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Abstract. The  connectionist  model  of  speech  processing  infers  that  word
frequency  and  position-in-utterance  play  a  major  role  in  the  occurrence  of
speech errors. First, words that are not frequently used are more likely to result
in  speech errors  since  they generally  receive  less  activation than  frequently
occurring  words  and  require  more  activation  to  be  chosen.  Second,  speech
errors are more likely to occur near the end of utterances since, according to the
given-before-new-principle, utterance-final words convey new information that
has not yet been activated in the preceding context. The information of word
frequency  and  position-in-utterance  is  extracted  automatically  from  382
utterances  of  a  Mandarin  speech  error  corpus  and  fed  to  generalized  linear
mixed models and a decision-tree based classifier. The results show that word
frequency  and position-in-utterance can  predict  of  the  occurrence of  speech
errors with a performance over (but close to) the majority baseline. Therefore,
additional information is required to improve the accuracy of the predictions.
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1   Introduction

This paper focuses on lexical errors,  i.e.,  erroneous selections of lexical items that
involve a meaningful morpheme or word. They typically occur when the ‘lemmas’ of
semantically or phonologically appropriate candidates for lexical items are activated.
For instance, when a speaker says glass instead of cup, or book instead of cook. The
other  types  of  errors  that  result  in  meaningless  strings of  phoneme (e.g.,  when a
speaker says  perple instead of  person or  people) and errors that originate from the
surrounding context (e.g., when a speaker says the glass is in the glass instead of the
glass is in the fridge) are excluded from the current study for theoretical and practical
reasons. First, this study investigates the frequency of the target  (i.e., the intended
word) and the error word in utterances. Thus, meaningless words must be excluded
since they cannot be assigned a frequency in corpora. Second, context-induced errors
and purely phonological  errors  are  less  relevant  to  the cognitive representation of
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language,  since  the  cause  of  context-induced  errors  is  due  to  interference  of  the
surface structure of language rather than its deep inner processing. 

The main contributions of this paper are as follows. First, most of the literature
focused on speech errors resulting in meaningless strings of phonemes due to their
higher occurring frequency and relevance to phonology [1–4]. By focusing on lexical
errors, this study provides another type of data that can verify the predictions made by
language processing models at  the semantic  level.  Second, previous studies  found
several tendencies predicted by language-processing models within corpora of lexical
errors  [5–10].  However,  these  results  were  mostly  obtained  from  Germanic  and
Romance languages and may be subject to Galton’s problem [11], i.e., the tendencies
observed in speech errors may be language-family-specific rather than universal. This
paper thus provides data on speech errors  in Mandarin,  which enhances  linguistic
diversity  in  the  results.  Last  but  not  least,  previous  studies  investigating  speech
processing models with speech errors  seldom provide quantitative analysis  on the
predictive power of word frequency and position-in-utterance with regard to speech
errors.  A few studies known to the authors investigates quantitatively the negative
correlation  between  word  frequency  and  the  probability  of  occurrence  of  speech
errors  [12].  Nevertheless,  the  effect  of  position-in-utterance  is  not  considered
simultaneously with word frequency in these studies. This paper also aims at filling
this gap.    

2   Hypotheses and research questions  

In parallel models of speech production, multiple levels of processing take place
simultaneously [13–15]. This approach assumes that speech processing is not a serial
motion  but  a  simultaneous  activation  of  distinct  units  of  speech  (e.g.,  phonemes,
morphemes) represented as nodes that interact with each other in parallel across the
semantic, word, and sound levels. An example is demonstrated in Fig. 1. 

Fig. 1. A simplified overview of the connectionist approach [16]

Assuming  that  a  speaker  intends  to  retrieve  and  convey  the  concept  of  cat,  the
semantic features related to the target word cat are activated and spread to neighbor



nodes.  For  instance,  the semantic  feature  four-legs is  activated  and  the activation
spreads  to  cat at  the  word  level.  However,  the  semantic  feature  four-legs also
activates the words that share this feature,  e.g.,  dog and  rat.  The activation of the
word cat spreads at the same time to the phoneme level, e.g., to the phoneme [t]. The
same process applies for other nodes that received activation, e.g.,  rat and dog. The
activation of nodes is simultaneous and multidirectional. By way of illustration, the
activation of  rat by the feature  four-legs can also spread back to the semantic level
and activate other semantic features that were not activated by cat, e.g., is grey. The
same logic applies between the word level  and the sound level.  Finally,  the most
highly activated word of the appropriate grammatical category is chosen. 

Several predictions can be made only under models of the connectionist approach.
First,  word  frequency  is  expected  to  play  a  significant  role  in  predicting  the
occurrence  of  speech  errors.  Words  that  are  frequently  used  are  activated  more
frequently and are thus more likely to reach the required level of activation before
potential erroneous candidates. Few previous studies investigated the effect of word
frequency on speech errors in Mandarin [12]. However, the results were not analyzed
in connection with the predictions of speech processing models. Second, the position-
in-utterance of the target word is expected to play a significant role in predicting the
occurrence of speech errors. This prediction relates to the given-before-new-principle
in  discourse  analysis  [17–22],  which  states  that  old  information  comes  first  in
utterances, while new information comes later. Under such premise, speech errors are
less expected at the beginning of an utterance since old information would already
have received activation from the preceding context and would thus be less likely to
result  in  erroneous  activation.  The  opposite  statement  would  be  assumed  for
utterance-final words conveying new information that has not yet been activated. No
previous  studies  known  to  the  authors  have  investigated  the  predictive  effect  of
position-in-utterance on speech errors.

3   Data  

The 382 speech errors investigated in this study are from the same source as [12].
The  speech  errors  are  retrieved  from  a  conversational  corpus  produced  in  a
naturalistic  setting  by  approximately  100  native  speakers  of  Taiwan  Mandarin
between  1995  and  2009  [3,  23,  24].  Each  audio  file  of  conversational  speech  is
automatically transcribed based on a Speech-to-Text software modeled by Taiwan AI
Lab with an average accuracy rate of 70%. The entire transcript is then automatically
segmented by the  Academia  Sinica  word  segmenter  [25,  26].  Further  editing and
correction is made by two research assistants. Speech errors are identified based on
repair (self-correction) initiated by the speakers.  As an example in (1a),  the target
dong4ci2 ‘verb’ is erroneously replaced by  ming2ci2 ‘noun’. However, the speaker
immediately initiates repair with the intended target. In (1b), the target  na4 ‘that’ is
erroneously replaced by zhe4 ‘this’, but the speaker also initiates repair directly after
the speech error. Separate analyses are made by research assistants working on the
corpus and inconsistencies are resolved by analysis of the context and the phonetic
realization of the words [7]. This method restricts the sample size of speech errors.



However,  it  is  considered  appropriate  for  theoretical  reasons.  Errors  that  occur
without  repair  from  the  speakers  are  hard  to  identify  and  verify.  By  way  of
illustration, if a speaker says more instead of less in I have more time for myself but
does not initiate repair, the speech error cannot be identified since the utterance is
perfectly grammatical. An analysis of the context could potentially help to identify
errors of this type, but without confirmation from the speaker for each individual error
(which is practically impossible and still not extremely reliable since it is involves an
off-line judgment from the speakers), it would be mere guesses rather than confirmed
errors.

(1) Examples of lexical speech errors in the corpus
a. zhe4xie1 tong1tong1 yao4 jia1 dan1shu4  

ming2ci2 … dong4ci2
these all need plus singular
noun verb
‘these must be used with singular nouns … singular verbs’

b. zhe4 … na4 tian1 zai4 bian4lun4 de0
shi2hou4 […]
this … that day at debate DE
time
‘this … that day during the debate […]’

Each  speech  error  is  annotated  with  the  following  information:  target,  error,
preceding  context,  and  following  context.  The  corpus  has  382 speech  errors  and
includes 3022 words when considering the preceding and following words of each
speech  error.  Due  to  the small  size  of  the  entire  corpus  (382 sentences  in  total),
information  about  word  frequency  is  added  based  on  word  frequency  from  the
Academia Sinica Corpus [25], which has 11,245,330 words and is the first fully POS-
tagged balanced Chinese Corpus [27]. Then, to facilitate comparison between high
and low frequencies of words, the logarithm of the raw frequency is used. Information
about position-in-utterance is also added by counting how many words separate the
speech error from the beginning of the utterance in which it occurred. Each error is
assigned a number based on how many words separate it from the beginning of the
utterance. By way of illustration, in (1a), the error  ming2ci2 ‘noun’ occurred at the
sixth word of the utterance, its position-in-utterance is thus annotated as 5. This value
is then normalized by dividing the position-in-utterance by the total number of words
in the utterance (not including the error nor the repair of the target), i.e., 5/5 = 1. A
value of 1 indicates that the error is found at the end of the utterance. A value of 0
indicates that the error is at the beginning of the utterance.

4   Analysis 

In terms of word frequency, previous studies [12] already pointed out that (i) the
targets  and the errors  have  higher  frequency than most  of the other  words in the
lexicon (ii) the word frequency of the targets and the errors is commonly lower than



the frequency of words in the surrounding context. We thus only provide an overview
of the interaction between word frequency and position-in-utterance. In Fig. 2, a PCA
analysis of the two variables is shown. Since we only have two variables, the two
components refer to word frequency (PC1 on the x axis) and position in utterance
(PC2 on the y axis, coded as dist_to_start). First, we can visualize the effect of word
frequency attested in previous studies. The errors are more likely to occur on the left
side of the plot, in the opposite direction of the loading word_freq, which indicates
that errors are are found more frequently with words of small frequency. Second, a
similar effect seems to be found with position-in-utterance, as more errors are located
at the bottom of the plot. However, the effect is less obvious than with frequency. As
a reminder, this is only a visualization of the data. The following paragraphs provide
the quantitative analysis for the interaction between word frequency and position-in-
utterance.

Fig. 2.  PCA visualization of the interaction between word frequency and position-
in-utterance with regard to speech errors.

We then feed the information of word frequency and position-in-utterance to two
different machine learning methods. First, we use generalized linear mixed models
(GLMMs) [28,  29]  to  interpret  the  effect  of  the  two variables  on the  occurrence
speech errors. Second, we try to reproduce the results from previous studies [12] by
using a decision tree based classifier to predict the occurrence of speech errors based
on the two variables.

With regard to the GLMMs, the parameters were set as follows: 4 chains with 500
of iterations each, including 200 iterations as warm-up. The results reported are from
the model that does not consider random effects or interaction for the two variables.
This choice is made on the theoretical premise that we want to directly assess the
effects  of  the  two  variables  on  speech  errors.  We  did  test  random  effects  and
interaction in other models and compared their fit with leave-one-out cross validation.
The model considering word frequency as a random effect gives the best fit, but the
divergence across the models is not big. Thus, we consider that the results reported in
the  current  paper  are  sufficient  for  identifying  the  effect  of  word  frequency  and
position-in-utterance on speech errors. The credible intervals of the output are shown
in Figure 3. First of all, neither of the two ‘humps’ cross 0 (Rhat = 1, ESS = 763,
690), which indicates that the two variables have a clear positive/negative effect. In



our case,  word frequency has a negative effect  (all  the values are negative)  while
position-in-utterance (represented by dist_to_start, i.e., distance to the beginning of a
sentence), has a positive effect as all the values are positive. In other words, the model
indicates that i) the higher the frequency of a word, the less likely it is to be a speech
error (est = -0.32) ii) the bigger distance to the beginning of sentence, i.e., the closer a
word is to the end of a sentence, the more likely it is to be a speech error (est = 0.59).
Therefore,  the  output  of  the  model  supports  the  two  predictions  based  on  the
connectionist model.

Fig. 3.  Credible intervals for word frequency and position-in-utterance

Then, the computational classifier based on decision trees is used to predict the
presence of speech error for each word of each utterance in the speech error corpus.
These decision trees are based on binary recursive partitioning [30, 31]. The main
functioning of the classifier is explained as follows. Binary splits recursively divide
the data  into homogeneous  or  near-homogeneous buckets.  The split  is  considered
ideal if the homogeneity of the buckets is improved after the split. To assure a low
variation in the output, the model does not use all  the variables  and observations.
Instead, the model uses a bootstrap sample of the original data and also selects a
random subset of variables for each split. That is to say, first, the algorithm scans
through the variables and selects the strongest association with the response. Then,
the data set is divided into two subsets based on the chosen variable. These two steps
are repeated  for  every  subset  until  no variables  may split  the data with statistical
significance.  The  main  advantage  of  decision  trees  is  their  visualization  of  the
interaction between the variables. That is to say, a decision tree is generated and can
be read to make a prediction on a specific data point.

To train the classifiers, the data is split into two sets, one for training, the other for
testing. The training set contains 70% of the data while the test set has 30%. To avoid
biases from a specific combination of tokens between the training and test sets, the
same process was conducted ten times with different training and test sets. Since the
results did not vary across the sets, we report the output of the tenth set in the current
paper. Moreover, to replicate previous studies [12], we also assess the performance of
the classifier in different five different window sizes. That is to say, we first ask the
classifier to identify the speech error from the target and its preceding and following
word. Then, we expand the window to the two preceding and following words, and so



on, until the maximum size of five preceding and following words, which capture the
full length of each sentence in the corpus.

The performance of the decision tree is evaluated based on its accuracy, precision,
and recall. The accuracy provides  an overview of the performance by dividing the
correctly predicted tokens with the total of the tokens. The precision evaluates how
many tokens are correct among all the output of the classifier and recall quantifies
how many tokens are correctly retrieved among all the expected correct output [32].
Finally, since the quantity of correct words and speech errors is unbalanced within the
data set, we use the majority rule as a benchmark of accuracy. Taking window size
five as an example,  i.e.,  when we consider  the entire corpus:  The corpus of 3022
words only contains  382 speech  errors,  the computational  classifier  may reach  an
accuracy  of  87.4% simply by guessing that  all  the words do not  undergo  speech
errors. In such case, the computational classifier should have an accuracy higher than
81.8% to be considered as having a good performance. The same logic is applied for
the other window size.  The performance on the tenth test set  is  reported for each
window size in Table 1.

Table 1.  The performance of the decision-tree based classifier

Window 1 2 3 4 5

Type cor err cor err cor err cor err cor err

Precision 0.80 0.62 0.94 0.40 0.95 0.38 1 0 1 0

Recall 0.77 0.66 0.82 0.64 0.87 0.61 0.84 0 0.88 0

Accuracy 0.73 0.80 0.84 0.84 0.87

Baseline 0.62 0.76 0.81 0.84 0.87

As observed in previous studies [12], the classifier does not perform well with large
window sizes. That is to say, speech errors are hard to detect in large corpora due to
their scarcity. On the other hand, for window sizes smaller than four, the performance
of the classifier increases  and exceeds the majority baselines. The performance on
individual categories is also analyzed. First, the model performs well at detecting the
absence of speech errors (cor). This is not surprising since the majority of the data
points are without speech errors. The model therefore has less difficulty to identify
this category. Second, starting from window size three, the recall on detecting errors
does not increase by much, however, its precision increases. An interesting fact is the
increase  of  accuracy  in  comparison  with  the  model  used  in  [12],  which  only
considered word frequency. In the current model, the accuracy of window size 1-3 is
3-4% higher (similar results are found when our classifier is fed with information on
word frequency and position-in-utterance individually), which suggests that  adding
the information of position-in-utterance does result in better predictions.

The regularities found by the classifier in window size one are visualized in Fig. 4.
The upper nodes refer to the decision path and the buckets at the bottom indicate the
ratio of speech errors (ERR) and correctly uttered words (COR). As an example, if the
logarithm of word frequency is smaller than 9.2 (node 1 → node 3) and the distance



to the beginning of the sentence is larger or equal to 9.6, i.e., if the word is either the
final  word or the penultimate word of  a  sentence  (node 3 → node 7),  the model
predicts  that  a  speech  error  occurs.  Within  the  entire  data  set,  77  tokens  are
categorized under such pathway and 91% (70/77) of them are classified correctly. 

Fig. 4. Decision tree for the occurrence of speech errors in the corpus of 1888 words

The tree shows that position-in-utterance and word frequency both plays a role in
predicting speech errors. On the one hand, words with high frequency are less likely
to result in speech errors (e.g., node 1 → node 2). On the other hand, words located at
the end of an utterance are also extremely likely to result in speech error (node 1 → 3
→ 7).  Similar tendencies  are found further  away from these two extremes. As an
example,  words closer  to the beginning of a sentence  are more likely to result  in
speech errors if they have a low frequency (e.g., node 1 → 3 → 6 → 13).

5   Conclusion  

The connectionist model predicts that i) Frequently used words are less likely to
result in speech errors since they are easily activated ii) Utterance-initial words are
less likely to result in speech errors since they convey old information that already has
been activated in the preceding context. The results of the current analysis support
these two hypotheses, but also indicate that other variables should be added in the
model to result in an accurate prediction of speech errors.  Potential candidates for
additional variables are part-of-speech tags and semantic/phonological distance with
the preceding and following contexts.
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