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Abstract: This study estimates the environmental efficiency of 150 economies during the period of
2010–2017 to understand the environmental efficiency trend worldwide. This research adopts the
meta-Malmquist approach to compare and capture the dynamic change in environmental efficiency
among different income groups. The empirical results indicate that among the four income groups,
only the low-income group suffers from regression in terms of environmental efficiency, while
the high-income group achieves the greatest progress. For the high-income group, the source of
improvement originates from the frontier shift rather than from efficiency change. By contrast, the
improvement of the lower-income groups results from the catching-up effect. With regard to the
effect of the Paris Agreement, only the lower middle-income group exhibits a statistical difference
between the two periods, and environmental efficiency increases after the adoption of the Paris
Agreement. The fight against global warming cannot succeed by relying only on specific countries.
The whole world must cooperate and improve together, and thus, additional help must be devoted to
the low-income group. The statistical results support that differences exist in terms of environmental
efficiency among the four income groups. In particular, the low-income group is deteriorating.

Keywords: environmental efficiency; Paris Agreement; data envelopment analysis; meta-Malmquist;
climate change; common but differentiated responsibilities

1. Introduction

Climate change is a major threat to mankind in the 21st century [1]. According to
the Intergovernmental Panel on Climate Change (IPCC), the world’s climate is changing
at an unprecedented pace. If the global average surface temperature exceeds a 1.5 ◦C
limit, devastating consequences will occur [2]. Therefore, reducing greenhouse gas (GHG)
emissions by countries collectively are urgently needed.

In 1992, countries gathered at the “Rio Earth Summit” and signed the United Nations
Framework Convention on Climate Change (UNFCCC) to combat global warming. The
subsequent Kyoto Protocol is a milestone in taking the first step to secure the commitment of
industrialized countries and economies in transition to limit their GHG emissions. The Paris
Agreement adopted by 196 parties in 2015 is another landmark where all signatories are
bound to take actions to combat climate change. The most significant departure of the Paris
Agreement from the Kyoto Protocol is the so-called “nationally determined contributions”
(NDCs) [3]. Unlike the Kyoto Protocol that assigned a set of emission reduction quantities
to the Annex I (industrialized) countries only, the Paris Agreement involved all countries
in the effort by requiring them to submit their own voluntary mitigation ambitions. Under
the Paris Agreement, ‘Parties aim to reach global peaking of greenhouse gas emissions as
soon as possible’, and all are asked to take on ‘ambitious efforts’ to achieve the target to
limit the growth of global average temperature to below 2 ◦C by the end of the century [4].
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However, countries need to pursue economic growth to eliminate poverty or maintain
prosperity simultaneously. Economic growth is often accompanied by higher energy
consumption and GHG emissions [5]. The reduction in energy use, especially fossil fuels
such as coal and oil, would lead to a reduction in carbon dioxide (CO2) emissions, but
countries are hesitant to do so because energy is a driving force for economic growth [6,7].

Achieving economic prosperity and mitigating global warming simultaneously is a
complex problem. In this context, improving environmental efficiency became prominent.
A decision-making unit (DMU) is more environmentally efficient if it can produce increased
desirable outputs (gross domestic product (GDP)) and reduced undesirable outputs (such
as CO2) using the same number of inputs [8]. Thus, environment efficiency measurement
is useful in providing improvement suggestions for policymakers.

Different quantitative approaches have been proposed in environmental efficiency
evaluation [9]. Data envelopment analysis (DEA) that incorporates all relevant indica-
tors into an overall index is an effective approach for computing environmental perfor-
mance [10]. Zhou et al. [11] also indicated that DEA has gained great popularity after
they surveyed 100 studies regarding the application of DEA to energy and environmental
studies published from 1983 to 2006. Therefore, this study employs DEA to compare the
environmental efficiency performance of countries worldwide.

This study has two main purposes. The first goal is to explore the trend of environmen-
tal efficiency worldwide and identify the drivers of environmental efficiency performance.
The second goal is to compare whether the environmental efficiency performance exhibited
any difference before and after the implementation of the Paris Agreement. From the Kyoto
Protocol to the Paris Agreement, a paradigm shift from a “top-down” to a “bottom-up”
approach was observed [12]. However, limited research has investigated the effect of the
paradigm shift on environmental efficiency. This study is organized as follows. Section 2
describes the methodology adopted. First, it discusses the rationale of the selection of a
meta-Malmquist method. Then, it introduces the data sources and conducts statistical tests
to validate the methodology. Finally, it presents the methodology used. Section 3 discusses
the empirical results. Section 4 summarizes the conclusions.

2. Research Method
2.1. Method Selection

Many of the previous environmental efficiency studies focused on the Organization
for Economic Cooperation and Development (OECD) member countries [13,14]. Zaim and
Taskin [15] quantified the CO2 emission efficiency of OECD countries by using a hyperbolic
efficiency measure. Rashidi et al. [16] evaluated the eco-efficiency of OECD countries
incorporating non-discretionary factors. Iram et al. [17] examined the energy efficiency of
OECD countries and the connection between energy efficiency and CO2 emissions and the
environmental efficiency for several OECD countries.

The limitation of these studies lies in that they did not consider the possible technol-
ogy heterogeneity. Countries around the world differ in their geographical locations and
resource endowments that influence their production technologies. Countries at different
developmental stages also face different pollution abatement costs [18,19]. The princi-
ple “common but differentiated responsibilities and respective capabilities (CBDR-RC)”
(UNFCCC 1992, articles 3 and 4) established from international climate negotiations also
reflects the concession and consensus in the international community. Industrialized coun-
tries and developing countries have diverged on environmental issues since the 1972 UN
Conference on the Human Environment. Southern countries feared that international
environmental regulations would endanger their economic growth, but several powerful
developed countries, such as the United States, declined to reduce their GHG emissions
unless poor countries did the same [20]. The CBDR-RC settled the north–south climate
disputes by requesting the industrialized countries to reduce their carbon emissions first
and provide financial and technical assistance to the developing countries to fulfill their
mitigation responsibilities.



Energies 2021, 14, 4503 3 of 16

Environmental efficiency grounded on the unrealistic assumption that countries run
under the same production boundary could lead to biased results [8,19]. Similarly, the
experience of OECD countries does not necessarily apply to countries with different income
levels [21]. Acknowledging the heterogeneities of different DMUs, recent literature em-
ployed the meta-frontier approach in assessing environmental efficiency [22]. Chiu et al. [8]
measured the environmental efficiency in 90 countries during 2003–2007 by adopting a
meta framework with directional distance function (DDF). Energy efficiency with CO2
emissions of 63 countries for the period of 1981–2005 was measured by Lin et al. [23],
combining the meta-frontier and the DDF approach. Li and Lin [22] also measured the
environmental efficiency of 30 provinces in China using the DDF meta-frontier approach.

Zhou et al. [24] pointed out that earlier studies about CO2 emission performance
usually lacked a time-series analysis; therefore, they introduced a Malmquist CO2 emission
performance index (MCPI) to study the world’s top 18 emitters’ MCPI over time. Chang [25]
used the Malmquist index to measure energy efficiency and its decomposition of eight
Southern Africa Development Community members over time. Lin et al. [19] employed a
meta-frontier framework entrenched on the Malmquist productivity index to measure the
environmental efficiency of 70 countries from 1981 to 2007.

Owing to the above considerations, this study utilizes a meta-frontier Malmquist index,
which considers group heterogeneity to measure spirited changes in the environmental
performance of countries from 2010 to 2017. The following section introduces the data first,
and then conducts statistical tests to show the suitability of the model selection.

2.2. Data Collection

In this analysis, the data of 150 countries for 2010–2017 were collected to estimate
international environmental efficiency. The inputs were three, namely, labor, capital, and
energy use, one desirable output (GDP), and one undesirable output (CO2 emissions). The
variables in this study are consistent with most of the environmental efficiency research [26].
The data were collected from the websites of the US Energy Information Administration [27]
and Penn World Table (PWT), version 9.1 [28]. Information about the related variables is
shown in Table 1.

Table 1. Input and Output Variables to Estimate Environmental Efficiency.

Variable Definition Unit Source

x1 Labor force Million people Penn World Table
Input x2 Energy consumption PJ US EIA

x3 Capital stock Billion 2017 US dollars Penn World Table
Desirable Output y1 GDP Billion 2017 US dollars Penn World Table

Undesirable output y2 CO2 emissions Million metric tones US EIA

A DMU should minimize inputs and maximize outputs to achieve efficiency. Reduc-
ing undesirable outcomes is preferred as undesirable outcomes contradict conventional
outcomes. The application of DEA for performance measurement is not an exception,
so researchers have to treat undesirable outputs specially. Reviewing the analyses on
undesirable outputs, Song et al. [9] came out with three categories. The first category
treated undesirable outputs as investments. The second category conducts data transfor-
mation with undesirable outputs first. Having done that, the environmental efficiency
is evaluated in accordance with the traditional efficiency model based on transformed
data. For example, Seiford and Zhu [29] converted all negative undesirable outputs as
positive by multiplying the negative undesirable outputs by −1 and identifying a proper
translation vector. The third category is the distance function method [30]. In addition,
Cooper et al. [31] introduced an adjusted slacks-based measure of efficiency to deal with
undesirable outputs. The slacks-based measure is non-radial and non-oriented, utilizing
input and output slacks directly to measure efficiency. This study adopts the first category
which takes CO2 emissions as inputs to estimate environmental efficiency.
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The calculation of environmental efficiency in this study is based on a meta-frontier
framework that countries do not operate under the same technology frontiers due to differ-
ent characteristics, which places constraints on their feasible input–output combinations.
Several researchers utilize geographical location to group countries [32–34]. Development
level is a major factor that affects the technology level of a country [21]. Lin et al. [19] classi-
fied a sample of countries into developed countries and developing countries, whereas Lin
et al. [23] divided 63 countries into four groups according to income level. Chiu et al. [8]
used a more sophisticated method to cluster different groups. According to the combina-
tion of the technological competitiveness indicator provided by the World Economic Forum
and the average annual per capita income, four groups were identified. In this analysis,
the countries were divided into four groups based on their income level according to the
World Bank [35]. The World Bank classified the world’s economies to four income groups,
namely, low, lower middle, upper middle, and high, based on gross national income per
capita in current US dollars and updated every year. All sample economies and their
groups are illustrated in Table 2. In this analysis, 51 economies are in the high-income
group (denoted as H), 42 are in the upper-middle-income group (denoted as UM), 31 are
in the lower-middle-income group (denoted as LM), and 26 are in the low-income group
(denoted as L).

The descriptive statistics of all the variables among different groups are shown in
Table 3. On average, the high-income group has the most capital, whereas the lower-middle-
income group has the greatest amount of labor. Generally, the high-income group relies
on capital-intensive industries, whereas the lower-income group relies on labor-intensive
industries. The high-income group consumes the most energy, but the upper-middle-
income group contributes the most in terms of CO2 emissions. The upper-middle-income
group shows a large deviation on all the input and output variables among all groups. As
expected, the low-income group has the lowest value for all the variables.

Two statistical tests were conducted to test the validity of the methodology employed
in this analysis. A unique feature of DEA is that it does not require variables to match the
normal distribution. With non-normal distributed samples, median values better describe
the central tendency [36], and this study conducted a normality test of all input and output
variables. The results of the normality test (Kolmogorov–Smirnov test) are significant,
showing that the sample variables are not normally distributed, and DEA is suitable for
adoption in this study. In addition, the meta-frontier approach that assumes economies
with different income levels operate under different production technology frontiers was
used. To determine whether differences exist in different income groups, a non-parametric
statistical analysis (Kruskal–Wallis test) is used to test the unknown distribution [37]. The
results of the Kruskal–Wallis test of all variables among high, upper middle, lower middle,
and low income economies are illustrated in Table 4. The p-values of all variables are
smaller than 0.001, indicating differences among different income groups, and justifying
the applicability of a meta-frontier framework.

2.3. Methodology

The theory of Malmquist productivity index (MPI) was first introduced by Malmquist [38].
An attractive feature of the MPI is that it can be decomposed [39]. Several researchers, such
as Caves et al. [40], Färe et al. [41], and Orea [42], developed MPI in the non-parametric
productivity structure.
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Table 2. Data Set of 150 Economies.

Group Annex I List of Countries in the Group

High-income Yes
Australia, Austria, Belgium, Canada, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Japan, Latvia, Lithuania, Luxembourg, Malta, Netherlands, New Zealand, Norway, Poland, Portugal, Slovakia, Slovenia, Spain,

Sweden, Switzerland, United Kingdom, United States

No Argentina, Aruba, Bahrain, Barbados, Chile, Israel, Kuwait, Oman, Panama, Qatar, Saudi Arabia, Seychelles, Singapore, Taiwan, Trinidad and
Tobago, United Arab Emirates, Uruguay

Upper-middle income Yes Belarus, Bulgaria, Romania, Turkey

No
Albania, Algeria, Armenia, Azerbaijan, Belize, Bosnia and Herzegovina, Botswana, Brazil, China, Colombia, Costa Rica, Dominican Republic,

Ecuador, Equatorial Guinea, Fiji, Gabon, Grenada, Guatemala, Iraq, Jamaica, Jordan, Kazakhstan, Lebanon, Malaysia, Maldives, Mauritius,
Mexico, Montenegro, Namibia, North Macedonia, Paraguay, Peru, Saint Lucia, Serbia, South Africa, Suriname, Thailand

Lower-middle income No
Angola, Bangladesh, Bhutan, Cabo Verde, Cambodia, Cameroon, Djibouti, Egypt, El Salvador, Eswatini, Georgia, Ghana, Honduras, India,

Indonesia, Kenya, Kyrgyzstan, Lesotho, Mauritania, Mongolia, Morocco, Nicaragua, Nigeria, Pakistan, Philippines, Sri Lanka, Sudan, Tunisia,
Ukraine, Uzbekistan, Zambia

Low-income No Benin, Burkina Faso, Burundi, Central African Republic, Chad, Comoros, Ethiopia, Guinea, Guinea-Bissau, Haiti, Liberia, Madagascar, Malawi,
Mali, Mozambique, Nepal, Niger, Rwanda, Sao Tome and Principe, Senegal, Sierra Leone, Tajikistan, Togo, Uganda, Yemen, Zimbabwe

Annex I countries are categorized by the UNFCCC which are obliged for higher commitment for mitigation.
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Table 3. Descriptive statistics for all input and output factors by different income groups.

Group Variable Mean Median Min Max S. D. Variance Test of Normality

H

x1 10.584 3.391 0.043 154.440 22.862 523.000 <0.01 ***
x2 5.106 1.284 0.013 103.681 14.480 209.658 <0.01 ***
x3 3757.119 1194.549 11.924 56,215.310 8323.285 69,277,075.000 <0.01 ***
y1 938.487 267.543 1.810 17,711.020 2394.224 5,732,311.000 <0.01 ***
y2 267.162 56.557 0.908 5585.600 757.408 573,667.000 <0.01 ***

UM

x1 27.659 2.884 0.053 792.580 120.020 14,406.000 <0.01 ***
x2 4.767 0.362 0.004 147.104 21.048 443.038 <0.01 ***
x3 2802.006 282.305 4.616 94,903.730 11,005.070 121,111,472.000 <0.01 ***
y1 702.699 87.507 1.086 18,978.500 2507.320 6,286,667.000 <0.01 ***
y2 327.827 21.041 0.271 10,801.770 1560.610 2,435,496.000 <0.01 ***

LM

x1 32.500 7.606 0.175 537.830 90.958 8273.000 <0.01 ***
x2 1.849 0.260 0.010 32.153 5.049 25.493 <0.01 ***
x3 1764.667 310.144 7.293 29,931.070 4761.905 22,675,741.000 <0.01 ***
y1 506.796 112.147 1.935 8769.180 1301.838 1,694,782.000 <0.01 ***
y2 118.979 14.179 0.400 2312.060 359.703 129,386.000 <0.01 ***

L

x1 6.801 4.537 0.048 47.919 8.327 69.345 <0.01 ***
x2 0.076 0.042 0.002 0.369 0.087 0.008 <0.01 ***
x3 87.944 50.030 3.286 625.933 96.319 9277.300 <0.01 ***
y1 29.430 21.455 0.588 188.206 31.481 991.077 <0.01 ***
y2 3.651 2.483 0.100 24.340 4.255 18.106 <0.01 ***

H: the high-income group; UM: the upper-middle-income group; LM: the lower-middle-income group; L: the low-income group. x1: labor force; x2: energy consumption; x3: capital stock; y1: GDP; y2: CO2
emissions. The asterisks *** indicate significance levels of 1%.



Energies 2021, 14, 4503 7 of 16

Table 4. Kruskal–Wallis test of all variables in four income groups.

Labor Energy Capital GDP CO2

Kruskal–Wallis test 37.155 363.766 312.975 253.743 353.961
p-value 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 ***

1 The asterisks *** indicate significance levels of 10%, 5%, and 1% or better, respectively.

MPI is a dynamic efficiency estimation indicator of the change in productivity of a
DMU over time. If θt,t

j is the efficiency of DMU j at time t (subscript) relative to technology
frontier t (superscript), the productivity change between period t and t + 1 is illustrated as
θt+1,t+1

j /θt,t
j , and t frontier is the reference frontier. Given that the reference period can be

time period t or t + 1, MPI is the geometric mean of the distance to t and t + 1 frontier [43,44],
as Equation (1):

MPIt,t+1
j =

 θt,t+1
j

θt,t
j

×
θt+1,t+1

j

θt+1,t
j

1/2

=
θt+1,t+1

j

θt,t
j

×

 θt,t+1
j

θt+1,t+1
j

×
θt,t

j

θt+1,t
j

1/2

= (catching− up e f f ect)× ( f rontier− shi f t e f f ect), (1)

Equation (1) shows that MPI can be decomposed into two sub-indices, namely, effi-
ciency change and frontier change (technical change). Productivity change originates from
these two indices. Efficiency change indicates the catching-up effect, whereas technical
change indicates the frontier-shift (innovation) effect. The catching-up term relates to the
degree to which a DMU improves or worsens its efficiency, whereas the frontier-shift term
reflects the change in the efficient frontiers between the two time periods [31].

The Malmquist index has been applied to various topics and industries, including
the environmental field [26]. Wu et al. [45] utilized the DEA-based Malmquist index to
evaluate the dynamic energy and environmental efficiency change of 30 regions in China.
The Malmquist index is also used as an economic model to measure the change in the
productivity of various industries, such as the non-ferrous metal industry [46] and power
plants [47].

However, MPI only measures productivity changes across time, and the observation
of different performances among DMUs with heterogeneities cannot be accomplished
until the introduction of the meta-frontier concept [32]. Meta-production functions were
popularized by [48] for the estimation of stochastic meta frontiers, and the latter was
applied by [49] to compute a global Malmquist index.

The meta-frontier Malmquist performance index (MMPI) originated from the tradi-
tional MPI and can be further decomposed into three parts: efficiency change (EC), best
practice gap change (BPGC), and technology gap ratio change (TGRC). Traditional MPI
solves the cross-period measurement of productivity, but it does not address the prob-
lem that the DMUs have different production technologies. This study adopts the MMPI
approach that considers overall and group productivity.

This study employs the MMPI approach based on Oh and Lee [33] to evaluate envi-
ronmental efficiency changes of countries belonging to different income groups that are
assumed to have different production technologies. The relevant distance measurement
methods for MMPI, EC, BPGC, and TGRC are described as follows:

Assume the panel data consist of j = 1, . . . , n countries and t = 1, . . . , T periods, and
every country uses an input vector ut ∈ Rm

+ to generate output vector vt ∈ Rs
+ in time t.

The production technology of all countries around the world is grounded on production
possibility set P = { (u, v)|v is obtained from u} with λP = P, λ > 0. In this analysis,
countries are categorized into four groups according to their income level. Thus, the whole
sample has four subgroups with different technological possibilities. To calculate the MMPI,
Oh and Lee [33] introduced three technology sets of contemporaneous, inter temporal, and
global benchmark technology.

The contemporaneous benchmark technology of subgroup ck(k = 1, . . . , K) is ex-
pressed as Pt

k =
{
(ut, vt)

∣∣vt is obtained from ut} with λPt = Pt, λ > 0, t = 1, . . . , T.
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At each time period t, countries with contemporaneous best technology form a production
set [49]. Supposing the similar subjects of nonnegative input and output vector under
kth group technology possibilities, the inter-temporal benchmark technology is defined
as PI

k = conv
(

P1
k ∪ P2

k ∪ . . . ∪ PT−1
k ∪ PT

k

)
, and output distance function DistI(ut, vt) =

inf
{

δ > 0|
(
ut, vt/δ

)
∈ PI

}
. For the specific subgroup ck, countries with inter-temporal

best technology form a production set including all countries in this subgroup across the
whole time period.

The best production possibility set of all countries across all subgroups at all times is
defined as PG = conv

(
PI

1 ∪ PI
2 ∪ . . . ∪ PI

k−1 ∪ PI
K

)
. This best production possibility is also

noted as MMPI. The MMPI is expressed on PG as Equation (2):

MMPI
(

ut, vt, ut+1, vt+1
)
= DistG

(
ut+1, vt+1

)
/DistG(ut, vt). (2)

Output distance function DistG(ut, vt) = inf
{

δ > 0|
(
ut, vt/δ

)
∈ PG

}
is the best pro-

duction possibility set and demonstrated as Equation (3):

MMPI
(
ut, vt, ut+1, vt+1) = DistG(ut+1,vt+1)

DistG(ut ,vt)

=
Distt+1(ut+1,vt+1)

Distt(ut ,vt)
×
{

Distt(ut ,vt)
Distt+1(ut+1,vt+1)

× DistI(ut+1,vt+1)
DistI(ut ,vt)

}
×
{

DistI(ut ,vt)
DistI(ut+1,vt+1)

× DistG(ut+1,vt+1)
DistG(ut ,vt)

}
= TEt+1

TEt × BPGI,t+1

BPGI,t × TGRG,t+1

TGRG,t

= EC× BPGC× TGRC.

(3)

where TEz and BPGI,zz = t, t+ 1 show the countries’ technical efficiency level and best
practice gap (BPG), and BPRG shows the changes in best practice gap that also can be noted
as technical change. The TGRG,zz = t, t + 1 shows the technology gap ratio (TGR) among
the kth group’s technology relative to the overall best production possibility set (meta-
frontier technology). TGR determines the distance between the kth group’s technology
and the overall frontier technology. When TGRG,z = 1, countries overlap with the meta
frontier and have the potential for breakthrough innovation, making them global leaders
in environmental efficiency. The technology level of the kth group is closer to the overall
meta frontier when TGRG,z > 1. TGRC shows the technology leadership change.

This study adopts linear programming to illustrate the output distance function as
suggested by Färe et al. [43,49]. Equation (4) contends countries in the specific subgroup
k. The productivity of the oth country of group ck across time period t and t + 1 can be
calculated and decomposed by using Equation (4) as follows:

[Distz(uz
o, vz

o)]
−1 = Max δz

o z = t, t + 1
subject to
∑j∈ck

λz
j vz

rj ≥ δz
ovz

ro, r = 1, . . . , s,
∑j∈ck

λz
j uz

ij ≤ uz
ro, i = 1, . . . , m,

λz
j ≥ 0.

(4)

where λz
j demonstrates the intensity of production activity.

Equation (5) contends the countries in the specific subgroup k across the entire research
period. δz′

o is the optimal solution from Equation (4). The inter temporal distance functions
are calculated by utilizing Equation (5) as follows:[

DistI(uz
o, vz

o)/Distz(uz
o, vz

o)
]−1

= Max δI
o

subject to
∑j∈ck ,z∈τ λz

j vz
rj ≥ δI

oδz′
o vz

ro, r = 1, . . . , s,
∑j∈ck ,z∈τ λz

j uz
ij ≤ uz

io, i = 1, . . . , m,
λz

j ≥ 0, τ = {1, 2, . . . , T}.

(5)
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Equation (6) contends all countries and subgroups over time. The δI′
o is the optimal

solution from Equation (5). The global distance functions are computed as follows:[
DistG(uz

o, vz
o/DistI(uz

o, vz
o)
)]−1

= Max δG
o

subject to
∑j∈G,z∈τ λz

j vz
rj ≥ δG

o δI′
o vz

ro,r = 1, . . . , s,
∑j∈G,z∈τ λz

j uz
ij ≤ uz

io,i = 1, . . . , m,
λz

j ≥ 0, G = {c1 ∪ c2 ∪ . . . cK}, τ = {1, 2, . . . , T}.

(6)

3. Empirical Analysis
3.1. Results of MMPI

MMPI measures the dynamic changes of environmental efficiency performance of
countries around the world. When MMPI > 1, an improvement is observed in environmen-
tal performance. The larger the MMPI is, the better the improvement in environmental
efficiency. MMPI = 1 indicates no change in environmental performance, and MMPI < 1
indicates performance degradation. The overall average MMPI during the study period is
1.004, indicating a progression in environmental efficiency worldwide.

Figure 1 shows the average MMPI of four different income groups from 2010 to 2017.
Unlike the three other income groups, most of the MMPIs are smaller than 1 for the low-
income group. Only two periods, namely, 2010–2011 and 2016–2017, have MMPI values
greater than 1. The average MMPI for the low-income group is 0.999, indicating a 0.1%
regress annually in environmental efficiency. For the high-income group, the average
annual MMPI is 1.007, and the values of MMPI are greater than 1 except for 2011–2012.
The upper-middle and lower-middle-income groups also progressed during the research
period. The average MMPI for the upper-middle group is 1.002. For the lower-middle-
income group, the values of MMPI are greater than 1, except for 2014–2015. The annual
improvement rate of the lower-middle-income group is 0.8%.
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To investigate and compare the trend of MMPI among different groups further, the
accumulated value of MMPI was calculated. Table 5 shows that the high-income group
made the greatest progress because its accumulated value of MMPI is the largest. The
low-income group suffered from regression in environmental efficiency. Figure 2 presents
the trend of MMPI among different groups. The MMPI shows an upward trend for the
high-income and lower-middle-income group. The trend for the upper-middle-income
group is flatter, although the environmental efficiency is improving. Only the low-income
group regressed, although the MMPI rose from 2016 to 2017. To understand the factors
that influence the performance of different income groups, the next section decomposes
the MMPI.

Table 5. Average and Accumulated MMPI of Different Income Groups.

Group Overall High Upper Middle Lower Middle Low

Year Ave.
MMPI

Accu.
MMPI

Ave.
MMPI

Accu.
MMPI

Ave.
MMPI

Accu.
MMPI

Ave.
MMPI

Accu.
MMPI

Ave.
MMPI

Accu.
MMPI

2010–2011 1.006 1.006 1.017 1.017 1.006 1.006 1.007 1.007 0.981 0.981
2011–2012 1.001 1.007 0.996 1.013 1.001 1.007 1.002 1.009 1.010 0.992
2012–2013 1.005 1.012 1.006 1.019 1.008 1.016 1.018 1.027 0.998 0.989
2013–2014 1.004 1.016 1.014 1.033 0.998 1.013 1.002 1.029 0.999 0.989
2014–2015 1.000 1.016 1.005 1.038 1.000 1.013 0.997 1.025 0.994 0.983
2015–2016 1.000 1.016 1.001 1.039 0.997 1.011 1.011 1.037 0.989 0.972
2016–2017 1.010 1.026 1.008 1.047 1.000 1.011 1.021 1.058 1.019 0.990

Ave. 1.004 1.014 1.007 1.030 1.002 1.011 1.008 1.027 0.999 0.985

Ave. MMPI is the average MMPI value; Accu. MMPI is the accumulated MMPI value. Accumulated MMPI is calculated as follows: deduct
the numerical value 1 (value 1 represents neutrality in efficiency) from the average MMPI and add the resulting value to the previous
year’s accumulated MMPI value.
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3.2. Decomposition of MMPI

The results of the Kruskal–Wallis test in Table 6 support differences among different
income groups for MMPI. Further investigation will bring insights into the causes of im-
provement or degradation in environmental efficiency because MMPI can be decomposed
into MMPI = EC*BPGC*TGRC.
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Table 6. Difference test of environmental efficiency among different income groups.

2010–2017 Income Level Average Standard Deviation Kruskal–Wallis Test
(p-Value)

MMPI High 1.007 0.031 0.017 **
Upper-Middle 1.002 0.044
Lower-Middle 1.008 0.048

Low 0.996 0.058

EC High 0.993 0.047 0.000 ***
Upper-Middle 1.010 0.064
Lower-Middle 1.017 0.057

Low 1.023 0.073

BPGC High 1.014 0.048 0.000 ***
Upper-Middle 1.017 0.057
Lower-Middle 0.990 0.043

Low 0.981 0.057
The asterisks **, and *** indicate significance levels of 10%, 5%, and 1% or better, respectively.

The dynamic productivity change may stem from EC (catching-up) or BPGC (inno-
vation). From the perspective of EC, only the high-income group shows a value lower
than 1 (0.993). The values of EC for the upper-middle-income, lower-middle-income, and
low-income groups are 1.010, 1.017, and 1.023, respectively. The room for maneuvering
the input–output combination is very minimal for the high-income countries. By contrast,
catching up is relatively easy for the three other groups [19].

For the high-income group, its BPGC is larger than 1, whereas its EC is less than 1.
These results indicate that the improvement of environmental efficiency stems from fron-
tier shifts rather than efficiency change, that is, the innovation effect contributes to the
improvement of environmental efficiency, not the management capability, for high-income
countries. These results echo the finding of [8,50] that the environmentally sensitive produc-
tivity growth of 26 OECD countries is mainly due to technical change. The lower-income
countries (including lower-middle-income groups and low-income groups) have much less
capability and capital to develop advanced, innovative environmental technology.

As to TGRC, among the four income groups, only the low-income group has a value
less than 1, which means the low-income group lags behind the overall frontier. The
upper-middle-income group (TGRC = 1.024) is moving toward the global frontier most
rapidly, followed by the lower-middle-income group (TGRC = 1.003) and the high-income
group (TGRC = 1.001). However, a higher TGRC does not guarantee the position of a global
technology leader because TGRC is the change rate of the technology leadership [33]. More
detailed information about TGR is needed to identify which group is the global technology
leader in environmental efficiency.

Figure 3 presents the boxplot of different income groups according to their median and
variance. The lower-middle-income group has the largest variance among the four groups,
whereas the high-income group has the least variance. Countries of low and lower-middle
income have more extremes that either perform much better or worse than most other
countries in their groups. Therefore, several of them are very far from the global frontier
compared with their peers in the same group. By contrast, the high-income countries
demonstrate homogeneity in terms of TGRC. In addition, the boxplot shows that more
countries of the high- and upper-middle-income group are located at the global frontier.
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3.3. Comparison of Environmental Efficiency before and after the Paris Agreement

Under the framework of the Kyoto Protocol, only the majority of the high-income
group members have the responsibility to reduce GHG emissions, that is, compared with
the three other groups (upper-middle-, lower-middle-, and low-income groups), the high-
income group members have the incentive and pressure to increase their environmental
efficiency. The empirical results also demonstrate that the high-income group makes
progress in environmental efficiency.

The Paris Agreement has two distinctive features apart from the Kyoto Protocol.
First, all signatories, not only industrialized countries, are obligated to contributions to
mitigation. Second, all signatories determine their own contributions based on their own
capabilities and conditions instead of being assigned by an international treaty. With the
shift from the “top-down” to the “bottom-up” approach for the climate treaty, all countries,
not only the industrialized countries, have to exert effort in mitigation since the adoption
of the Paris Agreement. Therefore, any difference in environmental efficiency performance
before and after the adoption of Paris Agreement must be determined for the three other
income groups because they need to contribute to the mitigation after the adoption of
the Paris Agreement. Table 7 shows that only the lower-middle-income group shows a
statistical difference in terms of MMPI between the two periods. Its MMPI increases from
an average value of 1.005 to 1.016.
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Table 7. Comparison of Environmental Efficiency Pre- and Post-Paris Agreement.

Group Efficiency 2010–2015 2015–2017 Kruskal-Wallis
Test (p-Value)

High MMPI 1.008 1.004 0.484
EC 0.989 1.003 0.051

BPGC 1.019 1.001 0.004 ***
TGRC 1.001 1.001 0.505

Upper-Middle MMPI 1.003 0.999 0.583
EC 1.007 1.017 0.036 **

BPGC 0.996 0.982 0.004 ***
TGRC 1.001 1.001 0.435

Lower-Middle MMPI 1.005 1.016 0.043 **
EC 1.015 1.023 0.012 **

BPGC 0.990 0.989 0.243
TGRC 1.002 1.004 0.983

Low MMPI 0.993 1.004 0.159
EC 1.031 1.005 0.024 **

BPGC 0.972 1.004 0.001 ***
TGRC 0.994 0.996 0.550

The asterisks **, and *** indicate significance levels of 10%, 5%, and 1% or better, respectively.

However, the decomposition of MMPI reveals more insights. The BPGC of the high-
income group deteriorates after the adoption of the Paris Agreement. In 2016, the newly
elected US President Donald Trump posed potential threats to the implementation of
the Paris Agreement because he has been skeptical about climate change and vowed to
withdraw from the Paris Agreement during his campaign. Concerns were raised that
other countries would follow the US lead in postponing their research and development of
renewable energy [51,52]. The retreat of the US from the international climate governance
may upset and cause the fluctuation of mitigation efforts for industrialized countries.

The EC of the upper-middle-income and lower-middle-income groups improved from
the first period to the second period, indicating their enhanced capabilities to allocate
resources. The picture of the low-income group is different. The value of EC for the
low-income group worsened following the adoption of the Paris Agreement, whereas the
value of BPGC increased, indicating a technology improvement for the low-income group.

4. Conclusions

Climate change is a major challenge to humankind, but eliminating poverty is also
an arduous, important task for decision-makers or country leaders. Combating global
warming and enhancing living standard simultaneously relies on environmental efficiency
improvement. Thus, this study estimates the environmental efficiency of 150 economies
during 2010–2017 to understand the worldwide trend. This research also intends to
compare whether the environmental efficiency performance exhibited any difference before
and after the implementation of the Paris Agreement.

This research adopts DEA and the Malmquist index to compare and capture the
dynamic change of environmental efficiency among different income groups. Considering
the heterogeneity of countries, a meta-frontier framework is also applied. The empirical
results show that among the four income groups, only the low-income group suffered
from regression in terms of environmental efficiency during the research period based
on their average MMPI. The high-income group made the greatest progress because its
accumulated value of MMPI is the largest. The improvement for the high-income group
came from frontier shifts rather than efficiency change. By contrast, the improvement
of the lower-income groups came from the catching-up effect. As to the impact of the
Paris Agreement, only the lower-middle-income group showed a statistical difference
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between the two periods, and its environmental efficiency increased after the adoption of
the Paris Agreement.

The results provide important policy implications. The statistical results support
differences in terms of environmental efficiency among the four income groups, especially
that the low-income group is in deterioration. Combatting global warming successfully
cannot rely on specific countries. The world as a whole needs to cooperate and improve
together, thus, more help needs to be devoted to the low-income group.

This study emphasizes the macro view about the differences among different groups,
and the detailed discussion about specific countries is not the focus of this analysis. More-
over, the study period only covers two years after the Paris Agreement under the constraint
of data availability, hence, a long-term trend cannot be observed. For future analysis, a
longer-term comparison will provide more information about the effect of a bottom-up
approach. An in-depth study to explore the benchmark country for each group will also be
beneficial for poor performers to catch up.
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