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摘要

顯著物偵測 (SOD)在深度學習架構下已達到相當先進的成果。然

而既有的研究大部分都專注在陸上場景，水下場景的顯著物偵測仍有

待發展。在這篇論文中，我們蒐集並標註一水下顯著物資料集，用以

驗證我們提出的模型方法。本論文中提出二種方法提昇顯著物偵測準

確度。第一，我們先嘗試利用了水下影像模糊特性，幫助深度網路學

習顯著物偵測。首先，我們會從原圖計算生成模糊圖，並與原圖一起

輸入模型抽取特徵並融合，藉以提昇顯著物偵測準確度。第二，我們

提出基於模糊圖對原圖增益作調整的一種資料擴增的方法。實驗結

果顯示在最新顯著物偵測模型上，使用這兩種方法，皆可有效提昇效

能。而提出的資料擴增方法的成效，比第一種方法更為有效。

關鍵詞：水下顯著物偵測、資料擴增、深度學習。
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Abstract

Salient object detection (SOD) has achieved stateoftheart performance

with the help of deep networks. However, most of the works focus on ter

restrial scenes, and underwater scenes for SOD are still unexplored. In this

work, we propose two practical approaches to boost the performance of un

derwater SOD. First, we utilize image blurriness to enable a more accurate

SOD prediction. The blurriness map is calculated based on the input image,

fed into the model with the input, and fused with the input image to produce

the saliency map. Next, we propose a data augmentation method called Fo

cusAugment for underwater SOD, which adjusts the image intensity based

on the blurriness map. We can modify images by highlighting less blurred

regions or enlarging the difference of pixels based on the blurriness maps.

We test underwater SOD by the proposed dataset collected and annotated by

ourselves for evaluation. The experimental results show that both of our ap

proaches work; moreover, the presented FocusAugment works better than the

blurrinessguided SOD model.

Keywords: Underwater salient object detection, data augmentation, deep learn

ing.
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1 INTRODUCTION

Image saliency aims at finding the most attractive object or area in the image. One

research field is Eye Fixation Prediction, which attempts to model where human visual

fixation may be located. Another branch is salient object detection (SOD), which we con

centrate on in this paper. By detecting and segmenting pixels in the image, SOD precisely

simulates the human visual mechanism that focuses on the most informative part at first

sight.SOD has been widely discussed and researched in the field of pattern recognition

and computational vision since SOD can be applied to various applications and cooperate

with other tasks, such as object detection and recognition [3], and [4], object tracking [5],

and [6], image captioning [7], video compression [8], video abstraction [9], user interface

optimization [10]. Zhang et al. [3] simulated visual attention mechanism as a prior to

help weakly supervised object detection find objects in scenes. In object tracking, Lee et

al. [6] separated the background and object in the bounding box according to salient region

prediction. And the extracted salient object region is further adopted as color and shape

models to estimate the bounding box in the next frame. Hadizadeh et al. [8] proposed a

saliencyaware video compression to keep viewers’ attention in regions of interest (ROI)

by reducing coding artifacts in nonROI areas. It compresses less for the ROI region and

more for the nonROI region for better overall visual quality. Ji et al. [9] adopted SOD to

extract ROI so that less informative frames are discarded in the video abstraction. Gupta

et al. [10] stated that in the user interface (UI) design, the iterative process of feedback and

1
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improvement is timeconsuming, so they proposed a feedback tool based on the saliency

of different elements of a UI.

Weakly-Supervised Salient Object Detection via Scribble Annotations

Jing Zhang1,3,4 Xin Yu1,3,5 Aixuan Li2 Peipei Song1,4 Bowen Liu2 Yuchao Dai2∗
1 Australian National University, Australia 2 Northwestern Polytechnical University, China

3 ACRV, Australia 4 Data61, Australia 5 University of Technology Sydney, Australia

Abstract

Compared with laborious pixel-wise dense labeling, it
is much easier to label data by scribbles, which only costs
1∼2 seconds to label one image. However, using scrib-
ble labels to learn salient object detection has not been
explored. In this paper, we propose a weakly-supervised
salient object detection model to learn saliency from such
annotations. In doing so, we first relabel an existing large-
scale salient object detection dataset with scribbles, namely
S-DUTS dataset. Since object structure and detail infor-
mation is not identified by scribbles, directly training with
scribble labels will lead to saliency maps of poor bound-
ary localization. To mitigate this problem, we propose
an auxiliary edge detection task to localize object edges
explicitly, and a gated structure-aware loss to place con-
straints on the scope of structure to be recovered. More-
over, we design a scribble boosting scheme to iteratively
consolidate our scribble annotations, which are then em-
ployed as supervision to learn high-quality saliency maps.
As existing saliency evaluation metrics neglect to measure
structure alignment of the predictions, the saliency map
ranking metric may not comply with human perception.
We present a new metric, termed saliency structure mea-
sure, to measure the structure alignment of the predicted
saliency maps, which is more consistent with human per-
ception. Extensive experiments on six benchmark datasets
demonstrate that our method not only outperforms existing
weakly-supervised/unsupervised methods, but also is on par
with several fully-supervised state-of-the-art models1.

1. Introduction
Visual salient object detection (SOD) aims at locating in-

teresting regions that attract human attention most in an im-
age. Conventional salient object detection methods [54, 14]
based on hand-crafted features or human experience may
fail to obtain high-quality saliency maps in complicated sce-
narios. The deep learning based salient object detection

∗Corresponding author: Yuchao Dai (daiyuchao@gmail.com)
1Our code and data is publicly available at: https://github.

com/JingZhang617/Scribble_Saliency.

(a) GT(scribble) (b) GT(Bbx) (c) GT(per-pixel)

(d) Baseline (e) Bbx-CRF (f) BASNet

(g) WSS (h) Bbx-Pred (i) Ours

Figure 1. (a) Our scribble annotations. (b) Ground-truth bounding
box. (c) Ground-truth pixel-wise annotations. (d) Baseline model:
trained directly on scribbles. (e) Refined bounding box annotation
by DenseCRF [1]. (f) Result of a fully-supervised SOD method
[26]. (g) Result of model trained on image-level annotations [34]
(h) Model trained on the annotation (e). (i) Our result.

models [26, 52, 41, 48] have been widely studied, and sig-
nificantly boost the saliency detection performance. How-
ever, these methods highly rely on a large amount of labeled
data, which require time-consuming and laborious pixel-
wise annotations. To achieve a trade-off between labeling
efficiency and model performance, several weakly super-
vised or unsupervised methods [16, 46, 24, 49] have been
proposed to learn saliency from sparse labeled data [16, 46]
or infer the latent saliency from noisy annotations [24, 49].

In this paper, we propose a new weakly-supervised
salient object detection framework by learning from low-
cost labeled data, (i.e., scribbles, as seen in Fig. 1(a)). Here,
we opt to scribble annotations because of their flexibility
(although bounding box annotation is an option, it’s not
suitable for labeling winding objects, thus leading to in-
ferior saliency maps, as seen in Fig. 1 (h)). Since scrib-
ble annotations are usually very sparse, object structure and
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Figure 1.1: An example of different weak annotations. (a) Scribble annotations. (b)
Bounding box annotation. (c) Pixelwise annotation. Figure is taken from Fig. 1 of [11].

In addition, other relevant SOD research includes weakly supervised SOD, cosalient

object detection (CoSOD), and RGBD SOD.Weakly supervised SOD does not need time

consuming pixelwise labels to train a model. With weak annotations, we could obtain and

adopt different extra information, including bounding boxes [12], imagelevel labels (class

category) [13], and scribble labels [11], as illustrated in Fig. 1.1. CoSOD aims to find the

common salient object inside an image or inter images, shown in Fig. 1.2. Researchers

consider depth information a significant complementary for RGB images. Hence RGBD

is another active research topic in the SOD field.

There has been much work studying SOD for terrestrial scenes. In contrast, little work

explicitly has been done for underwater scenes, and most of the existing popular datasets

only include seldom numbers of underwater scenes. With objectlevel distinguishing, it is

helpful to apply SOD to underwater exploration missions [15] and benefit other underwa

ter tasks. As shown in Fig. 1.3, before masked with saliency maps, the image captioning

model misstate the image because of the complex scene and blurry effect under these.

Besides, Islam et al. [16] trained a simultaneous enhancement and superresolution model

guided by predicted saliency maps. In [17] and [18], saliency detection was also intro

2
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Figure 1.2: An example of CoSOD. The first row lists the input images, and the second
row has their corresponding ground truth. (a) Vanilla SOD. (b) Intraimage CoSOD. (c)
Interimages CoSOD. Figure is taken from Fig. 1 of [14].

duced to assist feature extraction and visual tracking under the water. Therefore, it is

crucial to develop a useful SOD solution explicitly for underwater scenes.

With the development of the deep learning method, researchers have made significant

progress in the SOD task. Zhao et al. [20] considered global context and local context by a

model consisting of fully connected (FC) layers and convolutional neural network (CNN).

Li et al. [21] also used three branches of CNN layers and FC layers to extract multiscale

features and generate saliency maps. Moreover, the emergence of a fully convolutional

network[22, 23] improved the saliency map from coarse result to pixelwise prediction.

Following those efforts, learningbased saliency detection models have been developed

comprehensively.

For conventional SOD methods, there are various handcrafted cues used to estimate

saliency for image pixels. SOD methods using local contrast as a cue [24] mostly focus

on object boundaries but miss interior parts of the objects. Cheng et al. introduced global

contrast [25] to address the issue by considering spatial correlations across local regions

the global information. Cues like background information [26] and foreground object [27]

3
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(a) A turtle swimming underwater (b) A red and white spider (c) Map

(d) A fish swimming in water (e) A red shrimp with white spots (f) A white fish in the dark

Figure 1.3: Example of image captioning [19] on underwater images. Top row: images
and their captions. Second row: images masked by saliency maps and their captions.

are also helpful for nondeep learning SOD. Recently, a similar work is RGBD SOD,

where RGB data are fused with depth cues to distinguish saliency objects. Peng et al. [28]

concatenated both RGB images and their depth maps as the model input. Han et al. [29]

first separately extracted the RGB and depth features and then fused them into a fully

connected layer to get a predicted map.

This thesis focuses on underwater SOD tasks. Although SOD for terrestrial scenes is

very common, underwater SOD has less attention. Hence, there is few public benchmark

dataset for underwater SOD. We have collected and annotated a dataset to evaluate our

work. This thesis presents two practical approaches to boost the performance of underwa

ter SOD. First, we present a blurrinessguided SOD model by adding blurriness features

and RGB features since underwater scene depth can be estimated using its image blurri

ness [30]. Compared to the RGBD SOD, our approach can be considered using pseudo

depth estimated based on blurriness. Thus, our design is more applicable to various mod

els. Moreover, we can use an attentionbased fusion to combine features from both RGB

images and their blurriness maps.

4
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Data augmentation is a practical technique to boost model performance. There have

been several data augmentation methods, such as random flipping, rotating, cropping,

color jittering, and data augmentation methods specific to SOD [1, 31]. The second ap

proach is our proposed data augmentation method, called FocusAugment, specifically for

underwater SOD. FocusAugment adjusts the image gain based on the blurriness map since

salient objects in an image are usually less blurred. We can modify images by highlighting

less blurred regions or enlarging the difference of pixels based on the blurriness maps.

The contributions of my work are threefold: :

1. An underwater SOD dataset is constructed to train and evaluate our method.

2. A blurrinessguided method is proposed to estimate underwater SOD, exploiting an

inherent blur characteristic of underwater images.

3. A taskspecific data augmentation method is introduced to boost model perfor

mance.

The rest of this thesis is organized as follows. Chapter 2 describes related works.

Chapter 3 depicts the collected dataset for underwater SOD. Chapter 4 details the two

proposed approaches. Experimental results are demonstrated and discussed in Chapter 5.

At last, Chapter 6 concludes the thesis.

5
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2 RELATEDWORKS

In this section, we will review some SOD and augmentation methods. In Sec. 1, some

traditional nondeeplearning methods have already been mentioned, and we will focus

on the deeplearningbased model here.

2.1 Deep SOD models

Convolution neural networks have recently been very successful in computer vision

tasks. We first introduce various SOD methods based on CNN as follows.

Multistage learning: Integrating multilevel features [32, 33, 34, 35] have been

widely used in salient object detection regions. For example, Hou et al. [32] proposed

to fuse multilevel features with short connections as skiplayer structures. Wei et al.

(F3Net) [35] used crossfeature modules to fuse multilevel features of different stages,

and their cascadeddecoder architecture refines multilevel features for image saliency.

Qin et al. (BASNet) [36] designed a consecutive encoderdecoder structure model, where

short connections in different corresponding stages connect encoder and decoder to pre

dict and refine saliency maps. In addition, a hybrid loss is also proposed to supervise

multiscale outputs from different decoder blocks. Pang et al. (MINet) [2] developed a

network focusing on the connection between encoderdecoder blocks and decoder units.

The previous one interactively aggregated multilevel features from different encoder out

puts and fed them to the decoder units after adding with the previous decoderlevel. Each

6
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decoder unit also interactively learns features with different scales derived from the input.

Zhao et al. (GateNet) [37] proposed a dual branch structure with multilevel gate unites to

balance the contribution of each encoder block and suppress the irrelevant features feeding

into decoder blocks. Gao et al. (CSNet) [38] proposed a generalized OctConv module to

utilize both instage and crossstages multiscale features in a lightweight manner.

Attention mechanisms: With attention mechnisms [39, 40], CNN models can fur

ther emphasize feature maps by highlighting important regions and suppress less useful

regions. Wu et al. [39] showed that partially discarding some lowlevel features wouldn’t

seriously influence the performance, but it will save much time on training. It also pro

posed a holistic attention module that can comprehensively get additional information. Li

et al. (SKNet) [40] introduced a selective kernel unit that generates multiple branches

from the input and selects the significant part by weights learned from each branch and a

softmax operation. The gate units from GateNet mentioned earlier are also seen as a kind

of attention mechanism.

Learning with other cues: Traditional handcrafted cues would also be beneficial

supplementary information to detection, such as using scene depth as prior information.

These datasets are called RGBD datasets. With fusing RGB texture information and

depth cues, models can be modified to a depthinduced detection model. Liu et al. [41]

uses selfmutual attention to fuse RGB and depth features. Jiang et al. [42] exploited

conditional generative adversarial networks to handle crossmodality of RGB and depth

for SOD. However, an obvious drawback of the RGBD datasets is that we need to get

salient ground truthmaps and get depth ground truthmaps simultaneously. It is impractical

and difficult to collect data. Zhao et al. [43] proposed an edge guidance network taking

into account multiscale local salient edge to locate salient object regions and boundaries

simultaneously. And, in their later work [38] (ITSD), an interactive twostream decoder

for saliency and contour respectively was proposed, and a correlation module fuses the

7
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Table 2.1: Data augmentation policy adopted by recent SOD models

SOD Methods Random Horizontal Flipping Random Cropping Random Scaling Random Rotating Random Color Jittering Random Vertical Flipping
KRN [47] D D D
PFSNet [48] D D D
U2Net [49] D D
GCPANet [50] D D
F3Net [35] D D D
MINet [2] D D D
ITSD [38] D D D
LDF [51] D D D
CSNet [52] D D
GateNet [37] D D D
CAGNet [53] D D
BASNet [36] D D
AFNet [54] D D D
PoolNet [55] D

features from two cues. Wang et al. [44] proposed a salient edge detection module to

better segment salient objects and refine object boundaries.

Underwater SOD: For underwater SOD, Feng et al. [45] adopted an improved spec

tral residual method and Fuzzy cMeans clusteringmethod to segment underwater saliency

maps. Chen et al. [46] proposed a biologically inspirited model by combining 2D features,

i.e., the color and intensity, and 3D depth features extracted by the DCPbased method;

however, it has been shown that the depth estimation from the DCPbased method is not

reliable on underwater scenes [30].

2.2 Data augmentation for SOD

Data augmentation is an important technique that generates more training examples

and reduces overfitting by increasing data diversity. Conventionally, we could manipulate

images from the perspective of geometric and photometric transforms. For instance, ran

dom flipping, rotation, scaling, cropping, and color jittering, etc., are all commonly used

in training deeplearningbased computervision models. The common data augmentation

approaches used in SOD are listed in Tab. 2.1.

To further utilize the aforementioned methods, the Autoaugment [56] family, e.g., Fast

Autoaugment [57], Randaugment [58], applied metalearning concepts and presented a

8
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method that automatically searches for optimal combination of data augmentation tech

niques. The Neural augmentation [59] utilized a style transfer network to generate an aug

mented image with two randomly selected images. Similarly, Smart augment [60] merged

two or more images randomly chosen from the same class and outputted an augmented

sample. FridAdar et al. [61] generated synthetic medical images using Generative Ad

versarial Networks (GANs) to enlarge the data size and its diversity. Mariani, et al. [62]

attempted to restore balance in imbalanced datasets by their proposed balancing GAN.

IDA [1] and Anda [31] are the recent taskspecific data augmentation methods de

signed for SOD. They could increase the diversity using background replacement for

salient objects. They first generated new background images by removing salient objects

and inpainted the removed regions. Next, the kNN algorithm is adopted to select a similar

background from different images. Last, the work [31] randomly chose the overlay po

sition of salient objects in the new background, while [1] determined the object position

by intraimage optimization. With these synthetic images, more diverse training data is

introduced to the SOD model. However, inpainting methods tend to add noise and dis

tortion to the images, and the context between object and background is undermined by

different kinds of color cast veiled on themselves. Our work proposed a labelinvariant

data augmentation by making the focused objects more prominent to boost the model per

formance.

9
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3 PROPOSED DATASET

3.1 Dataset for underwater SOD

As known, data is the most important key for deeplearningbased methods to succeed.

Although many SOD datasets are available for terrestrial scenes, there is not much data

for underwater SOD. That is, a generally acknowledged dataset for underwater SOD is not

presented. Therefore, we have collected and labeled a total of 1,111 underwater images

with their groundtruth saliency maps, where 800, 100 and 211 imagesaliency pairs are

randomly chosen to be the training, validation and testing sets. Our data comes from the

images or videos downloaded from [63], and [64] and National Geographic footage [65].

These images have a wide variety of contents, watercolors, visibility degrees, and scales of

objects. We excluded those without obvious objects. All collected images are then labeled

using [66], an annotation tool for image segmentation. Fig. 3.1 shows some samples of

our dataset. The first row demonstrates images with different object sizes, categories, and

watercolors, and the second row shows their annotated saliency maps.

3.2 Dataset analysis and comparison

First, we analyze and compare our underwater SOD dataset, named USOD, with five

public terrestrial datasets as:

10



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101682

265
280
414
621
789
1011

Coral Fish Diving and VehicleAquatic Animal Sculpture and RockWreckage

Figure 3.1: Sample of our underwater SOD dataset: The first row are original images, and
the second one are annotated images.

• Extended Complex Scene SaliencyDataset (ECSSD) [67] that has 1000 imageswith

semantically meaningful but structurally complex scenes;

• DUTOMRON [68] that contains 5172 challenging images;

• PASCALS [69] that has 850 validation images used in Pascal visual object classes

challenge;

• HKUIS [21] consisting of 4447 imageswith low contrast or having image boundary

overlapped;

• DUTS [70] containing 15572 images and served as a generic training set of SOD

tasks;

• USOD consists of 1,111 underwater images with various contents, backgrounds,

and watercolors.

We further analyzed our USOD dataset and classified the images according to their

contents, such as coral, fish, diving and vehicles, aquatic animals, wreckage, and sculpture,

and rock, shown in Fig. 3.2(a), where the fishrelated content accounts for more than 45%

of the entire dataset, containing various fish species, including sharks, stingrays, eels,

anglerfish, and so on. Due to unstable lighting conditions and varying attenuation rates in

the water, underwater images suffer from blurring, low contrast, and color distortions. To

11
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further analyze our dataset, we quantitatively compared the contrast and color distribution

(Hue) of our USOD and the abovementioned terrestrial datasets.

Local contrast: We measured the local contrast of images based on the minimal and

maximal luminance in a 3 × 3 image patch Ω(x) centered at the pixel x in the CIELAB

color space. We then averaged contrast over all the local patches sliding across the whole

image as contrast = 1
N

∑
x

maxy∈Ω(x)(Ly)−miny∈Ω(x)(Ly)

maxy∈Ω(x)(Ly)+miny∈Ω(x)(Ly)
, where N is the image size. As

shown in Fig. 3.2(c), our USOD dataset has the smallest value of contrast, indicating that

it is more challenging for SOD since better contrast makes salient objects more prominent

and easier to be detected.
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Figure 3.2: Statistics of the USOD dataset. (a) Percentage of content categories for U
SOD. Comparison of our USOD and the abovementioned terrestrial datasets in (b) Con
trast and (c) Hue. (d) USOD Salient Object Ratio.

Color distribution: We compared the color distribution of different datasets in Fig. 3.2(a)

to show that underwater images are distorted with a nonuniform color cast. We converted

images into HSV color space and computed the Hue distribution with 36 bins. Hue ranges

12
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from 0° to 360°, and the hue for red is 0°. According to Fig. 3.2(a), our underwater SOD

dataset has significantly fewer red components as the red light attenuates faster in the

water.

Object Ratio: We analyzed how large the salient objects take in each image, shown in

Fig. 3.2(d). In the underwater scene, objects tend to have a similar color to the background.

Thus, a large object should be easier to be identified than small objects, which could be

considered as noise. Fig. 3.2(d) shows the USOD dataset has salient objects with various

scales in sizes.

13
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4 PROPOSED METHOD

4.1 Blurrinessguided SOD

4.1.1 Blurriness map generation

(a) (b) (c) (d)

Figure 4.1: Comparison of different depth estimation method. (a) Input images; (b) Semi
inverse [71]; (c) Red Channel [72]; (d) Blurrinessbased [30].

The images taken from underwater scenes usually suffer from blur effects. Naturally,

salient objects in images should be in the foreground, thus less blurry for underwater im

ages due to the fact that when light travels longer, the light scatters more, causing more

14
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blurry. Thus, we can take advantage of the blurriness of underwater images as a cue to

boost the accuracy of SOD. In our work, we chose the work [30] to estimate image blur

riness and generate a blurriness map for an underwater image.

There are several works that can do a similar thing. Galdran et al. [72] extended the

DCP method to the Red Channel prior to underwater scenes based on the assumption that

the red channel almost always has low intensities. One could use the red channel to es

timate underwater scene depth, which can roughly help differentiate the foreground and

background. Nevertheless, the assumption often fails in a hazelike lighting condition

where farther scenes have more red. In [71], Xiao et al. estimated scene depth based on

the semiinverse of an image and integrated them into their SOD model. They adaptively

inverse images according to different light transmission scenarios, either bymedium trans

mission model or reversing the strength of images. However, images captured through the

water medium can not fit the model because the disturbed light transmission fails.

We compare the performance of different approaches based on our UNet baseline

SODmodel where a guided map is fused. The more details about our baseline SODmodel

is in Sec. 4.1.2. As can be seen in Tab. 4.1, the guided map can be the red Channel [72],

Semiinverse [71], and the blurriness map. We can see in in Tab. 4.1 that blurriness esti

mation is more advantageous than the other two approaches.

Table 4.1: Ablation study on different cues for our baseline model with CCAF described
in Sec. 4.1.2.

Method MaxF↑ MeanF↑ WFm↑ Emeasure↑ Smeasure↑ MAE↓
No cues 0.875 0.828 0.828 0.928 0.843 .0335
Red Channel [72] 0.886 0.843 0.844 0.935 0.850 .0300
Semiinverse [71] 0.890 0.838 0.829 0.919 0.831 .0315
Blurriness [30] 0.888 0.848 0.848 0.941 0.852 .0295

15
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Figure 4.2: An illustration of the proposed SODmodel. (a) Proposed SODmodel integrate
with blurriness. The FUSE in (a) represents either: (b) ADDition Fusion (ADDF) or (c)
Cross Channel Attention Fusion (CCAF).

4.1.2 Blurrinessguided SOD model

As can be seen in Fig. 4.2(a), our baselinemodel has two data streams, RGB and blurri

ness, which stand for the underwater image input and its selfderived blurriness map input.

We use a UNet model with a ResNet50 backbone to process the RGB stream. Likewise,

we use the same backbone structure to extract features from the blurriness stream. To

address crossmodality between RGB and blurriness, we use two ways to fuse the two

streams: one with addition and the other with the proposed Cross Channel Attention Fu

sion (CCAF). For the addition fusion, we add blurriness features extracted from different

layers to those corresponding layers (with the same resolutions) in the decoder of the RGB

stream shown in Fig. 4.2(b). To better address crossmodality between RGB and blurri

ness, we employ a modified SK block from [40] to integrate them in this thesis, called

CCAF, where RGB features(xrgb) and blurriness features (xb) become 1 × 1 × C after

global average pooling, denoted as srgbc , sbc = fgap(x
rgb, xb), and they are fed into two con

secutive fully connected layers as argbC , abC = ffcs(s
rgb
c , sbc) respectively. At last, a softmax

function is applied to the output features of those two streams as:

16
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Argb
c =

ea
rgb
C

ea
rgb
C + ea

b
C

, Ab
c =

ea
b
C

ea
rgb
C + ea

b
C

,

where Argb
c + Ab

c = [1, 1, ..., 1] ∈ RC denote the attention weights for two streams. To

this end, final output O is obtained by multiplying the attention weights from one stream

by the features from the other stream as:

O = xrgb · Ab
c + xb · Argb

c ,

where O = [O1, O2, ..., OC ] ∈ RH×W×C . The CCAF is shown in Fig. 4.2(c).

We adopt ResNet50 pretrained on the ImageNet dataset for the RGB stream but no

pretrained weights for the blurriness stream for our baseline UNet structure. The loss

function used is the multiscale hybrid loss L originally proposed in [36], described, to

demonstrate the effectiveness and accuracy gain of the fused blurriness cue. In Chapter 5,

in addition to our baseline architecture, we integrate the proposed approach into the state

oftheart Unetlike SOD model i.e., MINet [2] and BASNet [36] to demonstrate our

method’s effectiveness.

4.2 Blurrinessguided augmentation for underwater SOD

In the previous section, we describe a blurrinessguided underwater SOD approach.

However, currently, it can only work for UNetlike architecture. In this section, we in

troduce a data augmentation approach designed for underwater SOD. Data augmentation

(DA) is a useful technique to enlarge the training dataset and improve the performance of

deep learning models. Our DA approach exploits image blurriness [30], called FocusAug

ment, specifically for underwater SOD. FocusAugment adjusts the image intensity based

on the blurriness map since salient objects in an image are usually less blurred. The gen

17
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FocusAugment

Input image
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Augmented maps
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Figure 4.3: The flowchart of FocusAugment.

erated augmented images are modified by highlighting less blurred regions or enlarging

the difference of pixels based on the blurriness maps. The intuition is that salient objects

in a scene are generally in focus; thus, we would like to change the prominence of objects

based on the focus to diversify data distribution. We first generate the blurriness map

based on [30], where pixels in the foreground often have larger values while those in the

background have small values. Next, we apply gamma correction to adjust the blurriness

map and multiply it by the original image. Here, we use α to make the augmented image

brighter or darker than the original. The augmented image Ida can be derived as

Ida = I × (α +Bγ), (4.1)

where I is the original image, andB is the blurriness map. Here, the power forB, denoted

γ, controls the intensity gain or decrease. Based on our experiment, we set γ = 2 and

α = 1, meaning augmented images are brighter than the original versions. Sec. 5.4 will

18
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give more detailed results. Hence, the augmented dataset Saug for training is described as

Saug = {S ∪ Sda}, Sda = {I × (α +Bγ), ∀I ∈ S}, (4.2)

where S represents the original dataset.

19
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5 EXPERIMENTS

5.1 Implementation and Experimental Setup

We evaluate each compared method on the USOD dataset, where all images are re

sized to 320×320. We implemented our approaches in Pytorch and ran all the experiments

on a desktop with Intel Core i79700 CPU (3.00GHz), 32GB RAM, and an NVIDIA RTX

2080 Ti GPU. All experiments were conducted based on the testing set, except for fusion

architecture and parameter selection on FocusAugment.

5.2 Evaluation Metrics

We have adopted seven metrics to evaluate and compare model performance, which

are listed below.

5.2.1 PrecisionRecall (PR) curve

With a given threshold, we can binarize predicted salient maps and compute Precision

and Recall as:

Precision =
TP

(TP + FP )

,

Recall =
TP

(TP + FN)

20
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, where TP, FP, and FN stand for truepositive, falsepositive, and falsenegative, respec

tively. We can plot a PR curve by a sequence of Precision and Recall pairs from different

thresholds.

5.2.2 Fmeasure family

Fmeasure [73], Fβ , considering both Precision and Recall, is formulated as:

Fβ =
(1 + β2)Precision×Recall

β2Precision+Recall

, where β2 is set to 0.3 to emphasize precision. MaximalFβ , denoted as Fmax reported

according to the PR curve. And the Favg calculated by the threshold that twice the mean

value of the predicted salient map can reflect whether objects are uniformly highlighted

in salient maps. We also compute the weighted Fmeasure [74], Fw formulating weighted

Precision, which is a measure of exactness, and weighted Recall, a completeness measure.

5.2.3 Mean absolute error (MAE)

MAE [75] calculates themean of the absolute difference between the predicted saliency

map and its ground truth.

5.2.4 Smeasure

Smeasure [76], Sm is the linear combination of objectaware and regionaware struc

ture similarities, denoted as So and Sr, between the prediction and the ground truth. The

previous term exploits the relationship between the foreground and background, and the

latter is a summation of patchwise structural similarity. Sm can be described as: Sm = α

·So+ (1  α)·Sr, where α usually is set to 0.5.
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5.2.5 Emeasure

Enhancedalignment Measure [77], Emeasure simultaneously considers local pixel

level and imagelevel error to evaluate the similarity between the prediction and the ground

truth.

5.3 Experimental results

5.3.1 Blurrinessguided underwater SOD

First, we evaluate the performance of our blurrinessguided SOD approach on the

testing set. As mentioned before, we can only apply this approach to UNetlike SOD

architectures. Thus, we choose a UNet baseline model, BASNet [36], andMINet [2] with

two fusion settings, ADDF and CCAF, to compare their performance in our experiment.

We use ResNet50 as the backbone for the RGB and blurriness streams and adopt the

hybrid loss in BASNet [36] for our baseline model. As seen in the Tab. 5.1, blurriness

guided approach with AADF merely improves the SOD accuracy across three models.

MINet [2] which has a more complex structure even gets worse scores. It indicates that

a meticulous design i.e., CCAF is needed to help the model to learn. As for CCAF on

Baseline, BASNet [36] and MINet [2], we could find that using the proposed blurriness

guided SOD with CCAF for fusing a blurriness cue achieves better accuracy, shown in

Tab. 5.1 and Figs. 5.1(b, d). Furthermore, in addition to blurrinessguided models with

CCAF, adopting the proposed FocusAugment can have a significant improvement.

5.3.2 FocusAugment

To examine the effectiveness of our FocusAugment, we test it on an UNet baseline

SOD network (the same one mentioned in Tab. 5.1) and five stateoftheart SOD models,

22
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Table 5.1: Quantitative comparison of different fusion methods on stateoftheart SOD
models.

Model MaxF↑ MeanF↑ WFm↑ Emeasure↑ Smeasure↑ MAE↓
Baseline 0.875 0.828 0.828 0.928 0.843 .0335
Baseline + ADDF 0.874 0.824 0.826 0.930 0.841 .0327
Baseline + CCAF 0.882 0.838 0.839 0.931 0.842 .0314
Baseline + CCAF + FocusAugment 0.895 0.851 0.858 0.949 0.858 .0262
BASNet 0.885 0.835 0.836 0.927 0.844 .0327
BASNet + ADDF 0.889 0.844 0.838 0.932 0.843 .0308
BASNet + CCAF 0.890 0.839 0.839 0.932 0.845 .0288
BASNet + CCAF + FocusAugment 0.898 0.851 0.856 0.940 0.857 .0275
MINet 0.894 0.875 0.872 0.963 0.878 .0249
MINet + ADDF 0.890 0.872 0.867 0.961 0.873 .0256
MINet + CCAF 0.896 0.877 0.875 0.966 0.881 .0240
MINet + CCAF + FocusAugment 0.897 0.883 0.879 0.966 0.881 .0235
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Figure 5.1: Illustration of PrecisionRecall curves and Fmeasure curves on BASNet [36],
and MINet [2], with and without proposed methods. (a, c) PR/ Fmeasure curves of SOD
methods with and without FocusAugment; (b, d) PR/ Fmeasure curves of SOD methods
with and without CCAF. Note that (a, c) and (b, d) share the same legends.

including BASNet [36], GateNet [37], MINet [2], F3Net [35], and ITSD [38].

We also use IDA [1] to trainMINet [2], the best performer for the underwater SOD, but

it is not helpful at all since the inpainting process in IDA [1] does not work for lowcontrast,

colordistorted, noiseprone underwater scenes. As shown in Fig. 5.2, the inpainted fish

and rock seem distorted and not naturelooking.

After discussing the performance of CCAF and FocusAugment separately, we com
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40

(a) (b)
Figure 5.2: Illustration of the inpainting process in IDA [1]. (a) Original input image. (b)
Image after removing the salient object and the impainting process.

Table 5.2: Quantitative comparison of SODmodels with or without FocusAugment. Note
that these models have their own augmentation enabled with or without our FocusAug
ment.

Model MaxF↑ MeanF↑ WFm↑ E measure↑ S measure↑ MAE↓
Baseline 0.875 0.828 0.828 0.928 0.843 .0335
Baseline w/ FocusAugment 0.892 0.853 0.860 0.952 0.861 .0267
BASNet [36] 0.885 0.835 0.836 0.927 0.844 .0327
BASNet w/ FocusAugment 0.899 0.852 0.859 0.942 0.854 .0282
GateNet [37] 0.908 0.892 0.879 0.954 0.873 .0241
GateNet w/ FocusAugment 0.912 0.897 0.886 0.960 0.876 .0226
ITSD [38] 0.904 0.824 0.843 0.941 0.894 .0281
ITSD w/ FocusAugment 0.907 0.840 0.852 0.948 0.896 .0262
F3Net [35] 0.888 0.852 0.856 0.949 0.858 .0282
F3Net w/ FocusAugment 0.889 0.861 0.860 0.950 0.856 .0265
MINet [2] 0.894 0.875 0.872 0.963 0.878 .0249
MINet w/ IDA [1] 0.895 0.879 0.874 0.962 0.879 .0244
MINet w/ FocusAugment 0.899 0.886 0.882 0.967 0.883 .0232

pare the combination of two methods in Tab. 5.1 and only FocusAugment in Tab. 5.2,

which shows that combining blurrinessguided SOD and FocusAugment can make detec

tion more accurate. However, since fusing blurriness cues into the RGB stream requires

the model to be UNetlike, it is not that flexible. FocusAugment, by contrast, is more

adaptable to working with all the SOD models and achieving better performance.
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5.4 Ablation sutdy

5.4.1 Blurrinessguided underwater SOD

As mentioned in Sec. 2.1, we aim to integrate blurriness features into deep networks

with the twostreams manner. Hence, we validate the baseline network with CCAF fusing

RGB and blurriness features in either encoder or decoder side of the RGB stream on the

validation set. As a result, shown in the Tab. 5.3, fusion conducted on the decoder side

(BDec) has a better performance over on the encoder side (BEnc) (row 3 and 2). We

observe that fusing blurriness features closer to the final prediction could be more helpful

since the blurriness is considered homogeneous to saliency and more similar to saliency

maps. To prove that the performance gain is not merely from the increase of the model

size, we conduct an ablation on replacing the blurriness map with the original RGB image

(RGBEnc and RGBDec). As can be seen in Row 4 and 5 of Tab. 5.3, fusing the blurriness

cue works better.

Table 5.3: Validation accuracy for different configurations on CCAF. B, Enc, Dec denote
blurriness map, fusion at encoder, and fusion at the decoder side.

Model MaxF↑ MeanF↑ WFm↑ Emeasure↑ Smeasure↑ MAE↓
Baseline 0.850 0.805 0.812 0.938 0.828 .0309
Baseline + CCAF BEnc 0.869 0.831 0.834 0.947 0.838 .0280
Baseline + CCAF BDec 0.877 0.838 0.847 0.948 0.846 .0248
Baseline + CCAF RGBEnc 0.865 0.819 0.823 0.935 0.835 .0275
Baseline + CCAF RGBDec 0.863 0.822 0.827 0.939 0.836 .0275

5.4.2 FocusAugment

Here, we analyze FocusAugment with other augmentation methods to validate its ef

fectiveness. Moreover, we also show how its hyperparameters listed in Equation 4.1 are

determined. All these experiments are conducted using the stateoftheart SOD model,

MINet [2] and on the validation set.
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Effectiveness of the FocusAugment: To demonstrate the effectiveness of our Fo

cusAugment, we compare it with six commonly used augmentation methods, including

color jittering, horizontal flipping, vertical flipping, cropping, rotation, and random scal

ing. We employed each of the above techniques individually on MINet. As we can see

from Tab. 5.4, all the methods can increase the model accuracy except for IDA [1]. Fo

cusAugment reaches the top three scores in most metrics, indicating that our FocusAug

ment is beneficial to SOD tasks.

Configuration of FocusAugment: To determine a better set of hyperparameters for

Equation 4.1, we use a grid search approach on the validation set based on MINet (0 ≤

α ≤ 1 and 0 ≤ γleq2.5). In Tab. 5.5, the first row (α and γ equal to zero) shows the

result of the original MINet without FocusAugment. The third row (α = 0 and γ = 1)

shows the result of MINet trained with the product of the original image and its blurriness

map, which works slightly better. If we keep α the same and tune γ, there is no further

improvement. To this end, we moderately select α = 1 and γ = 2 to balance fidelity

(α = 1) and diversity (γ = 2). The last two rows of Tab. 5.5, we test if further potential

synergy exists, we add the best two options, α = 0 & γ = 1 and α = 1 & γ = 2, to

testing. As can be seen, it does increase MaxF a little, but overall there is no significant

gain for other metrics. Thus, we only choose one set of hyperparameters for our data

augmentation.

The impact of FocusAugment: As mentioned above, we have compared six com

monly used augmentation methods to validate the effectiveness of FocusAugment. We

further compare our FocusAugment with other Photometric transformations, such as con

trast and brightness adjustment. Fig. 5.3 shows the difference between the original image

and the dataaugmented version of it using heatmaps, where larger values are present in

red while small values are bluish. As can be seen, our FocusAugment emphasizes the

salient region, the fish, more than global brightness or contrast adjustment do. Tab. 5.6
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(a)

(b)

(d) (e) (f)

(c) (g) (h) (i)

Figure 5.3: Visualization of different augmentation methods. (a) input image; (b) Blurri
ness map; (c) Saliency map; (d) Augmented by FocusAugment; (e) Augmented by bright
ness; (f) Augmented by contrast; (gi) differences of df and a.

Table 5.4: Quantitative comparison of different augmentation method based on MINet [2]

MINet MaxF↑ MeanF↑ WFm↑ Emeasure↑ Smeasure↑ MAE↓
None 0.889 0.877 0.867 0.959 0.881 .0274
+ H flipping 0.893 0.878 0.872 0.961 0.883 .0257
+ V flipping 0.892 0.880 0.872 0.961 0.882 .0255
+ Cropping 0.892 0.864 0.860 0.956 0.862 .0250
+ Rotation 0.890 0.870 0.866 0.961 0.876 .0258
+ Random scaling 0.888 0.874 0.862 0.955 0.875 .0287
+ Color Jittering 0.886 0.875 0.865 0.958 0.877 .0274
+ IDA [1] 0.887 0.876 0.862 0.951 0.873 .0290
+ FocusAugment 0.889 0.878 0.869 0.960 0.881 .0270

shows the quantitative results, which indicates that the proposed FocusAugment alone

works slightly better than indiscriminate transformations.
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Table 5.5: Validation accuracy for different configuration on FocusAugment onMINet [2].
The top one performance is highlighted in red and the second one is in blue.

Method α γ MaxF↑ MeanF↑ WFm↑ Emeasure↑ Smeasure↑ MAE↓
0 0 0.886 0.871 0.870 0.968 0.871 .0211
0 0.5 0.885 0.871 0.870 0.970 0.875 .0212
0 1 0.888 0.876 0.875 0.971 0.880 .0196
0 1.5 0.887 0.874 0.870 0.967 0.874 .0207
0 2 0.882 0.870 0.867 0.966 0.876 .0225
0.5 0.5 0.885 0.871 0.871 0.970 0.876 .0205
0.5 1 0.888 0.875 0.871 0.965 0.881 .0202
0.5 1.5 0.889 0.877 0.875 0.970 0.874 .0211
0.5 2 0.891 0.875 0.875 0.969 0.873 .0210
1 0.5 0.884 0.871 0.871 0.969 0.871 .0204
1 1 0.882 0.868 0.866 0.967 0.871 .0225
1 1.5 0.886 0.872 0.872 0.969 0.875 .0207
1 2 0.887 0.876 0.877 0.975 0.879 .0196
1 2.5 0.887 0.874 0.876 0.973 0.879 .0207
0 1

MINet

1 2 0.896 0.882 0.879 0.964 0.884 .0230

Table 5.6: Quantitative comparison of Photometricbased augmentation methods on
MINet [2].

MINet MaxF↑ MeanF↑ WFm↑ Emeasure↑ Smeasure↑ MAE↓
+ Brightness 0.888 0.876 0.867 0.959 0.882 0.0270
+ Contrast 0.888 0.876 0.865 0.957 0.880 0.0286
+ FocusAugment 0.889 0.878 0.869 0.960 0.881 0.0270
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6 CONCLUSION

In this work, we have proposed a blurrinessguided underwater SODmodel and a data

augmentation method, FocusAugment, for underwater SOD. We constructed an underwa

ter SOD dataset including a wide variety of underwater scenes to verify the performance.

Experimental results show that fusing a blurriness cue into salient object detection can

increase detection accuracy. Besides, applying the proposed FocusAugment to training

SOD models can further boost performance. Combining blurriness cues and FocusAug

ment achieves the best results. Comparing the two proposed approaches, unlike fusing

blurriness cues into SOD requires the model to be UNetlike, FocusAugment, by con

trast, can work with all the SOD models and achieve better performance.
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