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摘要 

 

 

 

 當我們通過玻璃等透明介質拍攝照片時，可能會出現不可避免的反射，模糊

了我們想要捕捉的場景。我們提出了一種基於知識蒸餾的方式來將影像內容進

行透射層及反射層的分解，進一步解決影像反射的問題。透過實驗證明，該模

型具有一定的清除反射之能力。 

 

 

 

 

 

 

 

 

 

 

 

關鍵詞：影像處理、影像去反射
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ABSTRACT 

 

 

 

 

When we shoot pictures through transparent media, such as glass, reflection can 

undesirably occur, obscuring the scene we intended to capture. Therefore, removing 

reflection is practical in image restoration. However, a reflective scene mixed with 

that behind the glass is challenging to be separated, considered significantly ill-posed. 

This letter addresses the single image reflection removal (SIRR) problem by 

proposing a knowledge-distilling-based content disentangling model that can 

effectively decompose the transmission and reflection layers. The experiments on 

benchmark SIRR datasets demonstrate that our method performs favorably against 

state-of-the-art SIRR methods. 

 

 

 

 

 

 

 

Keywords : Image Processing、Image reflection removal
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1. INTRODUCTION 

1.1. Motivation and Challenges 

 

With the popularity of smartphones, people can use the built-in camera to take pictures 

anywhere, anytime. It is common to shoot photos through a material with reflectivity 

and transparency, such as windows, glass, etc., often capturing a scene with a reflection. 

However, the reflection is usually undesirable and disturbing to viewers, preventing 

them from seeing the actual scene. It could also negatively affect the performance of 

downstream computer vision tasks, such as object detection and recognition. Hence, 

image reflection removal has become essential and gained much attention in recent 

years [1]–[8]. There have been many attempts toward single image reflection removal 

(SIRR). Conventionally, one could cast it to an optimization problem based on some 

observed priors to separate the transmission layer from the reflection layer in a single 

image [9]–[11]. However, these handcrafted priors are often not applicable to different 

reflection scenes with various shooting conditions. Another type of work utilizes 

multiple images taken at the same scene to find the correlation of the transmission and 

reflection layers across these images [12], [13]. Due to the great success of deep 

learning in low-level image processing tasks, deep convolution neural networks have 

been widely applied to SIRR [2], [4]–[8], [14]–[17]. These deep-learning-based models 

adopt various architectures and techniques to address SIRR, including generative 

adversarial networks [2], [5], [8], [16], cascaded models [4], [8], [14], [18], 

supplementary information (such as depth maps and edges) [6], [7], [14], [17], etc. 

This paper adopts a different approach to separate the transmission and reflection layers 

from an image with reflection. We propose to utilize knowledge distillation techniques 

to disentangle contents for the transmitted and reflected scenes. Our design has two 
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networks, a Reflection Teacher network, and a Content Disentangling Student network. 

Unlike the conventional teacher-student learning paradigm, where the Student network 

is a lightweight version of the Teacher network for network compression, we regard the 

Teacher as a representation extractor for the reflection layer of the input image. The 

Teacher functions to enforce the Student to disentangle the content for both reflection 

and transmission layers. Moreover, we devise content disentangling loss, representation 

mimicking loss, and fidelity loss to supervise the entire knowledge transfer process 

between the Teacher and Student. 

 

1.2. Contributions 

 

Our main contributions of the thesis are summarized as follows: 

1. We propose knowledge-distilling-based networks to disentangle transmission 

and reflection layers for SIRR, incorporating Content-aware Layers that adopt 

multi-kernel strip pooling [19] in the Student network to mimic transmission 

and reflection features.  

2. We collect a Natural Reflection Dataset (NRD) to facilitate SIRR research, 

which contains 136 real image triplets with various scenes, each of which has 

an image with reflection, corresponding transmission image, and reflection 

image. We captured these images with a Samsung Galaxy Note10 mounted on 

a tripod and 50 × 50 cm, 3-5mm thick glass with a holder to shot w/ or w/o the 

glass to create a reflection. The dataset can be download via the link: 

https://reurl.cc/xgG2VE. 
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1.3. Thesis Structure 

 

This thesis contains the following four sections: 

1. Chapter 1 briefly introduce our research background, motivation and 

discusses its challenge. 

2. Chapter 2 reviews related works and the proposed distilling approach. 

3. Chapter 3 introduces our proposed method, model architecture, and dataset 

collection. 

4. Chapter 4 briefly introduces the evaluation metric and then presents the 

experimental results and ablation study. 

5. Chapter 5 concludes this thesis. 
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2. RELATED WORKS 

This section briefly reviews the relevant state-of-the-art methods on the single 

image reflection removal problem(SIRR) and the development of the knowledge 

distillation method.  

 

2.1. Single Image Reflection Removal 

To better understand and analyze SIRR, one can model an image I with reflection 

as 𝐼 = 𝐼𝑇 ⊕ 𝐼𝑅, where 𝐼𝑇 is the scene transmission image, and 𝐼𝑅 is the reflection 

image [1]. The input image I can be decomposed into two layers: the transmission and 

reflection layers, as shown in Figure 1. Removing reflection from an image means 

separating the reflection layer from the input image and then dropping it. It involves 

two main difficulties: identifying the reflection layer and revealing the scene 

transmission. 

 

 

Figure 1 Illustration of Single Image Reflection Removal. The first row represents the transmission 

layer; the second row represents image I, the last row represent the reflection layer. 

 

Deep-neural-network-based methods have shown their potential to SIRR [2], [4]–

[8], [14], [16]–[18] in these years. Fan et al. [14] proposed a two-stage model that first 
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computes the gradient edge map (i.e., supervision) based on the input image and then 

uses it to remove the reflection layer in the second stage, the network architecture, as 

shown in Figure 2. 

 

 

Figure 2 The CEIL network architecture. 

 

Lee et al. [16] proposed to use adversarial learning to predict both the transmitted and 

reflected scenes from the input image. However, it often suffers from the unstable visual 

quality and training difficulty of generative adversarial networks (GANs). Zhang et al. 

[5] adopted an exclusion loss that effectively enforces the separation of transmission 

and reflection at the pixel level. Figure 3 shows the edge of the transmission image and 

reflection image in a gradient domain. 

 

 

Figure 3 An illustration of the different edges in the gradient domain. 

 

Sun et al. [7] exploited depth images captured by infrared sensors to remove image 
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reflection. Li et al. [8] proposed a two-stage model, which produces an initial 

background image based on the balance between background preservation and 

elimination. The second uses a generative adversarial network to reconstruct the 

background's background gradients. Wei et al. [2] utilized alignment-invariant loss 

based on high-level features extracted using a pre-trained VGG model and adversarial 

loss to measure similarity even for unaligned training image pairs. Yang et al. [4] 

presented bi-directional cascaded networks that alternately generate the transmission 

and reflection results. Li et al. [18] adopted a cascaded model with LSTM to iteratively 

refine the results. Kim et al. [6] proposed to use RGBD/RGB images to synthesize more 

realistic reflection images for training. Chang et al. [17] introduced an auxiliary 

extension model consisting of edge guidance, reflection classifier, and recurrent 

decomposition networks to separate an image into reflection and transmission layers. 

 

2.2. Knowledge Distillation 

Nowadays, much research aims to increase the model's speed and accuracy, making 

knowledge distillation one of the most popular techniques. Hinton et al. [20] introduced 

a knowledge distillation concept to deep learning, proposing a teacher-student learning 

scheme using network mimicking to achieve knowledge transfer between the Teacher 

and the Student networks, where the Teacher is large but slow whereas the Student is 

small but fast. The Student network distills the Teacher network's knowledge by 

approximating the soft output of the Teacher. Romero et al. [21] proposed a feature 

mimicking method to fit the Student network's representations to the Teacher. Feature 

mimicking knowledge distillation has been applied to several computer vision tasks, 

such as image segmentation [22] and object detection [23]. Unlike these works, the 

proposed model aims to disentangle image content into the transmission and reflection 

layers to remove reflection from the input image and attain a clean image. 
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3. METHODOLOGY 

3.1  Network Architecture 

 

  The proposed model contains a Reflection Teacher Network 𝑇𝑅 and a Content 

Disentangling Student network 𝑆 . Figure 4 shows the overall model architecture. In 

general, having a Reflection Teacher would be equivalent to a Transmission Teacher; 

however, since the reflection layer generally has fewer features, easier to be learned by 

a teacher network. We choose to exploit a Reflection Teacher network to distill features 

from the reflection image 𝐼𝑅, assuming we have the input image 𝐼 and its transmission 

𝐼𝑇  (i.e. 𝐼𝑅 =  𝐼 − 𝐼𝑇）  The Student network decomposes the input image into the 

transmission and reflection layers by gradually separating the reflection features 

extracted by the Reflection Teacher. In other words, our model disentangles the content 

of both layers by mimicking reflection features extracted from the Teacher network. 

The common setting used for our Teacher and Student Networks is that all the 

convolutional layers use 3 × 3 kernels with the stride of 1, followed by a ReLU 

activation function, except the last layer uses a Tanh. 

 

 

Figure 4 Overview of the Our network architecture. 
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Reflection Teacher Network (𝑻𝑹)  

It starts with a pair of convolutional layers, then eight Residual Blocks (RB), and 

ends with another pair of convolutional layers. An RB consists of two convolutional 

layers with a residual connection between the input and output. We utilize the 

intermediate features extracted from each RB to assist the Student network in learning 

the transmission and reflection components' distribution. All the convolutional layers 

have 64 channels except for the input and output layers. 

 

Content Disentangling Student Network (S)  

Takes an image with reflection as the input and has two split outputs: one for the 

transmission image and the other for the reflection image denoted as S(I)𝑇 and S(I)𝑅 

respectively. It starts with two convolutional layers and ends with two convolutional 

layers for each output. Based on our observation that a reflected scene is usually non-

uniform and locally appears, the network aims to learn locally regional information for 

the reflected scene from the Reflection Teacher and delaminate from the transmitted 

scene. Motivated by [19], where Multikernel Strip pooling (MSP) was proposed to 

achieve region-based attention for disentangling different feature patterns, we construct 

the Student network's backbone with multiple MSP-based Content-aware Layers 

(CAL). A CAL that consists of three MSP blocks with residual connections can attend 

to reflection-affected or transmission-dominated regions with different degrees. In the 

network, there are twelve CALs in total. The first four CALs preliminarily decompose 

the reflection and transmission parts. Then, we divide it into the transmission and 

reflection branches for the following layers, each of which has another four CALs to 

disentangle different contents progressively and effectively. Figure 5 shows a content 

disentangling example, where transmission and reflection layers are gradually 
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separated. 

 

Figure 5 A content disentangling example using the Student Network S. We sample 

output transmission and reflection features (The 123rd and 5th channels) from the 

2nd, 4th, 6th, and 8th layers to demonstrate disentangled features. 

 

3.2  Loss functions 

For Teacher — Reconstruction Loss:  

To extract representative features from the Teacher network, we adopt an 𝐿1 loss 

to enforce the similarity between the input image and output image. For the 

Reflection Teacher, the reconstruction loss is  

L𝑟𝑒𝑐
𝑅 = |𝐼𝑅 − 𝑇𝑅(𝐼𝑅)|1. 

 

For Student — Content Disentangling Loss:  

To disentangle transmission and reflection contents, we devise a content 

disentangling loss as  

Lcon = Lcon
T + Lcon

R  
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, where L𝑐𝑜𝑛
𝑇 = |𝐼𝑇 − 𝑆(𝐼)𝑇|1  and L𝑐𝑜𝑛

𝑅 = |𝐼𝑅 − 𝑆(𝐼)𝑅|1 . 𝑆(𝐼)𝑇 and S(I)R 

represent the output images generated by the Student network with the input image 

𝐼 (i.e., an image with reflection). 

 

For Student --- Representation Mimicking Loss:  

We enforce the Student network to mimic the Teacher networks' intermediate 

features for content disentanglement to achieve knowledge transfer. Each of the first 

four CALs has 128 channels, the first 64 of which correspond to the 64 channels of 

one RB from the Reflection Teacher. Following are four CALs in the transmission 

branch and four CALs in the reflection branch, as shown in Figure 4. All the CALs 

have 64 channels in these branches, but only CALs in the reflection branch 

correspond to RBs in the Reflection Teacher. The mimicking loss is denoted as 

Lmim
R = ∑ ∑ |TR

n(IR)

8

n=1

8

n=1Lmimic
n

− S1:64
n (I)|1, 

where 𝑇𝑅
𝑛(𝐼𝑅) denotes the extracted features of the 𝑛𝑡ℎ RBs of 𝑇𝑅. 𝑆𝑐1:𝑐2

𝑛 (𝐼) 

denotes the features from the 𝑐1
𝑡ℎ to 𝑐2

𝑡ℎ channel of the 𝑛𝑡ℎ CAL. 

 

For both Teacher and Student — Fidelity Loss:  

To reinforce the relationship between the input image 𝐼, transmission image 𝐼𝑇, 

and reflection image 𝐼𝑅 , we introduce the fidelity loss based on 𝐼 = 𝐼𝑇 + 𝐼𝑅  as 

L𝑓𝑖𝑑
𝑅 = |𝐼 − 𝑆(𝐼)𝑇 − 𝑇𝑅(𝐼𝑅)|1. 

 

Total loss function: 

At last, combining the Reconstruction Loss, Content Disentangling Loss, 

Representation Mimicking Loss, and Fidelity Loss, the total loss is written as: 

L = λ1Lrec
R + λ2Lcon + λ3Lmim

R + λ4Lfid
R , 
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where 𝜆1 = 𝜆2 = 1 𝑎𝑛𝑑 𝜆3 = 𝜆4 = 0.3. Minimizing it, we can train the proposed 

knowledge-distilling-based content-disentangling model for SIRR effectively.
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4. Dataset 

4.1. Synthetic data 

The training of the model requires a large of training data, but it is difficult to obtain a 

large amount of training dataset in the real world for the single image reflection removal 

task since it requires a lot of time and workforce and is limited to the impact of weather 

and environment. 

For most research, PASCAL VOC dataset[24] and Flickr dataset are used to generate 

synthetic data. For the single image reflection removal task, two images are randomly 

taken as the transmission layer and the reflection layer. To imitate the reflection 

situation in the real world, usually applying a Gaussian smoothing kernel with a random 

kernel size to blur the reflected scene of the blend image, the following Figure 6 shows 

the result of the synthesis. 

 

 

Figure 6 The example of synthetic data. 
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As mentioned earlier, the following Table 1 shows synthetic data used in the current 

state-of-the-art papers. 
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Model Dataset Released 

ERRNET Synthetic data from PASCAL VOC dataset O 

Physical Synthetic data X 

Zhang Synthetic data from Flickr dataset O 

IBCLN Synthetic data from PASCAL VOC dataset O 

BDN Synthetic data from PASCAL VOC dataset X 

Ours Synthetic data from Flickr dataset X 

Table 1 Comparison of training datasets used by different methods. 

 

4.2. Real-world data 

The current well-known real datasets are introduced as follows: 

⚫ SIRR dataset 

As shown in Figure 7, the famous benchmark dataset with 454 pairs and a great 

diversity of mixture images. Each pair has a transmission image and its reflection 

image. These pairs can be roughly classified into three categories: wild scene, postcard, 

and solid. 
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Figure 7 The sample of SIRR dataset: The left column are reflection images, and the 

right column are transmission images. 

 

⚫ UC Berkeley dataset 

As shown in Figure 8, the dataset has 110 real image pairs: the reflection layer and 

its corresponding ground-truth transmission layer. One often uses 20 of them as 

training data and the rest as testing data. 
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Figure 8 The sample of UC Berkeley dataset: The left column is reflection 

images, and the right one is transmission images. 

 

⚫ CEILNet dataset 

This dataset provides 45 real-world images. 
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Figure 9 The sample of CEILNet dataset. 

4.3. Our data collection 

Due to insufficient real-world image datasets, we decided to collect real-world 

image datasets to evaluate our model. We use the equipment as follows to 

capture reflection images, shown in Figure 10. 

 

Figure 10 An illustration of our equipment and device. 

⚫ Equipment 

◼ Samsung Note 10+ 

For all the images, we always use Samsung Note 10+ to take pictures. 

◼ Tripod 
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A tripod is used to prevent the phone from shaking and avoid data 

misalignment. 

◼ Mirror 

We use the mirror and glass to capture the background side. 

◼ Glass 

We use the mirror to capture the reflection layer. 

◼ Fixed plate 

To ensure that the mirror does not shake, we use a fixed plate to stabilize the 

glass. 

◼ Bluetooth receiver 

When we use a mobile device to shoot images, we must use a Bluetooth 

receiver to take photos as much as possible to avoid direct contact with the 

equipment to avoid shaking. 

⚫ Location 

To increase the diversity of the dataset, we select several different types of 

locations, including Gymnasium & General Bldg. of Colleges, Da Yong Bldg, 

Administrative Bldg, Bookstore, Co-op. All the places are located at National 

Chengchi University, Taipei, Taiwan. 

⚫ Process 

1. Place the fixing plate on the chair. 

2. Set up the tripod and fix the phone on it. 

3. Use the Bluetooth receiver to take reflection layer image I. 

4. Place the mirror behind the glass fixing plate and make sure the glass does not 

shake. 

5. Use the Bluetooth receiver to take the background image B. 

6. Remove the glass and mirror, and take the transmission layer image T. 
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The data collection sequence is shown in Figure 11. 

     .   

Figure 11 left: image with reflection I, middle: reflection image R, right: transmission 

image T. 

 

⚫ The Natural Reflection Dataset (NRD) dataset contains 136 real image triplets 

with various scenes, each of which has an image with reflection I, corresponding 

transmission image T, and reflection image R. (*Note that we do not use the 

reflection image R in this work) 

⚫ Challenges 

The lack of real-world datasets for a single image reflection removal motivates us 

to collect more data. To increase the diversity of the dataset, we must change 

different scenes and shooting locations many times. Each set of data must be in 

the same situation to shoot. Therefore, it is a big challenge for us to carry heavy 

equipment and electronic devices to move. We must be cautious to observe 

whether the device shakes and moving objects (such as people, weaving leaves) 

when shooting. We hope our collected dataset to facilitate research in this field 

further. 
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5. EXPERIMENTAL RESULTS  

5.1. Dataset and environment detail 

Our training dataset, chosen as in [5], contains 200 real image pairs from ICBLN 

[18], 13, 697 synthetic pairs from Flickr, and 398 real pairs from ERRNet [2]. The test 

datasets have 590 images in total, including SIRR (Postcard, Object, Wild) [1], and our 

Natural Reflection Dataset (NRD). We implemented our model with PyTorch library 

on an Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz and NVIDIA Tesla V100 GPU. 

Our parameter size for the Student network is 18M, and the model size is 73MB. We 

train our model for 120 epochs with a batch size of 8 using Adam optimizer with 

parameters β1 = 0.9 and β2 = 0.999 and a fixed learning rate of 10-4. We compare our 

proposed model against five state-of-the-art SIRR methods, including Zhang et al. [5], 

BDN [4], ERRNet [2], Physical [6], and IBCLN [18]. 

 

5.2. Evaluation metrics 

 

⚫ Peak Signal-to-Noise Ratio as an Image Quality (PSNR) 

PSNR is an expression for the ratio between the maximum possible value (power) 

of a signal and the power of distorting noise that affects the quality of its 

representation. 

The mathematical representation of the PSNR is as follows: 

 

 

PSNR = 20𝑙𝑜𝑔10(
𝑀𝐴𝑋𝑓

√𝑀𝑆𝐸
) 

 

where the MSE (Mean Squared Error) is: 
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MSE =
1

𝑚𝑛
∑ ∑‖𝑓(𝑖, 𝑗) − 𝑔(𝑖, 𝑗)‖2

𝑛−1

0

𝑚−1

0

 

 

⚫ The structural similarity index measure (SSIM) 

SSIM is a method for predicting the perceived quality of digital television, 

cinematic pictures, and other digital images and videos. SSIM is used for 

measuring the similarity between two images. 

SSIM is a perception-based model that considers image degradation as perceived 

change in structural information while also incorporating important perceptual 

phenomena, including luminance masking and contrast masking terms. 

The mathematical representation of the SSIM is as follows: 

 

SSIM(x, y) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 

 

⚫ Learned Perceptual Image Patch Similarity (LPIPS) [25] 

Today's most widely used perceptual metrics, such as PSNR and SSIM, are simple, 

shallow functions and fail to account for many nuances of human perception. The 

LPIPS metric evaluates the distance between image patches to calculate similarity. 

Higher means further/more different. A lower value means the compared images 

are more similar perceptually.   

 

5.3. Quantitative comparison 

We conduct experiments to evaluate SIRR performance with three major metrics:  

PSNR, SSIM, and Learned Perceptual Image Patch Similarity (LPIPS [25]). PSNR 
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represents pixel similarity, SSIM measures luminance, contrast, and structure 

similarity, and LPIPS exploits deep features to evaluate a perceptual similarity. 

Table 2 shows the results, where our method works best in PSNR, SSIM, and 

LPIPS on average. It indicates that our knowledge-distilling model can disentangle 

the transmission layer from the reflection layer in the input image to keep better 

structural fidelity and learn perceptual features from clean images to present more 

consistent visual and perceptual similarity. 

 

Dataset Index Methods 

Zhang BDN ERRNET Physical IBCLN Ours 

SIRR-

Postcard 

(199) 

SSIM↑ 0.68 0.84 0.87 0.88 0.85 0.89 

PSNR↑ 16.24 20.92 22.29 22.93 21.97 23.29 

LPIPS↓ 0.1218 0.1077 0.1177 0.0871 0.1157 0.0855 

SIRR-

Object 

(200) 

SSIM↑ 0.79 0.85 0.86 0.85 0.86 0.86 

PSNR↑ 23.30 22.79 24.41 23.70 24.46 23.92 

LPIPS↓ 0.0673 0.0653 0.0591 0.0652 0.0582 0.0550 

SIRR-

Wild (55) 

SSIM↑ 0.84 0.84 0.86 0.87 0.87 0.91 

PSNR↑ 22.73 22.14 25.25 25.58 25.26 25.12 

LPIPS↓ 0.1503 0.2711 0.1228 0.1168 0.1259 0.0964 

NRD 

(136) 

SSIM↑ 0.79 0.79 0.80 0.81 0.80 0.83 

PSNR↑ 21.41 19.53 22.40 23.03 22.31 23.01 

LPIPS↓ 0.1381 0.1359 0.1186 0.1224 0.1246 0.1186 

Average 

(590) 

SSIM↑ 0.76 0.83 0.85 0.85 0.84 0.87 

PSNR↑ 20.43 21.35 23.31 23.46 23.20 23.61 

LPIPS↓ 0.1097 0.1151 0.0985 0.0905 0.0992 0.0838 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101688

24 

 

Table 2 Objective quality comparisons. The best score is in bold, and the second-best 

is underlined. In the parentheses is the number of images in a dataset. 

 

5.4. Ablation study 

Table 3 shows an ablation study on different loss combinations (numbered from C1-

C5). Comparing C1 to C2-5, having Teacher(s) works better than without it. C2 and 

C3 show a performance boost by adding the fidelity loss. C3 and C4 indicate 

training with the Reflection Teacher is better than the Transmission Teacher. 

Contrasting C3 to C5 shows having two teachers would not be more beneficial to 

only the Reflection Teacher. 

 

 

# TR TT Loss Functions SSIM↑ PSNR↑ LPIPS↓ 

C1   ℒ𝑐𝑜𝑛(no teacher) 0.84 22.89 0.1233 

C2 ✓  ℒ𝑐𝑜𝑛 + ℒ𝑟𝑒𝑐
𝑅 + ℒ𝑚𝑖𝑛

𝑅  0.86 23.16 0.0900 

C3 ✓  ℒ𝑐𝑜𝑛 + ℒ𝑟𝑒𝑐
𝑅 + ℒ𝑚𝑖𝑛

𝑅 + ℒ𝑓𝑖𝑑
𝑅  0.87 23.61 0.0838 

C4  ✓ ℒ𝑐𝑜𝑛 + ℒ𝑟𝑒𝑐
𝑇 + ℒ𝑚𝑖𝑛

𝑇 + ℒ𝑓𝑖𝑑
𝑇  0.85 22.81 0.1050 

C5 ✓ ✓ ℒ𝑐𝑜𝑛 + ℒ𝑟𝑒𝑐
𝑇𝑅 + ℒ𝑚𝑖𝑛

𝑇𝑅 + ℒ𝑓𝑖𝑑
𝑇𝑅  0.87 23.33 0.0847 

Table 3 The ablation study table. 

 

 

5.5. Qualitative results 

To visually compare SIRR results obtained using our and SOTA methods, Figure 

12-Figure 15 demonstrate our model performs favorably against the other methods 

in transmission restoration. The first two images are synthesized, and the last two 
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images are real images. 

 

Figure 12 A visual comparison of SIRR results. (a) Input. The results generated by (b) 

BDN [4], (c) ERRNet [2], (d) Physical [6], (e) IBCLN [18], and (f) ours. 
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Figure 13 (a) Input. More SIRR results generated by (b) BDN [4], (c) ERRNet [2], (d) 

Physical [6], (e) IBCLN [18], and (f) ours. 

 

Figure 14 (a) Input. More SIRR results produced by (b) BDN [4], (c) ERRNet [2], (d) 

Physical [6], (e) IBCLN [18], and (f) ours. 
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Figure 15 (a) Input. More SIRR results produced by (b) BDN [4], (c) ERRNet [2], (d) 

Physical [6], (e) IBCLN [18], and (f) ours. 
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6. CONCLUSIONS 

In this work, we proposed to use knowledge distillation and feature mimicking to 

disentangle image content and achieved better performance in single image reflection 

removal (SIRR). The experiments on benchmark SIRR datasets indicated that our 

model could produce SIRR results with better perceptual quality and structural fidelity. 

In addition, we contribute the Natural Reflection Dataset (NRD) to the SIRR field and 

expect knowledge-distilling-based content disentanglement to inspire more related 

work. 
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