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Abstract

The least-squares fitting method can be used for planar roof point extraction
from airborne lidar points; however, it cannot avoid the impact of non-planar roof
points (blunders) due to lack of robustness. Therefore, this study has developed a
least-squares plane fitting based on a posteriori variance estimation, as proposed
by Li in 1983, to reduce the weights of non-planar roof points. Additionally, least
absolute deviation (LAD) was integrated into the first step of this improved Li
method, to increase blunder detection. For simulated data, the proposed approach
increased the blunder detection rate by up to 6% compared to the original Li
method. Test results with real data showed that the proposed approach
demonstrated robustness, applicability and effectiveness.

Keywords: a posteriori variance estimation, blunder detection, LAD, least-squares
fitting, lidar, selected weights

Introduction

AN AIRBORNE LIDAR SYSTEM emits laser pulses to quickly capture high-resolution geospatial data
such as digital surface models. The system is composed of a laser scanner combined with both a
Global Navigation Satellite System (GNSS) and an inertial navigation system (INS), mounted on
an aerial platform. Through the instrumental operation and process, the system creates accurate
three-dimensional points (point clouds). Airborne lidar point clouds consist of large discrete 3D
datasets. However, the geometric features are only implicit, so it is necessary to select a suitable
method to extract geometric features from the point clouds for further processing. For 3D building
models, roof points or planes in the airborne lidar data should be extracted first. Most of the
existing methods, dating back to the turn of the century, transform the distributed lidar data into
grid data through interpolation procedures and then apply image processing techniques to detect
and extract these features (Maas and Vosselman, 1999; Geibel and Stilla, 2000). Thus, some
important spatial information, especially that related to heighting accuracy, might be lost
(Axelsson, 2000). For this reason, a number of algorithms that use the original airborne lidar data
have been developed (Ackermann, 1999; Haala and Brenner, 1999; Priestnall et al., 2000;
Vosselman and Dijkman, 2001; Gorte, 2002; Roggero, 2002; Schuster, 2004).

For example, Vosselman and Dijkman (2001) used the well-known Hough transform for the
extraction of planar faces from irregularly distributed point clouds. If a laser dataset contains
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points in a planar surface, the planes of these points in the parameter space will intersect at the
position corresponding to the slopes and distance of the planar surface. For the detection of this
intersection point, the standard procedure of sampling the parameter space and searching for the
bin with the highest number of planes can be used (Ballard and Brown, 1982). Roggero (2002)
combined region growing techniques and principal component analysis (PCA) for roof extraction,
in which PCA was used to define the aggregation criteria and to describe the geometrical
properties of the objects. The result was obtained by working on raw data, so they were able to
take advantage of the full resolution potential of laser scanning. Gorte (2002) used the original
(triangulated) laser points to iteratively merge triangular irregular networks (TINs) and transform
small segments into larger segments. The algorithm was regulated by a single parameter that
controlled the maximum dissimilarity for adjacent segments such that merging them was still
allowed. Schuster (2004) presented an investigation on the use of tensor voting for categorising
lidar data into outliers, line elements (such as high-voltage power lines), surface patches (roofs)
and volumetric elements (vegetation), which was based on segmentation of lidar data using a
tensor voting framework. Tensor voting is a methodology for extracting salient features including
surfaces, edges and corners inferred from tensor fields generated by the voting procedure among
the point cloud. Wang and Tseng (2004) presented an octree-structure-based split-and-merge
segmentation algorithm for organising airborne lidar point-cloud data into clusters of 3D planes.
Recently, machine learning approaches based on lidar data for building extraction and roof shape
classification have been used, and deep learning approaches have been shown to perform well for
building detection. However, in most of these cases, their planimetric accuracies were low, and
individual roof plane extraction was not considered (Dey et al., 2020).

Although the use of the original airborne lidar data can maintain the original accuracies,
some difficulties still exist for planar roof point extraction from airborne lidar data. The
challenging tasks are how to exclude the irrelevant points and how to extract planar roof points
reliably and automatically. In order to extract appropriate planar roof points, noise interference
must be excluded. Noise can be understood as non-planar points from other objects (for example,
a chimney on the roof), which should be regarded as blunders while planar points are extracted.
Thus, a common method is setting a threshold to eliminate a small number of blunders (Höhle,
2013). Chio (2005) presented an approach to automatically acquire 3D building roofs from
airborne lidar data based on data snooping theory. Here, the best-fitting plane was obtained from
the extracted TIN planes through the iterative merging of the fine TIN structures, constructed
from the original airborne lidar data, by a forward selection algorithm. However, this approach is
time-consuming. Forlani et al. (2003) and Khoshelham (2005) employed random sample
consensus (RANSAC; Fischler and Bolles, 1981) to exclude non-roof points while extracting
building planar roofs. If the observations containing blunders are thought of as a sample of large
variance and of the same expectation, then it can lead to an iterative method with selected weights
for positioning blunders (Li et al., 2015). Based on this concept, Chio (2008) developed an
algorithm based on robust estimation theory to acquire planar roof lidar points and remove
irrelevant non-planar roof points. In order to exclude the influence of these non-planar points,
Chan and Chio (2017) developed an approach based on the selected weights supervised by a
posteriori variance estimation presented by Li (Li, 1983; Li et al., 2015), called the Li method in
this study, to reduce weights by the iteration method in order to extract the planar roof points
accurately.

This study presents an extension of the approach presented by Chan and Chio (2017)
in which the least absolute deviation (LAD) is combined with the Li method to exclude
non-planar roof points. The latter are regarded as blunders and their weights are reduced by
an iteration method in order to extract planar roof points accurately. Both simulated and
actual airborne lidar data are used to verify the developed algorithm.

CHIO and CHAN. Planar airborne lidar roof point extraction using least squares fitting
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Theory and Methodology

This section discusses the method for extracting planar roof lidar points and presents
the relevant theories as well as the proposed approach. The evaluation method, based on
simulated and real data, is also explained.

Least-squares Fitting

In 3D Euclidean space, a roof plane can be formulated as equation (1):

a0xþb0yþ c0zþd0 ¼ 0 (1)

where a’, b’, c’ and d’ are the parameters of the plane, and x, y, z are the point coordinates.
For planar roofs, including both horizontal (flat) and pitched (slanted) planar roofs,
equation (1) can be simplified as equation (2):

z¼ axþbyþ c (2)

where a, b and c are the parameters of a plane and x, y, z are the point coordinates.
According to the rigorous least-squares adjustment, equation (2) can be rewritten as:

ziþ vzi ¼ aðxiþ vxiÞþbðyiþ vyiÞþ c

where vxi , vyi , vzi
� �

are the residuals of the xi, yi, zið Þ coordinates at point i. This observation
equation can be rearranged as:

a xiþ vxið Þþb yiþ vyi
� �þ c� ziþ vzið Þ¼ 0: (3)

Since equation (3) is non-linear, it should be linearised by the initial values (a0, b0, c0) of
unknowns and the rigorous least-squares adjustment of this plane should be solved by general
least squares (Mikhail and Ackermann, 1976). The matrix form of general least squares is:

Ax þ Bv þ w ¼ 0 (4)
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w¼

�z1þ x1a0þ y1b
0þ c0

�z2þ x2a0þ y2b
0þ c0

..

.

�znþ xna0þ ynb
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:

The unknown planar parameters can be determined by the following equation after an
iterative solution:

x¼� AT BP�1BT
� ��1

A
h i�1

AT BP�1BT
� ��1

w (5)

where P is the weight matrix of the observations.
As rigorous least-squares adjustment, by general least squares, for the plane is too

complicated and time-consuming, the residuals are only added to the corresponding z
coordinates. Therefore, equation (2) can be written as:

ziþ vi ¼ axiþbyiþ c i ¼ 1, 2, ⋯, nð Þ:

where vi is the residual of the zi coordinate of point i. The above system of observation
equations can be represented by the matrix notation, shown as equation (6):

Ax¼ lþv (6)

where A¼
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By employing matrix algebra and the least-squares principle, the solution for
equation (6) is:

x¼ ATPA
� ��1

ATPl: (7)

The a posteriori variance of unit weight is:

σ̂20 ¼
vTPv

n�3
(8)

where P is the weight matrix of the observations.
The difference between the two results (rigorous and simplified least-squares fitting for

planar parameters) was compared and discussed in this study, and is described in a later
section.

CHIO and CHAN. Planar airborne lidar roof point extraction using least squares fitting
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Iterations Supervised by A Posteriori Variance Estimation

While employing the least-squares fitting method for planar roof point extraction, it is
unavoidable that points containing noise and non-planar roof points (which are regarded as
blunders) should both be removed. Otherwise, the ordinary least-squares method will fail to
solve the optimal estimated parameters because it cannot avoid the impact of blunders due
to lack of robustness.

To solve this problem, these blunders should be detected and located. The data
snooping method (Baarda, 1967) can be used to detect a single blunder by verifying the
standardised residuals iteratively. However, there is a high possibility of numerous blunders
existing in a least-squares problem. Robust estimation can be used to locate multiple
blunders iteratively, with the goal of reducing the influence of blunders on the least-squares
problem. There are numerous robust estimation categories. One category is least squares
using iterations with the weights selected to reduce the weight of the observations with
blunders and to exclude them. The key is to select the appropriate weight function. By
using the proper weight function, observations with blunders will be detected and located
and, thereby, excluded from the computation (Sisman, 2010).

The basic method of least squares using iterations with the selected weights is to first
perform an initial least-squares adjustment, as the blunders are unknown. After that, the
weights of the observations in each adjustment are recalculated according to the weight
function defined by the residuals and relevant parameters. If the weight function is chosen
properly and the blunders can be identified, the weights of the observations containing
blunders will gradually decrease. When the iterations are suspended, the associated residuals
will indicate the size of the blunder. Consequently, the result of the adjustment will not be
impacted by blunders, and an accurate least-squares solution can be obtained (Li et al.,
2015).

In this study, a least-squares fitting approach based on iterations with variable weights,
which are supervised by a posteriori variance estimation, was proposed by Li (1983) and
reiterated in Li et al. (2015). The authors have therefore called this the “Li method” in the
current work. It was adopted to reduce the weights of non-planar roof points in order to
accurately extract them. The basic concept of the Li method is to use a weight function
calculated from the observation a posteriori variance, based on equation (9):

σ̂2i ¼
vTi vi
ri

(9)

where i is the number of group i (in this study i is equal to 1); ri means the local
redundancy of group i and it isequal to trðQvvPÞi (tr is the trace); Qvv is the cofactor matrix
of the residuals; and P is the weight matrix of the observations.

To verify if the jth observation contains a blunder, the statistical parameter Tj is
calculated using equation (10):

T j ¼
v2j
σ̂20r j

(10)

where σ̂0 is the a posteriori standard deviation and is equal to σ̂i due to there being only
one group of data; vj is the residual of the jth observation; and r j isequal toqvjjpj.

The weight function is expressed as equation (11). During a given iteration n, the
weight of the observations is 1 if they do not contain blunders; otherwise, they obtain a
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relatively small weight based on the statistical parameter Tj, where T1=2
j is calculated by

equation (12). Based on the statistical test, the statistical parameter T1=2
j is used for testing,

and threshold K is set to discriminate possible blunders:

p nþ1ð Þ
j ¼

1 for T1=2
j ≤K

1

T j
for T1=2

j >K

8><
>: (11)

T1=2
j ¼ vj

σ̂0
ffiffiffiffi
r j

p ¼ τ j (12)

where T1=2
j equals the statistics in Baarda’s data snooping. It can be observed that the data

snooping is equal to the first iteration of the current method. During the iterative process, to
ensure that blunders are correctly positioned in rigorous conditions, K is set as 1 during the
first three iterations in the original Li method. After that, K is set as 3.29 until the iterations are
terminated due to the rate of change of the a posteriori variance being almost zero, that is:

σ̂ðnþ1Þ
0 � σ̂ðnÞ0

σ̂ðnÞ0

�����
�����<0:0001: (13)

For a standard normal distribution, when K is 1, for any group of measurements there
will be approximately a 68.3% chance that any single observation will have an error
between �1; when K is 3.29 there will be approximately a 99.9% chance of an error
between �3.29.

However, if the observations contain large blunders, the results of the first least-squares
adjustment will be affected, even when the strict threshold (K = 1) for the statistical test is
set, and it will possibly obtain bad parameter estimations that lead to the failure of the Li
method. Therefore, the first step of the least-squares adjustment must still be performed
using equal weights, because the number and locations of the blunders are uncertain. This
can cause blunders to be assigned to other residuals and affect the determination of the
observation weights in the next step of the least-squares adjustment. If the first step can
determine the residuals that can reflect blunders more accurately, the corresponding
observations can reduce the weights and increase the robustness.

Least Absolute Deviations. The LAD method is a robust estimation method. The theory
of LAD, called the L1 norm, was developed by Boscovich (1757). The theory of LAD is based
on a set of point data (xi, yi), i = 1, 2, 3 . . . n, where pi is the weight of observation yi. The
object is to find the function f(xi) approximating yi, where f(xi) can be either a linear or non-
linear equation. The objective function, shown as equation (14), is used to minimise the sum of
the weighted absolute values of the residuals vi, that is, jyi� f ðxiÞj:

φ¼∑
n

i¼1
pi yi� f ðxiÞj j ¼ ∑

n

i¼1
pi vij j ¼min: (14)

The above function is difficult to calculate by differentiating due to the absolute value,
and a direct solution is not possible except in special cases. A solution for the LAD method
can be achieved by converting it to a linear programming problem and this consists of a
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constraint equation and an objective function, which must be positive. The mathematical
model is expressed as:

Minimise φ¼ c1x1þ c2x2þ⋯þ cnxn

subject to : a11x1þa11x2þ⋯þa1nxn ≤ b1

a21x1þa22x2þ⋯þa2nxn ≤ b2

..

.

am1x1þam2x2þ⋯þamnxn ≤ bm

x1, x2, ⋯xn ≥ 0 (15)

where x1, x2, ⋯xn are decision variables; c1, c2, ⋯cn are the cost coefficients; φ is the
objective function; aij is the constraint coefficient; and bi is a coefficient. The ith linear
constraint condition is:

∑
n

j¼1
aijxj ¼ bi i¼ 1, ⋯m, j¼ 1, ⋯n:ð Þ:

The matrix form of equation (15) can be shown as equation (16):

Minimise φ¼ cTx

subject toAx¼ b

x≥ 0: (16)

The decision variables should be positive, therefore xi is expressed by two non-
negative real numbers, xþi x

�
i , in equation (17) to determine the positive or negative

decision variables:

x∈R;xþi ¼ xi if xi ≥ 0

0 otherwise

�
;x�i ¼ 0 if xi ≥ 0

�xi otherwise

�

xþi , x
�
i ≥ 0;xi ¼ xþi � x�i ; xij j ¼ xþi þ x�i : (17)

For the property of positive decision variables, if xiis positive, then xþi is 0; if xi is
negative, then xþi is 0.

Based on the concept in equation (17), an unknown vector x and residual vector v in
the model of Ax = l + v can be expressed as the difference of two non-negative vectors.
Furthermore, vj j can be expressed as the sum of two non-negative vectors, as shown in
equation (18), and the constraint conditions in matrix form are Ax – v = l.
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x¼ xþ�x� ; v¼ vþ�v�: (18)

Vectors x and v in equation (18) are substituted into Ax – v = l to get:

A �A �I I½ �

xþ

x�

vþ

v�

2
6664

3
7775¼ l: (19)

Using vj j ¼ vþ�v� in equation (18), the objective function becomes equation (20):

cTx¼ P vj j½ � ¼PT vj j ¼PT vþ�v�j j¼min

cTx¼ 0 0 PT PT
� �

xþ

x�

vþ

v�

2
6664

3
7775¼min: (20)

The linear programming solution is determined by the simplex method (Dantzig, 1987;
Williams, 2017). The following procedure is used to solve a linear programming problem in
standard form:

(1) Write down the augmented matrix of the system of equations. This is called the
initial simplex tableau.

(2) Locate the negative element in the last row (other than the last element) that is
largest in magnitude. If two or more entries share this property, any one of these
can be selected. If all such entries are non-negative, the tableau is in its final form.

(3) Divide each positive element in the column defined by this negative entry into the
corresponding element of the last column.

(4) Select the divisor that yields the smallest quotient. This element is called a pivot
element. If two or more elements share this property, any one of these can be
selected as a pivot.

(5) Use row operations to create a one (1) in the pivot location and zeros (0) elsewhere
in the pivot column.

(6) Repeat steps (2) to (5) until all such negative elements have been eliminated from
the last row. The final matrix is called the final simplex tableau and leads to the
optimal solution.

In this study, LAD was combined with the first step of the Li method, which the
authors have called the improved Li method. The aim was to obtain better parameter
estimations for LAD based on its robustness, as well as to provide a better basis for locating
the blunders of observations for subsequent adjustments.

In this study, the difference between the original Li method and the improved Li
method was investigated. After blunders were removed, the final results of the least-squares
fitting were determined again with the same weight for all observations. Meanwhile, the
standard deviation of unit weight was calculated.

CHIO and CHAN. Planar airborne lidar roof point extraction using least squares fitting
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Evaluation

In this study, simulated airborne lidar points with rectangular horizontal planar roof
data were used for testing. First, the difference between the ordinary least-squares and
general least-squares fitting using simulated rectangular horizontal planar roof points with
random errors was investigated. Then, the comparison among LAD, the Li method and the
proposed improved Li method was presented using simulated rectangular planar roof points
with different blunders. Finally, real data collected in Taiwan was used to test and verify the
blunder detection ability of the proposed improved Li method. The evaluation was
performed using the detectable blunder numbers and the rate of detectable blunders, and the
coordinate comparison of the centroid calculated by the extracted rectangular planar roof
points and the centroid calculated by the four roof corner coordinates as surveyed by a total
station instrument. The coordinate comparison was performed in such a manner because the
four roof corner coordinates could not be precisely measured by an airborne lidar scanning
system; therefore, it would be much less reliable to simply use the root mean square error
(RMSE) of the roof corner coordinate difference to evaluate the results. Meanwhile, the
ISPRS Vaihingen data in Germany was used to evaluate the extraction results by a
classification confusion matrix to reveal the recall, accuracy and precision.

Results and Discussion

Comparison between the Ordinary and General Least-squares Fitting

Fig. 1 shows a set of simulated points distributed evenly on a rectangular horizontal
planar roof with a 10 m length and 5 m width. The point density was 1 pt/m2 and there
were a total of 66 points. A random error, generated with a 10 cm standard deviation, was
added to each vertical and horizontal coordinate component randomly. The fitting results
using ordinary and general least squares are tabulated as shown in Table I.

FIG. 1. Simulation data.

Table I. Fitting results using ordinary and general least squares.

Plane parameter Ordinary least squares General least squares

a 0.00165189695031920 0.00165189695031079
b 0.00665376371878779 0.00665376371865057
c 9.89161739668293 9.89161739668309

Differences shown in bold.
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From Table I, the differences between two sets of fitting planar parameters a, b and c
are extremely small. To realise the differences in the z coordinate on the four simulated
planar corners, the equation z¼ axþbyþ c was used to determine the z values according to
these two sets of planar parameters. The result showed there was no significant difference in
the z coordinate according to the height accuracy of the airborne lidar scanning system.
Therefore, the ordinary least-squares fitting model could be used for subsequent tests.

Comparison between the Li Method, LAD and the Improved Li Method

This study verified the ability of blunder detection for the Li method, LAD and the
improved Li method for the extraction of planar points. The simulated data was the same as
in the previous subsection: however, random errors were added only to the z coordinates.

Generally, a random error size greater than three times the standard deviation can be
considered as a blunder with a probability of 0.3%. Therefore, error sizes of four and five
times the standard deviation (and even larger), meaning blunders with 0.4, 0.5, 1 and 2 m
errors, were randomly added to the test data and used as simulated data for testing. A visual
comparison of the blunder detection ability using the Li method and the improved Li
method is presented in Fig. 2, in which the ordinates represent the number of detected
blunders and the abscissas indicate the percentage of detected blunders.

FIG. 2. Comparison of the blunder detection ability using the Li method (blue) and the improved Li method
(red) for blunders of 0.4, 0.5, 1 and 2 m.

CHIO and CHAN. Planar airborne lidar roof point extraction using least squares fitting
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From the tests, the detected and located percentage of blunders using the improved Li
method were about 35% and 40% when the blunder sizes were 0.4 and 0.5 m, respectively.
The detected and located percentage of blunders were both 44% when the blunder sizes
were 1 and 2 m, respectively. The improved Li method increased the rate of blunder
detection by about 2% to 6% compared to the Li method. Table II shows the detected and
located blunders using LAD. Table II indicates that LAD is a robust estimation method, and
the LAD result could obtain the planar parameters and corresponding residuals of the
observations. However, no reliable procedure can be used to verify if an observation
contains a blunder. Therefore, the a posteriori standard deviation was determined to find the
residuals with a blunder by verifying if the value was greater than three times the a
posteriori standard deviation or not. From the tests, only 5% of blunders could be totally
detected and located, no matter what blunder sizes were added.

Actual Taiwan Test Data

From the simulated data tests, almost 44% of the blunders could be located in the
observations with larger blunders (that is, 1 or 2 m blunders) under the proposed improved Li
method. However, real data is more complicated, as the size and number of blunders are
unknown. Therefore, this study used actual Taiwan data to test the improved Li method for the
extraction of planar roof points. For the actual Taiwan data test, airborne lidar data covering
Nangang Industrial Park in Nantou City, Taiwan was used. The point density was about 5.42 pt/
m2. Table III shows the orthoimages of six rectangular horizontal planar roofs superimposed
with lidar points, their corresponding Google Street View images and their centroid coordinates
calculated from the four corner roof point coordinates surveyed by a total station instrument.

The results are shown in Fig. 3 and Table IV. In Fig. 3, the red points represent non-
planar roof points and the green points are the extracted roof points. As shown in Table IV,
the coordinate differences are calculated by comparison of the centroid calculated by the
extracted rectangular planar roof points and the centroid coordinates shown in Table III.
From the results, it was deduced that the F16 and F201 datasets contained too many non-
planar roof points to detect them. For the other four datasets, the corresponding non-planar
roof points were detected. The non-planar roof point rates were 27%, 28%, 28% and 35%
for the F10, F12, F45 and F124 datasets, respectively. The coordinate differences in the E,
N, H coordinate components were reasonable, and the fitting standard deviations were all
between 2 and 8 cm; therefore, the proposed approach successfully extracted the roof points
from these four datasets.

For the F16 and F201 datasets, as shown in Fig. 3, it could be possible that the rates of
the non-roof points could still be too high to obtain better approximations of the planar

Table II. Detected and located blunders using the LAD method.

Percentage of blunders No. of
blunders

No. of blunders
detected

Blunder size

0.4 m 0.5 m 1.0 m 2 m
A posteriori standard deviation (m)

5% 3 3 0.122 0.137 0.236 0.440
15% 10 0 0.173 0.202 0.398 0.783
25% 17 0 0.198 0.251 0.510 1.022
35% 23 0 0.224 0.273 0.541 1.183
40% 26 0 0.225 0.278 0.593 1.226
50% 33 0 0.237 0.283 0.582 1.130
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Table III. Six datasets of actual data used to test the improved Li method.

No. Centroid coordinates (m) Lidar points superimposed on orthimage Google Street View images

F10 E: 215 105.467
N: 2 647 251.043
H: 213.878

F12 E: 215 209.703
N: 2 647 330.177
H: 201.856

F16 E: 215 057.989
N: 2 647 063.474
H: 224.974

F45 E: 214 890.067
N: 2 646 938.699
H: 244.152

F124 E: 215 478.802
N: 2 647 021.457
H: 200.459

;

F201 E: 215 700.048
N: 2 646 795.469
H: 196.077

CHIO and CHAN. Planar airborne lidar roof point extraction using least squares fitting
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parameters using LAD in the first step of the improved Li method for excluding non-planar
roof points and successfully extracting roof points. To verify this deduction, the lidar points
around the centroid location (determined by the four roof corners surveyed by a total station)
were extracted for calculation by LAD to obtain better planar parameter estimations. The
results are shown in Fig. 4, in which the blue points represent the extracted points for
calculation by LAD, the green points are the extracted points and the red points represent the
detected non-planar roof points. The results (the coordinate differences, the number of
detected non-planar roof points and the rate of detected non-planar roof points) for datasets
F10, F12, F45 and F124 are the same as those shown in Table IV. Moreover, as shown in
Table V, the roof points and non-planar roof points were successfully detected in dataset F16,
as the fitting standard deviation is 2 cm and the coordinate differences were −0.468, 0.07 and
0.053 m in the E, N and H coordinate components, respectively. The rate of non-planar roof
points was 36% in dataset F16. However, the improved proposed method (including LAD)
still failed to detect the non-planar roof points in dataset F201.

From the previous test, if the datasets contained large non-planar roof points (that is, a
large number of blunders), the LAD method would fail to acquire better planar parameter
estimations for the improved Li method. Additionally, even if better planar parameters could

Table IV. Actual Taiwan data test using the improved Li method.

F10 Centroid E 215 105.340 m Coordinate difference E 0.127 m
N 2 647 249.888 m N 0.155 m
H 213.856 m H 0.023 m

Fitting standard deviation 0.023 m No. of detected non-roof points 733
Total points 2764 Rate of detected non-roof points 27%

F12 Centroid E 215 209.862 m Coordinate difference E −0.159 m
N 2 647 329.778 m N 0.399 m
H 201.937 m H −0.08 m

Fitting standard deviation 0.023 m No. of detected non-roof points 52
Total points 184 Rate of detected non-roof points 28%

F16 Centroid E 215 058.983 m Coordinate difference E −0.994 m
N 2 647 064.235 m N −0.761 m
H 223.870 m H 1.104 m

Fitting standard deviation 1.184 m No. of detected non-roof points Undetected
Total points 299 Rate of detected non-roof points Unavailable

F45 Centroid E 214 890.379 m Coordinate difference E −0.312 m
N 2 646 938.571 m N 0.128 m
H 244.130 m H 0.022 m

Fitting standard deviation 0.018 m No. of detected non-roof points 78
Total points 279 Rate of detected non-roof points 28%

F124 Centroid E 215 478.994 m Coordinate difference E −0.192 m
N 2 647 021.268 m N 0.189 m
H 200.398 m H 0.061 m

Fitting standard deviation 0.04 m No. of detected non-roof points 61
Total points 173 Rate of detected non-roof points 35%

F201 Centroid E 215 700.189 m Coordinate difference E −0.141 m
N 2 646 796.856 m N −1.387 m
H 192.335 m H 3.742 m

Fitting standard deviation 4.081 m No. of detected non-roof points Undetected
Total points 678 Rate of detected non-roof points Unavailable

Problematic datasets shown in bold.
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be determined, a large number of non-planar roof points could lead to the failure of the
improved Li method. From Fig. 5 it is obvious that the F201 dataset contained numerous
wall points. A visual verification indicated that the rate of non-planar roof points was over
50%. The results of the tests using both the simulated and real Taiwan datasets concluded
that, with datasets where non-planar roof points constituted less than 35% of the total, the
improved Li method will perform successfully. The improved Li method had the ability to
detect more blunders than the original Li method according to the simulated data test
results. However, how many blunders in a real dataset could be detected using the improved
Li method still required verification. Therefore, the next test was used to discuss the blunder
detection ability of the improved Li method.

FIG. 3. The planar roof points (green) and non-planar roof points (red) extracted by the improved Li method.
Note the lack of detected non-planar points in (c) and (f). The six datasets are also shown in Table III.

CHIO and CHAN. Planar airborne lidar roof point extraction using least squares fitting
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Investigation of the Blunder Detection Ability of the Improved Li Method

This subsection discusses the blunder detection ability of the improved Li method
using the F201 dataset. This dataset consisted of both roof points and wall points; the
vertical distance from the roof to the ground was about 14 m. The total number of lidar
points was 678. The following lidar points used for the test were acquired using different
vertical distances from the rooftop centroid as different thresholds. The results of the

FIG. 4. Results using the proposed approach using LAD in the first step of the improved Li method. Blue points
represent the extracted points for calculation by LAD; green points are the extracted points; red points represent

the detected non-planar roof points.
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extracted roof points using the (original) Li method and the improved Li method were
compared, and the evaluations were performed using the 3D coordinate differences between
the centroids of the extracted points and the centroid determined from four roof corners
surveyed by a total station. The results are shown in Table VI, in which the blue points
indicate the points excluded by the vertical distance thresholds, the red points represent the
detected non-planar roof points and the green points represent the extracted roof points.

From the first three vertical distance thresholds (1, 2 and 5 m), most of the wall points
were excluded, and both the original Li and improved Li methods could extract the roof
points correctly. The rate of the detected non-planar roof points was 9%, 15% and 29%,
respectively, meaning that these two methods had the same ability to detect and locate non-
planar roof points.

However, when 8 m was set as the vertical distance threshold for the test, the blunder
detection ability of the original Li method was lost. As shown in Table VI, only 23% of the
non-planar roof points could be located by the original Li method, however, 39% of the
non-planar roof points could be located correctly using the improved Li method. Because of
the poor detection of the original Li method, the coordinate differences in E, N, H were
−0.157, 0.460 and 0.425 m, as shown in Table VI. For the other correct detections, the
coordinate differences in E, N, H were −0.132, 0.163 and 0.059 m, no matter which
method was used. However, when 8.5 m was set as the vertical distance threshold for the

Table V. Results of the proposed improved approach (including LAD) for the F16 and F201 datasets.

F16 Centroid E 215 058.457 m Coordinate difference E −0.468 m
N 2 647 063.404 m N 0.07 m
H 224.921 m H 0.053 m

Fitting standard deviation 0.02 m No. of detected non-roof points 107
Total points 299 Rate of detected non-roof points 36%

F201 Centroid E 215 700.189 m Coordinate difference E −0.141 m
N 2 646 796.856 m N −1.387 m
H 192.335 m H 3.742 m

Fitting standard deviation 4.081 m No. of detected non-roof points Undetected
Total points 678 Rate of detected non-roof points Unavailable

Problematic dataset shown in bold.

FIG. 5. The lidar point distribution in the F201 dataset: (a) point cloud; (b) close-range image. The red ellipses
in (a) indicate both the roof points and problematic wall points.
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test, the blunder detection ability of the improved Li method was lost, as shown in
Table VII. In this test, the proposed approach increased the detection rate by about 10%.

Comparison with RANSAC. Random sample consensus is a widely adopted method
for the extraction of roof lidar points because of its robustness to noise and outliers.
RANSAC can detect all points of the original cloud belonging to the calculated plane
according to a given threshold. Afterwards, it repeats these procedures N times and
compares each obtained result with the previously saved one. If the new result is better, it
replaces the saved result. In this study, the results of RANSAC for the F201 dataset are as
shown in Table VIII using thresholds of 5 and 10 cm. Although the rates of non-planar roof
points that could be detected by RANSAC is a little over 50% however the threshold

Table VI. Comparison of results of different vertical distance thresholds (1 and 2 m in upper half; 5 and 8 m
in lower half). In the point cloud images, blue points indicate the points excluded by the vertical distance

thresholds, red points represent the detected non-planar roof points and green points represent the extracted roof
points.

Threshold 1 m 2 m

Method Improved Li method Original Li method Improved Li method Original Li method

Coordinate
difference

E (m) −0.132 −0.132 −0.132 −0.132
N (m) 0.163 0.163 0.163 0.163
H (m) 0.059 0.059 0.059 0.059

Total points 348 371
No. of detected
non-roof points

32 32 55 55

Rate of detected
non-roof points

9% 9% 15% 15%

Threshold 5 m 8 m

Method Improved Li method Original Li method Improved Li method Original Li method

Coordinate
difference

E (m) −0.132 −0.132 −0.132 −0.157
N (m) 0.163 0.163 0.163 0.460
H (m) 0.059 0.059 0.059 0.425

Total points 443 522
No. of detected
non-roof points

127 127 206 122

Rate of detected
non-roof points

29% 29% 39% 23%
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should be set up. According to the results presented by Tarsha-Kurdi et al. (2008), in
extreme situations RANSAC can provide unacceptable errors. These errors can be explained
by the use of a purely mathematical principle, without considering the particularities of a
building’s lidar data cloud. McGlone et al. (2004) noted that the RANSAC algorithm aims
to significantly reduce the number of necessary trials for large N values. However, it
reduces N at the expense of having no guarantee of providing a solution free of gross
errors, meaning there is no guarantee of obtaining the same result after each iteration.
Although the proposed improved Li method did not perform as well as RANSAC, it can,
nevertheless, obtain the same result. Additionally, only the rate of change of the a posteriori
variance between the last and the previous iterations should be set (see equation (14)).
Furthermore, the K value (1 or 3.29) should be set statistically to detect the blunders during
iterations by considering the particularities of the building’s lidar data cloud. However, the
threshold of RANSAC, 5 or 10 cm, was set purely based on a rule of thumb, such as the
expected planar accuracy.

Investigation Using ISPRS Vaihingen Dataset

This subsection discusses roof point extraction using the ISPRS Vaihingen dataset in
Germany, using the proposed improved Li method. The training file of the ISPRS Vaihingen
data used for the investigation was Vaihingen3D_Traininig.pts, in which each point is
labelled as powerline, low vegetation, impervious surfaces, car, fence/hedge, roof, façade,

Table VII. Tabulated comparison results for the 8.5 m vertical distance threshold for the improved Li method.

Threshold 8.5 m

Coordinate difference E (m) −0.145
N (m) −0.432
H (m) 0.402

Total points 534

Number of detected non-roof points 137
Rate of detected non-roof points 26%

Table VIII. Tabulated comparison results of different thresholds using RANSAC.

Threshold 5 cm 10 cm

Coordinate difference E (m) −0.064 −0.132
N (m) 0.206 0.162
H (m) 0.061 0.061

Total points 678
No. of detected
non-roof points

390 362

Rate of detected
non-roof points

58% 53%
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shrub or tree. The extraction using the proposed method was used to evaluate the
classification results of the roof points and non-planar roof points according to a
classification confusion matrix.

Because the proposed method extracted only points on one roof, a manual operation
was performed to obtain the test data. Meanwhile, only label information was given in the
test data, and the classification accuracy and precision were investigated instead of the
geometric accuracy. Fig. 6 demonstrates the test data, including six pitched (sloping) roofs
(the three gable-roofed buildings, indicated by the yellow rectangle) and seven horizonal
roofs (indicated by the blue rectangle). The rate of non-planar roof points ranged from 9.4%
to 53.7%, as shown in Tables IX and X. Tables IX and X also demonstrate the results of
the roof point extraction of the ISPRS dataset using the proposed improved Li method.
From Tables IX and X, roof no. 4-7 has a high rate of non-planar roof points (53.7%),
leading to the wrong extraction. The other planar roof points were all extracted, meaning
the successful classification of such roof points.

In particular, roof no. 4-6 contained 51.7% non-planar roof points, however, the
proposed method could still extract the planar roof points successfully. It showed more
impressive results than those in the simulated and Taiwan data. Additionally, the
classification accuracy and precision were 84.4% and 81.6% for roof no. 4-2 and 77.4% and
69.3% for roof no. 4-6. The classification accuracy and precision for the other roofs were all
higher than 90%. Importantly, the recall for all successful extractions were higher than 90%.

For the 12 successfully extracted roof planes, the omission error (1-recall) was less
than 7%. Among them, roof nos. 4-2 and 4-6 had a higher commission error (1-precision;
false positive; type I error) and the plane fitting might be affected. The commission error for
the other four horizontal roofs was less than 6%, and the commission error of the six
sloping roofs was 0%. Meanwhile, the detected roof points contained more than 600 points,
which meant that the plane fitting was not affected.

FIG. 6. Distribution of the test lidar points in the ISPRS Vaihingen dataset. Roof points are shown in light
green. Other colours represent non-planar roof points, including powerlines, low vegetation, impervious surfaces,

cars, fence/hedges, façades, shrubs and trees.
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Table IX. Gable (sloping) roof point extraction from the ISPRS Vaihingen dataset using the improved Li
method (on righ-hand images, blue: roof points; orange: omission points; red: non-roof points; green:

commission points).

Roof No.1-1 Roof pts. Non-roof pts. SUM Precision

Extracted roof pts. 2906 0 2906 100·0%

Extracted non-roof pts. 161 839 1000 The rate of 
non-roof pts.SUM 3067 839 3906

Recall 94·8% Accuracy 95·9% 21·5%

Roof No.1-2 Roof pts. Non-roof pts. SUM Precision

Extracted roof pts. 2928 0 2928 100·0%

Extracted non-roof pts. 66 309 375 The rate of 
non-roof pts.SUM 2994 309 3303

Recall 97·8% Accuracy 98·0% 9·4%

Roof No.2-1 Roof pts. Non-roof pts. SUM Precision

Extracted roof pts. 1658 0 1658 100·0%

Extracted non-roof pts. 111 192 303 The rate of 
non-roof pts.SUM 1769 192 1961

Recall 93·7% Accuracy 94·3% 9·8%

Roof No.2-2 Roof pts. Non-roof pts. SUM Precision

Extracted roof pts. 2258 0 2258 100·0%

Extracted non-roof pts. 45 539 584 The rate of 
non-roof pts.SUM 2303 539 2842

Recall 98·0% Accuracy 98·4% 19·0%

Roof No.3-1 Roof pts. Non-roof pts. SUM Precision

Extracted roof pts. 1542 0 1542 100·0%

Extracted non-roof pts. 11 593 604 The rate of 
non-roof pts.SUM 1553 593 2146

Recall 99·3% Accuracy 99·5% 27·6%

Roof No.3-2 Roof pts. Non-roof pts. SUM Precision

Extracted roof pts. 2001 0 2001 100·0%

Extracted non-roof pts. 73 880 953 The rate of 
non-roof pts.SUM 2074 880 2954

Recall 96·5% Accuracy 97·5% 29·8%
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Table X. Horizontal roof point extraction from ISPRS Vaihingen dataset using improved Li method. (on right-
hand images, blue: roof points; orange: omission points; red: non-roof points; green: commission points).

Roof No.4-1 Roof pts. Non-roof pts. SUM Precision 

 

Extracted roof pts. 794 34 828 95·9% 

Extracted non-roof pts. 1 506 507 The rate of 
non-roof pts. SUM 795 540 1335 

Recall 99·9% Accuracy 97·4% 40·5% 

Roof No.4-2 Roof pts. Non-roof pts. SUM Precision 

 

Extracted roof pts. 913 206 1119 81·6% 

Extracted non-roof pts. 34 390 424 The rate of 
non-roof pts. SUM 947 596 1543 

Recall 96·4% Accuracy 84·5% 38·6% 

Roof No.4-3 Roof pts. Non-roof pts. SUM Precision 

 

Extracted roof pts. 637 40 677 94·1% 

Extracted non-roof pts. 2 535 537 The rate of 
non-roof pts. SUM 639 575 1214 

Recall 99·7% Accuracy 96·5% 47·4% 

Roof No.4-4 Roof pts. Non-roof pts. SUM Precision 

 

Extracted roof pts. 765 30 795 96·2% 

Extracted non-roof pts. 2 263 265 The rate of 
non-roof pts. SUM 767 293 1060 

Recall 99·7% Accuracy 97·0% 27·6% 

Roof No.4-5 Roof pts. Non-roof pts. SUM Precision 

 

Extracted roof pts. 600 3 603 99·5% 

Extracted non-roof pts. 5 377 382 The rate of 
non-roof pts. SUM 605 380 985 

Recall 99·2% Accuracy 99·2% 38·6% 

Roof No.4-6 Roof pts. Non-roof pts. SUM Precision 

Extracted roof pts. 339 150 489 69·3% 

Extracted non-roof pts. 16 230 246 The rate of 
non-roof pts. 

SUM 355 380 735 
Recall 95·5% Accuracy 77·4% 51·7% 

Roof No.4-7 Roof pts. Non-roof pts. SUM Precision 

 

Extracted roof pts. 281 197 478 58·8% 

Extracted non-roof pts. 25 158 183 The rate of 
non-roof pts. SUM 306 355 661 

Recall 91·8% Accuracy 66·4% 53·7% 
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Fig. 7 shows the combined results of the planar roof point extraction, in which incorrect
extractions are indicated by a black circle. The same test data was also used to extract the planar
roof points by the original Li method. Table XI shows the differences using the original and
improved Li methods. Roof no. 4-7 could not be extracted successfully by the original Li
method because of the high rate of non-planar roof points. The roof points of roof nos. 3-2 and
4-6 also could not be extracted successfully. The reasons for the unsuccessful extractions were
because a better initial value could not be obtained for roof no. 3-2 and the high rate of non-
planar roof points, 51.7%, for roof no. 4-6. This result proved again that the improved Li method
could obtain a better initial value from LAD and could deal with more blunders than the original
Li method. Table XI illustrates the extraction results of roof nos. 3-2 and 4-6 using the original
and improved Li methods.

FIG. 7. Combined results of the planar roof point extraction using selected test data in the ISPRS Vaihingen
dataset: (a) six roofs of three gabled buildings; (b) seven horizontal roofs; (c) side view of the seven horizontal
roofed buildings. Blue: correct roof points. Red: non-roof points. Incorrect roof extractions are indicated by the

black circles.

Table XI. Differences of the planar roof point extraction from the ISPRS Vaihingen dataset using the original
Li method and the improved Li method.

Roof no. 3-2
Rate of non-roof points:
29.8%

(a) Original Li method (b) Improved Li method
Roof no. 4-6
Rate of non-roof points:
51.7%

(c) Original Li method (d) Improved Li method

Blue, roof points; Red, non-roof points.
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Therefore, the test results of actual Taiwan and ISPRS Vaihingen datasets proved that
the proposed approach was more robust than the original Li method. It also demonstrated
the applicability, as well as the effectiveness, of the proposed method in extracting lidar
planar roof points.

Conclusions

This study has developed a least-squares fitting approach based on iterations supervised
by a posteriori variance estimation (Li, 1983; Li et al., 2015), called the Li method, to
reduce the weights of non-planar roof points during the iterative process in order to extract
planar roof points more accurately. Additionally, least absolute deviation (LAD) was
integrated into the first step of the original Li method and the resulting improved Li method
increases the blunder detection ability.

Both simulated and actual airborne lidar datasets were used to verify the developed
algorithm. The results showed that the proposed method was robust and resistant to blunders.
It proved that a better parameter estimation is important for the Li method in the initial step
and the LAD method can acquire better planar parameter estimations for the Li method. It
also proved that the improved Li method, combined with LAD as the first step of the Li
method, can increase the detection rate of blunders. This is because LAD can determine better
planar parameter estimations in the first step than in the original Li method. However, a large
number of blunders can still lead to the failure of the improved Li method.

The simulated test results showed that the detected and located percentage of blunders
were about 35% and 40% when the blunder sizes were 0.4 and 0.5 m, respectively. The
detected and located percentages of blunders were both 44% when the blunder sizes were 1
and 2 m. The proposed approach improved the detection rate of small blunders of 0.4 and
0.5 m by about 2% and 5%, respectively, and improved the detection rate of larger blunders
(1 or 2 m) by about 6%, compared to the original Li method. Additionally, after the actual
Taiwan data test, 39% of the non-planar roof points could be located correctly by the
proposed approach, showing an improvement to the detection rate of about 10%. When
using the ISPRS Vaihingen dataset, only one roof (containing 53.7% non-planar roof points)
failed to be extracted; the proposed method extracted roof points on 12 roofs successfully,
even including one roof containing 51.7% non-planar roof points. It showed more
impressive results than those in the simulated and Taiwan data. Moreover, the classification
accuracy and precision for 10 of the roofs were all higher than 90%. Importantly, the recall
for all 12 successful extractions reached 90%. Therefore, the test results of the actual
Taiwan and ISPRS Vaihingen datasets demonstrated that the proposed approach was more
robust than the original Li method. It also proved the applicability, as well as effectiveness,
of the proposed method in extracting lidar planar roof points.
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Résumé

La méthode d’ajustement par moindres carrés peut être utilisée pour l’extraction de points de toits plans à

partir de points d’un levé lidar aéroporté; cependant, elle ne peut pas éviter l’impact des points de toits non

plans (aberrations) dus à un manque de robustesse. Cette étude a donc développé une méthode d’ajustement de

plan par moindres carrés basée sur l’estimation a posteriori de la variance, telle que proposée par Li en 1983,

pour réduire le poids des points de toit non plans. De plus, la moindre déviation absolue a été intégrée à la

première étape de cette méthode Li améliorée, pour accroı̂tre la détection des aberrations. Pour les données

simulées, l’approche proposée a augmenté le taux de détection des aberrations jusqu’à 6% par rapport à la

méthode Li originale. Les résultats des tests sur des données réelles ont démontré la robustesse, l’applicabilité

et l’efficacité de l’approche proposée.

Zusammenfassung

Die Kleinste-Quadrate-Methode kann für die Extraktion ebener Dachflächenpunkte aus Lidar-Punktwolken

genutzt werden. Dennoch kann damit der Einfluss von nicht-ebenen Dachpunkten (Ausreißern) durch fehlende

Robustheit nicht abgefangen werden. Diese Studie stellt eine Ebeneneinpassung mittels Kleinster-Quadrate

Methode vor, die sich auf eine posteriori Varianzschätzung stützt, wie bereits von Li im Jahr 1983

vorgeschlagen, um die nicht-ebenen Dachpunkte herunter zu gewichten. In diese verbesserte Methode nach Li

wurde zusätzlich der Ansatz der kleinsten absoluten Abweichung (LAD) in den ersten Schritt integriert, um die

Erkennungsrate von Ausreißern zu erhöhen. Für simulierte Daten steigert der vorgeschlagene Ansatz die

Erkennungsrate von Ausreißern um 6% verglichen mit der originalen Li-Methode. Empirische Tests mit realen

Daten zeigen die Robustheit, Anwendbarkeit und Effektivität der vorgeschlagenen Methode.

Resumen

El método de ajuste de mı́nimos cuadrados se puede utilizar para la extracción de puntos en cubiertas

planas a partir de puntos de LIDAR aeroportado; sin embargo, debido a la falta de robustez no puede evitar el

impacto de puntos del tejado que no están en el plano (errores). Por tanto, en este estudio ha desarrollado un

método de ajuste de planos por mı́nimos cuadrados basado en una estimación de la varianza a posteriori,

como propuso Li en 1983, reduciendo el peso de los puntos de cubierta que no están en el plano. Además, la

desviación mı́nima absoluta (LAD) se integró en el primer paso de este método mejorado de Li, para aumentar

la detección de errores. Con datos simulados, el enfoque propuesto aumentó la tasa de detección de errores

hasta en un 6% en comparación con el método de Li original. Los resultados con datos reales mostraron la

robustez, aplicabilidad y eficacia del método propuesto.

摘要

最小二乘拟合方法可用于机载激光雷达点的平面屋顶点提取；然而，由于缺乏鲁棒性，它无法避免

非平面屋顶点（错误）的影响。因此，本研究开发了一种基于后验方差估计的最小二乘平面拟合方法，由

李在 1983 年提出，以减少非平面屋顶点的权重。此外，最小绝对偏差 (LAD) 被整合到这种改进的锂方法

的第一步中，以增加错误检测。对于模拟数据，与原始 Li 方法相比，所提出的方法将错误检测率提高了

6%。真实数据的测试结果表明，所提出的方法具有稳健性、适用性和有效性。
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