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ABSTRACT Blind multisignature (BMS), first introduced by Horster et al, constitutes a crucial primitive
that allows a user to generate a signature of a message from multiple signers, while the signers cannot
obtain any information about the message. With these useful properties, blind multisignature is suitable for
electronic payments and electronic voting. However, most of the current BMS schemes may be attacked by
quantum computers in the future because they are based on traditional number theories, such as discrete
logarithm assumption and large integer factor assumption. In this work, we first formalize the notion and
the sound security models of the identity-based blind multisignature scheme (IDBMS). Then we present
an instantiation based on lattices, along with rigorous proofs of the blindness and unforgeability under the
lattice hard assumption (short integer solution, SIS), which is considered to remain secure under quantum
computer attacks. To the best of our knowledge, it is the first identity-based quantum-resistant scheme that
has the advantages of blind signature and multisignature.

INDEX TERMS Lattice-based cryptography, blind multisignature, quantum-resistant.

I. INTRODUCTION
The blind signature scheme, first introduced by Chaum
in 1983 [1], is a promising cryptographic primitive due to
its blindness. This scheme consists of three entities: a user,
a signer, and a verifier. The user can generate a signature
σ of a message µ with the help of the signer, while the
signer cannot obtain any information about the message µ.
The verifier can verify the signature σ of the message µ
that is signed by the signer. This property is suitable for
various applications, such as electronic payments and elec-
tronic voting [2]–[5]. Take electronic payment as an example.
Users withdraw electronic coins that are blindly signed by
the electronic coin issuer (signer). Then, they can spend these
electronic coins that can be authenticated using the public key
of the issuer. However, in a real environment, an electronic
coin may require being signed by multiple issuers at the same
time, and the total size of the signatures will increase linearly
with the number of the issuers. Therefore, how to reduce it
becomes an important problem.

To address this issue, Petersen et al. proposed the first
blind multisignature (BMS) scheme using the advantages
of the multisignature scheme [6]. In their scheme, a user
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can generate a signature σ of a message µ with the help
of multiple signers, while all the signers cannot obtain any
information about the message. This signature σ can be
verified by a key that combines all the signers’ public keys.
They also showed how to use the BMS scheme as a building
block to construct electronic voting. Because this property is
suitable for a multi-user scenario, many BMS schemes have
been proposed in the last two decades and applied to many
scenarios. In 2003, Chen et al. proposed a BMS scheme from
bilinear pairings [7]. In 2006, Hanatani et al. constructed
provably electronic cash from a BMS scheme [8]. In 2015,
Namdeo proposed an untraceable BMS scheme [9]. Recently,
Tan et al. proposed a BMS scheme based on the elliptic curve
discrete logarithm problem [10], [11].

Unfortunately, current research results only focus on the
application scenario and how to construct an efficient scheme.
The security of these schemes relies on traditional mathe-
matics assumptions, such as the discrete logarithms assump-
tion and large integer factoring assumption. According to
Shor’s work [12], there is a quantum algorithm that can solve
the prime factorization and discrete logarithm assumption in
polynomial time. Therefore, the above schemes will certainly
suffer attacks by quantum computers in the future.

Most of the existing schemes are designed on certificate-
based cryptography instead of identity-based cryptography.
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In certificate-based cryptography, the user’s public key is
necessary for certification by the public key authentication
framework, such as public key infrastructure (PKI). Addi-
tionally, the public key is a random string, which is hard for
verifiers to store or remember. On the other hand, identity-
based cryptography, first introduced by Shimar in 1984 [13],
uses the user’s identifier information, such as email address,
name, social security number, etc., as the public key for per-
forming encryption or verification. It eliminates the necessity
of the PKI and uses the identifier information as the public
key, which is more suitable for real scenarios.

For these reasons, it is important to determine whether
we can construct a quantum-resistant identity-based blind
multisignature scheme from lattices.

A. CONTRIBUTIONS
In this paper, we first formalize the notion and security
models of the identity-based blind multisignature scheme
(IDBMS). Then, we provide a concrete instantiation based on
lattices, and show that our scheme has blindness and unforge-
ability based on the short integer solution (SIS) assumption.
To the best of our knowledge, this is the first quantum-
resistant IDBMS scheme in which the size of the blind signa-
ture will not increase with the number of signers. We also
compare with other state-of-the-art works [14] and show
that our scheme can reduce the sizes of blind signatures
effectively.

Hereunder, we briefly sketch our scheme and describe
the technique we use. Inspired by Zhang et al. blind sig-
nature [14] and Tian and Huang identity-based signature
[15], the basic strategy for constructing our scheme is to
use lattice-based trapdoor functions and rejection sampling
technology. In our scheme, there are four main characters,
authority key generator center KGC, a user U , a verifier V ,
and a group of signers S = {S1, · · · ,SN }, where N ≥ 1.
The KGC generates the master public/private keys using the
TrapGen function, that is (A0,B0) ← TrapGen(q, n,m),
where q, n,m are some parameters. Actually, the master pri-
vate keyB0 is a basis of the lattice3⊥q (A0), such thatA0B0 =

0 (mod q). Then, the KGC generates each signer’s signing
key skSi = Bi using the SampleMat function with the hash
value of the signer’s identity Ai = H (Si) as the input, that
is Bi ← SampleMat(A0,B0, s,Ai). Because Bi is sampled
from the lattice 3⊥q (A0), each signer’s signing key Bi will
satisfy A0Bi = Ai (mod q), where s is a Gaussian parameter.
The signing protocol is a four-stages interactive algorithm
between U and S . Each signer generates a blind signature
σi for a message mi using a rejection sampling technique
with his/her signing key, and sends σi to U . Then U can
combine each σi into one blind multisignature σ , to reduce
the total size of the signature. More precisely, this method is
inspired by the lattice-based multisignature scheme proposed
by Bansarkhani and Sturm work [16]. Finally, U generates a
blindmultisignature σ that can be verified byV using signers’
identities.

Our contributions are summarized as follows.

• First, we formalize the notion and the sound secu-
rity models of the identity-based blind multisignature
scheme.

• Second, we propose the first quantum-resistant IDBMS
scheme from lattices. Our proposed scheme allows a
user to generate a blind signature from a group of
signers, while all signers cannot obtain any information
about the message. In addition, the size of the signature
will not increase with the number of signers.

• Third, concerning the adversarial model, rigorous secu-
rity proofs are presented to show that our scheme is blind
and unforgeable under a lattice hard assumption. That
is, even under an attack from a quantum computer, our
scheme can maintain its security.

• Fourth, compared to [14], we show that our scheme can
effectively reduce the sizes of signatures.

B. ORGANIZATION
The remainder of the article is organized as follows. We start
with some preliminaries on lattices and some trapdoor func-
tions in Section II. In Section III, we introduce a general
system and security model for the identity-based blind mul-
tisignature scheme. We propose our scheme from lattices and
compare it to Zhang’s scheme in Section IV. In Section V,
we demonstrate security proofs to show that our scheme is
blind and unforgeable. Finally, we conclude this paper in
Section VI.

II. PRELIMINARIES
This section provides some cryptography primitives and def-
initions required for our construction.

A. NOTATION
For simplicity and readability, we use the following symbols
throughout the paper. We use λ to represent the security
parameter and use the abbreviation PPT to mean probabilistic
polynomial time. We use standard big-O, little-o, and little-
ω notations to classify the growth of functions. In addition,
we say that f (λ) = Õ(g(λ)) if f (λ) = O(g(λ)·logc λ) for some
fixed constant c. We also use poly(λ) to indicate a generic
polynomial function f (λ) = O(λc) for some constant c. The
notation negl(λ) denotes that any function f is negligible in
λ where f (λ) = o(λ−c) for every fixed constant c. We also
show a set of real numbers by R, and a set of integers by Z.
For x ∈ R, exp(x) denotes the exponent of x, that is ex .
Conventionally, vectors are written in bold lower-case let-

ters (e.g., x), while matrices are written in bold capital letters
(e.g., A). For a vector x, ‖x‖ and ‖x‖1 denote the Euclidean
norm of x and the Manhattan distance of ‖x‖, respectively.
For two vectors v,w, 〈v,w〉 denotes the inner product of v
and w. For a full rank square matrix B, B̃ denotes the Gram-
Schmidt orthogonalization of B. For k ∈ {0, 1}∗, |k| denotes
the bit-length of k , and ki denotes the i-bit of k . For a finite
setQ, a← Q denotes the sampling of a fromQwith uniform
distribution. Finally, let X ,Y be two random variables that
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take values in Z , which is the union of supports of X and Y ,
then their statistical distance is defined as

1(X ,Y ) = 1
2

∑
z∈Z

|Pr[X = z]− Pr[Y = z]|.

B. LATTICES BACKGROUND
The construction for our IDBMS scheme is based on lattices.
In this section, we first give a brief introduction to the lattice.
An m-dimensional lattice 3 is a discrete subgroup of Rm,
which is defined as follows.
Definition 1 (Lattices): Let B = [b1,b2, · · · ,bn] ∈

Rm×n, where b1,b2, · · · ,bn ∈ Rm are m linear independent
vectors. The lattice 3 generated by B is the set of linear
combinations of the columns of B with coefficients in Z,
3(B) = {a1b1 + a2b2 + · · · + anbn : a1, a2, · · · , an ∈ Z}.
In this case, the set of vectors b1,b2, · · · ,bn is called a basis
of 3. If n = m, we say it is a full-rank lattice. In addition,
we say that a lattice is a q-ary lattice if (qZ)m ⊆ 3 ⊆ Zm for
some integer q.
Definition 2 (The q-ary Lattices): For prime q and A ∈

Zn×mq , we can define the q-ary lattices as follows.

3q(A) = {s ∈ Zm : ∃e ∈ Znq s.t. A
>e = s (mod q)}

3⊥q (A) = {s ∈ Zm : As = 0 (mod q)}

The security analysis of our proposed scheme is based
on the lattice hard assumption, short integer solution (SIS),
first introduced by Ajtai [17]. Based on his work, Micciancio
and Regev showed that solving the SISq,n,m,β problem in
the average-case can be reduced to solving Õ(β

√
n)-SIVP

problem in the worst-case [18].
Definition 3 (SISq,n,m,β ): Let A ∈ Zn×mq . The SISq,n,m,β

problem is to find a nonzero vector x ∈ Zm such that

Ax = 0 (mod q) and ‖x‖ ≤ β.

C. DISCRETE GAUSSIAN DISTRIBUTION
In this section, we first define the discrete normal distribution
over a lattice.
Definition 4 (Discrete Normal Distribution over3): If any

parameter s > 0, center c ∈ Rm, The Gaussian function can
be defined by

gc,s(x) = exp(−π
‖x− c‖2

s2
).

In addition, let gc,s(3) be a sum of gc,s over the lattice 3.
We can define the discrete Gaussian function over lattice 3
as

D3,c,s(x) = ρc,s(x)/ρc,s(3).

Then, we define continuous Gaussian distribution over Rm

and discrete Gaussian distribution over Zm as follows.
Definition 5 (Continuous Normal Distribution over Rm):

If any parameter ζ , center c ∈ Rm, we can define the

continuous normal Gaussian function over Rm as

ρmc,ζ (x) = (2πζ 2)−m/2exp(−
‖x− c‖2

2ζ 2
).

Definition 6 (Discrete Normal Distribution over Zm): If
any parameter ζ , center c ∈ Zm, we can define the discrete
Normal Gaussian function over Zm as

Dmc,ζ (x) = ρ
m
c,ζ (x)/ρ

m
c,ζ (Z

m),

where ρmc,ζ (Z
m) is a sum of ρmc,ζ over Z

m.
For convenience, when c = 0, we will simply write gζ (x),

D3,ζ (x), ρζ (x), and Dmζ (x), respectively.
The below lemma provides two basic properties of discrete

Gaussian distributions that will be used in the rejection sam-
pling technique [18], [19].
Lemma 1: For k ≥ 1, the following formula is satisfied.

Pr[‖z‖ > kζ
√
m : z← Dmζ ] < kmexp((m/2)(1− k2)).

In addition, for any ζ, r > 0, and a vector v ∈ Rm, we have
Pr[|〈z, v〉| > r : z← Dmζ ] ≤ 2exp(−(r2/(2‖v‖2ζ 2))).
Lemma 2: For α > 0, v ∈ Zm, if σ = α‖v‖, then

Pr[Dmζ (z)/D
m
v,ζ (z) < exp(12/α + 1/(2α2)) : z ← Dmζ ] =

1− 2−100.

D. SAMPLING OVER LATTICES
Hereunder, we recall some theorems that will be used in our
scheme. Theorem 1 shows that there exists a PPT algorithm
that can generate a pair (A,S), where S is a short basis for the
lattice 3⊥q (A) [20].
Theorem 1: Let q ≥ 3 be odd and m > 5n log q. There

is a PPT algorithm TrapGen(q, n,m) that outputs a pair
(A ∈ Zn×mq ,B ∈ Zm×m) such that A is statistically close
to a uniform matrix in Zn×m and B is a basis for 3⊥q (A)
satisfying ‖B‖ ≤ O(n log q) and ‖B̃‖ ≤ O(

√
n log q) with

overwhelming probability.
The following two theorems show how to invert the SIS

function using a lattice basis [21], [22].
Theorem 2: Let m ≥ n be an integer and let q be prime.

Given a matrix A ∈ Zn×mq , B be a basis of 3⊥q (A), and
ζ ≥ ‖B̃‖ · ω(

√
log n). Then, for any u ∈ Znq, there is a

PPT algorithm SamplePre(A,B, ζ,u) that outputs a vector
v ∈ 3u

q(A) from a distribution that is statistically close to
D3u

q (A),ζ .
Theorem 3: Let m ≥ n and k ≥ 2 be positive integers and

let q be prime. Given a matrix A ∈ Zn×mq , B be a basis of
3⊥q (A), and ζ ≥ ‖B̃‖ · ω(

√
log n). Then, for any U ∈ Zn×kq ,

there is a PPT algorithmSampleMat(A,B, ζ,U) that outputs
a matrix S ∈ Zm×k from a distribution that is statistically
close toD3U

q (A),ζ
, whereD3U

q (A),ζ
= D

3
u1
q (A),ζ×D3u2

q (A),ζ×

· · · × D
3

uk
q (A),ζ .

E. REJECTION SAMPLING
The rejection sampling technique was first applied to lattice-
based signatures in Lyubashevsky’s work [19], making the
signing key independent from the outputted signature. That
is, we can sample a signature without revealing any secret
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information. For example, if we want to generate a signature
σ for a message µ using signing key k , then we let the dis-
tribution of the signature be f , which is independent of k and
let g be the distribution of the signature, which is related to
k . The rejection sampling is that if f (x) ≤ Kg(x) for all x and
K > 0, we can generate a signature σ which is independent
of the signing key k with probability f (σ )/Kg(σ ), where K
is the expected number of times that will output a signature.
The area between f (σ ) and Kg(σ ) is called the rejection area.
Furthermore, Lyubashevsky provided the following useful
lemma in [19]
Lemma 3: Let V ⊂ Zm and ∀v ∈ V , ‖v‖ ≤ T , ζ ∈ R

such that ζ = ω(T
√
logm), and a probability distribution h

that maps V toR. Then there exists a constantK = O(1) such
that the statistical distance of the following distribution F1:

1) v← h.
2) z← Dmζ
3) output (z, v) with probability 1/K .

with the distributions F2:

1) v← h.
2) z← Dmv,ζ .

3) output (z, v) with probability min(
Dmζ (z)
KDmv,ζ (z)

, 1).

is within 2−ω(logm)/K .

III. IDENTITY-BASED BLIND MULTISIGNATURE SCHEME
We now precisely formalize the definition and security
requirements of the IDBMS scheme. For convenience, letM
be the message space and S = {S1, · · · ,SN } be the identities
of the N signers who agree to sign a message µ ∈ M
collectively, and U be the user who wants to generate a blind
multisignature.

A. SYNTAX OF IDBMS
We say that an IDBMS scheme consists of four algorithms
(Setup, Extract, Sign, and Verify) which are defined as
follows.

• Setup(1λ)→ (pp,mpk,msk): On input of the security
parameter λ, the probabilistic algorithm outputs public
parameter pp, a master private key msk, and a master
public key mpk.

• Extract(pp,mpk,msk,Sid )→ skSid : On input of the
public parameter pp, master public keympk, master pri-
vate key msk, and signer identity Sid , the probabilistic
algorithm outputs a signing key skSid for signer Sid .

• Sign(pp, µ,S, skS ,mpk) → σ : It is an interactive
algorithm between user U and a group of signers S .
On input of the public parameter pp, message µ ∈M,
signers’ identities S, their corresponding signer keys
skS , master public key mpk, and message µ, the algo-
rithm outputs an identity-based blind multisignature σ .

• Verify(pp, σ, µ,S,mpk)→{0, 1}: On input of the pub-
lic parameter pp, identity-based blind multisignature
σ , message µ, set of signers’ identities S, and master
public key mpk, the deterministic algorithm outputs 1 if

the signature is valid and all signers indeed signed the
message, and 0 otherwise.

In addition, the correctness of IDBMS is defined as fol-
lows.
Definition 7: Let λ be a security parameter; we say that an

IDBMS scheme is correct if the probability
Pr[Verify(pp,Sign(pp, µ,S, skS ,mpk), µ,S,mpk) = 1]
is equal to 1 with overwhelming probability, where
(pp,mpk,msk) is outputted by Setup(1λ), and each signer’s
signing key skSid is generated by Extract(pp, mpk).

B. SECURITY REQUIREMENTS OF IDBMS
We now define the security requirements for the IDBMS
scheme, which follows those defined in [23]–[25]. For an
IDBMS scheme, the securities requirements that must be
considered are blindness and unforgeability.

1) BLINDNESS
The blindness of the IDBMS scheme is defined as the fol-
lowing game. Let A be a PPT adversary who plays the role
of the group of signers, and U0, U1 be two honest users.
In the game of blindness, U0 and U1 engage in the blind
multisignature scheme withA on messagesµb andµ1−b, and
output signatures σb and σ1−b, respectively, where b ∈ {0, 1}
is a random bit chosen uniformly. The messages µ0,mu1 and
the output signatures σ0, σ1 are sent to the adversary A, and
A outputs a bit b′ ∈ {0, 1}. If b = b′, we say that A wins the
game.
Definition 8 (Blindness): We say that an IDBMS scheme

has blindness if there is no adversary A who wins the above
game with a non-negligible advantage δ.

2) UNFORGEABILITY
Unforgeability ensures that a malicious user cannot forge a
blind multisignature from an honest signer. We define the
unforgeability of the IDBMS scheme via the following game,
which is played between a challenger C and an adversary A.

• Setup. The challenger C runs the Setup algorithm with
a security parameter λ and sends the public parameter
pp and the master public key mpk to A, and keeps the
master private key msk secret.

• Queries. The adversary A performs the following
queries adaptively.

– Hash function query: The hash function query
only exists when the security is analyzed under a
random oracle model. The challenger C computes
an output of the hash function and sends the output
to A.

– Extract query: The adversary A can issue this
query to obtain the signing key of a signer Sid .
In response, the challenger C runs the algorithm
Extract(pp,mpk,msk,Sid ) and returns a signing
key skSid to the adversary A.
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TABLE 1. Parameter settings of our scheme.

– Sign query: When the adversary A issues such a
query on message µ and an identity list S, the chal-
lenger C returns a signature µ as a response.

• Forgery. In the end, A outputs a tuple (σ ′, µ′,S ′).
If the tuple satisfies the following requirements,Awins the

above game.

• σ ′ is a valid signature on message µ′ under the signers’
identity list S ′.

• At least one signer S ′i ∈ S ′ has not been queried during
the Extract queries.

• (S ′, µ′) has never been queried during the Sign queries.

Definition 9 (Unforgeability): We say that an IDBMS
scheme is existential unforgeable under adaptive chosen mes-
sage and identity attacks if there is no PPT adversary A who
wins the above game with a non-negligible advantage.

IV. OUR PROPOSED SCHEME
A. DESCRIPTION OF THE SCHEME
Hereunder, we describe the whole construction of the IDBMS
scheme from lattices. The main steps of our construction
are provided as follows, and the parameters we used are
listed in Table 1. Note that the parameters K1,K2,K3 are the
expected number of times to generate a sample using rejection
sampling. Therefore, we must set these as small as possible.

• Setup(1λ): Given a security parameter λ, the algorithm
performs as follows.

1) It chooses prime q > 3, n is a power of 2, and sets
m > 5n log q.

2) It chooses k, κ ∈ Z+, such that 2κ
(k
κ

)
≥ 2100. This

is to make Lemma 4 correct.
3) It chooses two secure hash functionsH1 : {0, 1}∗×
{0, 1}∗ → {v : v ∈ {0, 1}k , ‖v‖1 ≤ κ} and H2 :

{0, 1}∗→ Zn×k .
4) It generates (A0,B0) by using TrapGen(q, n,m),

and sets Gaussian parameters ζ0 ≥ ‖B̃0‖.
5) It chooses η from [1.1, 1.3], and sets ζ1 = 12

√
κ ,

ζ2 = 12ηζ0ζ1
√
mk , and ζ3 = 12ζ2N

√
m.

6) It sets K1 = exp(12ζ1
√
κ/ + κ/(2ζ 21 )), K2 =

exp(1+ 1/288), and K3 = exp(1+ 1/288).
7) It outputs the public parameters pp= {q, n,m, k , η,
{ζi}

3
i=0, {Ki}

3
i=1,H1,H2}, master public keympk =

A0, and master private key msk = B0.
• Extract(pp,mpk,msk,Sid ): Given the public parame-
ter pp, master public key mpk = A0, master private key
msk = B0, and a signer’s identity Sid , the algorithm
extracts a signer’s signing key as follows.
1) It computes the hash value of the signer’s identity

Aid = H2(Sid ).
2) It computes Bid ← SampleMat(A0,B0, ζ0,Aid ).
3) It outputs skSid = Bid for signer Sid .

• Sign(pp, µ,S, skS ,mpk): This is a four-stage interac-
tive algorithm between a user and a group of signers.
On input public parameter pp, a message µ, signers’
identities S = {S1, · · · ,SN } with their signing keys
skS , and a master public key mpk = A0, the algo-
rithm generates a signature by performing the following
stages. Note that if e, yNi=1, and z are produced in the
rejection area, they will be rejected.
1) Each signer Si→ User U :

a) It chooses ri← Dmζ2 , and computes xi = A0ri.
b) It sends xi to user U .

2) User U → Each signer Si:
a) It chooses t ← {0, 1}∗, a ← Dmζ3 , and b ←

Dkζ1 .
b) It computes

∑N
i=1 xi.

c) It computes Aτ =
∑N

i=1 H2(Si) =
∑N

i=1 Ai.
d) It computes c = H1(x+ A0a + Aτ ·

b, com(t, µ)), where com is a secure commit-
ment function.

e) It outputs e = c + b with probability

min (
Dkζ1

(e)

K1Dkc,ζ1
(e)
, 1).

f) It sends e to each signer Si.
3) Each signer Si→ User U :

a) It computes yi = Bie + ri with probability

min (
Dmζ2

(yi)
K2DmBie,ζ2(yi)

, 1), and sends yi to user U .
4) User U generates signature:

a) It computes y =
∑N

i=1 yi
b) It computes z = y + a with probability

min (
Dmζ3

(z)

K3Dmy,ζ3(z)
, 1).

c) If z is in the rejection area, it sends
(a,b, c, com(t, µ)) to each signer. Signers
restart the protocol if the following conditions
are satisfied.
– c = H1(A0a+ A0y+ Aτ · c, com(t, µ)).
– e− b = c = H1(

∑N
i=1 xi + A0a + Aτ ·

b, com(t, µ)).
– y+ a in the rejection area.

d) Else, it outputs a blind multisignature σ =
(z, c, t)
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TABLE 2. Comparison of the complexity of the key size and signature size with [14] under N signers setting.

• Verify(pp, σ, µ,S,mpk): Given the public parameter
pp, a signature σ = (z, c, t), a message µ, the identity
list of all signers S = {S1, · · · ,SN }, and the master
public key mpk = A0, the algorithm checks whether
the signature is valid as follows.
1) It computes Aτ =

∑N
i=1 H2(Si) =

∑N
i=1 Ai.

2) It outputs 1 if and only if c = H1(A0z − Aτ ·
c, com(t, µ)) and ‖z‖ ≤ ηζ3

√
m, where η > 1.

3) Else, it outputs 0.

B. CORRECTNESS
Theorem 4: The proposed IDBMS scheme satisfies cor-

rectness.
Proof 1: Given master public key mpk, master private

key msk, a group of signers’ identities S = {S1, · · · ,SN },
a message µ, and a signature σ = (µ, (z, c, t)), we have

c = H1(x+ A0a+
N∑
i=1

H2(Si) · b, com(t, µ))

= H1(A0

N∑
i=1

ri + A0a+ Aτ · b, com(t, µ))

= H1(A0

N∑
i=1

ri + A0a+ Aτ · (e− c), com(t, µ))

= H1(A0

N∑
i=1

ri + A0a+ Aτ · e− Aτ · c, com(t, µ))

= H1(A0

N∑
i=1

ri + A0a+A0

N∑
i=1

Bi · e−Aτ · c, com(t, µ))

= H1(A0

N∑
i=1

yi + A0a− Aτ · c, com(t, µ))

= H1(A0y+ A0a− Aτ · c, com(t, µ))

= H1(A0z− Aτ · c, com(t, µ)).

In addition, with Lemma 1, ‖z‖ is less equal than ηζ3
√
mwith

overwhelming probability. Therefore, the verifier can verify
the signature σ with Verify(pp, σ, µ,S,mpk) = 1. �

C. COMPARISON
Table 2 shows the comparison with [14]. In this compari-
son, we assume that a user communicates with N signers
to generate a blind multisignature in our scheme, while the
user generates N blind signature in [14]. The symbol |ID|
denotes the length of a signer’s identity, d is an integer, σ
is a standard deviation, and m′ = 64+n log q/ log(2d+1) in

the setting of [14]. Although the size of the signer’s secret key
is larger than [14], our scheme reduces the size of the public
key. Additionally, the size of our signature is smaller than [14]
when the user generates a signature with multiple signers.
Note that because the security requirement is the same as for
blind signature, we do not provide a comparison with [14].
As for efficiency, the cost of generating a blindmultisignature
is also the same as [14].

V. SECURITY ANALYSIS
In this section, we will provide security proofs to show that
our scheme has blindness and unforgeability by following the
idea of [14].

A. BLINDNESS
In this section, we prove that our scheme is statistically blind.
We use A to represent the group of malicious signers who
want to distinguish the views V0,V1 generated by different
messages µ0, µ1 from two users U0,U1, respectively.
Theorem 5: The proposed scheme is blind if commitment

function com is δ-hiding.
Proof 2: In this proof, we show that the adversary A can-

not obtain information about the signed message. We analyze
the distribution of e, z, and the situation that protocol restarts.
Note that due to c, t being generated from a secure hash
function and randomness, we need not worry.

• Distribution of e. First, we let eb, e1−b be the value
generated by Ub(mpk, µb) and U1−b(mpk, µ1−b),
respectively. For our proposed scheme, eb is gen-
erated by rejection sampling with the probability
min (Dkζ1 (eb)/K1Dkc,ζ1 (eb), 1) and e1−b is
generated by rejection sampling with the probability
min (Dkζ1 (e1−b)/K1Dkc,ζ1 (e1−b), 1), thus they have the
same distribution Dkζ1 . Moreover, their statistical dis-
tance is 1(eb, e1−b) = 0. Therefore, eb(e1−b) are
independent with its corresponding message µb(µ1−b).
Therefore, the adversary A cannot distinguish them.

• Distribution of z. It is similar to e. Let zb, z1−b be the
values generated byUb(mpk, µb) andU1−b(mpk, µ1−b),
respectively. Because zb is generated by rejection sam-
pling with the probability min (Dmζ3 (zb)/K3Dmy,ζ3 (zb), 1),
and z1−b is generated by rejection sampling with the
probabilitymin (Dmζ3 (z1−b)/K3Dmy,ζ3 (z1−b), 1), they have
the same distribution Dmζ3 and their statistical distance
is 1(zb, z1−b) = 0. Therefore, zb(z1−b) are indepen-
dent with its corresponding message µb(µ1−b), and the
adversary A cannot distinguish them.
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• Restarts. For each session for our protocol, the user will
select fresh t, a,b which are statistically independent of
the previous session due to the hiding property of the
commitment function com. With the δ-hiding property,
the adversary A never obtains the information of the
message µ.

Therefore, our protocol has blindness if the commitment
function com is δ-hiding. �

B. UNFORGEABILITY
Theorem 6: The proposed scheme is existential unforge-

able under the adaptive chosen message and identity attacks
based on the hardness of the SISq,n,m,β problem for β =
2(ηζ3 + ζ0Nκ)

√
m.

Proof 3: In the following proof, letA be an adversary who
wants to break the unforgeability of the proposed scheme, and
C be an SIS challenger. In addition, C is given an SIS instance
A0 ∈ Zn×mq , where q is a large prime, n is a power of 2, and
m ≥ 5n log q. The following statement will prove that if A
can break the unforgeability of our scheme, then C can solve
the SISq,n,m,β assumption. The purpose of C is to find a non-
zero vector v such that A0v = 0 (mod q) and ‖v‖ ≤ 2(ηζ3 +
ζ0Nκ)

√
m.

• Setup. In this phase, C runs the Setup algorithm
to choose (k, {ζi}3i=0, {Ki}

3
i=1). Then C sets the public

parameter pp = {q, n,m, k, {ζi}3i=0, {Ki}
3
i=1}, and mas-

ter public keympk = A0. C also chooses three hash lists,
H1-list, H2-list, and Sign-list, and sets them as empty.
Finally, C sends pp and mpk to A.

• Queries. In this phase, A can request the following
queries adaptively.
– H1 query : When A issues such a query on (x +

A0a + Aτb, com(t, µ)), C looks it up in H1-list.
If there is an matching pair ((x + A0a + Aτb,
com(t, µ)), c), then C returns c to A. Otherwise,
C chooses a random vector c ← {v : v ∈
{−1, 0, 1}k , ‖v‖1 ≤ κ}, stores ((x + A0a + Aτb,
com(t, µ)), c) in the H1-list, and returns c to A.

– H2 query : When A issues such a query on a
signer’s identity Sid , C looks it up inH2-list. If there
is a matching pair (Sid ,Aid ,Bid ), C returns Aid to
A. Otherwise, C chooses a random matrix Bid ∈
Zm×k and each column of Bid is chosen from
DZm,ζ0 . Then C computes Aid = A0Bid and returns
it to A. Finally, C stores a tuple (Sid ,Aid ,Bid ).

– Extract query : When A issues such a query on a
signer’s identity Sid , C looks it up inH2-list. If there
is an matching pair (Sid ,Aid ,Bid ). Otherwise, C
requestsA to issue H2 on signer’s identity Sid first.

– Sign query :WhenA issues such a query on (S =
{S1, · · · ,SN }, µ), C performs the following steps.
1) For each Si ∈ S, C queries H2 on identity Si to

obtain Ai.

2) C computes Aτ =
N∑
i=1

Ai.

3) C chooses a randommatrix z ∈ Zm satisfies that
‖z‖ ≤ ηζ3

√
m.

4) C chooses a random vector c ← {v : v ∈
{−1, 0, 1}k , ‖v‖ ≤ κ}, and selects t ← {0, 1}∗.

5) C sets c = H1(A0z− Aτ c, com(t, µ)).
6) Finally, C returns a signature σ = (z, c, t) as

a response, and stores a tuple (σ,S, µ) in the
Sign-list.

• Forgery. After querying above queries, with non-
negligible probability δ, A finally outputs a forgery
signature σ ′ = (z′, c′, t ′) on message µ′ with an identity
list of signers S ′ = {S ′1, · · · ,S

′
N }.

After A forged the signature σ ′, C will use the following
method to obtain a solution v such that A0v = 0 (mod q) and
‖v‖ ≤ 2(ηζ3 + ζ0Nκ)

√
m. C reruns A again with the same

random tape but the output sequence of theH1 andH2 queries
are different. By the general forking lemma [26],A outputs a
new forgery (z′′, c′′, t ′′) on the same message µ′ and identity
list S ′ with probability of at least δ/2, such that z′ 6= z′′,
c′ 6= c′′, and A0z′ − Aτ c′ = A0z′′ − Aτ c′′. After replacing
Aτ with A0

∑N
i=1 Bi, we have

A0(z′ − z′′ +
N∑
i=1

Bic′′ −
N∑
i=1

Bic′) = 0.

Because ‖z′‖, ‖z′′‖≤ ηζ3
√
m and ‖

∑N
i=1 Bic

′
‖, ‖

∑N
i=1 Bic

′′
‖

≤ ζ0Nκ
√
m, ‖z′ − z′′ +

∑N
i=1 Bic

′′
−
∑N

i=1 Bic
′
‖ ≤ 2(ηζ3+

ζ0Nκ)
√
m. If z′ − z′′ +

∑N
i=1 Bic

′′
−
∑N

i=1 Bic
′
= 0, then C

obtains a solution of the SIS problem.
Next, we consider that z′ − z′′+

∑N
i=1 Bic

′′
−
∑N

i=1 Bic
′
6=

0. With the Lemma 4, it shows that, with probability no less
than 1− 2−100, there exists another B∗ 6=

∑N
i=1 Bi such that

A0B∗ = A0
∑N

i=1 Bi. Therefore, if z
′
− z′′ +

∑N
i=1 Bi(c

′′
−

c′) = 0, then z′ − z′′ + B∗(c′′ − c′) 6= 0 and A0(z′ − z′′ +
B∗(c′′ − c′)) = 0. C obtains a solution of the SIS problem.
Lemma 4: For any A ∈ Zn×mq where m > 5n log q, for

randomly chosen S← {−ζ0 N , · · · , 0, · · · , ζ0 N }m×k .When
the parameters are set under our scheme, with a probability
of at least 1 − 2−100, there exists another S′ ∈ {−ζ0 N , · · · ,
0, · · · , ζ0 N }m×k such that AS = AS′.
Proof 4: (Proof of Lemma 4) The proof is similar to the

proof in [19] Lemma 5.2. The probability of randomly choos-
ing non-colliding elements is at most

qn×k

(2ζ0N + 1)m×k
≤

qn×k

(2ζ0N )5n log q×k
.

Therefore, for our setting (q = 227, n = 512, k = 80,N =
10, ζ0 = 64), the probability of colliding elements is at least

1−
227∗80

2 ∗ 64 ∗ 105∗512∗27∗80
≥ 1− 2−100.

�
Because the

∑N
i=1 Bi andB

∗ are independent of the signatures
and act as the same role in our proposed scheme, A cannot
obtain the information about which of them was used in the
simulation. Therefore, with the above statements, C can find
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a non-zero solution v = z′ − z′′ +
∑N

i=1 Bic
′′
−
∑N

i=1 Bic
′

with a probability of at least 1/2 such that A0v = 0 (mod q),
and ‖v‖ ≤ 2(ηζ3 + ζ0Nκ)

√
m �

VI. CONCLUSION
In this study, we propose a quantum-resistant identity-based
blind multisignature scheme. The construction is based on a
lattice hard assumption (short integer solution, SIS). It is the
first quantum-resistant instantiation that has the advantages
of blind signature and multisignature. We have also shown
that our scheme is blind and unforgeable with rigorous formal
proofs. Currently, we are working on constructing a quantum-
resistant identity-based blind multisignature scheme in the
standard model.
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