised at a future agreed time T , if the market
swap rate yT [T0, Tn] is greater than or equal to the strike swap rate K; as it is clearly
preferable to receive the market swap rate which is higher while paying a lower fixed rate
that was struck at the start of the agreement.

We only consider European swaptions in this thesis where swaptions are only
exercisable at maturity. The swaption maturity usually coincides with the first reset
date of the underlying swap; and the market standard is that swaptions are cash settled
so that counterparties avoid credit exposure to one another. It is also market practice to
value swaptions with Black’s formula.

3.2.4.1 Valuation of European swaptions — the Black-76 formula

Given that at the time t ≤ T0, the value of the swaption V sw(t) where one pay a
fixed rate K and receive LIBOR is

V sw(t) = (yt[T0, Tn]−K)Pt[T0, Tn],

which can be seen as a call on a swap rate multiplied by the sum of ZCBs, PT [T, Tn].
Let T (i.e. T0 = T in the equation above) be the exercise date of the European

payer’s swaption, K the strike swap rate, where the swaption will only be exercised at
T if yt[T, Tn] > K. If we denote the price of the payer swaption at time t ≤ T by
ΨK(T, T, Tn), then its payout at exercise date T is given by

ΨK(T, T, Tn) = (yT [T, Tn]−K)+ PT [T, Tn]

= max{yT [T, Tn]−K, 0}PT [T, Tn]

Under risk-neutral measures and Pt[T, Tn] as the numeraire, the value of the swaption
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ΨK(T, T, Tn) can be expressed as

ΨK(t, T, Tn)

Pt[t, Tn]
= E∗

{
ΨK(T, T, Tn)

PT [T, Tn]

}
= E∗ {(yT [T, Tn]−K)+

}
where E∗ is the expectation under the risk-neutral measures with respect to Pt[T, Tn]. It
is also assumed that the underlying forward swap rate yT [T, Tn] is lognormally distributed
with parameters yT [T, Tn] and volatility σ, that is

yt[T, Tn] ∼ lognormal
(

log yt[t, Tn]−
1

2
σ2(T − t), σ2(T − t)

)
Then, the Black-76 formula for swaptions can be written as

ΨK(t, T, Tn) = Pt[t, Tn] (yt[T, Tn] Φ(d1)−K Φ(d2)) , (3.2.2)

where the cumulative normal distriution function Φ(·) is given by

Φ(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy

and

d1 =
log
(

yt[T,Tn]
K

)
+ 1

2
σ2(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t.

3.2.5 Hull-White short rate model

An instantaneous short rate rt is the rate that applies to an infinitesimally short
period of time at time t; which is also a simple way to describe the term structure of
interest rates and the valuation of interest rate linked options. The no-arbitrage model is
a model designed to be exactly consistent with today’s term structure of interest rates,
and where the initial term structure is an input rather than an output. This will become
evident when we contruct the interest rate tree in 3.3. We consider one of the no-arbitrage
models — the Hull-White (one-factor) model Hull & White (1990, 1993c), as the basis
model for the term structure of interest rates in this study. For this model is versatile
enough to be extended to represent other models, such as Ho-Lee, and Black-Karasinski
as its special cases, which is beyond the scope of this study, the capability of fitting an
arbitrary initial term structure (as an input) together with the ability to accommodate
negative interest rates, it is its analytical tractability that is most attractive — as the
model can be calibrated to market data on interest option prices (3.4).

We assume the existence of a risk-neutral measure, implying that the arbitrage-free
price of a contingent claim at time t with final payoff function HT at maturity T is given

28



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101641

by

Ht = E
{
e−

∫ T
t rτ dτHT

∣∣∣ Ft

}
where E{· | Ft} is the conditional expectation with respect to t under that measure. It
is evident that the price of the ZCB, Z(t, T ) (and by definition HT ≡ 1) can then be
expressed as

Z(t, T ) = E
{
e−

∫ T
t rτ dτ

∣∣∣ Ft

}
.

In the general Hull-White (HW) model (Hull & White (1990, 1993c)), the short rate rt
follows a diffussion process

drt = (ϑ(t)− a rt) dt+ b dWt (3.2.3)

where Wt is a standard Wiener process, a, b ∈ R+, are the two volatility paramenters that
are chosen to fit the current market prices of a set of actively traded interest rate options.
r0 ∈ R and ϑ(t) is the term structure parameter selected so as to fit the initial term
structure currently observed in the market. Then rearranging Z(t, T ) in the following
form (see Brigo & Mercurio (2006, (3.39)))

Z(t, T ) = A(t, T ) eB(t,T ) rt

where

A(t, T ) =
FM(0, T )

FM(0, t)
exp

{
B(t, T )fM(0, t)− b2

4a

(
1− e2at

)
B(t, T )2

}
B(t, T ) =

1

a

(
1− e−a(T−t)

)
,

with FM(0, T ) the market discount factor at current time for the maturity T , and fM(0, T )

the market instantaneous forward rate at time 0 for the maturity T denoted as,

fM(0, T ) = −∂ logFM(0, T )

∂T
.

We have rt conditional on Fs, and is normally distributed with mean and variance
given respectively by

E {rt | Fs} = rs e
−a(t−s) + α(t)− α(s)e−a(t−s)

var {rt | Fs} =
b2

2a

(
1− e−2a(t−s)

)
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where

α(t) = fM(0, t) +
b2

2a2
(
1− e−at

)2
.

In other words, at current time t = 0, A(0, T ) and B(0, T ) are defined by b, the
current term structure of interest rates, and the current term structure of spot or forward
interest rate volatilities.

Let ZBP(t, T, S,K) be the price of a European put option at time t ≤ T < S,
with strike K and maturity T , written on a pure discount bond (such as a coupon bond)
maturing at time S, or simply the put option on the ZCB; then according to the arbitrage-
free pricing principle

ZBP(t, T, S,K) = E
{
e−

∫ T
t rτ dτ (K − Z(T, S))+

∣∣∣ Ft

}
and the above expression can be rewritten as in (Brigo & Mercurio (2006, (3.41)))

ZBP(t, T, S,K) = KZ(t, T )Φ (−h+ σp)− Z(T, S)Φ(−h)

where

σp = b

√
1− e−2a(T−t)

2a
Z(T, S), h =

1

σp
log Z(t, S)

Z(t, T )K
+
σp
2
.

Drawing from parts mentioned earlier in this section, and applying the decomposition
technique in Jamshidian (1989), where the European put (payer) swaption can be
decomposed into a portfolio of ZBPs. First, let ci = Kα, i = 1, 2, . . . , n− 1, cn = 1+Kα

such that r∗ is the solution that satisfies
n∑

i=1

ciA(T, Ti) e
−B(T,Ti)r

∗
= 1

and let Ki = A(T, Ti)e
−B(T,Ti)r

∗
, i = 1, 2, . . . , n. Hence, the price of the European put

(payer) swaption ΨK(t, T, Tn) can be written as

ΨK(t, T, Tn) =
n∑

i=1

ci ZBP(t, T, Ti, Ki). (3.2.4)

3.3 Pricing of bonds — interest rate trees

3.3.1 Bond pricing

Most coupon bearing bonds pay periodic coupons to their holders, and its principal
(i.e. par value or face value, usually set at 100) is paid at the bonds’ maturity. The
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theoretical price of such bonds can be calculated as the present value of all the cashflows
that will be received by the owner of these bonds. However, market interest rates are a
function of time and stochastic in nature, thus the price of the bond at each time t < T

before its maturity varies.
We can compute the price of the bond at time t by determining an appropriate

interest rate as the discounting factor for the expected cashflows over this period. Ideally,
for the ease of computation, is for these discounting factors to be a constant; however,
under real market conditions these discounting factors and ultimately the corresponding
interest rates are random variables. Despite this, one can still construct an interest rate
tree that represents the approximate evolution of that interest rate process.

A typical binomial tree is shown on the left of Figure 3.2, the possible outcomes of
the bond price also increase with time. Under the no-arbitrage principle, in each time
step, it has the same probability of moving up by a certain percentage amount as it has
with moving down a certain percentage amount. As the final payoff value of the bond
is known, one can follow the procedure on the right of Figure 3.2. Working backwards
in time by discounting the expected cashflows by their respective interest rates, we can
obtain the value of the bond at each node, and finally its initial price at t = 0.

2.50%

3.87%

3.17%

5.53%

4.52%

3.70%

t = 0 t = 1 t = 2

F

D

E

A

B

C

T1

T2

T3

T4

t = 0 t = 1 t = 2 t = 3

Figure 3.2: Typical binomial tree (left); corresponding states and order of discounting
(right). T1, T2, T3, T4 represents the final payoff of the bond price; A, B, and C represents
the outcome of the bond in the second year, with its respective corresponding interest
rates 5.53%, 4.52%, 3.70%; D and E as the outcome of the bond after one year, with
corresponding interest rates 3.87% and 3.17% respectively; F as the bond price at issuance,
with initial rate at 2.50%.

Example. Consider a 3-year par yield bond that pays a coupon of 4.25% per annum,
callable annually. Given the interest rate tree in Figure 3.2, compute the bond value at
issuance.
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Solution.

State T1,T2,T3,T4 : 100 + 4.25 = 104.25

State A: 1

2

(
104.25

1 + 5.53% +
104.25

1 + 5.53%

)
= 99.003

State B: 1

2

(
104.25

1 + 4.52% +
104.25

1 + 4.52%

)
= 99.742

State C: 1

2

(
104.25

1 + 3.70% +
104.25

1 + 3.70%

)
= 100.53 > 100; callable, price = 100

State D: 1

2

(
99.003 + 4.25

1 + 3.87% +
99.742 + 4.25

1 + 3.87%

)
= 99.761

State E: 1

2

(
99.742 + 4.25

1 + 3.17% +
100 + 4.25

1 + 3.17%

)
= 100.92 > 100; callable, price = 100

State F (bond price at issuance):1
2

(
99.761 + 4.25

1 + 2.5% +
100 + 4.25

1 + 2.5%

)
= 101.59 ■

3.3.2 Trinomial tree

A series of research was done by Hull and White (Hull & White (1990, 1993a,b,c,d,
1994a,b, 1996, 2001)) regarding the construction of an efficient numerical procedure, such
as the interest rate tree, to determine option prices and the calibration of the parameters
of these models. In the following section, we find the works in Brigo & Mercurio (2006,
3.3.3, 3.5, Appendix F) provides a succinct description on the construction of a trinomial
interest rate tree through approximating the dynamics of a general diffusion process.

Consider a diffusion process Xt that evolves according to

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt

where µ and σ are smooth scalar real functions and Wt the scalar standard Brownian
motion. The approximation of the diffusion process X of building the trinomial tree can
be broken down into two stages and four steps — our first step is to select the spacing
of the tree nodes according to time; and the second step is deciding on the spacing of
the nodes with respect to the interest rate. Followed by choosing the branching process
for each of the xi,j’s through the nodes; and finally, shifting the tree by the displacement
value at each point in time.

First Stage
Let 0 = t0 < t1 < t2 < . . . < tn = T be a finite set of times, and ∆ti = ti+1 − ti. At

each time ti, we have a finite number of equispaced states on X, with constant vertical
step ∆xi; set xi,j = j∆xi. We define {(i, j) | i = 0, 1, . . . , n; j = j−i , j

−
i +1, . . . , j+i − 1, j+i }

as the nodes of the tree, where j−i , j+i are integers dependent of time i. We observe that
the tree is symmetrical and that j−i < 0, j+i > 0, are the mirror images of each other.
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Suppose at time ti+1, the value xi,j on the j-th node moves to xi+1,k+1, xi+1,k, xi+1,k−1 with
probabilities pu, pm, pd respectively. They are defined as the probabilities of the highest,
middle, and lowest branches emanating from a node. Let the mean Mi,j and variance Vi,j
conditional on X(ti) = xi,j be denoted as

E{X(ti+1) |X(ti) = xi,j} =Mi,j

var{X(ti+1) |X(ti) = xi,j} = Vi,j

and satisfies the following equations

pm + pd + pu = 1

pm xi+1,k + pd xi+1,k−1 + pu xi+1,k+1 =Mi,j

pm x
2
i+1,k + pd x

2
i+1,k−1 + pu x

2
i+1,k+1 = Vi,j +M2

i,j

Note that

xi+1,k+1 = xi+1,k +∆xi+1, xi+1,k−1 = xi+1,k −∆xi+1

Setting

ηi,j,k =Mi,j − xi+1,k

then the solution to these equations is

pu =
Vi,j

2(∆xi+1)2
+

η2i,j,k
2(∆xi+1)2

+
ηi,j,k

2∆xi+1

pm = 1− Vi,j
(∆xi+1)2

−
η2i,j,k

(∆xi+1)2

pd =
Vi,j

2(∆xi+1)2
+

η2i,j,k
2(∆xi+1)2

− ηi,j,k
2∆xi+1

In order to ensure that the probabilities pu, pm, pd are all positive, some constraints
are necessary. We assume

1. Vi,j is independent of j, thus Vi,j = Vi;

2. ∆xi+1 =
√
3Vi,

3. k =
⌊

Mi,j

∆xi+1

⌋
such that xi+1,k is as close to Mi,j as possible, i.e. the k-th node at

time ti+1 is also the central node.
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Then the probabilities become

pu =
1

6
+
η2i,j,k
6Vi

+
ηi,j,k

2
√
3Vi

pm =
2

3
−
η2i,j,k
3Vi

pd =
1

6
+
η2i,j,k
6Vi

− ηi,j,k

2
√
3Vi

Second Stage
The second stage of the construction procedure consists of displacing the tree nodes

to obtain the corresponding tree for the current term structure (see Hull & White (2001),
Hull (2018, 32.5)). Let αi denote the uniform displacement at time ti, such that the shift
at each node (i, ·) is the same and the price of the discounted bonds obtained at these
nodes are consistent with the initial term structure observed in the market. We have

α0 = − logFM(0, t1)

t1

Consider an underlying asset where it pays 1 unit currency if it reaches the node (i, j)

and 0 otherwise; we define the present value of such an underlying asset as Qi,j, then

Qi+1,j =
∑
h

Qi,h q(h, j) e
−(αi+h∆xi)∆ti , j = j−i+1, . . . , j

+
i+1

where q(h, j) is the probability of change from node (i, h) to (i+1, j); with the summation
taken over all values of h for which this is non-zero. Solving

Z(0, ti+1) =

j+i∑
j=j−i

Qi,j e
−(αi+j∆xi)∆ti ,

we get the solution to the above equation as

αi =
1

∆ti
log

∑j+i
j=j−i

Qi,j e
−j∆xi∆ti

Z(0, ti+1)
.

3.4 Numerical results
In the following section, we make use of the open source software QuantLib and its

Python (Balaraman & Ballabio (2017); Ballabio (2017)) binding, together with publicly
available data to construct a cost efficient pricing system that can be easily plugged-in by
practitioners for the fitting of the interest rate term structure (yield curve), the parameter
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estimation of the general Hull-White model, and ultimately the mark-to-market valuation
of the callable zero coupon bonds that make up the majority of the life insurer’s assets in
conformation with the latest IFRS-9 requirement.

3.4.1 Fitting the initial term structure of interest rates

In order to build a bond valuation system, one would start with the fitting of the
term structure of the interest rates involved (Ametrano & Bianchetti (2013), Balaraman
& Ballabio (2017, Chapters 6, 7)). Here, we use the publicly available data such as the
US Treasury Constant Maturity Rate (CMY) and the USD LIBOR / ICE Swap Rate
(FRED) to fit the term structure. Historical data on these rates are obtained via the
Federal Reserve Bank’s website1, and their corresponding tickers are listed in Appendix
A. By choosing these data that are published by the governing body not only ensures its
neutrality but also as a cost efficient source to build a versatile internal pricing system.

As we start with the steps in constructing a trinomial tree, we first need to fit the
yield curve. A few dates are selected so to fit a few yield curves to illustrate the variability
(see Figure 3.3). We also list, for example, the actual rates as observed in the market
on 25 March 2019 that is used to fit the yield curve for that particular day (see Table
3.2 and Table 3.3). The normal yield curve slopes upwards; the yield of long-dated
maturity exceeds those of short-dated maturity simply due to the time value of money.
The “inverted” yield curve as seen in (f)(g)(h) of Figure 3.3 shows that the short-term
rates exceed the long-term rates. The formation of the inverted yield curve is commonly
attributed to the increasing concerns of an impending recession and the excessive demand
of long-term Treasury bonds to preserve capital in the falling market. Before the advent
of inverted yield curves, the upward slope tends to flatten as the economic cycle slows
down; this can be seen in (b)(c)(d)(e) of Figure 3.3.

3.4.2 Parameter estimation of the Hull-White model

Here we discuss how one would calibrate the volatility parameters in the Hull-White
model so that enables us to price the various callable zero coupon bonds that are currently
on the life insurers’ books. As in Hull & White (2001) and later in Brigo & Mercurio
(2006), both has discussed how one can calibrate the initial yield curve from the market
quotes for actively traded options such as the European swaptions, caps, and floors;
to date, they are the most commonly used source for calibration purposes. Implicitly,
by using the market quotes of these actively traded options and their implied volatility
implies that the risk premia had already been priced in, therefore we can safely use them
without the need to determine or make assumptions on the cost of risk premia when
modelling the term structure of interest under risk-neutral measure Q assumptions. Thus

1https://fred.stlouisfed.org/tags/series
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Figure 3.3: Yield curve for the various dates.
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Table 3.2: CMY tenor and its corresponding
rates on 2019/03/25.

Interest rate tenor Rate(%)
CMY 1M 2.47
CMY 3M 2.46
CMY 6M 2.49
CMY 1Y 2.41
CMY 2Y 2.26
CMY 3Y 2.19
CMY 5Y 2.21
CMY 7Y 2.32
CMY 10Y 2.43
CMY 20Y 2.68
CMY 30Y 2.87

Table 3.3: FRED tenor and its corresponding
rates on 2019/03/25.

Interest rate tenor Rate(%)
LIBOR 1W 2.41238
LIBOR 1M 2.48975
LIBOR 3M 2.60875
LIBOR 6M 2.673
LIBOR 12M 2.74575
ICE 2Y 2.367
ICE 3Y 2.276
ICE 5Y 2.253
ICE 6Y 2.273
ICE 7Y 2.3
ICE 10Y 2.403
ICE 15Y 2.531
ICE 20Y 2.587
ICE 30Y 2.612

the parameters computed will be a closer fit and a reflection of actual market conditions,
which is what we are trying to achieve in terms of mark-to-market valuations.

Thus under an interest rate term structure and given a series of market prices on the
European swaptions and its implied volatility σi, one can obtain the analytical price of
European swaptions Ψblack(σi) under the Black-76 model (3.2.4.1) by working backwards
through equation (3.2.2). In Hull & White (2001), the authors state that by using
these market volatilities in the Black-76 model, the model produced mid-market priced
options. Suppose these conditions can also be applied to the Hull-White model to solve
the unknown volatility parameters (a∗, b∗) and derive a closed form solution Ψhw

i (a, b)

through equation (3.2.4). Let (a∗, b∗) be the set of parameters that minimizes the sum of
the differences squared between the two swaption prices Ψblack(σi) and Ψhw

i (a, b),

(a∗, b∗) = argmin
(a,b)

∑
i

(
Ψblack(σi)−Ψhw

i (a, b)
)2

There are alternative ways in calibrating the model parameters. One can choose the
objective function to be the sum of the differences squared of the implied volatilities or
weights can be assigned to each term of the objective function in order of importance, etc.
However, each objective function will produce their own unique set of model parameters.
Here, we choose the objective function to be the sum of the differences squared, where
the differences can be seen as the spread between the option prices derived from the two
models.

Since 11 April 2016, the Chicago Mercantile Exchange (CME) started acting as a
clearing house for European swaptions, becoming the first of its kind to offer such services.
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At the same time, it also publishes the volatility data on these swaptions on a daily basis2.
To the best of our knowledge, this is the only source where these data are available on
the public domain.

We use a standard European swaption with the 3-month US Dollar LIBOR (3M
USD LIBOR) as the underlying asset for the parameter estimation of the Hull-White
model. We were able to use the at-the-money (ATM) lognormal implied volatility data
from the volatility-price matrix that is published daily by the CME to construct the term
structure of interest rates. This daily ATM matrix quotes five maturities (1-, 3-, 6-month,
and 1-, 2-year) and seven tenors (1-, 2-, 5-, 10-, 15-, 20-, 30-year), giving us a total of 35
combinations. The maturities quoted represent the life of the option, whereas the tenors
are the life of the swap; one assumes the swap to start when the option expires, thus the
total life span of the swaption is the option life plus the swap life. By entering CME’s
implied volatility data into equation (3.2.2), one can obtain the analytical price of the
European swaptions Ψblack(σi). These 5 × 7 = 35 swaption prices are listed in the third
column of Tables 3.4 and 3.5. Similarly, with rates from FRED and CMY, and equation
(3.2.4), we can derive Ψhw

i (a, b), as displayed in the fourth column of these aforementioned
tables. The set of parameters (a∗, b∗), which is dependent on the daily yield curve, varies
daily.

We enter the data obtained from the CME, FRED, and CMY into the Hull-White
model to compute the implied volatilities. An example of the comparative results of our
daily estimations are tabulated in Tables 3.4 and 3.5.

3.4.3 Pricing of a callable zero coupon bond

We have outlined the process and laid down the definitions and theorems essential
to the pricing of a zero coupon bond. A typical abbreviated term sheet or the “product
specifications” of these USD-denominated callable zero coupon bonds listed on the TPEx
are set out in Table 3.6. The examples illustrated herein are in accordance with TPEx
specifications.

For the avoidance of doubt, in the following sections where the use of interest rate
term structures are concerned, we refer to the most recent date i.e. 25 March 2019 as our
point of referral. By applying the 25 March 2019 FRED term structure to the interest
rate trees, we can obtain the initial value of a 30-year non-callable bond for that day to
be 45.7395, and the yield-to-maturity (YTM) as

(
100

45.7395

) 1
30 − 1 = 2.6416%.

By fixing certain variables that determine the initial value of the callable bond,
such as the term structure of interest rates and the bond issuance period, we can then
study the dynamics between the remaining variables — internal rate of return (IRR),
non-callable period (NC), and redemption frequency (FREQ); the latter two determines

2ftp://ftp.cmegroup.com/irs/
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Table 3.4: Hull-White parameter estimation results under the FRED term structure for
25 March 2019.

Maturity Tenor CME IV FRED IV Error
1M 10Y 25.6468 % 23.2315 % -2.4153 %
1Y 10Y 24.9363 % 23.2388 % -1.6976 %
2Y 10Y 24.9987 % 22.4798 % -2.5189 %
3M 10Y 24.7444 % 23.2248 % -1.5196 %
6M 10Y 24.4420 % 23.2160 % -1.2260 %
1M 15Y 23.5886 % 21.9450 % -1.6435 %
1Y 15Y 22.7436 % 21.9306 % -0.8130 %
2Y 15Y 22.9923 % 21.4890 % -1.5033 %
3M 15Y 22.6666 % 21.9351 % -0.7314 %
6M 15Y 22.3059 % 21.9266 % -0.3793 %
1M 1Y 13.5499 % 20.5396 % 6.9897 %
1Y 1Y 27.1094 % 28.5188 % 1.4095 %
2Y 1Y 32.0742 % 26.8778 % -5.1964 %
3M 1Y 15.9987 % 21.1397 % 5.1411 %
6M 1Y 20.3893 % 22.7718 % 2.3825 %
1M 20Y 22.5306 % 21.4266 % -1.1040 %
1Y 20Y 21.7343 % 21.4546 % -0.2797 %
2Y 20Y 21.9417 % 21.1766 % -0.7651 %
3M 20Y 21.5389 % 21.4258 % -0.1131 %
6M 20Y 21.2608 % 21.4304 % 0.1696 %
1M 2Y 23.4340 % 24.1010 % 0.6670 %
1Y 2Y 29.5842 % 27.6356 % -1.9486 %
2Y 2Y 32.3447 % 26.2886 % -6.0561 %
3M 2Y 24.3470 % 24.7168 % 0.3698 %
6M 2Y 26.0533 % 25.6451 % -0.4082 %
1M 30Y 21.5371 % 21.2294 % -0.3077 %
1Y 30Y 20.8012 % 21.2636 % 0.4624 %
2Y 30Y 21.1676 % 21.1010 % -0.0666 %
3M 30Y 20.6135 % 21.2339 % 0.6204 %
6M 30Y 20.3160 % 21.2395 % 0.9235 %
1M 5Y 28.3160 % 24.9714 % -3.3447 %
1Y 5Y 28.3852 % 25.8078 % -2.5775 %
2Y 5Y 28.5634 % 24.7178 % -3.8456 %
3M 5Y 27.5204 % 25.1006 % -2.4197 %
6M 5Y 27.4131 % 25.3208 % -2.0923 %
a∗ = 0.00009884, b∗ = 0.00541078 Average error: 1.8317%
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Table 3.5: Hull-White parameter estimation results under the CMY term structure for
25 March 2019.

Maturity Tenor CME IV CMY IV Error
1M 10Y 25.6468 % 22.4542 % -3.1926 %
1Y 10Y 24.9363 % 22.4776 % -2.4587 %
2Y 10Y 24.9987 % 22.5041 % -2.4946 %
3M 10Y 24.7444 % 22.4552 % -2.2892 %
6M 10Y 24.4420 % 22.4637 % -1.9784 %
1M 15Y 23.5886 % 22.3789 % -1.2097 %
1Y 15Y 22.7436 % 22.3999 % -0.3437 %
2Y 15Y 22.9923 % 22.4197 % -0.5726 %
3M 15Y 22.6666 % 22.3825 % -0.2841 %
6M 15Y 22.3059 % 22.3881 % 0.0822 %
1M 1Y 13.5499 % 22.5980 % 9.0481 %
1Y 1Y 27.1094 % 22.6269 % -4.4824 %
2Y 1Y 32.0742 % 22.6576 % -9.4166 %
3M 1Y 15.9987 % 22.6037 % 6.6050 %
6M 1Y 20.3893 % 22.6114 % 2.2221 %
1M 20Y 22.5306 % 22.3081 % -0.2225 %
1Y 20Y 21.7343 % 22.3219 % 0.5876 %
2Y 20Y 21.9417 % 22.3367 % 0.3950 %
3M 20Y 21.5389 % 22.3128 % 0.7739 %
6M 20Y 21.2608 % 22.3144 % 1.0536 %
1M 2Y 23.4340 % 22.5814 % -0.8526 %
1Y 2Y 29.5842 % 22.6097 % -6.9745 %
2Y 2Y 32.3447 % 22.6404 % -9.7042 %
3M 2Y 24.3470 % 22.5885 % -1.7585 %
6M 2Y 26.0533 % 22.5942 % -3.4591 %
1M 30Y 21.5371 % 22.1797 % 0.6426 %
1Y 30Y 20.8012 % 22.1767 % 1.3755 %
2Y 30Y 21.1676 % 22.1739 % 1.0062 %
3M 30Y 20.6135 % 22.1780 % 1.5645 %
6M 30Y 20.3160 % 22.1781 % 1.8621 %
1M 5Y 28.3160 % 22.5341 % -5.7819 %
1Y 5Y 28.3852 % 22.5594 % -5.8259 %
2Y 5Y 28.5634 % 22.5892 % -5.9742 %
3M 5Y 27.5204 % 22.5369 % -4.9834 %
6M 5Y 27.4131 % 22.5444 % -4.8686 %
a∗ = 0.00150478, b∗ = 0.00641566 Average error: 3.0385%
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Table 3.6: Terms of a Typical Callable Zero Coupon Bond

Denominated Currency USD
Issue Price 100%
Tenor Maturity Date specific
Coupon Zero coupon
Accrual Yield Quoted as a percentage per annum, calculated on the issue date
Day Count Fraction / Convention 30/360
Call Option (redemption rights) Callable on each Redemption Date, at the call option of the issuer
Callable Structure Non-call Period × Call Frequency
Early Redemption Applicable; in the event of a Call Option exercised by the issuer
Partial Redemption Not applicable, i.e. only full redemption is allowed
Final Redemption Date Maturity Date
Status Senior debt
Credit rating Between S&P BBB- and AA+

Note: For unsecured bonds, issuers require long-term credit rating between S&P BBB- and AA+, or
their equivalent approved by the Securities and Futures Bureau (SFB). For secured bonds, guarantors
are required to have long-term credit rating between S&P BBB- and AA+, or their equivalent approved
by the SFB. Source: Taipei Exchange.

the redemption dates, while IRR affects the callable bond’s initial value through its
redemption value at each redemption date. Let the initial value of the callable bond
be P (IRR,NC,FREQ), then by setting the interest rate term structure (25 March 2019)
and the tenor of the callable bond to be 30 years, we can obtain the initial value of the
callable bond under various combinations of IRR, NC, and FREQ (Figure 3.4). We set
the IRR between 3.5% to 5.5%. The nine scenarios of NC, from a minimum of one year
to eight years, and a maximum of ten years; where FREQ as no redemption, annual
redemption or redemption exercised every five years. These reflect the current trading
terms struck between the life insurance companies and the bond provider in accordance
with regulation. Furthermore, the value of a callable bond can be decomposed in the form
(Fabozzi & Mann (2010, p.170))

Value of a callable bond = Value of an option-free bond - Value of a call option.

In other words, the value of the initial embedded option is the value difference of the
non-callable bond and the callable bond; the results are shown in Figure 3.5.

As a matter of interest, we compared the “theoretical price” of these zero coupon
callable international bonds as published by TPEx with ours, an excerpt is listed in Table
3.7. The TPEx’ system construct and its model assumptions are not publicly available,
thus one cannot make a straight line comparison between the two systems; however, while
comparing these theoretical prices, we did discover some anomalies:

• Both bonds F03905 and F03906 are issued by DBS Bank Ltd.. While the issue date,
maturity date, and IRR are the same, it’s redemption structure are 1× 1 and 2× 1

respectively. However, TPEx shows both with the same price of 112.196%. Given
that under the same issue date, maturity date, and IRR, the embedded option of a
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Figure 3.4: The dynamics of the initial value of the 30-year callable bond, non-callable
period, call frequency, and IRR under the interest rate term structure for 25 March 2019.
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1×1 redemption structure would be more valuable than a 2×1, due to it having an
extra opportunity to call. According to the price computed by our program, they
are 112.178% and 112.867% respectively; it is evident that these prices should not
be identical.

• F03915 and F03916 both have a tenor of 30 years, with IRR of 4.6% and 4.5%
respectively; while their issue dates are 22 February 2019 and 11 March 2019, their
price are listed by TPEx as 107.767% and 107.102% on valuation date (25 March
2019). Given that these two bonds are issued within four weeks of the valuation
date, and the IRRs are below 5.0%, it is unreasonable to expect a price increase of
over 7.0% at par.

3.5 Concluding remarks
Due to the sheer volume of the international bonds listed on the Taipei Exchange

and the lack of a liquid secondary market, the need for pricing transparency and a reliable
source of reference is of utmost importance. We provide the life insurers the means to
evaluate the mark-to-market value of these callable bonds without having to rely on third
parties to do so. We first assume the market’s short rate follows the Hull-White process,
then collate publicly available data and make use of open source software to construct
a bespoke system that is able to independently evaluate the fixed income type asset the
life insurer holds. We computed the theoretical value of the international bonds based on
the single factor Hull-White short rate model, these results are yet to be compared with
other interest rate models; future research can investigate a more sophisticated model to
incorporate factors such as exchange rates, interest rate movements, and default risk.
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Figure 3.5: The dynamics of the initial embedded option value of the 30-year callable
bond, non-callable period, call frequency, and IRR under the interest rate term structure
for 25 March 2019.
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Table 3.7: Numerical illustration for selected callable bonds listed on the TPEx under the
term structure for 25 March 2019.

Bond Rating Issue Date Maturity IRR Spec TPEx FRED CMY
F03905 AA- 2016/05/06 2046/05/06 4.000 2 x 1 112.196 112.178 109.543
F03906 AA- 2016/05/06 2046/05/06 4.000 1 x 1 112.196 112.867 109.878
F03907 AA- 2016/07/26 2046/07/26 3.610 2 x 1 101.539 111.109 107.454
F03908 AA- 2016/07/26 2046/07/26 3.630 1 x 1 102.128 111.384 107.619
F03909 AA- 2016/08/30 2046/08/30 3.470 1 x 1 97.060 110.769 106.776
F03910 AA- 2017/01/24 2047/01/24 3.900 3 x 1 107.810 108.143 106.194
F03911 AA- 2018/02/02 2048/02/02 4.020 5 x 1 106.140 103.918 102.548
F03912 AA- 2018/02/12 2048/02/12 4.060 1 x 1 105.821 104.813 103.579
F03913 AA- 2018/04/03 2048/04/03 4.350 5 x 1 109.551 103.192 102.284
F03914 AA- 2018/06/01 2048/06/01 4.500 5 x 1 109.782 102.605 101.917
F03915 AA- 2019/02/22 2049/02/22 4.600 5 x 1 107.797 100.282 100.193
F03916 AA- 2019/03/11 2049/03/11 4.500 5 x 1 107.102 100.125 100.085
F04001 A- 2014/10/03 2044/10/03 4.750 5 x 1 124.268 113.558 113.472
F04003 A- 2015/02/03 2045/02/03 4.150 5 x 1 116.445 114.592 111.903
F04004 A- 2015/02/26 2045/02/26 4.300 5 x 1 119.977 113.806 111.845
F04005 A- 2015/06/10 2045/06/10 4.600 5 x 1 120.435 111.750 110.935
F04008 A- 2016/02/03 2046/02/03 4.600 5 x 1 117.899 109.848 108.691
F04009 A- 2016/03/18 2046/03/18 4.630 5 x 1 117.583 109.428 108.297
F04012 A- 2016/08/03 2046/08/03 3.980 2 x 1 102.831 110.998 108.563
F04013 A- 2016/11/10 2046/11/10 4.110 5 x 1 105.301 108.201 105.933
F04014 A- 2017/02/09 2047/02/09 4.430 5 x 1 112.736 106.924 105.432
F04015 A- 2017/06/21 2047/06/21 4.350 5 x 1 109.325 105.800 104.362
F04016 A- 2017/09/05 2047/09/05 4.300 12 x 1 106.623 105.151 101.827
F04017 A- 2017/11/03 2047/11/03 4.250 5 x 5 104.223 104.627 103.454
F04018 A- 2018/02/06 2048/02/06 4.230 6 x 5 102.236 103.784 102.477
F04019 A- 2018/03/14 2048/03/14 4.530 6 x 5 109.340 103.307 102.323
F04020 A- 2018/06/20 2048/06/20 4.880 6 x 5 110.373 102.313 101.731
F04101 A+ 2014/10/03 2044/10/03 4.750 10 x 5 133.145 114.862 108.852
F04102 A+ 2014/10/21 2044/10/21 4.720 10 x 1 132.502 114.796 108.567
F04103 A+ 2015/01/23 2045/01/23 4.350 5 x 1 120.950 113.989 112.243
F04104 A+ 2015/06/30 2045/06/30 4.800 10 x 1 129.822 112.376 106.956
F04105 A+ 2015/09/18 2045/09/18 4.800 5 x 2 121.144 110.289 110.045
F04106 A+ 2016/02/03 2046/02/03 4.600 8 x 1 123.017 110.340 106.641
F04107 A+ 2016/06/13 2046/06/13 4.250 8 x 1 118.189 109.473 105.555
F04108 A+ 2017/01/24 2047/01/24 4.300 6 x 1 114.358 107.240 104.998
F04302 A- 2014/12/15 2044/12/15 4.830 1 x 1 123.923 121.943 120.680
F04303 A- 2014/12/15 2044/12/15 4.800 3 x 1 123.746 117.016 116.726
F04308 A- 2016/02/02 2046/02/02 4.700 1 x 1 117.089 115.482 114.129
F04309 A- 2016/05/13 2046/05/13 4.400 1 x 1 113.400 112.776 111.520
F04310 A- 2016/11/25 2046/11/25 4.450 3 x 1 111.677 107.621 107.511
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4
The Copula-GARCH Model: Application to Variable

Annuity Guarantee Valuations on Multiple Assets

∗ This chapter is based on Hsuan & Chang (2018a).

4.1 Introduction
The premise of effective risk management is the ability to delineate the probabilistic

relationship between multiple underlying assets and resources and to derive quantitative
indicators which reflect the current status of the system to be controlled. Developments
of modern computing technologies have enabled the transition from traditional simplistic
models to full-fledged stochastic ones with real-world considerations; multivariate
probability models that can faithfully characterize their elements are in ever greater need.

The copula is such a multivariate probability distribution for which the marginal
probability distribution of each variable is uniform. Sklar’s theorem (c.f. theorem 4.2.1)
states that any multivariate joint distribution can be written in terms of the composite
of univariate marginal distribution functions and a copula function which describes the
dependence structure between the variables. The copula approach could be useful to
high-dimensional statistical applications as one is allowed to estimate the distribution of
random vectors by estimating marginals and copula separately. The converse of Sklar’s
theorem, which states that the composite of arbitrary univariate marginal distribution
functions and a copula function is a valid multivariate joint distribution, is equally useful
for applied researchers as one may exploit the provided freedom to build the more adaptive
model. For time series applications the copula concept could be extended to reflect
the model dynamics; the semiparametric copula-based multivariate dynamic (SCOMDY)
model proposed in Chen & Fan (2006a,b), which encompasses the copula-GARCH model
(e.g. Chan et al. (2009); Jondeau & Rockinger (2006); Patton (2006)) as a special case,
is such a general formulation.

In this work we review the essence of the copula-GARCH model and the associated
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statistical tests recently obtained in Bai (2003); Genest & Rémillard (2004, 2008); Ghoudi
& Rémillard (2014); Nasri & Rémillard (2019); Rémillard (2011, 2012, 2017) where they
deserve to be better known for their mathematical correctness. As an illustration for
the copula-GARCH techniques we are able to show rigorously that the co-movement of
the monthly S&P500 and S&P600 indices is best described by a certain copula-GARCH
model and subsequently apply this probability model for the evaluation of corresponding
variable annuity product.

A variable annuity (VA) is a type of annuity contract that allows for the accumulation
of capital on a tax-deferred basis. Variable annuities offer investors the opportunity to
generate higher rates of returns by investing in equity subaccounts. VA comes with
embedded guarantees, also known as rider benefits, which protect the policyholder’s
savings. Each type of guarantee can be categorized into subclasses with different payment
terms and conditions; all these guarantees exhibit option features and can be priced using
financial engineering techniques.

Most practitioners use simplistic univariate stochastic models for the evaluation of
VA; however, the majority of VAs are linked to multiple assets. Significant drawbacks of
the univariate approach are listed in Ng & Li (2013). In a nutshell, the joint probability
distribution of random variables are usually quite different and complicated to determine
from the probability of each random variable; simplistic reduction leads to inaccuracies
of risk assessment. In Ng & Li (2013), a discrete-time multivariate framework for pricing
and hedging of VA is proposed, and is demonstrated via the development of a bivariate
model with two underlying asset processes with specified linear correlations. Two asset
processes, namely the multivariate regime-switching lognormal (RSLN) process and the
generalized autoregressive conditional heteroskedastic (GARCH) process are utilized. In
Da Fonseca & Ziveyi (2017), the continuous-time setup is considered; the underlying asset
process being the multivariate generalization of the Heston process, which exhibits the
stochastic volatility. Here we follow the multivariate pricing paradigm as advocated in
Da Fonseca & Ziveyi (2017); Ng & Li (2013) and adopt the copula-GARCH approach for
the formulation of the underlying asset processes.

The remainder of this chapter is organized as follows: section 4.2 reviews the
concept of copula relevant in this study; section 4.3 introduces the copula-GARCH
model; section 4.4 introduces the associated statistical tests; section 4.5 gives a detailed
demonstration of the rigorous data fitting process and then proceeds on the computation
of the corresponding VA contract; finally section 4.6 concludes.
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4.2 Review of the copula concept

4.2.1 Notions of copula

An d-dimensional copula C (u1, u2, . . . , ud) is a joint cumulative distribution function
in the unit hypercube [0, 1]d with uniform margins. As an example, let d = 2, a copula
function C(u1, u2) can be written as

C(u1, u2) ≡ P (U1 ⩽ u1, U2 ⩽ u2) ,

where the random variables U1, U2 are uniformly distributed on [0, 1].
Given a random variable X, the cumulative distribution function FX of X is defined

as

FX(x) ≡ P(X ⩽ x).

The quantile function (generalized inverse) function F−1
X of FX is defined as

F−1
X (u) = inf{x|FX(x) ⩾ u}, u ∈ (0, 1).

Lemma.1. Given a [0, 1]-uniformly distributed random variable U and a cumulative
distribution function F , the random variable X ≡ F−1(U) has the cumulative distribution
function F .

2. The random variable U ≡ FX(X) is uniformly distributed on [0, 1].

Proof.1.

FX(x) = P (X ⩽ x)

= P
(
F−1(U) ⩽ x

)
= P (U ⩽ F (x))

= F (x).

The last equality holds for U is [0, 1]-uniformly distributed.

2.

FU(u) = P (U ⩽ u)

= P (FX(X) ⩽ u)

= P
(
X ⩽ F−1

X (u)
)

= FX

(
F−1
X (u)

)
= u, u ∈ [0, 1]

which is the cumulative distribution function of a [0, 1]-uniformly distributed random
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variable.
Using the lemma, letX1, X2, . . . , Xd be random variables with cumulative distribution

functions FX1 , FX2 , . . ., FXd
; the random variables Ui ≡ FXi

(Xi), i = 1, 2, . . . , d are
uniformly distributed on [0, 1]. Furthermore, the function

C(X1,X2,...,Xd)(u1, u2, . . . , ud) ≡ P (U1 ⩽ u1, U2 ⩽ u2, . . . , Ud ⩽ ud)

= P (FX1(X1) ⩽ u1, FX2(X2) ⩽ u2, . . . , FXd
(Xd) ⩽ ud)

= P
(
X1 ⩽ F−1

X1
(u1), X2 ⩽ F−1

X2
(u2), . . . , Xd ⩽ F−1

Xd
(ud)

)
is a copula. The joint cumulative distribution function of (X1, X2, . . . , Xd) can be
recovered as

P (X1 ⩽ x1, X2 ⩽ x2, . . . , Xd ⩽ xd)

= P (FX1(X1) ⩽ FX1(x1), FX2(X2) ⩽ FX2(x2), . . . , FXd
(Xd) ⩽ FXd

(xd))

= P (U1 ⩽ FX1(x1), U2 ⩽ FX2(x2), . . . , Ud ⩽ FXd
(xd))

= C(X1,X2,...,Xd) (FX1(x1), FX2(x2), . . . , FXd
(xd))

The above discussion culminates in the

Theorem 4.2.1 (Sklar (1959); c.f. Durante & Sampi (2016); Joe (2014)). For a d-
variate distribution F with j-th univariate margin FXj

, the copula associated with F is a
distribution function C : [0, 1]d → [0, 1] with U(0, 1) margins that satisfies

F (x1, x2, . . . , xd) = C (FX1(x1), FX2(x2), . . . , FXd
(xd)) . (4.2.1)

If F is a continuous d-variate distribution function with univariate margins FX1 , FX2 , · · · , FXd

and quantile functions F−1
X1
, F−1

X2
, . . . , F−1

Xd
, then

C(u1, u2, . . . , ud) = F
(
F−1
X1

(u1), F
−1
X2

(u2), . . . , F
−1
Xd

(ud)
)

(4.2.2)

is the unique choice.

The copula function C : [0, 1]d → [0, 1] has the following properties:

1. C(u1, u2, . . . , ud) = 0 if at least one ui = 0.

2. C(1, . . . , 1, ui, 1, . . . , 1) = ui.

3. For each d-dimensional rectangle T ≡ [a1, b1] × [a2, b2] × · · · × [ad, bd], ai, bi ∈
[0, 1], ai < bi,

0 ⩽
∑

(m1,m2,...,md)∈T

(−1)#{j:mj=aj}C(m1,m2, . . . ,md) ⩽ 1.
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For example, if n = 2, then

0 ⩽ (−1)0C(b1, b2) + (−1)2C(a1, a2) + (−1)1C(b1, a2) + (−1)1C(a1, b2) ⩽ 1.

The copula uniquely determined in [0, 1]d for distributions F under absolutely
continuous margins FXi

has the density function (obtained by successively differentiate
the cdf (4.2.1) with respect to its arguments)

f (x1, x2 . . . , xd) = c (FX1(x1), FX2(x2) . . . , FXd
(xd))

d∏
i=1

fXi
(xi) (4.2.3)

where fXi
are the marginal densities and c is the density function of the copula given by

c (u1, u2 . . . , ud) =
f
(
F−1
X1

(u1), F
−1
X2

(u2) . . . , F
−1
Xd

(ud)
)

d∏
i=1

fXi

(
F−1
Xi

(ui)
) .

Another theorem important for the inference of copula is

Theorem 4.2.2 (Rank-Invariance). (c.f. Durante & Sampi (2016, Theorem 2.4.1))
Suppose the random variables X1, X2, . . . , Xd have continuous marginals and copula
CX and consider d continuous and strictly increasing mappings ϕi : ranXi → R, i =

1, 2, . . . , d. Then the dependence of the random variables Yi = ϕi(Xi), i = 1, 2, . . . , d is
also given by the copula CX .

Proof. Note that

FYi
(t) = P(Yi ⩽ t) = P(ϕi(Xi) ⩽ t) = P(Xi ⩽ ϕ−1

i (t)) = FXi
(ϕ−1

i (t)),

so a priori

F−1
Yi

(t) = ϕi

(
F−1
Xi

(t)
)
. (4.2.4)

Now

CY (u1, u2, . . . , ud) = FY

(
F−1
Y1

(u1), F
−1
Y2

(u2), . . . , F
−1
Yd

(ud)
)

by (4.2.2)
= P

(
Y1 ⩽ F−1

Y1
(u1), Y2 ⩽ F−1

Y2
(u2), . . . , Yd ⩽ F−1

Yd
(ud)

)
= P

(
ϕ1(X1) ⩽ F−1

Y1
(u1), ϕ2(X2) ⩽ F−1

Y2
(u2), . . . , ϕd(Xd) ⩽ F−1

Yd
(ud)

)
= P

(
X1 ⩽ ϕ−1

1 (F−1
Y1

(u1)), X2 ⩽ ϕ−1
2 (F−1

Y2
(u2)), . . . , Xd ⩽ ϕ−1

d (F−1
Yd

(ud))
)

= P
(
X1 ⩽ F−1

X1
(u1), X2 ⩽ F−1

X2
(u2), . . . , Xd ⩽ F−1

Xd
(ud)

)
by (4.2.4)

= CX(u1, u2, . . . , ud) by (4.2.2).
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4.2.2 Inference of copula

Consider the independent observations {(x1t, x2t, . . . xdt); t = 1, 2, . . . , T}; in the full-
parametric case assume that we have parametric models FX1(·;α1),

FX2(·;α2), . . . , FXd
(·;αd) for the marginal cumulative distribution functions and the

parametric copula C(·; θ) for the copula density. We wish to estimate the parameters
α̂1, α̂2, . . . , α̂d, θ̂ such that the observations fit the parametric model best; one of the most
venerable way of doing this is the maximum likelihood method: define the likelihood
function

L(α1, α2, . . . , αd, θ) =
T∏
t=1

{
c (FX1(x1t;α1), FX2(x2t;α2) . . . , FXd

(xdt;αd); θ)
d∏

i=1

fXi
(xit; αi)

}

then α̂1, α̂2, . . . , α̂d, θ̂ are determined by

(α̂1, α̂2, . . . , α̂d, θ̂) = argmax
α1,α2,...,αd,θ

L(α1, α2, . . . , αd, θ).

This α̂1, α̂2, . . . , α̂d, θ̂ also maximize the logarithm of L(α1, α2, . . . , αd, θ),

logL(α1, α2, . . . , αd, θ) =
T∑
t=1

log c (FX1(x1t;α1), FX2(x2t;α2), . . . , FXd
(xdt;αd); θ)

+
T∑
t=1

d∑
i=1

log fXi
(xit; αi),

(4.2.5)

which is more computationally convenient.
A variation of the above maximum likelihood method is that, instead of simultaneously

determining α̂1, α̂2, . . . , α̂d, θ̂ by maximizing the log likelihood function of (4.2.5), one
obtain the optimal parameters α̃1, α̃2, . . . , α̃d, θ̃ successively by

α̃i = argmax
αi

T∑
t=1

log fXi
(xit, αi), i = 1, 2, . . . , d

and

θ̃ = argmax
θ

T∑
t=1

log c (FX1(x1t; α̃1), FX2(x2t; α̃2), . . . , FXd
(xdt; α̃d); θ).

Joe (2005) establishes the asymptotic efficiency of this optimization scheme.
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4.2.3 Parametric copula families

We have put forward some salient features of the parametric copula families pertinent
to this study; for an extensive overview of parametric copula families see Joe (2014,
Chapter 4).

4.2.3.1 Gaussian copula

Using Sklar’s theorem (4.2.2), given a correlation matrix R, the Gaussian copula can
be written as

C(u1, u2, . . . , ud) = ΦR

(
Φ−1(u1),Φ

−1(u2), . . .Φ
−1(ud)

)
where ΦR : Rd → R is the joint cumulative distribution function of a multivariate Gaussian
distribution with mean 0 and covariance R, and Φ−1 is the inverse of the cumulative
distribution function of a standard Gaussian distribution. In other words,

C(u1, u2, . . . , ud) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
· · ·
∫ Φ−1(ud)

−∞

exp
(
−1

2
x′R−1x

)√
(2π)d|R|

dx

where

Φ(x) =
1√
2π

∫ x

−∞
exp

(
−1

2
τ 2
)

dτ.

The Gaussian copula is of the elliptical family, which means the trace of distribution is
elliptically contoured and concentrated.

4.2.3.2 Student t copula

A random vector x ∈ Rd is said to be a multivariate t distribution with ν degrees
of freedom, mean vector µ and positive-definite dispersion matrix Σ if the probabilistic
density function f(x) is

f(x) =
Γ
(
ν+d
2

)
Γ
(
ν
2

)√
(πν)d|Σ|

(
1 +

(x− µ)′Σ−1(x− µ)

ν

)− ν+d
2

Again using (4.2.2), the Student t copula can be written as

C(u1, u2, . . . , ud) =

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞
· · ·
∫ t−1

ν (ud)

−∞

Γ
(
ν+d
2

)
Γ
(
ν
2

)√
(πν)d|P |

(
1 +

x′P−1x

ν

)− ν+d
2

dx
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where the covariance matrix P = ν
ν−2

Σ and

tν(x) =

∫ x

−∞

Γ
(
ν+1
2

)
Γ
(
ν
2

)√
νπ

(
1 +

τ 2

ν

)− ν+1
2

dτ.

For d = 2, P can be written as (
1 ρ

ρ 1

)

with constant ρ. The Student t copula is also of the elliptical family, but with more tail
points than the Gaussian copula and better suited for extreme events formulation.

4.2.3.3 Archimedean copula

A copula is called Archimedean if it has the representation

C(u1, u2, . . . , ud; θ) = ψ−1(ψ(u1; θ) + ψ(u2; θ) + · · ·+ ψ(ud; θ); θ)

where ψ : [0, 1]×Θ → [0,∞) is a continuous, strictly increasing and convex function with
ψ(1; θ) = 0, and ψ−1 is the pseudo inverse function of ψ defined as

ψ−1(t; θ) =

ψ(−1)(t; θ) 0 ⩽ t ⩽ ψ(0, θ)

0 ψ(0, θ) ⩽ t ⩽∞

and ψ(−1) is the ordinary inverse function of ψ. Archimedean copulas are popular for
their simple, closed-form representations. Table 4.1 is a summary of common bivariate
Archimedean copulas.

name ψ(t; θ) ψ−1(t; θ) C(u1, u2) range of θ

Ali-Mikhail-Haq log 1−θ(1−t)
t

1−θ
et−θ

u1u2

1−θ(1−u1)(1−u2)
θ ∈ [−1, 1)

Clayton 1
θ

(
t−θ − 1

)
(1 + θt)−

1
θ

(
max(u−

1
θ

1 + u
− 1

θ
2 − 1, 0)

)− 1
θ

θ ∈ [−1,∞) \ {0}

Frank − log e−θt−1
e−θ−1

−1
θ

log
(
1− e−t + e−(θ+t)

)
−1

θ
log
(
1 +

(e−θu1)(e−θu2−1)
e−θ−1

)
θ ∈ R \ {0}

Gumbel (− log t)θ e−t
1
θ e−((− logu1)

θ+(− logu2)
θ)

1
θ

θ ∈ [1,∞)

Table 4.1: Common Archimedean Copulas

4.2.4 Conditional copula and beyond

The application we have in mind is the contingent claim pricing problem

(claim price) = e−rT EQ {Φ(ST )|F0}
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where r is the risk-free interest rate, T the time horizon, ST ≡ (S1,T , S2,T , . . . , Sd,T ) the
value of d assets Si at time T , Φ the payoff function, Q the martingale measure, and F0

the filtration at initial time 0. We will specify the distribution of ST as a copula CT ,
and naturally the term Ct(·|F0) also needs to be specified. In Patton (2006), the author
formalizes the idea as follows. Let X = (X1, X2, . . . , Xd) be a d-dimensional random
vector from (Ω,A0,P) to Rd. For a sub-algebra A ⊆ A0, the conditional copula C∗

associated with (X,A) is defined as, for x ≡ (x1, x2, . . . , xd) ∈ Rd,

P (X ⩽ x|A) = C∗ (P (X1 ⩽ x1|A) ,P (X2 ⩽ x2|A) , . . . ,P (Xd ⩽ xd|A) |A)

Sklar’s theorem holds under this extension: C∗(·|A) is an uniquely defined copula for
A ⊆ A0. However, in this formulation the information set A should be the same for all
margins, which is inconvenient for practitioners; it is desirable to estimate each margin
using its own past information and introduce the dependency later.

Consider the d-dimensional process {Xm ≡ (Xm,1, Xm,2, . . . , Xm,d)}, m ∈ N; we
are interested in the copula function C∗(·|Am), where Am = σ(Xm−1, Xm−2, . . . , X1)

is the filtration generated by past m − 1 vectors. Similarly, define Am,i =

σ(Xm−1,i, Xm−2,i, . . . , X1,i) as the filtration generated by past m − 1 i-th component of
X·. Formally, we would like to have

P (Xm ⩽ x|Am) = C∗ (P (Xm,1 ⩽ x1|Am,1) ,P (Xm,2 ⩽ x2|Am,2) , . . . ,P (Xm,d ⩽ xd|Am,d))

Should C∗ be a copula, by property 2 we have

P (Xm,1 ⩽ x1|Am) = C∗ (P (Xm,1 ⩽ x1|Am,1) , 1, 1, . . . , 1) = P (Xm,1 ⩽ x1|Am,1)

and the same relation holds for all margins. The implication is strong — each variable
depends on its own history only, which is not always the case in applications. Fermanian &
Wegkamp (2012) introduce notions to mitigate this problem, but inference and estimation
problems persist. In order to proceed, we have to content ourselves with this simplifying
assumption as in (almost all) other papers, e.g. Chiou & Tsay (2008); Patton (2006);
Rosenberg (1998, 2003); van den Goorbergh et al. (2005); Zhang & Guégan (2008).

4.3 The Copula-GARCH model
The Semiparametric Copula-Based Multivariate Dynamic (SCOMDY) model introduced

in Chan et al. (2009); Chen & Fan (2006a,b) is a class of multivariate time series model
which is characterized by parametric multivariate conditional mean and variance, an
infinite-dimensional marginal distribution of the individual standardized innovation, and
the parametric copula of all standardized innovations. The d-dimensional time series xt
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which satisfies the SCOMDY model can be represented as

xt = µt + σt εt (4.3.1)

where µt = E{xt | Ft−1}, σt = diag
(√

E{(xt − µt)2 | Ft−1}
)

and Ft−1 denotes the
σ-algebra (information set) up to time t − 1. The standardized innovations εt ≡
(ε1t, ε2t, . . . , εdt) are independent of Ft−1, i.i.d. distributed with E{εit} = 0 and E{ε2it} = 1

for each i, and the distribution function of εt is of the form c(F1(ε1t), F2(ε2t), . . . , Fd(εdt)),
where each Fi is the marginal distribution of εi and c is a parametric copula.

The Copula-GARCH model is a special case of SCOMDY where each component of
the multivariate time series is of GARCH(p, q); an univariate time series xt is said to be
of GARCH(p, q) if

xt = µ+ σt εt, σ2
t = ω +

q∑
j=1

αj ε
2
t−j +

p∑
j=1

βj σ
2
t−j

where µ, ω are constants, σ2
t denotes the conditional variance, and εt the i.i.d. random

numbers with mean 0 and variance 1. For p, q = 1 we simply write α ≡ α1 and β ≡
β1. Two of the most common choices of the distribution of the innovation εt are the
Gaussian distribution and the generalized error distribution. A random variable X is
of the generalized error distribution with parameter ν, denoted as X ∼ ged(ν), if the
probability density function f(x) of X is

f(x) =
1

ζ 21+
1
ν Γ
(
1 + 1

ν

)e− 1
2(

|x|
ζ )

ν

, x ∈ R, ζ = 2−
1
ν
Γ
(
1
ν

)
Γ
(
3
ν

) .
In this case EX = 0, EX2 = 1 and hence varX = 1. Note that the special case ν = 2

corresponds to the Gaussian distribution.

4.4 Statistical tests
Here we briefly introduce all statistical tests used in our research. Theoretical

underpinnings of these tests are results of empirical processes (c.f. Billingsley (1999);
Dudley (1999); Gaenssler & Stute (1987); Kosorok (2008); Shorack & Wellner (1986);
van der Vaart & Wellner (1996)), bootstrap sampling, and properties of copula; the full
elucidation and validation of these tests is beyond the scope of this chapter and are
detailed in the original papers of Bai (2003); Genest & Rémillard (2004, 2008); Ghoudi
& Rémillard (2014); Nasri & Rémillard (2018); Rémillard (2011, 2012, 2017).

The necessity of introducing these statistical tests is amplified by the prevalent
practice of the followings:
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Independence test using autocorrelation: the Ljung-Box test. Given an
univariate stationary time series {x1, x2, . . . , xn}, to test the serial independency within
the sequence people often resort to test the autocorrelation; one of the most used tests is
the Ljung-Box statistic

QLB = n(n+ 2)
h∑

j=1

ρ̂(j)2

n− j

where n is the sample size and ρ̂(j) is the sample autocorrelation. Under the null
hypothesis of serial independence the distribution ofQLB is asymptotically χ2(h). However
it can be shown that the following time series

x1 ∼ U(0, 1), xi+1 = 1− |2xi − 1|, i ⩾ 1.

has strong serial dependence but zero autocorrelations (c.f. Rémillard (2013, pp.64)).

Normality test using empirical skewness/kurtosis: the Jarque-Berra test. The
Jarque-Bera test is a goodness-of-fit test of whether sample data have the skewness and
kurtosis matching a normal distribution. The test statistic JB is defined as

JB = n

(
s2

6
+

(c− 3)2

24

)
where n is the sample size and s, c are the sample skewness and curtosis, respectively.
Under the null hypothesis of normality the distribution of JB is asymptotically χ2(2).
However, for small samples the chi-squared approximation is overly sensitive, often
rejecting the null hypothesis when it is true. Furthermore, the distribution of p-values
departs from a uniform distribution and becomes a right-skewed uni-modal distribution,
especially for small p-values. This leads to a large Type I error rate (c.f. Rémillard (2013,
pp.66)).

Goodness-of-fit test of copula using AIC exclusively. The Akaike information
criterion (AIC) is an estimator of the relative quality of statistical models for a given
set of data; it orginates from information theory considerations. Let k be the number
of estimated parameters in the model and L̂ be the maximum value of the likelihood
function of the model. Then the AIC value of the model is

AIC = 2k − log L̂

which is relatively simple to compute. AIC does not provide a test of a model in the sense
of testing a null hypothesis. It tells nothing about the absolute quality of a model, only
the quality relative to other models. Thus, if all the candidate models fit poorly, AIC
will not give any warning. However, many applied papers use AIC as the only means for
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copula goodness-of-fit testing.
To decide whether a typical multivariate time series belongs to a certain copula-

GARCH model we follow the steps

1. test of structural change to see if the probability distribution is time-invariant;

2. test of independence;

3. test if each component of the multivariate time series satisfy a certain GARCH
model;

4. test the copula goodness-of-fit to decide what kind of the copula family does the
innovation of the multivariate time series belong to.

Hereafter we introduce the statistical tests in this order.

4.4.1 Structural change tests

4.4.1.1 Structural change test for univariate time series

Given the observations e1, e2, . . . , en, we wish to detect the inherent structural
changes. The null hypothesis is that all the observations have the same distribution,
while the alternative hypothesis is that there exists a τ < n such that e1, e2, . . . , eτ are of
the same distribution, say D1, and eτ+1 is of a distribution differ from D1. Set

Tn ≡ Tn(e1, e2, . . . , en) =
1√
n

max
1⩽k⩽n

max
1⩽i⩽n

∣∣∣∣∣
k∑

j=1

1 (ej ⩽ ei)− kTn(ei)

∣∣∣∣∣
where

Tn(x) =
1

n

n∑
i=1

1 (ei ⩽ x) ,

it is shown in Rémillard (2011, 2012) that under the null hypothesis Tn converges in
distribution to a parameter-free distribution; for k = 1, 2, . . . , N , generate n independent
(0, 1) uniformly distributed random variable U (k)

1 , U
(k)
2 , . . . , U

(k)
n , compute

T (k)
n = Tn

(
U

(k)
1 , U

(k)
2 , . . . , U (k)

n

)
Then the associated p-value is estimated by

1

N

N∑
k=1

1
(
T (k)
n > Tn

)
.
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4.4.1.2 Structural change test for copula

Set

Kn(e1, e2, . . . , en) =
1√
n

max
1⩽k⩽n

max
1⩽i⩽n

∣∣∣∣∣
k∑

j=1

1 (ej ⩽ ei)− kKn(ei)

∣∣∣∣∣
where

Kn(x) =
1

n

n∑
i=1

1 (ei ⩽ x)

for k = 1, 2, . . . , N , generate n independent standard Gaussian random variable ξ(k)1 , ξ(k)2 ,
. . . , ξ

(k)
n .

K(k)
n (e1, e2, . . . , en) =

1√
n

max
1⩽k⩽n

max
1⩽i⩽n

∣∣∣∣∣
k∑

j=1

ξ
(k)
j {1 (ej ⩽ ei)−Kn(ei)}

∣∣∣∣∣
The p-value is estimated by

1

N

N∑
k=1

1
(
K(k)

n > Kn

)
.

4.4.2 Independence test

Following Genest & Rémillard (2004), let X1, X2, . . . , Xn be n identically distributed
d-dimensional random vectors, each with continuous margins F1, F2, . . . , Fd. If d ⩾ 2,
then for A ∈ Ad = {B ⊂ {1, 2, . . . , d}||B| > 1} and any x = (x1, x2, . . . , xd) ∈ Rd, let

Gn,A(x) =
1√
n

n∑
i=1

∏
j∈A

{1 (Xij ⩽ xj)− Fjn(xj)}

=
1√
n

n∑
i=1

∏
j∈A

{1 (Uij ⩽ Fj(xj))−Djn(Fj(xj))}

where Uij = Fj(Xij), |A| is the cardinality of A, and

Fjn(y) = Djn(Fj(y)) =
1

n
1 (Xij ⩽ y) =

1

n
1 (Uij ⩽ Fj(y)) .

Under the null hypothesis of independence, the Cramér-von Mises statistics

Vn,A =
6|A|

n

n∑
i=1

Gn,A(Xi)
2

58



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101641

converge jointly in law to VA. If |A| = k, then VA has the same law of

6k

π2k

∞∑
i1=1

∞∑
i2=1

· · ·
∞∑

ik=1

Z2
i1 i2 ... ik

(i1 i2 . . . ik)2

where each Zi1 i2 ... ik is i.i.d standard Gaussian. For each k = 1, 2, . . . , N , generate n

independent random vectors

U
(k)
i = (U

(k)
i1 , U

(k)
i2 , . . . , U

(k)
id ) ∼ C⊥, i = 1, 2, . . . , n

Compute the associated V
(k)
n,A for A ∈ Ad; the associated p-value pn,A is estimated by

pn,A =
1

N

N∑
k=1

1
(
V

(k)
n,A > Vn,A

)
, A ∈ Ad.

Set

Fn = −2
∑
A⊂Ad

log pn,A

Under the null hypothesis of independence, the p-values pn,A converge to independent
uniform variables, so Fn ⇝ F , where F is a chi-square distribution with 2d+1 − 2d − 2

degrees of freedom.

4.4.2.1 Serial independence test

Similarly as above, letX1, X2, . . . , Xn be identically distributed observations. Let d ⩾
2, then for A ∈ Ad = {B ⊂ {1, 2, . . . , d}||B| > 1, 1 ∈ B} and any x = (x1, x2, . . . , xd) ∈
Rd, set

Gn,A(x) =
1√
n

n∑
i=1

∏
j∈A

{1 (Xi+j−1 ⩽ xj)−Hn(xj)}

where |A| is the cardinality of A and

Hn(y) =
1

n
1 (Xi ⩽ y) .
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We also set Xn+i = Xi for i ∈ {1, 2, . . . , d}. Under the null hypothesis of independence,
the Cramér-von Mises statistics

Vn,A =
6|A|

n

n∑
i=1

Gn,A(Xi, Xi+1, . . . , Xi+d−1)
2

converge jointly in law to VA. If |A| = k, then VA has the same law of

6k

π2k

∞∑
i1=1

∞∑
i2=1

· · ·
∞∑

ik=1

Z2
i1 i2 ... ik

(i1 i2 . . . ik)2

where each Zi1 i2 ... ik is i.i.d. standard Gaussian. For each k = 1, 2, . . . , N , generate n
independent (0, 1)-uniform random variables U (k)

1 , U
(k)
2 , . . . , U

(k)
n . Compute the associated

V
(k)
n,A for A ∈ Ad; the associated p-value pn,A is estimated by

pn,A =
1

N

N∑
k=1

1
(
V

(k)
n,A > Vn,A

)
, A ∈ Ad.

Set

Fn,d = −2
∑
A⊂Ad

log pn,A

Under the null hypothesis of independence, the p-values pn,A converge to independent
uniform variables, so Fn,d ⇝ Fd, where Fd is a chi-square distribution with 2d−2 degrees
of freedom.

4.4.3 Specification tests of GARCH models

Specification tests for the GARCH model consists of two parts: testing for the
independence and the goodness-of-fit of the innovation distribution; the former is treated
in the previous section, and in this section we focus on the latter.

4.4.3.1 Bai’s test

One of the first rigorous goodness-of-fit tests of the Gaussian innovation is given
in Bai (2003). Given the observations e1, e2, . . . , en, set ui = N (ei), i = 1, 2, . . . , n and
vi, i = 1, 2, . . . , n be the ordered statistics of ui, i = 1, 2, . . . , n and v0 = 0, vn+1 = 1. Let

g(s) =
(
1,−N−1(s), 1−

(
N−1(s)

)2)⊤
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and

C(s) =

∫ 1

s

g(τ) g(τ)⊤ dτ.

Set Vn(s) = 1√
n

∑n
i=1 {1 (vi ⩽ s)− s}, the Khmaladze transform Wn of Vn is

Wn(s) = Vn(s)−
∫ s

0

{
g(t)⊤C−1(t)

∫ 1

t

g(τ) dVn(τ)
}

dt.

Under the null hypothesis that ei, i = 1, 2, . . . , n are Gaussian, Wn converges to a Brownian
motion. The Kolmogorov-Smirnov statistic KS and the Cramér-von Mises statistic CvM
are defined respectively by

KS = max
i=1,2,...,n

|Wn(vi)|, CvM =
1

n

n∑
i=1

Wn(vi)
2 (vi+1 − vi) .

4.4.3.2 Parametric bootstrap for generic innovation distribution

Following Genest & Rémillard (2008); Rémillard (2011), to estimate the p-value of a
generic test statistic S, perform the following steps:

• Use e1, e2, . . . , en to estimate the GARCH model with the given innovation
distribution; let the estimation be θ and the computed test statistic be S.

• For each i = 1, 2, . . . , N simulate the GARCH series with parameter θ; estimate the
new GARCH parameters using the simulated series and compute the test statistics
Si.

• The approximated p-value is

1

N

N∑
i=1

1 (Si > S)

4.4.4 Goodness-of-Fit test of copula

Following Kojadinovic & Yan (2010); Rémillard (2017), the parametric bootstrap
consists of the steps:

• Compute Cn from the pseudo-observations U1, U2, . . . , Un.

• Compute the test statistics Sn,

Sn =
n∑

i=1

(Cn(Ui)− Cθn(Ui))
2 .
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• For a large N , repeat the following steps for k = 1, 2, . . . , N :

– Generate a random sample X(k)
1 , X

(k)
2 , . . . , X

(k)
n from copula Cθn and compute

the associated pseudo-observations U (k)
1 , U

(k)
2 , . . . , U

(k)
n .

– Let

C(k)
n (u) =

1

n

n∑
i=1

1
(
U

(k)
i ⩽ u

)
, u ∈ [0, 1]d

and compute an estimate θ(k)n of θ from U
(k)
1 , U

(k)
2 , . . . , U

(k)
n .

– Compute S(k)
n by

S(k)
n =

n∑
i=1

(Cn(Ui)− Cθn(Ui))
2 .

• An approximate p-value for the test is given by

1

N

N∑
i=1

1
(
S(k)
n > Sn

)
.

4.5 Valuation
Algorithm (The Copula-GARCH Model Calibration and Simulation). Given the data
matrix {Xi}Ni=1 with rows Xi = (xi1, xi2, . . . , xid), fit the copula-GARCH model and
generate l paths, each has m spots.

1. Test the data columnwise to see if the GARCH requirements are satisfied. Derive the
corresponding GARCH parameters and the residuals series; assemble the column vectors
of residuals into a matrix Y .

2. Test if Y satisfies the static copula conditions. Perform goodness-of-fit (GoF) test of the
copulas to select a copula that best fits the data; fit the selected copula with pobs(Y ),
where pobs(·) is the pseudo-observation function.

3. Generate m random variates {Ui ≡ (ui1, ui2, . . . , uid)}mi=1 from the fitted copula.

4. Compute the standardized residuals {Zi ≡ (zi1, zi2, . . . , zid)}mi=1, where zij = qj(uij) and
qj is the quantile function of generalized error distribution ged(νj).

5. Simulate the GARCH model using the dependent standardized residuals Zi as innovations.
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4.5.1 The data

Monthly data from the S&P 500 Index (S&P500) and the S&P SmallCap 600 Index
(S&P600) for the period October 1994 (S&P600 index inception date) to December 2017
are used. The S&P500 is a representation of large-cap U.S. stocks, whereas the S&P600
represents the small-cap range.
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Figure 4.1: Monthly Log Return of S&P500 and S&P600

4.5.2 Statistical tests and model calibration

We have set the number of bootstrap replications to 2, 000 in the following sections1.

4.5.2.1 GARCH specification tests

Here we use the R package rugarch (Ghalanos (2018)) for GARCH model calibration
and the R package copula (Hofert et al. (2017)) for bootstrap tests. First we perform
the structural change test to the residual series to see if this basic assumption of GARCH
holds; the relatively large p-values show that one cannot reject the null hypothesis of no
structural changes at the 5% confidence level (Table 4.2).

We assume that each of the log return series satisfies GARCH(1,1) model with
Gaussian innovations and estimate the GARCH coefficients and the residuals (Table 4.3).
Then we perform the goodness-of-fit test against the residuals. Using Bai’s algorithm
in 4.4.3.1 for the computation of CvM and KS statistics and the corresponding 95%
confidence band, Figures 4.2 and 4.3 show that the innovations of both series do not lie

1The bootstrap method is a stochastic sampling procedure first proposed in 1979 by Bradley Efron to
estimate the probability distribution. Due to its time-consuming nature, Prof. Efron suggests that 100
— 1000 repetitions are sufficient for the purpose.
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Table 4.2: Structural Changes Test of Residuals

Underlying KS statistic p-value of KS (%)
S&P 500 0.5718 50.4
S&P 600 0.5568 56.5

within the 95% confidence band. Furthermore the result in Table 4.4 indicates that, with
the tiny p-values, the null hypothesis that the innovations obey the Gaussian law should
be rejected at the 5% level.

Table 4.3: Estimated GARCH coefficient: Gaussian Innovations

Underlying µ ω α β

S&P 500 4.71e-5 3.25e-5 0.23 0.57
S&P 600 6.22e-4 1.37e-5 0.0911 0.842

Table 4.4: Result: Goodness-of-Fit Test of Gaussian Innovation

Underlying CvM statistic KS statistic p-value of CvM (%) p-value of KS (%)
S&P 500 54.2635 20.8522 � 1 � 1
S&P 600 36.2823 19.4951 � 1 � 1
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Figure 4.2: Goodness-of-Fit Test of GARCH with Gaussian Innovation: S&P500 Monthly
Series

Now we assume that each of the log return series satisfies GARCH(1,1) model with
GED innovations and estimate the GARCH coefficients and the residuals (Table 4.5).
Again we perform the goodness-of-fit test against the residuals. Using the parametric

64



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101641

−20

−15

−10

−5

0

0.00 0.25 0.50 0.75 1.00
x

va
lu

e

variable

Estimated

95% Upper Bound

95% Lower Bound

Figure 4.3: Goodness-of-Fit Test of GARCH with Gaussian Innovation: S&P600 Monthly
Series

bootstrap procedure in 4.4.3.2 for the computation of CvM and KS statistics and the
corresponding 95% confidence band, Figures 4.4 and 4.5 show that the innovations of
both series do lie within the 95% confidence band. Furthermore the result in Table 4.6
indicates that, with the relatively large p-values, the null hypothesis that the innovations
obey the GED law cannot be rejected at the 5% confidence level.

Table 4.5: Estimated GARCH coefficients: GED Innovations

Underlying µ ω α β ν

S&P 500 3.28e-4 3.29e-5 0.215 0.566 0.929
S&P 600 5.62e-4 3.58e-5 0.130 0.680 1.120

Table 4.6: Result: Goodness-of-Fit Test of GED Innovations

Underlying CvM statistic KS statistic p-value of CvM (%) p-value of KS (%)
S&P 500 0.0246 0.5419 87.70 68.60
S&P 600 0.0338 0.5203 65.55 62.80

4.5.2.2 Copula related

All computations in this section are done using the R package copula (Hofert et al.
(2017)). We test if the collection of residuals form a stationary— i.e. without structural
changes— copula; the null hypothesis of being stationary cannot be rejected at the 5%
confidence level (Table 4.7). This is vital for our subsequent development.
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Figure 4.4: Goodness-of-Fit Test of GARCH with GED Innovation: S&P500 Monthly
Series
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Figure 4.5: Goodness-of-Fit Test of GARCH with GED Innovation: S&P600 Monthly
Series

Table 4.7: Test of Structural Changes: Copula

Threshold KS statistic Empirical p-value (%)
0.5704 100
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Next we perform the goodness-of-fit test of copula to select the best fit among the
common parametric copula families. The copula with the highest p-value would be the
model best suited to our data, in this case, the Student t copula. (Table 4.8).

Table 4.8: Result: Goodness-of-Fit Test of Copulas

Copula p-value (%) parameters
Clayton 0.025
Frank 0.375

Gumbel 4.320
Gaussian 79.20
Student t 82.40 ρ = 0.879, ν = 6.244

4.5.3 Variable annuities contract evaluation

Following the setup in Da Fonseca & Ziveyi (2017); Ng & Li (2013), we first evaluate
guaranteed minimum maturity benefit (GMMB) riders written on a fund with multiple
underlying assets. Suppose at time 0 the policyholder makes a single lump sum payment
P and invested in n different subaccount funds. The portfolio of the policyholder consists
wi units of the i-th subaccount fund with its corresponding subaccount value Si,t at time
t; note that P =

∑n
i=1wi Si,0, where the sum of the weighted subaccount values equals

the payment P . Here we assume that the wi’s are constant over time and the subaccount
funds are non-dividend-paying. At time t the value of the portfolio Ft is

Ft =
n∑

i=1

wi Si,T (1−m)t

where m is the monthly management charge. Then the payoff function of the GMMB is

max (Pg − FT , 0)

where g is the guarantee level in percentage. The value of the GMMB is

Tpx · e−rT EQ{max (Pg − FT , 0) |F0}

where Tpx denotes the probability that the policyholder is x years old at policy inception
and still alive and had not withdrawn at t = T , r denotes the risk-free interest rate, and
EQ{·|F0} denotes the conditional expectation under the risk-neutral martingale measure
Q with respect to the initial filtration F0.
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Similarly, we evaluate the guaranteed minimum death benefit (GMDB) rider

T∑
t=1

t|qx · e−rt EQ{max (Pg − Ft, 0) |F0}

where t|qx denotes the probability that the policyholder is x years old at policy inception
and dies during t and t+ 1 and had not withdrawn at t; note that t|qx = tpx − t+1px.

We set the following parameters for comparison purposes:

• age at policy inception (x): 45, 50, 60 years old;

• premium (P ): $10 000 paid at policy inception;

• portfolio: 2 non-dividend-paying subaccount funds;

• withdrawal: $0 (none, for simplicity);

• guarantee level (g): 60%, 80%, 100%, 120%;

• annual management charge (AMC): the management charge is quoted as an annual
percentage charge and deducted monthly from the fund. An AMC of 3% is
equivalent to the monthly management charge m = 0.03

12
= 0.0025;

• maturity (T ): 5, 10, 20 years;

• mortality: assuming that µx = A+Bcx (Makeham’s Law) with A = 5.4×10−4, B =

9.5929× 10−6, c = 1.1085.

Note that (c.f. (2.19) in Dickson et al. (2013))

tpx = exp
{
−
∫ t

0

µx+τ dτ
}

= exp
{
−
∫ t

0

A+Bcx+τ dτ
}

= e−At−Bcx(ct−1)
log c

The values are computed using Monte Carlo simulations; each value is computed via
106 simulations. Table 4.9 tabulates the results of the guarantee values expressed as a
percentage of initial premium for both the GMMB and GMDB riders under the copula-
GARCH model.

4.6 Conclusion
We reviewed the copula concept and its parametric families, adopted the multivariate

copula-GARCH model for the valuation of the various levels of guarantees embedded in
variable annuities where there are multiple underlying assets in the portfolio or fund.
To reduce the error of model misspecification, rigorous statistical inference procedures

68



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101641

based on the empirical processes theory are implemented throughout; specifically, the
GARCH specification test and the copula goodness-of-fit test. Although copulas are used
by practitioners as a standard tool for portfolio risk management due to its ability to
model the dependency of individual risks within the insurer’s portfolio faithfully, however,
a vast majority of existing literature often making model assumptions without justification
or conducting insufficient statistical tests to verify the adequacy of such selection. We
provide a theoretically and mathematically sound methodology of which we base our
model selection upon. As a result, we were able to show through demonstration, that by
implementing this methodology, one can derive a more precise assessment of the costs of
these embedded guarantees in variable annuities.
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Table 4.9: Simulated Guarantee Values Expressed As Percentage of Initial Premium:
Copula-GARCH Model

Maturity (yrs) Starting Age Guarantee Level GMMB (%) GMDB (%)
5 45 0.60 0.0000 0.0000
5 45 0.80 0.0000 0.0000
5 45 1.00 9.6444 0.0625
5 45 1.20 27.5488 0.2464
5 50 0.60 0.0000 0.0000
5 50 0.80 0.0000 0.0000
5 50 1.00 9.5559 0.0927
5 50 1.20 27.4372 0.3663
5 60 0.60 0.0000 0.0000
5 60 0.80 0.0000 0.0000
5 60 1.00 9.3794 0.2269
5 60 1.20 26.8793 0.8927
10 45 0.60 0.0000 0.0000
10 45 0.80 0.1985 0.0007
10 45 1.00 16.1619 0.2667
10 45 1.20 32.1962 0.6964
10 50 0.60 0.0000 0.0000
10 50 0.80 0.2228 0.0012
10 50 1.00 15.9686 0.4065
10 50 1.20 31.7953 1.0567
10 60 0.60 0.0000 0.0000
10 60 0.80 0.1877 0.0026
10 60 1.00 15.2762 1.0130
10 60 1.20 30.2171 2.6071
20 45 0.60 0.0000 0.0000
20 45 0.80 10.1725 0.4171
20 45 1.00 22.5676 1.4938
20 45 1.20 35.0072 2.7326
20 50 0.60 0.0000 0.0000
20 50 0.80 9.7553 0.6553
20 50 1.00 21.6061 2.3233
20 50 1.20 33.5523 4.2451
20 60 0.60 0.0000 0.0000
20 60 0.80 8.0011 1.5143
20 60 1.00 17.7338 5.4932
20 60 1.20 27.4773 10.0656
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5
Conclusion and Future Work

In the opening chapter we examine the fair pricing of interest rate sensitive life
insurance policies that are commonly sold in Taiwan. It is well known that the asset’s
log-return distribution is non-Gaussian; inadvertent uses of Gaussian models could lead
to underestimation of losses and hugely mispriced derivative products. With the reference
portfolio following Heston’s stochastic volatility process, the payoff function of these
policies consists of a series of forward-start options. Although the option to surrender are
standard features of these policies, policyholders incur heavy penalties should they exercise
such option. Given certain policyholder behaviour, we study the impact of the minimum
guaranteed interest rate, and the annually declared bonus rate on the issuing company’s
solvency. Parameters in the models are calibrated from Taiwanese data; the liability
reserve, the expected surplus / deficit of the bonus stabilization reserve, and standard
risk measures such as VaR and ES are computed through Monte Carlo simulations.

Given the sheer volume of the international bonds listed on the Taipei Exchange
that are held by the life insurers in Taiwan, coupled with the lack of a liquid secondary
market, the need for pricing transparency and a reliable source of reference is of utmost
importance. We provide the life insurers the means to evaluate the mark-to-market value
of these callable bonds without having to rely on third parties to do so. We are able
to collate publicly available data and make use of open source software to construct a
bespoke system that can independently price the international bonds.

In the last chapter, the copula concept with its multivariate time-series model
generalization, namely the copula-GARCH model, and robust statistical inference
procedures based on the theory of empirical processes are investigated in depth. A vast
majority of existing literature on applications of copula often makes assumptions without
justification or conducts inadequate statistical tests for verifications. Here we demonstrate
what we believed to be the preferred way of using copula for financial and risk management
applications by the detailed valuation of guarantees embedded in variable annuities with
multiple underlying assets.

Throughout these studies we have insisted on model calibration using open-sourced
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subroutines and actual market data to ensure maximum transparency, reproducibility and
applicability. In the ISL chapter, our model is constructed to the specifications of the
most popular life insurance policy in Taiwan and its parameters estimated using Taiwanese
market data. It can be easily adopted by other markets with similar products and our
results are of interest to practitioners and the regulatory authorities. The international
bonds evaluation presented here is based on the single factor Hull-White short rate model
with publicly available datasets and open source library QuantLib. The development
of the copula-GARCH model makes heavy use of the R programming language and
associated high-quality packages.

The current studies could be expanded in various ways. The values of long-maturity
insurance products are especially susceptible to the comovement of asset price and interest
rate; it is much desirable to have a stochastic model that can faithfully characterize the
market. The Heston stochastic volatility asset model with uncorrelated CIR stochastic
interest rate model setup could be replaced by other correlated stochastic volatility and
interest rate combinations such as the Schöbel-Zhu-Hull-White (SZHW) model (van
Haastrecht et al. (2009)). An additional benefit of adopting the SZHW model is the
possible incorporation of the surrender option mechanism in pricing and hedging of
ISL policies. The Hull-White short-term interest rate model with trinomial tree are
used for callable bond pricing, but an even more sensible choice would be the LIBOR
market model with explicit considerations of exchange rates and credit risks. Aside from
the tree methods, the embedded option pricing algorithm could adopt the least-square
Monte Carlo (LSM) method (Longstaff & Schwartz (2001)) and its extensions. From the
standpoint of the issuer of international bonds, concerns regarding hegding proves to be
more important than pricing itself. The pursuit of these avenues of research should be
rewarding and is left for future work.

72



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101641

A
Interest Rate Tickers

Table A.1: US Treasury Constant Maturity Rate

Treasury Constant Maturity Rate Code
30-Year DGS30
20-Year DGS20
10-Year DGS10
7-Year DGS7
5-Year DGS5
3-Year DGS3
2-Year DGS2
1-Year DGS1
6-Month DGS6MO
3-Month DGS3MO
1-Month DGS1MO

Table A.2: USD LIBOR Rates

LIBOR Rates (USD) Code
Overnight USDONTD156N
1-Week USD1WKD156N
1-Month USD1MTD156N
2-Month USD2MTD156N
3-Month USD3MTD156N
6-Month USD6MTD156N
12-Month USD12MD156N
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Table A.3: ICE Swap Rates (USD), 11:00 A.M. (London Time)

ICE Swap Rates Code
1 Year ICERATES1100USD1Y
2 Year ICERATES1100USD2Y
3 Year ICERATES1100USD3Y
4 Year ICERATES1100USD4Y
5 Year ICERATES1100USD5Y
6 Year ICERATES1100USD6Y
7 Year ICERATES1100USD7Y
8 Year ICERATES1100USD8Y
9 Year ICERATES1100USD9Y
10 Year ICERATES1100USD10Y
15 Year ICERATES1100USD15Y
20 Year ICERATES1100USD20Y
30 Year ICERATES1100USD30Y
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B
International Bond Valuation: Theory and

Implementation — Code

1 # -*- coding: utf-8 -*-
2

3 import ftplib, os, tempfile, shutil, codecs
4 from datetime import datetime
5 from collections import namedtuple
6

7 os.chdir(os.path.dirname(__file__))
8 td = tempfile.mkdtemp(dir=os.getcwd())
9 cat = os.path.join

10

11 from QuantLib import *
12 import pandas as pd
13 from pandas_datareader.data import DataReader as dr
14 import matplotlib.pyplot as plt
15 plt.style.use('ggplot')
16 import numpy as np
17 import requests
18 from bs4 import BeautifulSoup
19 from tabulate import tabulate
20

21 irr_nc_price_pkl = 'irr_nc_price.pkl'
22 irr_nc_oas_pkl = 'irr_nc_oas.pkl'
23 plot_styles = {
24 '.': 'point marker',
25 ',': 'pixel marker',
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26 'o': 'circle marker',
27 'v': 'triangle_down marker',
28 '^': 'triangle_up marker',
29 '<': 'triangle_left marker',
30 '>': 'triangle_right marker',
31 '1': 'tri_down marker',
32 '2': 'tri_up marker',
33 '3': 'tri_left marker',
34 '4': 'tri_right marker',
35 's': 'square marker',
36 'p': 'pentagon marker',
37 '*': 'star marker',
38 'h': 'hexagon1 marker',
39 'H': 'hexagon2 marker',
40 '+': 'plus marker',
41 'x': 'x marker',
42 'D': 'diamond marker',
43 'd': 'thin_diamond marker',
44 '|': 'vline marker',
45 '_': 'hline marker',
46 }
47 all_styles = sorted(plot_styles.keys())
48

49 def format_real(v, digits=3):
50 _ = '%%.%df' % digits
51 return _ % v
52

53 def get_cmy(dt):
54 syms = ['DGS30', 'DGS20', 'DGS10', 'DGS7', 'DGS5', 'DGS3', 'DGS2',

'DGS1', 'DGS6MO', 'DGS3MO', 'DGS1MO']↪→

55 yc = dr(syms, 'fred', start=dt, end=dt)
56

57 names = dict(zip(syms, ['30Y', '20Y', '10Y', '7Y', '5Y', '3Y',
'2Y', '1Y', '6M', '3M', '1M']))↪→

58 yc = yc.rename(columns=names)
59 yc = yc[['1M', '3M', '6M', '1Y', '2Y', '3Y', '5Y', '7Y', '10Y',

'20Y', '30Y']].tail(1)↪→

60
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61 t = pd.Timestamp(yc.index.values[0])
62 calc_date = Date(t.day, t.month, t.year)
63

64 Settings.instance().evaluationDate = calc_date
65 calendar = UnitedStates()
66 business_convention = Unadjusted
67 day_count = Thirty360()
68 end_of_month = True
69 settlement_days = 0
70 face_amount = 100.
71 coupon_frequency = Period(Semiannual)
72

73 helpers = []
74 for r, m in zip(yc.values.tolist()[0], [Period(i, Months) for i in

[1, 3, 6, 12, 24, 36, 60, 84, 120, 240, 360]]):↪→

75 termination_date = calc_date + m
76 schedule = Schedule(calc_date, termination_date,

coupon_frequency, calendar, business_convention,
business_convention, DateGeneration.Backward, end_of_month)

↪→

↪→

77 bond_helper =
FixedRateBondHelper(QuoteHandle(SimpleQuote(face_amount)),
settlement_days, face_amount, schedule, [r / 100.],
day_count, business_convention)

↪→

↪→

↪→

78 helpers.append(bond_helper)
79

80 yts = PiecewiseLogCubicDiscount(0, TARGET(), helpers,
Actual365Fixed())↪→

81 yts.enableExtrapolation()
82 return calc_date, RelinkableYieldTermStructureHandle(yts), yts
83

84 def get_fred(dt):
85 syms = ['USDONTD156N', 'USD1WKD156N', 'USD1MTD156N', 'USD2MTD156N',

'USD3MTD156N', 'USD6MTD156N', 'USD12MD156N',
'ICERATES1100USD1Y', 'ICERATES1100USD2Y', 'ICERATES1100USD3Y',
'ICERATES1100USD4Y', 'ICERATES1100USD5Y', 'ICERATES1100USD6Y',
'ICERATES1100USD7Y', 'ICERATES1100USD8Y', 'ICERATES1100USD9Y',
'ICERATES1100USD10Y', 'ICERATES1100USD15Y',
'ICERATES1100USD20Y', 'ICERATES1100USD30Y']

↪→

↪→

↪→

↪→

↪→

↪→
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86

87 yc = dr(syms, 'fred', start=dt, end=dt)
88

89 names = dict(zip(syms, ['on', '1W', '1M', '2M', '3M', '6M', '12M',
'1Y', '2Y', '3Y', '4Y', '5Y', '6Y', '7Y', '8Y', '9Y', '10Y',
'15Y', '20Y', '30Y']))

↪→

↪→

90 yc = yc.rename(columns=names)
91 yc = yc[['1W', '1M', '3M', '6M', '12M', '2Y', '3Y', '5Y', '6Y',

'7Y', '10Y', '15Y', '20Y', '30Y']].tail(1)↪→

92

93 t = pd.Timestamp(yc.index.values[0])
94 calc_date = Date(t.day, t.month, t.year)
95 Settings.instance().evaluationDate = calc_date
96 settlement_days = 0
97 calendar = UnitedStates()
98 business_convention = Unadjusted
99 day_count = Thirty360()

100

101 end_of_month = True
102 l = yc.values.tolist()[0]
103

104 #helpers = [OISRateHelper(2, tenor, QuoteHandle(SimpleQuote(rate /
100.)), Eonia()) for rate, tenor in zip(l[:5], [Period(1,
Weeks),] + [Period(i, Months) for i in [1, 3, 6, 12]])]

↪→

↪→

105

106 helpers = [DepositRateHelper(QuoteHandle(SimpleQuote(rate / 100.)),
m, settlement_days, calendar, business_convention, end_of_month,
day_count) for rate, m in zip(l[:5], [Period(1, Weeks),] +
[Period(i, Months) for i in [1, 3, 6, 12]])]

↪→

↪→

↪→

107

108 helpers += [SwapRateHelper(QuoteHandle(SimpleQuote(rate / 100.)),
tenor, TARGET(), Semiannual, Unadjusted, Thirty360(),
USDLibor(Period(3, Months))) for rate, tenor in [(i, Period(j,
Years)) for i, j in zip(l[5:], [2, 3, 5, 6, 7, 10, 15, 20,
30])]]

↪→

↪→

↪→

↪→

109

110 yts = PiecewiseLogCubicDiscount(0, TARGET(), helpers, Actual360())
111 yts.enableExtrapolation()
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112 return calc_date, RelinkableYieldTermStructureHandle(yts), yts
113

114 def get_tpex_spec():
115 ## download xls from tpex
116 #r = requests.get('http://www.tpex.org.tw/web/bond/tradeinfo' +
117 # '/internationalbond/TheoreticalValue.php?l=zh-tw')
118 #soup = BeautifulSoup(r.content, 'lxml')
119 #all_xls = soup.find_all('a', 'btn btn-xls')
120 #r = requests.get('http://www.tpex.org.tw' + all_xls[0]['href'],

stream=True)↪→

121 #xls = cat(td, 'tpex.xls')
122 #with open(xls, 'wb') as fd:
123 # for chunk in r.iter_content(chunk_size=1024):
124 # fd.write(chunk)
125

126 xls = 'BDdos209.20190325-C.xls'
127

128 # bond_code, short_name, issuer, issue_date, maturity_date,
credit_rating, irr, optional_redemption, bond_price,
accrued_interest, clean_price

↪→

↪→

129 df = pd.read_excel(xls, 'BDdos209')
130

131 def str_to_date(s):
132 return Date(*[int(i) for i in s.split('/')][::-1])
133

134 its, its_raw = [], []
135 zcb = namedtuple('zcb', 'bond_code short_name issuer issue_date

maturity_date irr nc freq maturity bond_price')↪→

136 for i in range(len(df.index)):
137 iat = df.iat
138 head = iat[i, 0]
139 if i == 0:
140 # determine calc_date by inspecting xls row 2
141 calc_date = str_to_date(head[-10:])
142 try:
143 if not head.startswith('F'):
144 continue
145 except:
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146 continue
147

148 issue_date = str_to_date(iat[i, 3])
149 issue_date_raw = iat[i, 3]
150 maturity_date = str_to_date(iat[i, 4])
151 maturity_date_raw = iat[i, 4]
152 if issue_date.month() != maturity_date.month() or

issue_date.dayOfMonth() != maturity_date.dayOfMonth():↪→

153 continue
154 irr = .01 * float(iat[i, 6])
155 irr_raw = format_real(float(iat[i, 6]))
156 nc, freq = [int(float(s.strip())) for s in str(iat[i,

7]).split('x')]↪→

157 schedule = '%s x %s' % (str(nc), str(freq))
158 maturity = maturity_date.year() - issue_date.year()
159 bond_price = float(iat[i, 8])
160 bond_code = iat[i, 0]
161 short_name = iat[i, 1]
162 issuer = iat[i, 2]
163 rating = iat[i, 5]
164 its.append(zcb(bond_code=bond_code, short_name=short_name,

issuer=issuer, issue_date=issue_date,
maturity_date=maturity_date, irr=irr, nc=nc, freq=freq,
maturity=maturity, bond_price=bond_price))

↪→

↪→

↪→

165 its_raw.append((bond_code, short_name, issuer, rating,
issue_date_raw, maturity_date_raw, irr_raw, schedule,
maturity, format_real(bond_price)))

↪→

↪→

166 return {'calc_date': calc_date, 'zcbs': its, 'zcbs_raw': its_raw}
167

168 def get_cme_vols():
169 ftp = ftplib.FTP('ftp.cmegroup.com')
170 ftp.login()
171 ftp.cwd('irs')
172 l, ll = [], []
173 ftp.retrlines('NLST', l.append)
174 for fn in l:
175 if fn.find('CME_ATM') == 0:
176 ll.append(fn)
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177 fn = sorted(ll)[-1]
178 fn_tmp = cat(td, fn)
179 ftp.retrbinary('RETR ' + fn, open(fn_tmp, 'wb').write)
180 ftp.quit()
181 #fn_tmp = 'CME_ATM_VolCube_20190325.csv'
182 vols = []
183 for nn, l in enumerate(open(fn_tmp, 'r')):
184 if nn == 0:
185 continue
186 date, currency, expiry, tenor, moneyness, strike, normal_vol,

lnormal_vol, option_price, annuity = l.strip().split(',')↪→

187 strike = float(strike)
188 normal_vol = float(normal_vol)
189 lnormal_vol = float(lnormal_vol)
190 option_price = float(option_price)
191 annuity = float(annuity)
192 vols.append((Period(expiry), Period(tenor), lnormal_vol))
193 return vols
194

195 def calibrate(model, helpers, l, name):
196 def format_vol(v, digits = 2):
197 _ = '%%.%df %%%%' % digits
198 return _ % (v * 100)
199

200 _ = '%12s |%12s |%12s |%12s |%12s'
201 header = _ % ('maturity', 'length', 'volatility', 'implied',

'error')↪→

202 rule = '-' * len(header)
203 dblrule = '=' * len(header)
204 print(dblrule)
205 print(name)
206 print(rule)
207

208 model.calibrate(helpers, Simplex(l), EndCriteria(5000, 250, 1e-7,
1e-7, 1e-7))↪→

209

210 print('Parameters: %s' % model.params())
211 print(rule)
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212 print(header)
213 print(rule)
214

215 table = []
216 total_err = 0.
217 for swaption, helper in zip(vols, helpers):
218 maturity, length, vol = swaption
219 NPV = helper.modelValue()
220 implied = helper.impliedVolatility(NPV, 1.e-8, 10000, 1.e-6,

.99)↪→

221 error = implied - vol
222 total_err += abs(error)
223 print(_ % (maturity, length, format_vol(vol, 4),

format_vol(implied, 4), format_vol(error, 4)))↪→

224 table.append((maturity, length, format_vol(vol, 4),
format_vol(implied, 4), format_vol(error, 4)))↪→

225 avg_err = total_err / len(helpers)
226

227 #codecs.open('hw_.txt', 'w', 'utf-8').write(tabulate(table,
headers=[u'到期日', u'交換期間', u'CME IV', u'FRED IV', u'誤差',],
tablefmt='latex'))

↪→

↪→

228

229 print(rule)
230 _ = '%%%ds' % len(header)
231 print(_ % ('Average error: ' + format_vol(avg_err, 4)))
232 print(dblrule)
233

234 return model.params()
235

236 def calibrated_hw(vols, ts):
237 index = USDLibor(Period(3, Months), ts)
238 helpers = [SwaptionHelper(maturity, length,

QuoteHandle(SimpleQuote(vol)), index, index.tenor(),
index.dayCounter(), index.dayCounter(), ts) for maturity,
length, vol in vols]

↪→

↪→

↪→

239 model = HullWhite(ts)
240

241 for h in helpers:
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242 h.setPricingEngine(JamshidianSwaptionEngine(model))
243

244 a, b = calibrate(model, helpers, .01, 'Hull-White (Semi-Analytic)')
245 print('\nmean_revert: %s, volatility: %s' % (a, b))
246 return HullWhite(ts, a, b)
247

248 def cbond(model, calc_date, issue_date, maturity_date, irr, nc, freq,
maturity):↪→

249 settlement_days = 2
250 face_amount = 100.
251 redemption = 100.
252 grids = 1800
253

254 Settings.instance().evaluationDate = calc_date
255

256 calendar = NullCalendar()
257 call_schedule = CallabilitySchedule()
258 if nc:
259 call_date = calendar.advance(issue_date, nc, Years)
260 mm = ((maturity - nc - 1) // freq) if freq else 0
261 for i in range(mm + 1):
262 c_price = CallabilityPrice(face_amount / (1 +

irr)**(maturity - nc - i * freq),
CallabilityPrice.Clean)

↪→

↪→

263 call_schedule.append(Callability(c_price, Callability.Call,
call_date))↪→

264 call_date = calendar.advance(call_date, freq, Years)
265

266 b = CallableFixedRateBond(settlement_days, face_amount,
Schedule(issue_date, maturity_date, Period(Once),
UnitedStates(UnitedStates.GovernmentBond), Unadjusted,
Unadjusted, DateGeneration.Backward, False), [0.],
Thirty360(Thirty360.BondBasis), Following, redemption,
issue_date, call_schedule)

↪→

↪→

↪→

↪→

↪→

267

268 b.setPricingEngine(TreeCallableFixedRateBondEngine(model, grids))
269 return b
270
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271 def oas2price(oas, ts, b):
272 return b.cleanPriceOAS(oas, ts, Thirty360(), Compounded, Annual)
273

274 def price2oas(price, ts, b):
275 return b.OAS(price, ts, Thirty360(), Compounded, Annual, Date(),

1.e-8, 10000, .002)↪→

276

277 def plot_spot_rate(dt):
278 def get_spot_rates(curve, day_count=Thirty360(),

calendar=UnitedStates(), months=361):↪→

279 spots, tenors = [], []
280 ref_date = curve.referenceDate()
281 calc_date = ref_date
282 compounding = Compounded
283 freq = Semiannual
284 for month in range(months):
285 yrs = month / 12.
286 d = calendar.advance(ref_date, Period(month, Months))
287 zero_rate = curve.zeroRate(yrs, compounding, freq)
288 tenors.append(yrs)
289 eq_rate = zero_rate.equivalentRate(day_count, compounding,

freq, calc_date, d).rate()↪→

290 spots.append(100. * eq_rate)
291 return pd.DataFrame(zip(tenors, spots), columns=['maturities',

'curve'], index=[''] * len(tenors))↪→

292

293 fig = plt.figure(figsize=(5, 3.5))
294 sr_cmy = get_spot_rates(curve_cmy)
295 sr_fred = get_spot_rates(curve_fred)
296 plt.plot(sr_cmy['maturities'], sr_cmy['curve'], '--', label='CMY')
297 plt.plot(sr_fred['maturities'], sr_fred['curve'], '+', label='FRED')
298 plt.xlabel('Years')
299 plt.ylabel('Zero Rate (%)')
300 plt.xlim(.1, 30)
301 plt.ylim([0., 4.])
302 plt.legend(loc=4)
303 fig.savefig('ytm_%s_%s_%s.pdf' % tuple([str(s).zfill(2) for s in

dt]), bbox_inches='tight')↪→
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304

305 #for _ in [(2016, 7, 5), (2018, 11, 8), (2018, 1, 19), (2018, 4, 19),
(2018, 7, 19), (2019, 1, 18), (2019, 2, 19), (2019, 3, 25)]:↪→

306 # dt = datetime(*_)
307 # calc_date, ts_cmy, curve_cmy = get_cmy(dt)
308 # calc_date, ts_fred, curve_fred = get_fred(dt)
309 # plot_spot_rate(_)
310

311 dt = datetime(2019, 3, 25)
312 calc_date, ts_cmy, curve_cmy = get_cmy(dt)
313 calc_date, ts_fred, curve_fred = get_fred(dt)
314

315 vols = get_cme_vols()
316 tpex = get_tpex_spec()
317 shutil.rmtree(td)
318

319 model_cmy = calibrated_hw(vols, ts_cmy)
320 model_fred = calibrated_hw(vols, ts_fred)
321

322 def create_table():
323 table = [[zcb[i] for i in [0, 3, 4, 5, 6, 7, -1]] for zcb in

tpex['zcbs_raw'][100:143]]↪→

324 calc_date = tpex['calc_date']
325 for ii, zcb in enumerate(tpex['zcbs'][100:143]):
326 pars = zcb[3:9]
327 p = cbond(model_fred, calc_date, *pars).cleanPrice()
328 p0 = cbond(model_fred, zcb[3], *pars).cleanPrice()
329 table[ii].append(p / p0 * 100.)
330 pp = cbond(model_cmy, calc_date, *pars).cleanPrice()
331 pp0 = cbond(model_cmy, zcb[3], *pars).cleanPrice()
332 table[ii].append(pp / pp0 * 100.)
333

334 codecs.open('table.txt', 'w', 'utf-8').write(tabulate(table,
headers=[u'債券', u'信評', u'發行日', u'到期日', u'利率', u'贖回',
u'TPEx', u'FRED', u'CMY'], tablefmt='latex'))

↪→

↪→

335

336 def test_price():
337 x, y = tpex['zcbs'][100][3:5]
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338 irr, nc, freq = .055, 5, 1
339 b = cbond(model_fred, x, x, y, irr, 0, 0, 30)
340 price = cbond(model_fred, x, x, y, irr, nc, freq, 30).cleanPrice()
341 print(price)
342 oas = price2oas(price, ts_fred, b)
343 print(oas)
344 print(oas2price(oas, ts_fred, b))
345

346 def compute_irr_nc_price():
347 irr_nc_price = namedtuple('irr_nc_price', 'irr nc freq price')
348 _ = []
349 x, y = tpex['zcbs'][100][3:5]
350 for nc in [1, 2, 3, 4, 5, 6, 7, 8, 10]:
351 for freq in [0, 1, 5]:
352 for irr in np.linspace(.035, .055, 201):
353 _.append(irr_nc_price(irr=irr, nc=nc, freq=freq,

price=cbond(model_fred, x, x, y, irr, nc, freq,
30).cleanPrice()))

↪→

↪→

354 df = pd.DataFrame(_, columns=_[0]._fields)
355 df.to_pickle(irr_nc_price_pkl)
356

357 def compute_irr_nc_oas():
358 irr_nc_oas = namedtuple('irr_nc_oas', 'irr nc freq oas')
359 _ = []
360 x, y = tpex['zcbs'][100][3:5]
361 b = cbond(model_fred, x, x, y, .01, 0, 0, 30)
362 df_ = pd.read_pickle(irr_nc_price_pkl)
363 for nc in [1, 2, 3, 4, 5, 6, 7, 8, 10]:
364 for freq in [0, 1, 5]:
365 for irr in np.linspace(.035, .055, 201):
366 price = df_.loc[(df_['nc'] == nc) & (df_['freq'] ==

freq) & (df_['irr'] ==
irr)]['price'].values.tolist()[0]

↪→

↪→

367 _.append(irr_nc_oas(irr=irr, nc=nc, freq=freq,
oas=price2oas(price, ts_fred, b)))↪→

368 df = pd.DataFrame(_, columns=_[0]._fields)
369 df.to_pickle(irr_nc_oas_pkl)
370
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371 def plot_irr_nc_price():
372 df = pd.read_pickle(irr_nc_price_pkl)
373 #df['price'] = df['price'].map(lambda x: 1.e4 / x)
374 #df['price'] = df['price'].map(lambda x: 45.7395 - x)
375 df['irr'] = df['irr'].map(lambda x: 100. * x)
376

377 fig = plt.figure(figsize=(10, 16))
378 ax1 = fig.add_subplot(3, 1, 1)
379 ax2 = fig.add_subplot(3, 1, 2)
380 ax3 = fig.add_subplot(3, 1, 3)
381

382 def __(df_):
383 return df_[::3]
384

385 for ax, freq in [(ax1, 0), (ax2, 5), (ax3, 1)]:
386 for key, grp in df.loc[df['freq'] == freq].groupby(['nc']):
387 ax.plot(__(grp['irr']), __(grp['price']), linestyle='',

marker=all_styles[key], label='nc = ' + str(key),)↪→

388 ax.set_title('Call Frequency = %s' % (str(freq) + ' Year' + ('s'
if freq > 1 else ''),))↪→

389 if freq == 1:
390 ax.set_xlabel('IRR (%)')
391 else:
392 ax.set_xlabel('')
393 ax.set_ylabel(u'Price')
394 ax.legend(loc=3)
395

396 fig.savefig('irr_nc_price.pdf', bbox_inches='tight')
397

398 def plot_irr_nc_oas():
399 df = pd.read_pickle(irr_nc_oas_pkl)
400 df['oas'] = df['oas'].map(lambda x: 1.e4 * x)
401 df['irr'] = df['irr'].map(lambda x: 100. * x)
402

403 fig = plt.figure(figsize=(10, 16))
404 ax1 = fig.add_subplot(3, 1, 1)
405 ax2 = fig.add_subplot(3, 1, 2)
406 ax3 = fig.add_subplot(3, 1, 3)

87



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101641

407

408 for ax, freq in [(ax1, 0), (ax2, 5), (ax3, 1)]:
409 for key, grp in df.loc[df['freq'] == freq].groupby(['nc']):
410 ax.plot(grp['irr'], grp['oas'], linestyle='',

marker=all_styles[key], label='nc = ' + str(key),)↪→

411 ax.set_title('Call Frequency = %s' % (str(freq) + ' Year' + ('s'
if freq > 1 else ''),))↪→

412 if freq == 1:
413 ax.set_xlabel('IRR (%)')
414 else:
415 ax.set_xlabel('')
416 ax.set_ylabel(u'OAS (bps)')
417 ax.legend()
418

419 fig.savefig('irr_nc_oas.pdf', bbox_inches='tight')
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