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Abstract 
 
The issue of information security has attracted 
increasing attention in recent years. In network attack 
and defense scenarios, attackers and defenders 
constantly change their respective strategies. Given the 
importance of improving information security, a 
growing number of researchers are now focusing on 
how to combine the concepts of network survivability 
and protection against malicious attacks. As defense 
resources are limited, we propose effective resource 
allocation strategies that maximize an attacker’s costs 
and minimize the probability that the “core node” of a 
network will be compromised, thereby improving its 
protection. The two problems are analyzed as a mixed, 
nonlinear, integer programming optimization problem. 
The solution approach is based on the Lagrangean 
Relaxation method, which solves this complicated 
problem effectively. We also evaluate the survivability 
of real networks, such as scale-free networks. 
 
1. Introduction 
 

It has been shown that the Internet’s topology 
follows a power-law degree distribution [1] and is thus 
highly susceptible to malicious attacks [2]. As a result, 
the field of information security has attracted 
increasing attention in recent years, and a number of 
approaches have been proposed to protect networks 
against such attacks. Research shows that attackers and 
defenders constantly change their respective 
strategies – a process that can be likened to the use of a 
lance and a targe. 

Network survivability is another important research 
domain. Initially, researchers focused on the effect of 
random failures on networks and tested the robustness 
and dependability of networks. However, given the 

need to constantly improve information security, 
researchers are now paying more attention to protection 
against malicious attacks and to combining the concept 
with the field of network survivability.  

Many definitions, techniques, and architectures for 
evaluating a network’s survivability have been 
proposed. The most well-known definition is “the 
ability of a system to fulfill its mission in a timely 
manner, in the presence of attacks, failures, or 
accidents” [3]. Several of the definitions address the 
following key information security requirements: 1) the 
maintenance of service under attack; and 2) the 
provision of strategies to prevent attacks [4]. In this 
paper, we focus on the second requirement.  

In addition to the above definitions of survivability, 
a number of models have been proposed to evaluate 
network survivability. For example, in [5], the authors 
describe several models that quantitatively evaluate 
survivability; and in [6], the state-based architecture 
proposed in [7] is adopted to quantitatively analyze 
survivability. The latter is implemented by a Markov 
chain. Meanwhile, because of the growing importance 
of information security, some researchers have started 
to focus on how to combine the concept of 
survivability with that of protection against malicious 
attacks. Thus in [8], the authors model attack-defense 
scenarios as mathematical programming problems in 
the context of survivability. 

In this paper, we consider network survivability in 
terms of protection of the “core node” in which 
organizations store their most valuable knowledge. 
Because of the node’s importance, attackers do their 
best to compromise it; thus, defenders must change 
their strategies to protect the node against compromise 
by the constantly evolving strategies of attackers. As 
defense resources are limited, network operators need 
guidelines about how to allocate security budgets 
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effectively. To this end, we propose two mathematical 
models: the protection strategies for defenders (PSD) 
model and the probabilistic protection strategies for 
defenders (PPSD) model, to formulate attack-defense 
scenarios. Our objective is to provide defenders with 
effective defense resource allocation strategies to 
protect the core node, so that the cost of compromising 
the node would be unacceptable to an attacker. 

The remainder of the paper is organized as follows. 
In Section 2, we propose the PSD model, and present a 
Lagrangean Relaxation-based solution approach for 
obtaining near optimal protection strategies. In Section 
3, the second mathematical formulation, the PPSD 
model, is proposed. It is an extension of the PSD model 
and employs heuristics to calculate good primal 
feasible solutions. In Section 4, the results of 
computational experiments on the PSD and PPSD 
models are reported. Finally, in Section 5, we present 
our conclusions. 
 
2. Problem formulation for the PSD model 
 
2.1. Problem description and assumptions 
 

To compromise a core node, an attacker must find a 
suitable path to it and compromise all the intermediate 
nodes on that path. However, compromising a node 
costs the attacker some resources, such as time, money, 
and man-power. From a defender’s perspective, if more 
defense resources are allocated to a node, its security 
will be improved and the attacker’s costs will be 
increased. However, since defense resources are 
limited, the defender must adopt an effective resource 
allocation strategy to maximize the attacker’s costs. 

In the worst-case scenario, if the attacker can obtain 
complete information about the target network and use 
it intelligently, he will find the path with the minimal 
attack cost to compromise the core node. Meanwhile, 
the defender will try to maximize the minimized attack 
cost through different budget allocation strategies. In 
response, the attacker will then search for another path 
with the minimal attack cost to compromise the core 
node. 

Next, we define the notations used in this paper and 
formulate the problem. 

 
Table 1. Given parameters 

Notation Description 
B The defender’s total budget  
N  The index set of all nodes in the 

network 
W The Origin-Destination pair (OD pair) 

(s, t), where  s is the source node, and t 
is the core node 

wP  The index set of all candidate paths for 
the OD pair w, where w W∈  

δpi The indicator function, which is 1 if 
node i is on path p; and 0 otherwise 
(where ,  wi N p P∈ ∈ )  

 
Table 2. Decision variables 

Notation Description 
yi 1 if node i is compromised, and 0 

otherwise (where i N∈ ) 
xp 1 if path p is chosen as the attack path, 

and 0 otherwise (where wp P∈ ) 
bi The budget allocated to protect node i, 

where i N∈  
ˆ ( )i ia b  The threshold of the attack power 

required to compromise node i, i.e., the 
defense capability of node i, where i∈N  

( )i iP b  The probability of node i being 
compromised, where i N∈  

 
Objective function:   

ˆmax min ( )
pi

w

i i p pixb i N p P
a b x δ

∈ ∈
∑ ∑ ,  (IP 1) 

 
subject to:   

i
i N

b B
∈

≤∑   (1-1) 

0 ib B≤ ≤   i N∈   (1-2) 

1
w

p
p P

x
∈

=∑   (1-3) 

0 1px or=  .wp P∈  (1-4) 

 
The objective function is to maximize the minimized 

total attack cost, where the defender manipulates the 
budget to maximize the total attack cost, while the 
attacker tries to minimize that cost by choosing a 
suitable attack path. To simplify the original problem, 
we reformulate it as follows: 

 
Objective function:   

ˆmin ( )
i

i i ib i N
y a b

∈

−∑ ,  (IP 2) 

subject to:   
ˆ ˆ( ) ( )i i i pi i i

i N i N

y a b a bδ
∈ ∈

≤∑ ∑  wp P∈   (2-1) 

w

p pi i
p P

x yδ
∈

≤∑  i N∈  (2-2) 

1
w

p
p P

x
∈

=∑   (2-3) 

0 1px or=  wp P∈  (2-4) 

0 1iy or=  i N∈  (2-5) 

i
i N

b B
∈

≤∑   (2-6) 
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0 ib B≤ ≤  .i N∈  (2-7) 
 
We reformulate the objective function (IP 1) as one 

of minimizing the attacker’s negative attack cost, i.e., 
(IP 2). Constraint (2-1) requires that the selected path 
for the OD pair should be the minimum attack cost 
path. Constraint (2-2) is the relation between yi, xp and 
δpi. We use the auxiliary set of decision variables, yi, to 
replace the product of xp and δpi, which further 
simplifies the problem-solving procedures. Other 
constraints are straightforward.  

 
2.2. Solution for the PSD model 
 

By applying the Lagrangean Relaxation method [9] 
with a vector of Lagrangean multipliers u1 and u2, we 
can transform the reformulation of the PSD model into 
the following Lagrangean Relaxation problem (LR 1). 
In this case, Constraints (2-1) and (2-2) are relaxed. 
Furthermore, we assume that ˆ ( )i ia b  is equal to the 
concave function ln(bi+1), which indicates that the 
marginal defense capability of node i can be reduced 
by allocating additional budget. 
 

1 2
1

1 2

( , ) min ln( 1)

( )ln( 1) ( )
w w

D i i
i N

p i pi i i p pi i
p p i N i N p P

Z u u y b

u y b u x yδ δ
∈

∈ ∈ ∈ ∈

= − +

+ − + + −

∑

∑ ∑ ∑ ∑
, (LR 1) 

subject to:   
1

w

p
p P

x
∈

=∑   (3-1) 

0 1px or=  wp P∈  (3-2) 

0 1iy or=  i N∈  (3-3) 

i
i N

b B
∈

≤∑   (3-4) 

0 ib B≤ ≤  .i N∈  (3-5) 
 
To solve (LR 1) optimally, we decompose it into the 

following two independent and easily solvable 
optimization subproblems. 

 
Subproblem 1-1 (related to decision variable xp) 

2min
w

i p pi
i N p P

u x δ
∈ ∈
∑ ∑ ,                 (SUB 1-1) 

subject to (3-1) and (3-2). 
 

(SUB 1-1) can be viewed as a minimum cost path 
problem with node weight 2

i piu δ . Because 2
iu  is non-

negative, we can apply Dijkstra’s shortest path 
algorithm to solve it optimally. The time complexity is 
O(|N|2). 
 
Subproblem 1-2 (related to decision variables yi, bi) 

1 1 2min ( 1) ln( 1) ln( 1)
w w

p i i p pi i i i
p p i N p p i N i N

u y b u b u yδ
∈ ∈ ∈ ∈ ∈

− + − + −∑ ∑ ∑ ∑ ∑
,                  (SUB 1-2) 
subject to (3-3), (3-4), and (3-5). 
 

To solve (SUB 1-2) optimally, we adopt some 
mathematical techniques to carefully choose proper 
values for the random variables bi and yi. The time 
complexity is O(|N|2).  

 
Based on the weak Lagrangean duality theorem [9], 

the optimal value of problem (LR 1) is, by its nature, 
the lower bound (for minimization problems) of the 
objective function value in the primal problem. We try 
to obtain the tightest lower bound of (LR 1) by 
applying the subgradient optimization technique 
proposed in [10] to tune the Lagrangean multipliers.  

 
Getting primal feasible solutions 

Information provided by the multipliers is very 
helpful in deriving a heuristic that can solve the 
problem (IP 2). In this case, the multiplier vector 2

iu  is 
adjusted by the function ˆ( ) ( )i pi i i

i N
y a bδ

∈

−∑ , which 

indicates the relative importance of each node i. This 
gives us a hint about how to allocate the budget. Our 
proposed heuristic is described in Table 3. 

 
Table 3. Algorithm for getting a primal feasible 

solution for the PSD model 
Step 1 Construct a minimal defense region by 

applying the labeling and the removal 
processes. The labeling process is based on 
a breadth-first search, and the removal 
process tests whether each outer layer node 
is necessary.  

Step 2 Allocate bi to each node, where 
2

2~ ,  
to tal 

i
i i

i

ub r i N
u

= ∈ . If a node has 

0ir > , and it is not in the minimal defense 
region, allocate its budget to the source and 
destination nodes.  

Step 3 Tune the epsilon budget from the source 
and core nodes to the other nodes in the 
minimal defense region. If the value of the 
objective function is less than that of the 
previous state, we continue the tuning 
process recursively. 

The time complexity of the heuristic is O(|N|2). 
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3. Problem formulation for the PPSD 
model 

 
3.1 Problem description and assumptions 

 
Based on the PSD model, we assume there is a 

probability that each node can be compromised, and 
that attacks on nodes are independent. Therefore, from 
an attacker’s perspective, the probability that a core 
node can be compromised successfully is the aggregate 
of the compromise probability of all nodes on the 
attack path between the source node and the core node. 
A defender can reduce a node’s compromise 
probability by allocating more defense resources to it. 
However, because such resources are limited, the 
defender needs to adopt a strategy that allocates the 
defense budget effectively in order to minimize the 
possibility of the core node being compromised. 

In the worst-case scenario, if the attacker can obtain 
complete information about the target network and can 
use it intelligently, he will try to find the least secure 
path to compromise the core node, i.e., the path on 
which the aggregate of the compromise probability of 
all nodes is maximal. Meanwhile, the defender will try 
to improve the network’s security by allocating a 
different budget to each node. 

 
Objective function:   

min ln ( )
i

i i ib i N
P b y

∈
∑ ,  (IP 4) 

subject to:   
ln ( ) ln ( )i i i i i pi

i N i N
P b y P b δ

∈ ∈
− ≤ −∑ ∑  wp P∈

  
(4-1) 

w

p pi i
p P

x yδ
∈

≤∑  i N∈  (4-2) 

1
w

p
p P

x
∈

=∑   (4-3) 

0 1px or=  
wp P∈  (4-4) 

0 1iy or=  i N∈  (4-5) 

i
i N

b B
∈

≤∑   (4-6) 

0 ib B≤ ≤  .i N∈  (4-7) 
 
To simplify this problem, we transform the 

compromise probability Pi(bi) of each node i into a 
weight, lnPi(bi). Therefore, for the defender, the 
objective function (IP 4) is to minimize the weight of 
compromising the core node. Constraint (4-1) requires 
that the selected path for the OD pair should be the 
path with the minimal weight.  

 
3.2. Solution to the PPSD model 

 

By applying the Lagrangean relaxation method with 
a vector of Lagrangean multipliers u1 and u2, we can 
transform the PPSD model into the following 
Lagrangean relaxation problem (LR 2). In this case, 
Constraints (4-1) and (4-2) are relaxed.  

 
Furthermore, we assume that Pi(bi) follows an 

exponential distribution with λ, which indicates that the 
compromise probability will be rapidly reduced by the 
additional budget allocated to a node. We can 
decompose the optimization problem (LR 2) into the 
following two independent subproblems and solve 
them optimally. 
 
Subproblem 2-1 (related to decision variable xp) 

2min
w

i p pi
i N p P

u x δ
∈ ∈
∑ ∑ ,                (SUB 2-1) 

subject to (5-1) and (5-2). 
 

Because 2
iu  is non-negative, we can apply Dijkstra’s 

shortest path algorithm to solve (SUB 2-1) optimally. 
The time complexity is O(|N|2). 

 
Subproblem 2-2 (related to decision variables yi, bi) 

1 1 2min (1 ) ln ln
w w

bi bi
p i p i i

p p i N p p i N i N
u e y u e u yλ λλ λ δ− −

∈ ∈ ∈ ∈ ∈

− + −∑ ∑ ∑ ∑ ∑
,                                                                      (SUB 2-2) 
subject to (5-3), (5-4), and (5-5). 
 

To solve (SUB 2-2) optimally, we use mathematical 
techniques to determine the proper values of the 
random variables bi and yi. The time complexity is 
O(|N|). 

 
Getting primal feasible solutions 

Using the method for getting primal feasible 
solutions for the PSD model, we derive a heuristic for 
the PPSD model, as shown in Table 4. 

 
Table 4. Algorithm for getting a primal feasible 

solution for PPSD model 

1 2
2

1 2

( , ) min ln

ln ( ) ( )
w w

bi
D i

i N

bi
p pi i i p pi i

p p i N i N p P

Z u u e y

u e y u x y

λ

λ

λ

λ δ δ

−

∈

−

∈ ∈ ∈ ∈

=

+ − + −

∑
∑ ∑ ∑ ∑

, 
(LR 2)

subject to:   
1

w

p
p P

x
∈

=∑   (5-1) 

0 1px or=  wp P∈  (5-2) 

0 1iy or=  i N∈  (5-3) 

i
i N

b B
∈

≤∑   (5-4) 

0 ib B≤ ≤  .i N∈  (5-5) 
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Step 1.  Construct a minimal defense region by 
applying the labeling and the removal 
processes. The labeling process is based 
on a breadth-first search, and the removal 
process tests whether each outer layer 
node is necessary.  

Step 2. Allocate bi to each node, where 
2

2~ ,  
to ta l 

i
i i

i

ub r i N
u

= ∈ . If a node 

has 0ir > , and it is not in the minimal 
defense region, allocate its budget to the 
source or destination nodes, depending on 
which one has the larger λ value.  

Step 3. Tune the epsilon budget from the source 
and core nodes to the other nodes that 
have the highest negative value of the 
objective function in the minimal defense 
region. If the value of the objective 
function is less than that of the previous 
state, we continue the tuning process 
recursively. 

Step 4. Compare with the primal-based heuristic, 
which allocates the budget to each node 
according to the value of the primal 
variable bi. Then, we determine the 
minimal objective value of the heuristics. 

The time complexity of the heuristic is O(|N|3). 
 
4. Computational experiments 
 
4.1 Experiment environments 
 

In the PSD model, we assume that ˆ ( )i ia b  is the same 
for each node in a homogenous network.  

To evaluate the PPSD model, we consider two 
scenarios. In scenario 1, following the 20/80 rule, we 
assume that 20% of the nodes in the network are more 
important than the other 80%. Therefore, we assume 
that the Pi(bi) for 20% of the nodes follows an 
exponential distribution with a smaller λ(λ1) value; and 
for the other 80%, the Pi(bi) follows an exponential 
distribution with a larger λ(λ2) value. Note that λ 
represents the initial compromise probability of each 
node.  

In scenario 2, we assume that the Pi(bi) for an OD 
pair follows an exponential distribution with a 
randomly selected λ value between [0, 0.5]. Because 
the source node and the core node are important, we 
assume that the OD pair has a certain level of 
protection initially. For the other nodes, we assume that 
Pi(bi) follows an exponential distribution with a 
randomly selected λ value between [0, 1].  

We use two simple algorithms and one primal-based 
heuristic to compare the attack costs of different 

defense resource allocation strategies with those of our 
proposed algorithms. Simple algorithm 1 (SA1) 
allocates bi uniformly. In simple algorithm 2 (SA2), 
however, the allocation of bi is proportionate to the 

ratio Links of a node
Total # of Links

. In the primal-based heuristic 

(HE3), the budget allocation for each node is based on 
the value of the primal variable bi, which is derived by 
solving (SUB 1-2).  

We discuss the experiment results in the next two 
subsections and present them in tabulated form in the 
Appendix. The LR value represents the primal feasible 
solution derived by the LR process; and LB represents 
the lower bound gained from the LR process. The 
duality gap is calculated by LB-LR *100%

LR
, and the 

survivability factor is calculated by L R
L B

. Finally, we 

transform the objective value into a positive to simplify 
the explanation 

 
4.2 Experiment results for the PSD model 
 

Grid Networks

0
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A
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 Figure 1. Attack costs in grid networks 
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 Figure 2. Survivability of scale-free networks 
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 Figure 3. Effect of different network topologies 
 
In Figure 1, the attack costs incurred by our 

proposed algorithm (Table 3) are always higher than 
those of the other algorithms used for comparison. The 
efficacy of the LR-based algorithm’s solution is clearly 
demonstrated as the size of the network increases. 
Figure 2 shows that the survivability factor of the 
proposed algorithm is consistently higher than that of 
the other algorithms. Thus, by applying the algorithm, 
the core node will be more robust and secure. 
Meanwhile, Figure 3 demonstrates that a network’s 
topological structure strongly influences its robustness 
against attack. The attack costs in large grid networks 
are higher than those in large random and scale-free 
networks [2]. The reason is that the average number of 
nodes that must be compromised in a grid network is 
higher than in a random or scale-free network. This is 
due to the small-world phenomenon [2]. Therefore, we 
can conclude that the defense-in-depth strategy [11] is 
an important factor in network survivability.   

 
4.3 Experiment results for the PPSD model 
 

The experiment results for scenario 1 of the PPSD 
model are similar to the results of the PSD model in 
Figures 1, 2, and 3. The proposed algorithm (Table 4) 
incurs higher attack costs than the two simple 
algorithms, and maintains a higher level of 
survivability in different-sized network topologies. We 
observe that, if the values of λ1 and λ2 are similar, the 
network is homogeneous. 
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 Figure 4. Attack costs of scenario 1 of the PPSD 
model: different network topologies (λ1=0.2, λ2=0.8) 

 
However, if λ1 is different to λ2, we must consider 

the specific characteristics of each node, such as its 
importance on the path and its Pi(bi) function. For 
example, a node with a substantial number of links that 
provide short cuts from the source node to the core 
node is very important in a scale-free network. If this 
kind of node is vulnerable (especially if its λ value is 
high), more defense resources should be allocated to it 
in order to reduce the risk of it being compromised. 
Because the effect of a node’s characteristics is greater 
than that of the defense-in-depth strategy, the attack 
costs in scale-free networks are higher than those in the 
other two network topologies, especially if the network 
is large, as shown in Figure 4.  
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Figure 5. Attack costs in scenario 2: 
scale-free networks  
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Figure 6.  Survivability of random networks in 
scenario 2 
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 Figure 7. Attack costs of different network 
topologies in scenario 2 

 
In scenario 2 of the PPSD model, the curves of the 
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LR-based algorithms are all above those of SA1 and 
SA2. Thus, the solution quality of LR is better than that 
of SA1 or SA2, as shown in Figures 5 and 6, 
respectively. Considering both the defense-in-depth 
concept and the nodes’ characteristics, the attack costs 
incurred by the proposed algorithm are approximately 
equal in different-sized network topologies, as shown 
in Figure 7. This implies that the proposed protection 
strategy is very adaptive such that we can obtain almost 
the same result in networks of different size and 
topology.  

 
5. Conclusion 

 
We have focused on two issues. First, to improve 

the security of the core node in a network, we have 
proposed two mathematical models to formulate attack-
defense scenarios and provide defenders with useful 
defense resource allocation strategies. Second, we have 
considered network survivability and evaluated the 
maximal minimized attack costs in different scenarios. 

The mathematical models represent the major 
contribution of this work. We have carefully researched 
the security problem’s characteristics, identified its 
objectives and associated constraints, and proposed 
well-formulated mathematical models to solve it. To 
the best of our knowledge, the proposed approach is 
one of the few that model attack-defense scenarios as 
mathematical programming problems in the context of 
survivability. In addition, we have provided solution 
approaches to determine the attack costs for both 
models.  

Finally, our evaluation of different topologies 
revealed the following phenomenon. In a homogeneous 
network, the defense-in-depth strategy is the most 
important issue to be considered when allocating a 
defense budget. Because a grid network does not 
contain short cuts, the attacker must compromise more 
nodes than in random or scale-free networks. 
Therefore, a defender can employ nodes with more 
levels when allocating defense resources in a grid 
network, which means that an attacker must expend 
further resources to compromise the core node. 
However, if a network is heterogeneous, the defender 
must pay more attention to each node’s characteristics. 
In random and scale-free networks, the nodes that 
provide short cuts are the most vulnerable. Therefore, 
we allocate more budget resources to them to improve 
the protection of the core node. The greater the 
differences between the nodes, the stronger will be the 
impact of each node’s characteristics. The proposed 
solution approach is not only very effective, it is also 
adaptable to different attack/defense scenarios. 

We believe that the proposed models can be 
extended to different attack-defense scenarios in the 

context of survivability, where the survivability metrics 
include “the percentage of critical OD pairs 
disconnected,” “the number of core nodes that are 
survivable in a multiple core node environment,” or 
“the percentage of valuable information not stolen.” In 
our future work, we will investigate the extent to which 
our methods can be applied to scenarios involving the 
interactive dependency of network nodes. We will also 
examine specific application parameters of other real 
world network environments, such as wireless sensor 
networks. 
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Appendix 
Experiment Results for the PSD Model 

Topology No. of 
Nodes LB LR Gap (%) Surv. SA1 Imp. Ratio 

to SA1 (%) SA2 Imp. Ratio 
to SA2 (%) HE3 Imp. Ratio 

to HE3 (%)
16 6.23 4.89 27.37 0.79 2.63 85.84 2.67 83.12 3.62 35.37 
49 12.18 8.40 45.05 0.69 3.60 132.92 3.46 142.54 5.43 54.65 

100 16.80 10.96 53.26 0.65 4.02 172.70 3.99 174.73 6.37 72.13 
225 36.08 17.14 110.51 0.48 7.90 116.92 8.22 108.55 9.38 82.77 

Grid 
Networks 

361 46.51 21.29 118.51 0.46 9.15 132.65 9.48 124.45 10.79 97.26 
16 5.74 4.87 17.99 0.85 2.22 119.45 2.40 102.49 3.97 22.53 
49 9.36 7.84 19.34 0.84 2.36 232.78 2.52 211.70 5.53 41.90 

100 15.50 10.71 44.70 0.69 3.33 221.96 3.53 203.68 6.76 58.37 
225 21.30 14.22 49.82 0.67 3.47 310.31 3.84 270.24 8.40 69.21 

Random 
Networks 

361 25.65 15.43 66.22 0.60 3.60 328.21 4.29 260.06 8.52 81.19 
16 5.56 5.00 11.31 0.90 2.08 140.36 2.20 127.00 3.79 31.83 
49 9.90 8.56 15.65 0.86 2.50 242.94 2.66 221.13 5.42 57.82 

100 12.74 10.85 17.41 0.85 2.63 311.93 3.58 203.13 6.79 59.81 
225 17.32 13.65 26.86 0.79 2.63 418.34 3.74 265.27 8.30 64.57 

Scale-Free 
Networks 

361 20.77 15.66 32.62 0.75 3.05 413.47 4.47 250.35 9.11 71.97 
 

Experiment Results for the PPSD Model Scenario 1 (λ1=0.2, λ2=0.8) 

Topology No. of 
Nodes LB LR Gap (%) Surv. SA1 Imp. Ratio 

to SA1 (%) SA2 Imp. Ratio 
to SA2 (%)

16 16.48 8.62 91.22 0.52 5.67 52.15 5.68 51.79 
49 44.04 17.47 152.14 0.40 7.21 142.32 7.21 142.37 

100 75.69 24.64 207.13 0.33 10.28 139.80 10.71 130.06 
225 189.37 48.32 291.91 0.26 14.78 226.96 14.62 230.41 

Grid 
Networks 

361 301.64 67.45 347.24 0.22 18.57 263.16 19.13 252.63 
16 14.71 9.17 60.45 0.62 5.16 77.61 5.22 75.57 
49 37.48 21.77 72.18 0.58 5.16 321.72 5.64 285.84 

100 84.84 34.78 143.89 0.41 6.07 472.64 6.79 411.96 
225 159.92 52.45 204.88 0.33 6.69 684.25 7.63 587.20 

Random 
Networks 

361 296.79 90.91 226.45 0.31 7.27 1150.55 8.16 1014.15 
16 14.29 8.86 61.33 0.62 4.44 99.64 4.72 87.63 
49 43.15 18.90 128.28 0.44 5.62 236.46 7.22 161.82 

100 84.78 36.34 133.26 0.43 6.03 503.03 7.83 364.14 
225 187.12 65.97 183.64 0.35 7.00 842.05 9.93 564.53 

Scale-Free 
Networks 

361 297.63 100.19 197.07 0.34 7.32 1269.19 9.54 950.73 
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