
‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202200079

An adaptive learning-based model for copper price forecasting 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202200079

I 

Acknowledgement 

 

 

 

To my family, 

To my advisors, Dr. Rua-Huan Tsaih & Dr. Yi-Ling Lin,  

giving me guidance and helping me to complete my research, 

To the thesis committee, Dr. Chih-Ping Wei, 

To the community that is exploring new learning algorithms. 

	



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202200079

II 

 

 (ALFM) 

 (ASLFN)  (SS) 

 

  SS 

 ALFM  SS 

 SS  SS 

 

SS   ALFM 

SARIMA

SLFN SVR RNN LSTM  GRU  ALFM  

 

 

  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202200079

III 

Abstract 

 An accurate forecasting model for the price volatility of copper plays a vital role in 

decision-making for industrial projects and related companies. The challenge to deploy models is 

the change of the data over time, which commonly leads to significant mispredictions. In this paper, 

the structural change in copper prices has been examined. The adaptive learning-based forecasting 

model (ALFM) is proposed to learn the patterns under a dynamic changing environment, which 

combines the moving window mechanism and sequentially structuring (SS) mechanism. The 

moving window mechanism is used to address the concept drift and structural change behind the 

copper price. The sequentially structuring (SS) mechanism is designed for the adaptive single 

hidden layer feed-forward neural network (ASLFN) in response to solving the vanishing gradient 

and overfitting problems. 

 The SS mechanism is first proposed in this study and thus should be validated. We use the 

copper spot prices of Yangtze River (YR) nonferrous metals as application data. The experiment 

results provide evidence for examining the arrangement of SS mechanism does work in the training 

process. The proposed ideas of these modules within the SS mechanism can cope with the vanishing 

gradient or alleviate the overfitting tendency. Furthermore, both the moving window mechanism 

and SS mechanism in the proposed forecasting model help to improve the prediction ability, which 

makes the ALFM have better prediction results than other tools in the literature, and the training 

time is acceptable. The baseline models are seasonal ARIMA model (SARIMA), single-hidden 

layer feedforward neural network (SLFN), support vector regression (SVR), recurrent neural 

network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU). 

 

Keywords: adaptive single-hidden layer feed-forward neural network, concept drift, copper price 

forecasting, moving window, structural change 
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Chapter 1 Introduction 

 With the rapid development of society, non-ferrous minerals have become important raw 

materials for economic development (Gargano & Timmermann, 2014; Li & Li, 2015; Lasheras et 

al., 2015; Liu et al., 2020). Copper is one of the main non-ferrous metals playing a vital role in 

various industries (Dehghani & Bogdanovic, 2018). Due to its versatility and conductivity, more 

than 90% of industry projects need to rely on copper (Astudillo et al., 2020). The price of raw 

material accounts for 60% of the total profit of the mining companies (Sharma et al., 2015). The 

company's internal material preparation or procurement strategy is closely related to the cost of raw 

materials (He et al., 2016). Generally, the price volatility of the non-ferrous metals not only has a 

significant impact on the performance of the related companies (Lasheras et al., 2015; Astudillo et 

al., 2020), but affects various aspects in today’s economies (Lasheras et al., 2015; Wang et al., 

2019; Astudillo et al., 2020). 

 Over the past decades, the copper price prediction has attracted the interest of many 

researchers (Carrasco et al., 2019; Liu et al., 2020). Both academia and practitioners use various 

tools to grasp the changes in metal price to develop more effective strategies to respond to future 

changes. The copper price data is a kind of time series data stream with concept drift (Tsymbal, 

2004) which is regarded as a similar concept to structural change in the econometrics and statistics 

literature (Koitsiwe & Adachi, 2017, 2018). The concept drift refers to the concept evolution that 

emerges when the novel classes appear in the data stream (Tsymbal, 2004). The structural change 

means the fundamental changes in the ways a market or economy functions (Matsuyama, 2008). 

Since the main drivers of copper price changes and their impact are significantly different over 

time, it causes copper prices to have different dynamic patterns in distinct periods (Koitsiwe & 

Adachi, 2017, 2018). Nowadays, the econometrics and statistics literature contain a large amount 

of important work related to the issue of structural changes in the copper market.  

 Due to the structural and conceptual change on the copper price, the developed model 

without handled correctly will encounter the significant mispredictions (Baier et al., 2020). Wang 
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et al. (2003) argued that the concept drift problem owing to data expiration problem means the 

model built by the training dataset isn’t consistent with current concepts. The emerging concept 

evolution leads to the change of fitting function form embedded in the data stream. Many methods 

are used to split data to facilitate dynamic training of the model, like methods of instance weight 

(Klinkenberg, 2004), monitoring two different time window distribution (Gama & Kosina, 2014), 

detection concept change point (Kosina & Gama, 2015), and sliding window (Fornaciari & 

Grillenzoni, 2017). With the growth of learning-based methods, the sequence-based moving 

window (Babcock et al., 2001) is an efficient strategy to adapt the model to the changes in time 

series data (Kashani et al., 2012; Gama et al., 2014). As a result, this research proposed the 

forecasting model that is able to deal with gradual and abrupt changes in the market structure 

through the moving window mechanism. 

 From the research on the copper price forecast, artificial neural networks (ANN) is usually 

used to model the data with an embedded non-linear fitting function form (Shokry & Espuña, 2018). 

The single-hidden layer feedforward neural network (SLFN) is one of most used ANN (Wang et 

al., 2021). There are still some challenges to train NN-based models. One is the problem of 

vanishing gradient in backward propagation. Vanishing gradient means the gradient descent 

method used converges to the local optimum, the saddle point, or the plateau (Hu et al., 2021). The 

derivative or slope will get smaller in these cases, so the training process of neural network are 

nearly stop. In other words, the new weight values are very similar to the old weight values. The 

other is the problem of overfitting. Once the complexity of the model exceeds that needed for fitting 

the training data distribution, the deployed model will do much worse on the test set than on the 

training set (Guo et al., 2018).  

 Although many methodologies have been developed to forecast the copper price, these 

works mainly focus on optimizing and comparing existing algorithms. Often these modeling 

approaches proposed in the literature cannot simultaneously deal with the concept drift/structural 

change and non-linear fitting function form embedded in the copper price data stream (Tsymbal, 
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2004; Suárez-Cetrulo et al., 2019). Thus, this study aims at developing the adaptive learning-based 

forecasting model (ALFM) for learning the patterns embedded in the data stream obtained from a 

structural change environment to form a forecasting model that is adaptive within the learning 

process. The proposed ALFM involved the sequentially structuring (SS) mechanism which extends 

the reasoning neural network (RN) of Tsaih (1998) and resistant learning (RL) of Tsaih & Cheng 

(2009) to cope with the vanishing gradient and alleviate the overfitting tendency. The ALFM results 

in an network structure of ASLFN determined by initially installing few hidden nodes and 

autonomously recruiting and deleting hidden nodes during the learning process.  

 In addition to providing the evidence that the structure of proposed SS mechanism is 

functional and the overall ALFM does lead to good performances in copper price forecasting, the 

research also provides statistical guarantees on the reliability of detected change and meaningful 

descriptions. To the best of our knowledge, this research represents the first attempt to 

simultaneously deal with the concept drift/structural change and nonlinearities in copper price 

forecasting. The proposed ALFM has been proven through a series of validation and evaluation, 

which also can assist market participants in making decisions in response to the volatility of the 

copper price. 

 The remainder of this paper is organized as follows: Chapter 2 makes the relevant literature 

review including the description of these modeling approaches and input factors selection for 

copper forecasting issues, and the explanation of structural change and concept drift. The proposed 

adaptive learning-based forecasting model (ALFM) is presented in Chapter 3. Chapter 4 conducts 

the experimental design for the AI research issues in fundamentals and applications. Chapter 5 

shows the experiment results of validation and evaluation. Finally, the conclusion remarks of this 

study are summarized in the last chapter.   
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Chapter 2 Related works 

2.1 Research on the copper price forecast 

 The methods for forecasting copper prices are presented in this section and grouped into 

three types: traditional statistical methods, learning-based approaches, and hybrid models (see 

Table 1). The predictor variables for copper price are summarized at the end of this section. 

2.1.1 Traditional statistical methods 

 Several statistical techniques are used to conduct the time series forecasting such as the 

auto-regressive (AR), moving average (MA), auto-regressive moving average (ARMA), auto-

regressive integrated moving average (ARIMA), and seasonal ARIMA model (SARIMA). These 

models are commonly used due to the ease of implementation and explainable for the output result 

(Angus et al., 2012). The ARIMA model assumed that past values of the series plus previous error 

terms contain information for the purposes of forecasting. It has demonstrated its superiority in 

terms of accuracy and precision in predicting the next lag of the time series (Karakoyun & 

Cibikdiken, 2018). Most these statistical models solely rely on past values and assume that the data 

is stable (Stevenson, 2007; Schaffer et al., 2021) without considering varied structures and 

nonlinear patterns of the underlying data (Çinar, 1995; Wang et al., 2019). 

 To respond to the change issue, some researchers attempted to explain nonlinearities in the 

conditional mean and some tried to interpret nonlinearities in the conditional variance. The classic 

non-linear models in conditional mean like threshold autoregression (TAR) model (Tong, 1977), 

and the exponential autoregressive (ExpAR) model (Ozaki, 1980). A numerous extended versions 

of the TAR model have been derived to specific situations such as the self-exciting threshold AR 

(SETAR) model (Tong & Lim, 2009), the smooth transition autoregression (STAR) model (Chan 

& Tong, 1986). On the other hand, the most characteristic examples of nonlinear models in 

conditional variance are the autoregressive conditional heteroskedasticity (ARCH) (Engle, 1982) 

and the generalized autoregressive conditional heteroskedasticity models (GARCH) (Bollerslev, 
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1986). There are some time series exhibiting asymmetries which could be better explained by 

models that have both a nonlinear conditional mean and a changing conditional variance (Gharleghi 

et al., 2014; Li & Li, 2015; García & Kristjanpoller, 2019). However, these models are still limited 

by many variations in the model, which makes it unable to respond to the high volatility data 

(Abbasimehr et al., 2020; Hu et al., 2020). 

2.1.2 Learning-based approaches 

 With the recent advancement in hardware computation and software enhancements, the 

artificial intelligence (AI) are introduced for dealing with non-linearity and complexity changes in 

the data (Wang et al., 2019). Often AI is further subdivided into machine learning (ML) and deep 

learning (DL), in which the mainly difference is the steps for feature processing. Feature processing 

is the process of applying domain knowledge to feature extractors to reduce the complexity of the 

data and generate patterns that make learning algorithms work better. The process is time-

consuming and requires specialized knowledge. In ML, most of the characteristics of an application 

must be determined by experts. The performance of most ML algorithms depends upon the 

accuracy of the features extracted. Trying to obtain high-level features directly from data is a major 

difference with DL (Deng & Yu, 2014). Thus, DL reduces the effort of designing a feature extractor 

for each problem. 

 In terms of ML techniques, the methods of support vector machine (SVM) and support 

vector regression (SVR) were widely used in many disciplines due to its remarkable generalization 

performance (Cao & Tay, 2003; Astudillo et al., 2020). For instance, some financial series 

forecasting was applied and get the promising result like stock market movement (Kim, 2003; Bao 

et al., 2004; Huang et al., 2005; Hao & Yu, 2006), and copper price volatility (Parveen et al., 2017; 

Carrasco et al., 2018; Astudillo et al., 2020). The main feature of theses method is that they solve 

the problems of high dimensionality and overfitting to a certain degree (Astudillo et al., 2020). 

Although it has achieved remarkable results in solving the problem of small samples, which are not 
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efficient enough to handle large-scale time series data or do not perform well when the data set has 

more noise (Nalepa & Kawulok, 2019). 

 Advanced algorithms derived from the artificial neural networks (ANNs) and recurrent 

neural networks (RNNs) have gained lots of attentions recently with their applications in many 

non-linear forecasting problems (Parisi et al., 2008; Khashei & Bijari, 2011). Moreover, some 

variants of the basic RNN like long short-term memory (LSTM), bidirectional LSTM (BLSTM), 

gated recurrent unit (GRU) can also stably show better forecasting ability. The major advantage of 

these neural network (NN)-based models is that they can easily model complex or multi complexes 

task (Nikzad et al., 2012; Lazli & Boukadoum, 2013), and capture the nonlinear characteristics of 

time series (Hochreiter & Schmidhuber, 1997; Yu et al., 2005). From the several empirical results, 

it can be found that the NN-based models have a higher performance compared with basic machine 

learning techniques and traditional time series models in financial forecasting (Lasheras et al., 2015; 

Karakoyun & Cibikdiken, 2018; Liao et al., 2020).  

2.1.3 Hybrid models 

 There are many studies on the integration of linear and nonlinear models such as the 

hybridization of ANNs and the ARIMA model (Zhang, 2003; Khashei & Bijari, 2011; Lasheras et 

al., 2015). ANNs have been also integrated with the GARCH model (Kristjanpoller & Minutolo, 

2015, 2016; Herna ́ndez et al., 2017). Several studies combined multiple ANNs and the extended 

models such as LSTM and GRU to form a deeper network structure (Niu et al., 2020; Hu et al., 

2020). 

 Although hybrid models often give better results than a single model, they still cannot solve 

the fundamental problem of deep neural network architectures (Sharma et al., 2020). The 

performance of these models are sensitive to the settings of these hyperparameters (Domhan et al., 

2015; Diez-Sierra & del Jesus, 2020). Since there is no specific rule for determining the structure 

of artificial neural networks, the neural network usually suffers with many limitations such as 

vanishing 
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Table 1. Recent literature and modeling approaches for copper price forecasting 

Author(year) Method X-Label(s) Finding 

Li & Li (2015) 
GARCH, EGARCH,GJR-
GARCH, NAGARCH and 
FIGARCH  

The daily price of the three-month 
copper futures contract of LME 

The model averaging methods significantly reduce 
the forecasting uncertainty. The OLS time-varying 
weighted model averaging method obtain the best 
result. 

Lasheras et al. (2015) ARIMA, MLPa, Elman  The copper prices Neural network models outperform the ARIMA 
model. 

Liu et al. (2017) Decision tree  
The prices of gold, silver, copper, 
crude oil, natural gas, lean hogs, and 
coffee, and the Dow Jones indices 

The proposed decision tree model is accurate and 
reliable in both short (days) and long terms (years).  

Carrasco et al. (2018) SVM The copper’s price at the closure of the 
London Metal Exchange 

The construction model allows the prediction with a 
margin of error in a period of around of 2 weeks. 
These data can further be updated with sliding-
windows to maintain the accuracy of the prediction.  

Dehghani (2018) 

GEP 
Benchmark: time series 
functions, and multivariate 
regression methods 

Silver price, nickel price, aluminum 
price, OPEC crude oil price, WTI 
crude oil price, BRENT crude oil 
price, and CLP/USD 

The correlation score of these selected input 
variables was at least 80% by utilizing Pearson cross-
correlation coefficients. The GEP could forecast 
metal prices (i.e., copper price) with higher reliability 
than the classic estimation methods. 

Astudillo et al. (2020) SVR The closing price of daily copper price 
The SVR model can be done by three actual values 
as predictors regardless of the number of days of the 
prediction. 

Khoshalan et al. (2021) GEP, ANN, ANFISb, and 
ANFIS-ACOc 

The price of coal, aluminum, crude oil, 
gold, iron ore, natural gas, nickel, and 
silver 

Artificial intelligence-based networks are efficient 
and effective in forecasting copper prices. 
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Zhang et al. (2021) MLP, NN, KNNd, SVM, GBTe, 
and RFf 

The price of oil, gold, silver, iron ore, 
natural gas, USD/CLP, USD/CNY, 
USD/PEN, USD/AUD, and historical 
copper prices 

MLP neural network can forecast monthly copper 
price with the highest accuracy. The four exchange 
rates are highly correlated with the monthly copper 
prices. 

Dehghani & Bogdanovic 
(2018) BA-BMMRg The copper price historical datasets 

The bat algorithm can effectively improve the 
classical time series function in copper price 
forecasting. 

García & Kristjanpoller 
(2019) 

A set of time series models, AI 
models, the hybrid model of 
time series and AI models 

Copper price, Inventories, China's IPI, 
and Major Currency Index 

Adaptive capacity helped to identify the best 
explanatory variables, window sizes, and model 
configuration parameters, as well as improve 
volatility forecast accuracy. 

Alameer et al. (2019) 
GA-ANFISh 
Benchmark: ANFIS, SVM, 
GARCH, ARIMA 

The exchange rates of the CLP, PEN, 
and RMB; the inflation rates of US and 
China; and prices of gold, silver, iron, 
and oil and past copper prices 

The selected predictor variables power to forecast the 
monthly volatility of copper prices. The hybrid GA–
ANFIS model outperforms other models. 

Hu et al. (2020) 

ARCH-LSTM-ANN, and 
GARCH-BLSTM-ANN 
Benchmark: ANN, LSTM-
ANN, BLSTM-ANN, 
GARCH-ANN,  

Copper price; Aluminum price; Zinc 
price; Gold price; CNY/US; 
CNY/EUR; CNY/YEN; DJIA index; 
FTSE 100 index; CSI300 index; crude 
oil price; Shanghai Interbank Offered 
Rate  

1. The GARCH forecasts can serve as informative 
features to boost the volatility prediction.  
2. Incorporating RNNs (LSTM and BLSTM) into the 
hybrid GARCH-ANN network can further improve 
the volatility prediction performance. 

Zhang et al. (2021) PSO-ELMi, and GA-ELMj  
Benchmark: ELM, and ANN 

The price of crude oil, iron ore, gold, 
silver, natural gas prices, USD/CLP, 
USD/CNY, USD/PEN, and USD/AUD 

The ELM neural network was significant improved 
by the GA and PSO algorithms in forecasting copper 
price with high accuracy and reliability. 

aThe multilayer perceptron (MLP); bThe adaptive neuro-fuzzy inference system (ANFIS); cThe hybrid model of ANFIS and ant colony optimization algorithm (ACO); dThe k-

nearest neighbors neural network (KNN); eThe gradient boosting tree algorithm (GBT); fThe random forest algorithm (RF); gThe hybrid model of bat algorithm (BA) and 

Brownian motion with mean reversion (BMMR); hThe hybrid model of genetic algorithm (GA) and ANFIS; iThe hybrid model of particle swarm optimization (PSO) and the 

extreme learning machine (ELM); jThe hybrid model of GA and the extreme learning machine (ELM) 
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vanishing gradient, overfitting, and computational time (Ooyen & Nienhuis, 1992; Schalkoff, 

2007). In response to the definition of an appropriate network structure is not yet fully defined (Tsai 

et al., 2019), there are several such learning algorithms that can determine an appropriate network 

architecture automatically like the tiling algorithm (Mezard & Nadal, 1989), the cascade-

correlation (CC) algorithm (Fahlman & Lebiere, 1990), the upstart algorithm (Frean, 1990), the 

softening learning procedure (Tsaih, 1993), the W&S algorithm (Watanabe & Shimizu, 1993), the 

CTN algorithm (Chen et al., 1994), the reasoning neural networks (Tsaih, 1998), and CSI learning 

algorithm (Tsai et al., 2019). This study also proposes the sequentially structuring (SS) mechanism 

to determine an appropriate network architecture of the ASLFN with the real number input/output. 

2.1.4 Predictor variables  

 To develop an accurate forecasting model of copper prices, previous studies have 

categorized the potential predictor variables into five groups (see Table 2). In the energy category, 

many studies have confirmed that crude oil prices are quite feasible as copper price forecasting 

(Behmiri et al., 2015; Buncic & Moretto, 2015; Liu et al., 2017; Alameer et al., 2019). Since oil is 

the most commonly used energy source in the mining process, it is often considered as the main 

factor affecting the price of metals. Furthermore, Liu et al. (2017) observed that when crude oil 

prices are rising, copper prices also have a significant upward effect. 

 The word economy also significantly influences the status of copper price. When the rising 

in market price suggests strong economic health and leads to promote industrial production, the 

required industrial raw materials is also increasing. Meanwhile, the oil price surge also increases 

the prices of metal via the effects of inflation (Cologni & Manera, 2008). Orlowski (2017) observed 

the strong effect of shocks in inflation rates on commodity prices like crude oil and copper. The 

inflation rates of the US and China are the most commonly used predictor variables since these 

countries are regarded as a proxy of world inflation (Alameer et al., 2019). 

 Due to the indivisible relationship between economic conditions and copper prices, good 

economic conditions will drive consumers' life needs. Coffee prices are considered to be the most 
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significant variable affecting copper prices (Liu et al., 2017; Dehghani, 2018). Other cash crop 

prices such as cocoa, corn, and wheat cannot get a certain correlation with the copper price 

(Dehghani, 2018). Although a strong correlation between copper and coffee prices, it is hard to 

interpret the underlying reason (Alameer et al., 2019). 

 

 The exchange rates of the major production and consumption countries have been found 

with high predictive power in predicting copper prices (Chen et al., 2010; Ciner, 2017). For 

example, Chile has copper mine production accounts for one-third of the world, so the trend of 

copper prices is often related to the Chilean exchange rate. Wets & Rios (2015) also use the 

exchange rate between the USD and CLP as an input variable for copper prices prediction, the 

experiment results show that the Chilean exchange rate has a good prediction effect. The six base 

industrial metals also have examined the causality relationship with the CNY/USD currency 

exchange rate (Wang & Wang, 2019). Alameer et al. (2019) pinpointed the main exporter country 

CLP and PEN whose exchange rate has a positive relationship with copper price. Moreover, the 

coefficient between copper price and China's exchange rate is slightly negative. This finding is 

consistent with the result of Zheng et al. (2017) who claimed that nonferrous metals have a positive 

Table 2. The potential predictor variables for copper price forecasting 

Groups Predictor variables Representative studies 

Energy sources Crude oil prices 
Jiang and Adeli (2005), Behmiri et al. (2015), Liu et 

al. (2017), Alameer et al. (2019) 

Macroeconomics 
Inflation rates of US 

and China 
Cologni and Manera (2008), Orlowski (2017), 

Alameer et al. (2019) 

Cash crops Coffee prices Liu et al. (2017), Dehghani (2018) 

Exchange rates 
USD/CLP, USD/PEN, 

USD/CNY, 
USD/EURO 

Chen (2010), Wets & Rios (2015), Ciner (2017), 
Zheng et al. (2017), Alameer et al. (2019), 

Wang and Wang (2019) 

Related metal 
prices 

The prices of gold, 
silver, nickel, 

aluminum, zinc, iron 

Morales and Andreosso-O’Callaghan (2011), Liu et 
al. (2017), Dehghani (2018), Alameer et al. (2019) 
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relationship with exporting countries. Also, the inverse relationship exists between nonferrous 

metals and major importer countries. 

 In terms of the functionality and accessibility of copper, since copper is an alternative to 

precious metals such as gold and silver, the relationship between copper and other precious metals 

has also been confirmed as an important factor to predict the copper price (Morales & Andreosso-

O’Callaghan, 2011; Buncic & Moretto, 2015; Liu et al., 2017). From the empirical results, Alameer 

et al. (2019) also confirmed that the copper prices has a significant correlation with both gold and 

silver prices, and the first pinpointed copper has a higher correlation with iron. Additionally, copper 

has a common movement with nickel, aluminum, zinc, and iron (Rossen, 2015). Dehghani (2018) 

also found that aluminum, nickel, and zinc have a sufficient degree of correlation with copper prices. 

2.2 Structural change and concept drift 

2.2.1 Structural change of copper prices 

 Structural stabilities are essential to the modeling of time series data (Hernes, 1976; Chu et 

al., 1996). If the estimated model does not keep up with the data generating process, it makes the 

prediction ineffective (Chu et al., 1996). Structural changes are widely presented in both the 

statistics and econometrics literature (Perron et al., 2020), which refers to the fundamental changes 

in the ways a market or economy functions or operates (Matsuyama, 2008). These changes can be 

caused by factors such as a major change in government policy (Chavas, 2001; Matsuyama, 2008), 

a war (Mussagy & BigramoAllaro, 2016), natural disasters (Passerini, 2000; Cró & Martins, 2017) 

or technological revolutions (Chavas, 2001; Krüger, 2008). With time-varying components in 

financial time series (Talih & Hengartner, 2005), forecasting for these data streams is usually 

subject to structural changes (Andreou & Ghysels, 2009). The structural change in the acquired 

data streams is also regarded as concept drift (Alippi et al., 2014), which considers the target 

concept to be learned from the data stream may change over time (Sarnovsky & Kolarik, 2021). 
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 These literatures on structural break detection began with the early works of Quandt (1958) 

and Chow (1960) who considered tests for structural change for a known single break date. These 

tests for structural instability require strictly exogenous regressors and a breakpoint specified in 

advance (Nielsen & Whitby, 2015), thus the test result is subject to estimation error (Hansen, 2001). 

Quandt (1960) extended the Chow test and proposed taking the largest Chow statistic over all 

possible break dates. After research offers the solution to the unknown break date (Muthuramu & 

Maheswari, 2019), more scholars take the upsurge of interest in extending procedures to the various 

models with an unknown change point (Bai & Perron, 1998). Andrews (1993) and Andrews & 

Ploberger (1994) provided a comprehensive analysis of the problem of testing for structural change 

endogenously.  

 Nevertheless, the literature addressing the issue of multiple structural changes is relatively 

scarce (Bai & Perron, 1998). Andrews et al. (1996) considered optimal tests in the linear model 

with known variance. Garcia & Perron (1996) studied the sup Wald test for two changes in a 

dynamic time series. Yao (1988), Yin (1988), and Yao & Au (1989) investigated the estimation of 

the number of mean shifts of variables sequence using the Bayesian information criterion. Liu et 

al. (1997) considered multiple changes in a linear model estimated by least squares and estimate 

the number of changes using a modified Schwarz’ criterion. The considerable development of 

testing for unknown multiple structural changes can be retroactively traced to Bai and Perron (1998, 

2003). The methods allow us for general forms of serial correlation and heteroscedasticity in the 

errors, lagged dependent variables, trending regressors, as well as different distributions for the 

mistakes and the regressors across segments. In essence, the methodology is mainly based on the 

ordinary least squares (OLS) to test for unknown multiple breakpoints, which permit the modeler 

to endogenously estimate structural breaks without knowing the timing of the breaks in advance. 

The methodology proposed by Bai and Perron (1998, 2003) is also used in this study. 
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2.2.2 Concept drift in structural change data 

 The structural change in the econometrics and statistics literature is in essence the same as 

concept drift in fields of engineering and machine learning (Koitsiwe & Adachi, 2017, 2018). The 

term concept drift implies the concept changes in the underlying distribution of streaming data over 

time (Tsymbal, 2004). These changes cause the challenge of models cannot respond to the new 

data (Tsymbal, 2004). In statistics, a similar problem is the detection of structural changes in time 

series data (Zeileis et al., 2003; Verbesselt et al., 2010). Such a robust tool to understand the 

unknown structural breaks was proposed by Bai and Perron (1998, 2003). 

 

  

  

Figure 1. Types of concept drift 

 

 Since the concept of change takes different forms, Tsymbal (2004) classified these changes 

into four structural types: sudden drift, gradual drift, incremental drift, and reoccurring drift (Figure 

1). A sudden drift can be seen as the concept of switching from one to another quickly. The 

occurrence of sudden drift is mainly attributed to the event of force majeure that causes an 

imbalance between supply and demand, as well as the market which is filled with the effects of a 
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panic atmosphere that exacerbates the rapid change of prices to another type. The characteristics 

of gradual and incremental drift are slower and more gradual changes. In detail, gradual drift 

change will go back to the previous pattern for some time, but the drift change incrementally over 

time is referred to as incremental drift. A gradual drift occurs more often in financial markets whose 

supply and demand are highly sensitive to the news of the moment. As market operators take 

different actions from both positive and negative news, causing the price on the market shifts back 

and forth. The typical example of incremental drift is continuous rising energy and food prices that 

have fueled higher inflation. A recurring drift is when new concepts that were not seen before, or 

previously seen concepts may recur after some time. This type of case is often determined by 

seasonal patterns. The underlying theory behind concept drift is also considered as a structural 

change in the acquired data stream (Alippi et al., 2014). 

 

2.2.3 Concept drift handling 

 Since concept drift is an important area that has gained the attention of the last years (Lu et 

al., 2020), strategies for updating existing learning models according to the drift have become 

noticeably (Lu et al., 2018). These most usual drift adaptation methods are the following (Farid et 

al., 2013): instance selection (window-based) approaches, weight-based approaches, and an 

ensemble of classifiers. 

 Instance selection approaches focus on selecting the appropriate prior dataset to train a 

model (Katakis et al., 2010). It adaptively selects instances into a fixed or dynamic sliding window 

(Farid et al., 2013). These approaches assume older examples are incompatible with new data 

classification, so it handle concept drift by forgetting some useless old instances (Katakis et al., 

2010). Therefore, the last batch of information with the last training instances are employed to train 

the model. The appropriate window size is the key of these strategies, which is usually determined 

by the user. In general, the window size can be variable or fixed over time. Bifet & Gavaldà (2007) 

indicated the length of the window is appropriate for different case or situation. A short window is 
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good in more accurately reflecting the current distribution and ensures fast adaptation in times with 

concept changes. A large window gives a better performance in stable periods. 

 A weight-based approach weights instances and deletes the outdated training ones based 

on their weights (Farid et al., 2013). Although these strategies consider all instances of learning, 

the degree of informativeness of old instances decreases as time passes. Within this framework, the 

mechanism should be capable of updating the weighted after each learning process. The ensemble 

algorithm combines several outputs from different learners to define a final classification (Farid et 

al., 2013). With a dynamic weighted majority vote phase, the ensemble learners are weighted 

according to their performance and deletes or creates new learners also based on the global 

ensemble performance. Outputs from learners are combined to classify instances with a weighted 

vote mechanism (Katakis et al., 2010). 

 Although instance selection approaches cannot assign corresponding weights to each 

instance, they can simply implement the adaptive learning and forgetting process without excessive 

consumption of resources. In contrast, weight-based approaches can weight instances by their entry 

time or competence concerning the current concept. However, it may happen that the concept of a 

particular period has not been sufficiently considered but only described by specific data. 

Klinkenberg (2004) demonstrated that instance weighting techniques handle concept drift worse 

than instance selection techniques, which is probably due to overfitting the data. Since the ensemble 

classifier mainly assembles multiple models to cope with concept drift, it takes a long time to run 

all the models in addition to training all of them. Another problem is the mechanism that discards 

or assigns lower weights to models in an ensemble whose global accuracy decreases on the current 

block of data, even if they are still good learners in the stable part of the data. 

 The instance selection approaches are also regarded as an efficient strategy to handle time-

series with concept drift, (Giannella et al., 2003; Chang & Lee, 2005; Li et al., 2005; Leung & 

Khan, 2006; Mozafari et al., 2008; Wang et al., 2019). These data streams can be divided into 

batches comprising the training and testing blocks. Learners are continuously able to periodically 
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learn and improve from these batches. Three types of moving windows are often used (Klinkenberg 

& Joachims, 2000), namely full-memory window, no-memory window, and moving window with 

fixed size n. The difference among these methods is how to update the instances within a window. 

In the full-memory window, the old instances cannot be forgotten and kept until the end. In the no-

memory window, the most recent of the stream are considered merely. The mechanism behind the 

moving window with fixed size n adopts a first-in-first-out (FIFO) mechanism to discard the 

irrelevant old instances, keep and add new instances to keep the window with n instances. It extracts 

instances stepwise as equally important contributors to the current concept in a non-stationary 

environment. 
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Chapter 3 The proposed adaptive learning-based forecasting model (ALFM) 

 For forecasting copper price under a dynamic changing environment, the study proposes 

that the ALFM consists of the following parts: the moving window arrangement, and the SS 

mechanism implemented through the adaptive single hidden layer feed-forward neural network 

(ASLFN). The ASLFN with a single output node corresponds to the copper price of four weeks 

later. Eventually, the inferencing model is the final acceptable ASLFN derived via a sequential 

learning process from the training block in each window. This section focuses on summarizing the 

proposed ALFM presented in Figure 2. Section 3.1 introduces the moving window mechanism. 

Then, Section 3.2 systematically explains the process of the SS mechanism. 

 

 

 

Figure 2. The system flowchart of the proposed ALFM 
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3.1 The moving window mechanism 

 To take into the consideration that the concept drift may occur constantly or occasionally 

and to continually update the learner as new data arrive, the moving window mechanism is adopted 

not only to prevent data expiration (Wang et al., 2003) but maintain an effective predictive model 

(Du et al., 2011). The moving window concept of Figure 3 processes the data stream {(x1, y1), (x2, 

y2), …} into a serial of windows with the index !. In each window, the training block (TrBM) 

consists of N = 159 week-instances (approximately 3 years) and the testing block (TeBM) consists 

of B = 4 week-instances (approximately a month). For instance, TrB1 consists of the 1st to 159th 

instances and TeB1 consists of the 160th to 163th instances. When the window slides to the second 

one, TrB2 has the 5th to 163th instances and TeB2 has the 164th to 167th instances. There are 78 

windows in total.  

 

 

 

Figure 3. The moving window mechanism 
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3.2 The sequentially structuring (SS) mechanism 

 For forecasting copper prices under a dynamic changing environment, the study proposes 

the sequentially structuring (SS) mechanism presented in Figure 4 and implemented via the ASLFN 

shown in Figure 5 with the ReLU activation function (Hahnloser et al., 2000) and one output node 

whose value corresponds to the copper price of four weeks later. The SS mechanism ensures that 

all observation references can be learnt perfectly by ASLFN, i.e., the forecast error is satisfied by 

learning goal for all training data. During the training process, all training case in each window is 

learnt in sequence. There are three alternative routes within the sequentially structuring learning 

process: 1) familiar route: the last acceptable ASLFN is still an acceptable ASLFN, 2) thinking 

route: an acceptable ASLFN is obtained after using matching module, 3) cramming route: an 

acceptable ASLFN is obtained after using cramming module. The learning goal is to find w render 

| ec | ≤ ε1 " c Î I(n), where the ε1 value is set to be 0.24. Table 3 is the list of notations used in this 

study. As shown in Figure 4, the proposed SS mechanism contains the modules of initializing 

module, selecting module, matching module, cramming module, and reorganizing module to learn 

all instances in TrBM in sequence. The details are as follows. 

 At first, the acceptable architecture is set up by the initializing module. It is easy to find an 

acceptable ASLFN with only 1 hidden unit and the associated w rendering the learning goal as true. 

The initial module directly picks up the first m+1 data {(xc, yc): c Î I(m + 1)} that are linearly 

independent as the initial m+1 training data and then applying the linear regression mechanism to 

the data set {(xc, yc
 - min
D∈F(GH-)

 yu): c Î I(m + 1)}, the initializing module of the 1st window results in 

a set of m+1 weights {8I: j = 0, 1, …, m} to set up an initial ASLFN with merely one hidden node 

whose 8-,I
J  equals wj " j = 1, 2, …, m, 8-,<

J  equals w0,	8-
K  equals 1, and 8<

K  equals	 min
D∈F(GH-)

 yu. 

I(m+1) is the set of indices of these data. At the end of the initialization module, set n = m + 1. 
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Figure 4. The flowchart of the proposed SS mechanism 

  

 

   

Figure 5. The ASLFN for the SS mechanism 
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Table 3. List of notations 

ReLU(x) ≡ max(0, x); 

D: the number of data, D = 471; 

xc ≡ (V-
L, 	V1

L, … , 	VG
L )T Î Rm ∶ the cth input; m=18; 

p: the number of adopted hidden nodes; p is adaptable within the training stage; 

8N,<
J : the bias value of ith hidden node; 

8N,I
J : the weight between jth input node and ith hidden node, j = 1, 2, ..., m; 

ZN
J ≡ (8N,-

J , 	8N,1
J , … ,8N,G

J )T, i = 1, 2, ..., p; 

WH ≡ (Z-
J,Z1

J,… ,Z[
J)T; 

Z<
J	≡ (8-,<

J , 	81,<
J , … ,8[,<

J )T; 

8<
K: the bias value of output node; 

8N
K: the weight between the ith hidden node and the output node; 

wo ≡ (8-
K, 	81

K, … ,8[
K)T; 

w ≡ {^J,Z<
J,ZK , 8<

K}; 

#N
L: the activation value of ith hidden node corresponding to xc; 

ac ≡ (#-
L, #1

L, … , #[
L )T; 

f(xc, w): the output value of ASLFN corresponding to xc; 

y
c Î R: the target output value corresponding to xc; 

e
c: the difference between f(xc, w) and yc; 

e
c ≡ f(xc, w) - yc 

Characters in bold represent column vectors, matrices or sets; the superscript H refers to quantities related to the 

hidden layer; the superscript o refers to the quantities related to the output layer; (.)T denotes the transpose of (.). 
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 The n++ module indicates that the SS mechanism implements a sequential learning process. 

That is, the instances are picked one by one and, at the nth stage, the SS mechanism learns merely 

n instances and I(n) is the set of indices of these data. The stop criterion of the SS mechanism is  

n > N where N = 159 which is the number of entire instances in the training block within a window. 

At the nth stage, an ASLFN is acceptable when its associated w makes the learning goal (|ec| ≤ ε1 " 

c Î I(n)) true. Because of the high correlation between the training data sets of consecutive 

windows, when M ≥	2, the ASLFN resulted from the former window can be used as the initial 

ASLFN of the latter window. For instance, the ASLFN resulted from the first window is used as 

the initial ASLFN of the second window. 

 The selecting module which is implemented by the least trimmed squares (LTS) principle 

(Tsaih & Cheng, 2009) leads to the scenario of learning the easy first and grouping similar instances 

together. That is, at the nth stage, the LTS principle firstly sorts all N instances of the current window 

based upon the squared residual (ec)2 values such that (d[(M-1)B+1])2 £ (d[M-1)B+2])2 £ … £ (d[M-1)B+N])2. 

After that, select the first n instances with smallest squared residuals as the training samples. Let 

I(n) be the set of indices of these picked data. 

 If the learning goal is satisfied after the LTS principle, this means the current ASLFN is 

familiar to the knowledge we obtained so far and could interpret it. The subsequent training route 

will take the familiar route, which will further lighten the ASFLN structure to prevent the 

overfitting tendency by the reorganizing module in the case of fulfilling the learning goal. In ANN, 

overfitting can be attributed to big weights or too many hidden nodes. The process of reorganizing 

module as illustrated as Figure 6. At the nth stage, the kth
 hidden node is irrelevant if it is deleted 

and the learning goal can still be accomplished by merely applying the matching mechanism to 

min
Z`
a
bc(Zd

e) , where Zd
e ≡ Z − g8N

K, 8N,<
J ,ZN

Jh . If an acceptable ASLFN is obtained through 

matching module, the kth hidden unit is pruned and then goes back to the regularizing module to 

conduct the tailoring again. The regularizing module applies Adadelta (Zeiler, 2012) to En(w) of 

Eq. (1) to adjust w until the maximum number of iterations are reached. The process should make 
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sure to keep |ec| ≤ ε1 " c Î I(n) during the training process, otherwise the w will be restore and 

immediately end the regularizing step. The flowchart is illustrated in Figure 7. Since En(w) has a 

regularization term, min
w

E
n
(w) leads to a preference over small w. If an unacceptable ASLFN is 

obtained, the k
th hidden unit is not irrelevant. Then restore the k

th hidden unit, and save w 

continuously to check other hidden nodes sequentially. When all hidden nodes are examined, then 

we assume the current ASLFN has no irrelevant hidden node and go to n++ module. 

� bc(Z) ≡ 	
1

j
U((L )1
c

LW-

��l‖Z‖l (1) 

 

 
 
 
 

 
 

Figure 6. The reorganizing module 

 

  

Hyperparameter: 

Maximum number of iterations for matching module: 10,000; 

Maximum number of iterations for regularizing module: epoch; 

All optimizers are Adadelta; 

m = 0.001; 

q- = 0.24; q1 = 0.0001; 

Ratio of η adjustment: 1.2 & 0.7 
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Figure 7. The regularizing module 
 

 

 

 

 

 

 

Figure 8. The matching module 

 

Hyperparameter: 

Maximum number of iterations: 10,000; 

Optimizer: Adadelta; 

m = 0.001; 

q- = 0.24; q1 = 0.0001; 

Ratio of η adjustment: 1.2 & 0.7 

Hyperparameter: 

Maximum number of iterations: epoch; 

Optimizer: Adadelta; 

m = 0.001; 

q- = 0.24; q1 = 0.0001; 

Ratio of η adjustment: 1.2 & 0.7 
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 The matching module applies the generalized delta rule (GDR) to the loss function En(w) 

defined in Eq. (2) to try to make the learning goal true. The workflow of matching module is shown 

in Figure 8. With the Pytorch framework, the GDR can be implemented by various optimizers such 

as Adadelta (Zeiler, 2012) in the study. To boost the efficiency of the model, the maximum number 

of training rounds was set to 10,000. With such a matching mechanism, it may lead to an acceptable 

ASLFN or an unacceptable ASLFN. The unacceptable ASLFN is attributed to an insufficient 

number of hidden nodes or the convergence to the local minimum or saddle point of En(w) (Tsaih, 

1993). 

�

bc(Z) ≡ 	
1

j
U((L )1
c

LW-

 (2) 

 

 When the learning goal is not satisfied after the selecting module, there is one and only one 

instance k that is not at the right place and the instance k is the [n]th instance. The matching module 

will first try to be applied to obtain an acceptable ASLFN. The storage module saves w before 

running the matching module, in order that the restore module can be used to return to a scene 

where only one instance not at the right place when the matching module still fails to adjust current 

ASLFN to acceptable structure. The subsequent route will be determined by the results of the 

matching module. If the result of the matching module is acceptable ASLFN, then the training style 

will be the thinking route in the nth stage. Otherwise the cramming route will be taken. 

 If an unacceptable ASLFN is obtained through matching module, the restore module 

restores the saved w to get back the scenario that there is one and only one instance not at the right 

place. An acceptable ASLFN will be got by the cramming route, in which the cramming module 

is implemented to add three extra hidden nodes to the existing ASLFN. To begin with, the 

cramming module creates an m-vector γ of length one such that can meet the condition of γT(xc - 

xκ) ≠ 0 " c Î I(n)-{κ}, and then picks up a small number ζ complies the condition of (ζ + γT(xc
 - 

xκ))*(ζ - γT(xc
 - xκ)) < 0 " c Î I(n)-{κ}. Furthermore, the cramming module lets p + 3 à p, adds 
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the new (p-2)th,	 (p-1)th, and p
th hidden nodes to the existing ASLFN, and then assigns their 

associated weights as Eq. (3) - (5) to make the condition |ec| ≤ ε1 " c Î I(n) true: 

�
Z[t1
J  = g, 8[t1,<J  = u-gv,w, 8[t1

K =
xytz{

|t∑ z`
|~`

y�ÄÅ
`ÇÉ

Ñ
 (3) 

�
Z[t-
J  = g, 8[t-,<J  = -gv,w, 8[t-

K =
t1(xytz{

|t∑ z`
|~`

y)�ÄÅ
`ÇÉ

Ñ
 (4) 

 
Z[
J = g, 8[,<J  = -u-gv,w, 8[K =

xytz{
|t∑ z`

|~`
y�ÄÅ

`ÇÉ

Ñ
 (5) 
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Chapter 4 Experimental design 

 In the era of big data and artificial intelligence (AI), the new learning algorithms becomes 

more high dimensionality and nonlinearity. This makes mathematical proof unfeasible and must be 

validated and evaluated through a series of empirically experiment. With experiment results, this 

study examines the following AI fundamental research issues: 1) whether the corresponding 

learning process of SS mechanism does take the proposed three alternative routes; 2) whether the 

matching module and the cramming module help cope with the encountered vanishing gradient; 3) 

whether the reorganizing module help alleviate the overfitting tendency. This study further 

examines the following AI application research issue: whether the ALFM has a better forecasting 

accuracy than other tools in the literature and the total amount of training time is acceptable. 

4.1 Data description 

 A total of 471 weekly copper prices of Yangtze River (YR) nonferrous metals from October 

31, 2011 to December 21, 2020 are used. According to the literature review in Section 2.1.4, we 

identified 18 predictor variables. We did not consider cash crop as input variables, since there is 

no sufficient support for predicting copper prices. Compared to short-term forecasting, medium-

term forecasting is the most practiced in many literatures but more complex and critical in many 

applications, such as raw material procurement planning and national budgeting (Astudillo et al., 

2020). Thus, the four-week-ahead forecasting is adopted in this study. Table 4 shows the detailed 

description of x-labels and y-label used in this study, where there are 18 inputs and 1 output. 
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Table 4. The description of x-labels and y-label 

Input 
variable 

Description 

V-
Ö The weekly crude oil price of New York Mercantile Exchange at time epoch t. 

V1
Ö  The weekly copper spot price of YR nonferrous metals at time epoch t. 

V=
Ö  The weekly copper spot price of YR nonferrous metals at time epoch t-1. 

V3
Ö  The weekly copper spot price of YR nonferrous metals at time epoch t-2. 

V>
Ö  The weekly copper spot price of YR nonferrous metals at time epoch t-3. 

V;
Ö  The weekly copper spot price of London Metal Exchange at time epoch t. 

V4
Ö  The weekly gold spot price of FX Broker at time epoch t. 

V@
Ö  The weekly silver spot price of FX Broker at time epoch t. 

V?
Ö The weekly nickel spot price of London Metal Exchange at time epoch t. 

V-<
Ö  The weekly aluminum spot price of London Metal Exchange at time epoch t. 

V--
Ö  The weekly zinc spot price of London Metal Exchange at time epoch t. 

V-1
Ö  The weekly iron spot price of London Metal Exchange at time epoch t. 

V-=
Ö  Inflation rates of US at time epoch t. 

V-3
Ö  Inflation rates of China at time epoch t. 

V->
Ö  The weekly USD/CLP dollar exchange rate at time epoch t. 

V-;
Ö  The weekly USD/PEN dollar exchange rate at time epoch t. 

V-4
Ö  The weekly USD/CNY dollar exchange rate at time epoch t. 

V-@
Ö  The weekly USD/EURO dollar exchange rate at time epoch t. 

Output 
variable 

Description 

Ü-
Ö The weekly copper spot price of YR nonferrous metals at time epoch t+4. 
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4.2 Structural change test of weekly copper prices of Yangtze River Market 

 Bai and Perron (1998, 2003) proposed the methodology for the unknown multiple structural 

breaks test. The method can further determine these break dates for changes in the sequence that 

changes the inherent in the system concept. The maximum permitted number of breaks is at M = 5, 

and a trimming ε = 0.15 is used to determine the minimal number of observations in each segment. 

To impose the minimum structure on the data, we allow for different distributions of both the 

regressors and the errors in the different subsamples. The research first utilizes the sup-F(k) test, 

the double maximum tests like UDmax, and WDmax to confirm the structural changes. The result 

of the sup-F(k) tests are all significant for k = 1, 2, ..., 5. The double maximum tests UDmax and 

WDmax to test the null hypothesis of no structural break versus an unknown number of changes 

given the upper bound of five breaks indicate that the series presents at least one break in this 

structure. The results of these tests are given in Table 5. 

 Subsequently, the numbers of structural breaks as well as break dates can be determined 

using the sequential test supFT(l+1|l) or using other information criteria such as BIC and LWZ. 

From the result of the sequential test (Table 6), the null hypothesis cannot be rejected when l = 3, 

which suggests there are three breaks in the time series. In terms of information criteria, BIC selects 

4 breaks and the LWZ selects 3 breaks. Since the heterogeneity of different structural stages is not 

considered in the procedure of BIC and LWZ testing, the results of the sequential test are preferred 

in this study. These estimated break dates also are determined at June 17, 2013, July 06, 2015, and 

November 16, 2016, by sequential test. 

 Testing for structural change has always been an important issue before conducting the 

financial time series analysis and forecasting. Since a myriad of political and economic factors can 

cause the relationships among economic variables to change over time, Bai and Perron (1998, 2003) 

proposed the estimation of multiple structural shifts in a linear model estimated based on the 

ordinary least squares. Figure 9 shows the copper price together with the breaks identified for all 

the periods of observations (October 31, 2011, to December 21, 2020). Through investigating the 
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historical events and market situation around the breakpoints, we could find some relevant evidence 

economically. Since the impact of financial events on the commodity market is continuous, these 

breaks are illustrated by the events that occurred in the corresponding month. 

 

Table 5. The empirical result of sup-F(k) and the double maximum tests 

 F-statistic Critical value 

&áà	âä(1) 507.4440* 8.58 

&áà	âä(2) 586.2324* 7.22 

&áà	âä(3) 900.5784* 5.96 

&áà	âä(4) 675.0136* 4.99 

&áà	âä(5) 545.7206* 3.91 

R"	)#V 900.5784* 8.88 

ç"	)#V 1296.470* 9.91 

*denotes that the tests are significant at a 5% level 

 

Table 6. The empirical result of the sequential test 

 F-statistic Critical value 

&áà	âä(1|0) 507.4440* 8.58 

&áà	âä(2|1) 185.1933* 10.13 

&áà	âä(3|2) 455.4091* 11.14 

&áà	âä(4|3) 10.49810 11.83 

*denotes that the tests are significant at a 5% level 
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               Phase I                    Phase II                Phase III                               Phase IV 

 

Figure 9. The estimated three breaks in the copper spot price 

 

4.3 Data preprocessing – the normalization arrangement 

 All (training and test) data streams are normalized in the range [0, 1] by the min-max 

normalization method whose equation is presented as Eq. (6). To justify the efficiency of the 

proposed ALFM, the result generated from the inferencing phase is compared with the true value 

after inverse. 

 
ècKêG =

è − èGNc
èG~ë − èGNc

	∈ [0,1]  (6) 

 

4.4 Validation and evaluation 

 The sequentially structuring (SS) mechanism implemented through an ASLFN is proposed 

to cope with the complex non-linearity. This is the new proposed mechanism in this study and thus 

should be validated. To check whether the arrangement of SS mechanism does work in the training 

process, copper prices are used in the experiment. The module arrangement of SS mechanism needs 

to cope with the vanishing gradient of the matching module and alleviate the overfitting tendency 

of the SS mechanism. We build four different versions of the SS mechanism which are the 

Oversupply in copper market. 
Investors lost interest in mining after various financial crisis.  

Fed raised interest rates. 
The decline in the price of oil. 
 

Economic recovery in China. 
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difference in selecting modules and regularizing configuration shown as Table 7. For each version, 

all real-world data streams are split by moving window mechanism based on the rule of 159 training 

instances and 4 test instances in each window as detailed in Section 3.1. After that, there are 78 

windows are used for training and testing. In this research, we implemented the selecting module 

by the LTS principle which ensures that the simple cases are trained first and adaptively to learn 

another similar case during the training process. We will check the LTS principle does display a 

good principle for learning to compare with pre-order (PO) principle which merely follows the 

original sequence to train all training data.  

 Additionally, the regularization module in the SS mechanism used to alleviate the 

overfitting tendency by adding the regularization term to the loss function presented as Eq. (1). The 

module will adjust w to min
w

E
n
(w) at maximum number of iterations unless the adjusted ASLFN 

does not satisfy the learning goal (|ec| ≤ ε1 " c Î I(n)). We set the maximum epoch for the 

regularizing module at 0, 100, and 500 to understand the effort of regularizing module when the 

number of training times the regularizing module is activated increases. 

Table 7. The four different forecasting learning models 

Version The selecting module Epoch for regularizing module 

MW-PO-100 PO 100 

MW-LTS-0 LTS 0 

MW-LTS-100 LTS 100 

MW-LTS-500 LTS 500 

 

 Except for the configuration of the selecting module and the regularizing module, for each 

version, the acceptable ASLFN will be obtained from one of the three alternative routes during the 

learning process. The occurrence percentages of these three routes are recorded to understand the 

learning styles and the effort of both the matching module and the cramming module for the 
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proposed four versions. Furthermore, we can use how many irrelevant hidden nodes have been 

deleted during the training process to validate the reorganizing module. 

 There is some other information can be used to evaluate the efficiency of these four versions 

such as training time, the amount of adopted hidden nodes. These measurements can be seen as 

whether the version requires more time or resources to learn a new input/output relationship. These 

results correlate with the learning style results described above. When training requires a matching 

module or a cramming module to obtain an acceptable ASLFN, more training time and resources 

are incurred. 

 Finally, to check whether the proposed ALFM can have better forecast results in copper 

price forecasting. In the testing phase, the performance measurement such as mean absolute error 

(MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE) is contained 

to check their performance of test data set. Finally, we want to confirm whether the best 

configuration among these versions has better accuracy of forecasting than other methods in the 

current literature. The five of the most efficient computational intelligence techniques (i.e., SLFN, 

SVM, RNN, LSTM, and GRU) and one of the classic volatility prediction models (i.e., SARIMA) 

are compared. These proposed four version will be developed with Pytorch (pytorch 1.5.1 + cuda 

101) and GPU (GeForce GTX 1070 Ti) to accelerate the learning process on Ubuntu 20.04.1. 
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Chapter 5 Experiment results 

 In this section, the results of validation and evaluation are discussed. We will validate that 

the module arrangement of the SS mechanism is necessary by comparing the proposed versions 

which are different in the selecting module and the regularizing module. In Section 5.1, these 

experiment results include the learning route, the number of adopted hidden nodes, training time, 

as well as the module validation for reorganizing module, LTS principle, and regularizing module. 

Then, in Section 5.2, the best configuration among these versions is evaluated by comparing with 

SLFN-based models and commonly used models in the relevant literature. 

5.1 SS mechanism validation 

5.1.1 The learning route 

 Regarding the new coming training sample, there are three ways for getting an acceptable 

SLFN. The frequency of these alternative routes being taken is used to not only understand the 

learning style of these four versions but also confirm whether the matching module and cramming 

module help these four versions to obtain acceptable ASLFN during the training process.  

 In most cases for each version, an acceptable ASLFN is obtained via the familiar route but 

it is still necessary to learn some data by the thinking route and the cramming route. For the MW-

PO-100 version, there are approximately 88.14% of the training samples through familiar route, 

3.60% of the training samples can be learned by thinking route, and the rest 8.26% of the training 

samples via cramming route (Table 8, see Appendix Table A1 for details). The circumstances of 

other versions with LTS principle are: the MW-LTS-0 version takes familiar route to learn about 

84.41% of the training samples, 11.33% of the training samples could be learned by thinking route, 

and the remaining 4.26% of the training samples were learned by cramming route (Table 9, see 

Appendix Table A2 for details); the MW-LTS-100 version takes familiar route to learn about 

94.56% of the training samples, 1.31% of the training samples could be learned by thinking route, 

and the remaining 4.13% of the training samples were learned by cramming route (Table 10, see 
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Appendix Table A3 for details); the MW-LTS-500 version takes familiar route to learn about 

97.46% of the training samples, 0.79% of the training samples could be learned by thinking route, 

and the remaining 1.75% of the training samples were learned by cramming route (Table 11, see 

Appendix Table A4 for details). 

 

Table 8. The learning process of MW-PO-100 version 

 
Familiar route Thinking route Cramming route 

Mean 88.14% 3.60% 8.26% 

S.D. 12.51% 2.43% 12.13% 

Min 30.82% 0.00% 0.00% 

Max 100.00% 10.69% 64.78% 

 

Table 9. The learning process of MW-LTS-0 version 

 
Familiar route Thinking route Cramming route 

Mean 84.41% 11.33% 4.26% 

S.D. 10.44% 9.33% 7.92% 

Min 47.80% 0.63% 0.00% 

Max 98.11% 35.85% 51.57% 

 

Table 10. The learning process of MW-LTS-100 version 

 
Familiar route Thinking route Cramming route 

Mean 94.56% 1.31% 4.13% 

S.D. 9.54% 1.65% 9.47% 

Min 47.80% 0.00% 0.00% 

Max 100.00% 8.81% 51.57% 
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Table 11. The learning process of MW-LTS-500 version 

 
Familiar route Thinking route Cramming route 

Mean 97.46% 0.79% 1.75% 

S.D. 3.61% 1.10% 3.29% 

Min 77.36% 0.00% 0.00% 

Max 100.00% 5.03% 21.38% 

 

 As for the comparison between MW-LTS-100 and MW-PO-100, it is found that the version 

with LTS principle can increase from 88.14% to 94.56% of acceptable ASLFN driven from the 

familiar route (Figure 10). Accordingly, the MW-LTS-100 takes thinking route and cramming 

route less than the MW-PO-100. The occurrence of thinking route decreased from 3.60% to 1.31% 

(Figure 11), and the cramming route executions decreased from 8.26% to 4.13% (Figure 12).  

 From the comparison among MW-LTS-0, MW-LTS-100, and MW-LTS-500, we also 

found that the regularizing module is activated more often, the percentage of acceptable ASLFN 

by the familiar route increases. Among these four versions, MW-LTS-500 is the most frequent via 

the familiar route to obtain an acceptable ASLFN structure. The familiar route occurrence 

percentage of MW-LTS-500, MW-LTS-100, and MW-LTS-0 are 97.46%, 94.56%, and 84.41%, 

respectively (Figure 10). Correspondingly, the regularizing module is activated more often, the 

percentage of the thinking route and the cramming route decreases. The thinking route occurrence 

percentage of MW-LTS-0, MW-LTS-100, and MW-LTS-500 are 11.33%, 1.31%, and 0.79%, 

respectively (Figure 11); the cramming route occurrence percentage of MW-LTS-0, MW-LTS-100, 

and MW-LTS-500 are 4.26%, 4.13%, and 1.75%, respectively (Figure 12). These results 

demonstrate how the adoption of the LTS principle and regularizing module impacts the learning 

style, as well as verify the necessity of both the matching module and cramming module in SS 

mechanism. These modules are designed to address the vanishing gradient situation in the adaptive 

learning process. 
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 MW-PO-100� MW-LTS-0 MW-LTS-100 MW-LTS-500 

Mean 88.14% 84.41% 94.56% 97.46% 

S.D. 12.51% 10.44% 9.54% 3.61% 

Min 30.82% 47.80% 47.80% 77.36% 

Max 100.00% 98.11% 100.00% 100.00% 
 

Figure 10. The familiar route executions 

 

 
 MW-PO-100 MW-LTS-0 MW-LTS-100 MW-LTS-500 

Mean 3.60% 11.33% 1.31% 0.79% 

S.D. 2.43% 9.33% 1.65% 1.10% 

Min 0.00% 0.63% 0.00% 0.00% 

Max 10.69% 35.85% 8.81% 5.03% 
 

Figure 11. The thinking route executions 
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 MW-PO-100 MW-LTS-0 MW-LTS-100 MW-LTS-500 

Mean 8.26% 4.26% 4.13% 1.75% 

S.D. 12.13% 7.92% 9.47% 3.29% 

Min 0.00% 0.00% 0.00% 0.00% 

Max 64.78% 51.57% 51.57% 21.38% 
 

Figure 12. The cramming route executions 

  

 Although these four versions mostly use the familiar route to obtain acceptable ASLFN 

(Figure 10), all versions still rely on the thinking route (Figure 11) and the cramming route (Figure 

12) to learn some data. For example, the MW-LTS-500 is the version which less trigger matching 

module and cramming module. It still learns 0.79% of the data in a window through the matching 

module and 1.75% of the data in a window through the cramming module. Among these four 

versions, MW-LTS-0 is the version most commonly uses the thinking route to obtain an acceptable 

ASLFN, with an average of 11.33% of the data should be learnt via matching modules within a 

window. In terms of the cramming route, the MW-PO-100 is the most frequent trigger cramming 

module among these four versions, about 8.26% of the data in a window on average. Therefore we 

can verify that both matching module and cramming module in SS mechanism are necessary to 

solve the vanishing gradient situation. 
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5.1.2 Number of adopted hidden nodes 

 The number of hidden nodes helps to verify that the fitting function is different among 

versions since the number of hidden nodes used implies the complexity of the fitting function 

behind the network (LeCun et al., 2015). We select the 8th window (one of the 78 windows) to 

illustrate the hidden node evolution within the window to understand the adaptive learning status 

of the four versions.  

 We can find the following observations from Figure 13. First, the adoption of LTS principle 

can effectively reduce the hidden nodes compared to PO principle. For example, the MW-PO-100 

version triggers cramming actions frequently from the 89th stage of the learning process resulting 

in 54 hidden nodes at the end. In contrast, the MW-LTS-100 version only add 6 new hidden nodes 

(two triggers for the cramming module and each trigger add three extra hidden nodes) during the 

last two stages and eventually uses 7 hidden nodes. 

 

Figure 13. Evolution of the number of hidden nodes used in the 8th window 

 

 When the LTS principle is used, the more number of iterations to apply the regularization 

module the more it reduces the number of hidden nodes employed. It can be found from the 

comparison among the MW-LTS-0, MW-LTS-100, and MW-LTS-500. In the version of MW-

LTS-0 that does not use the regularizing module, the hidden nodes are frequently added from the 

137th stage. The MW-LTS-100 and MW-LTS-500 versions, which apply the regularization module, 
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add additional hidden nodes in the last few stages. The number of hidden nodes used in MW-LTS-

0, MW-LTS-100 and MW-LTS-500 are 33, 7, and 4, respectively. In summary, MW-LTS-100 and 

MW-LTS-500 are the versions that require the least number of hidden nodes among these four 

versions. We can conclude that using both the LTS principle and the regularizing module within 

SS mechanism help to obtain a lighter SLFN architecture since the required hidden node less means 

fewer parameters are required in the network. 

 From Table 12 (see Appendix Table B1 for details), it can also be found that SS mechanism 

with LTS principles and regularization modules contribute to lighter neural network architecture. 

The average number of the adopted hidden nodes for MW-LTS-100 and MW-LTS-500 is namely 

15.99 and 7.85, which is smaller than MW-PO-100 and MW-LTS-0 with the average number of 

the adopted hidden nodes of 36.97 and 17.76. Because the cramming route is used to learn the new 

coming training sample by adding an additional hidden node, the number of adopted hidden nodes 

is correspond to it. In terms of the execution of the cramming route, the adoption of both the LTS 

principle and the regularization module can reduce the learning of new incoming training samples 

through the cramming route (Figure 12). Therefore, these versions (i.e., MW-LTS-100, and MW-

LTS-500) use the least number of hidden nodes. 

 Among these versions, the S.D. of MW-LTS-500 and MW-LTS-100 are the first two 

minimum values of 14.94 and 31.67, respectively. That is smaller than the value of 53.77 and 34.97 

got from versions of MW-PO-100 and MW-LTS-0. Similar results can be found in the range of the 

adopted hidden nodes. In 78 windows, both versions of MW-PO-100 and MW-LTS-0 require 

hidden nodes between 1 and 286, and 1 and 245, respectively. This is more than the variation of 

hidden nodes required by MW-LTS-100 and MW-LTS-500. In summary, it can be found that using 

both the LTS principle and regularizing module can obtain less average and dispersion of the 

adopted hidden nodes. 
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Table 12. The number of adopted hidden nodes�

 MW-PO-100 MW-LTS-0 MW-LTS-100 MW-LTS-500 

Mean 36.97 17.76 15.99 7.85 

S.D. 53.77 34.97 31.67 14.94 

Min 1 1 1 1 

Max 286 245 197 102 

 

 According to the three structural breakpoints detected by the methodology proposed by Bai 

and Perron (1998, 2003), the four phases of copper price change are distinguished by these 

breakpoints (Figure 9). The number of hidden nodes required for each of the four phase is different 

regardless of the version (Table 13). These four versions have similarities in the number of hidden 

nodes required such as phase I and phase III are more than phase II and phase IV. Since each phase 

has different patterns and requires different hidden nodes, it is necessary to propose such an SS 

mechanism that can automatically adjust the ASLFN structure (i.e., add and delete hidden nodes 

of the hidden layer) based on the current phase. 

Table 13. The hidden node required for each phase 

 MW-PO-100 MW-LTS-0 MW-LTS-100 MW-LTS-500 

Phase I (1st-21st window) 40.00 19.45 23.70 9.80 

Phase II (22nd-48th window) 38.48 11.81 8.44 5.33 

Phase III (49th-66th window) 47.67 34.28 20.89 11.67 

Phase IV (67th-78th window) 15.50 4.92 14.00 5.08 

 

5.1.3 Training time 

 The total training time required for the MW-LTS-500 was 28,153.37 seconds, which is the 

lowest cumulative training time of the four versions. (Figure 14). The following are MW-LTS-100 

and MW-LTS-0, which took a total of 41,705.25, and 43,764.77 seconds, respectively. The major 
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difference among MW-LTS-500, MW-LTS-100, and MW-LTS-0 is the maximum number of times 

(i.e., 500, 100, and 0) the regularizing module can be executed. We can get the conclusion that the 

larger the maximum number of times the regularizing module is executed, the less we need to 

trigger the cramming module (MW-LTS-500 only triggers cramming module to learn 1.75% of 

training data in Figure 12). When the cramming module does not need to be triggered, it means 

that there is no need to add additional hidden nodes for training. In addition, the reduction in the 

number of hidden nodes used also reduces the time for the reorganization module to traverse all 

the adopted hidden nodes. We regard that using regularizing module is helpful to reduce the training 

time. 

 

Figure 14. The accumulated training time 

 

 It is worth noting that if the LTS principle is used instead of the PO principle, the time 

required decreases from 164,446.86 to 41,705.25 seconds when the comparison of the MW-PO-

100 with MW-LTS-100. The difference in training time between the MW-LTS-100 and MW-PO-

100 versions in terms of their learning routes is applicable to the aforementioned conclusion. 

 The same results can also be found from the average training results presented as Table 14 

(see Appendix Table C1 for details). The time required to train a window on average for MW-LTS-

500, MW-LTS-100 and MW-LTS-0 is 360.94, 534.68, and 561.09 seconds, respectively. When the 

number of activation of the regularizing module is set to more, the training time can be reduced. 
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Comparing MW-PO-100 with MW-LTS-100, we can observe that the MW-LTS-100 takes an 

average of 534.68 seconds per window less than the MW-PO-100, which takes 2108.29 seconds. 

In summary, the learning style of the version that uses both the LTS principle and the regularizing 

module can effectively save the required training time. 

Table 14. The average training time 

 MW-PO-100 MW-LTS-0 MW-LTS-100 MW-LTS-500 

Mean 2108.29 561.09 534.68 360.94 

S.D. 3650.71 1388.54 1457.91 443.63 

Min 35.31 10.37 45.29 161.73 

Max 19790.97 9912.40 7685.57 3150.11 

 

5.1.4 Validation for reorganizing module 

 To verify the functionality of reorganizing module which is designed to alleviate the 

overfitting tendency, the number of potential irrelevant hidden nodes that have been deleted is used 

to measure the effort of the reorganizing module as shown in Table 15 (see Appendix Table D1 for 

details). These four versions enabled the reorganization module to delete more than one potentially 

irrelevant hidden node in over 80% of the 78 windows (Figure 15).  

 

Figure 15. The percentage of windows used reorganizing module 
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Table 15. The average number of irrelevant hidden nodes deleted by reorganizing module 

 MW-PO-100 MW-LTS-0 MW-LTS-100 MW-LTS-500 

Mean 39.01 18.94 16.31 8.17 

S.D. 54.72 35.44 31.59 15.07 

Min 0 0 0 0 

Max 300 250 196 103 

 

 The average deletion amount of 39.01 with PO principle is much higher than the average 

deletion amount of 16.31 with LTS principle, which can be found from the comparison of MW-

PO-100 and MW-LTS-100. In addition, it can be found that as the maximum number of epochs for 

the regularizing module increases, the average number of hidden node deleted also decreases 

gradually. For example, MW-LTS-0 deletes an average of 18.94 hidden nodes in a window, which 

is much more than the values of 16.31 and 8.17 obtained by MW-LTS-100 and MW-LTS-500 

respectively.  

 In Table 12, we found that the versions that use both LTS principle and regularizing module 

(i.e., MW-LTS-100 and MW-LTS-500) employ fewer hidden nodes than the other versions. Table 

15 also shows that both versions have the lowest number of potentially irrelevant hidden nodes 

deleted by the reorganizing module. We can argue that using both LTS principle and regularizing 

module is less likely to add unnecessary hidden nodes in the learning process. This help to improve 

the learning efficiency. Overall, the reorganizing module is used in all four versions to delete 

irrelevant hidden nodes. We can conclude that the reorganization module is necessary to exist in 

the SS mechanism. 

  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202200079

45 

5.1.5 Validation for LTS principle 

 For the purpose of verifying the effect of the LTS principle, the MW-LTS-100 version is 

compared with the MW-PO-100 version. As illustrated as Figure 10, a higher frequency of MW-

LTS-100 compared to MW-PO-100 mostly use the familiar route to obtain an acceptable ASLFN. 

On the other hand, the MW-PO-100 is the version that more often takes cramming route to obtain 

an acceptable ASLFN. Therefore, the number of hidden nodes required for MW-PO-100 is 

relatively higher than MW-LTS-100 during the training process. We can confirm that the adoption 

of the LTS principle enhances learning efficiency. 

 The version with LTS principle not only allows for more efficient learning but also helps 

to improve forecasting performance (Table 16). At the training stage, the lower MAE, MAPE, and 

RMSE can be gained from MW-LTS-100. Similar results can be found at the testing stage, the 

MAE of MW-LTS-100 is 2427.44, which is smaller than MW-PO-100 with a MAE of 3305.56. 

The MAPE of MW-LTS-100 is 5.50, being smaller than that the MAPE of MW-PO-100 is 7.40. 

The RMSE of MW-LTS-100 is 2562.26, which is smaller than MW-PO-100 with a RMSE of 

3435.47. Consequently, we can confirm that the version using the LTS principle has more efficient 

for forecasting than the version using the PO principle. We also evaluated the performance of the 

model based on the loss during training and testing process. The results show that the version with 

the LTS principle has lower training loss and testing loss, and the difference is closer. This can be 

seen as adopting the LTS principle also helps to avoid overfitting (Figure 16). The forecasting 

performances of the MW-PO-100, and MW-LTS-100 are presented in Figure 17. 

Table 16. Forecasting performance of MW-PO-100, and MW-LTS-100 

Models 
Training stage Testing stage 

MAE MAPE RMSE MAE MAPE RMSE 

MW-PO-100 1379.93 3.02 1824.07 3305.56  7.40  3435.47  

MW-LTS-100 1153.27 2.52 1510.34 2427.44 5.50 2562.26  
Values	in	bold	represent	the	best	model	
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Figure 16. The training loss and testing loss of MW-PO-100, and MW-LTS-100 

 

 

Figure 17. Out-of-sample performance of MW-PO-100, and MW-LTS-100 
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training and testing process. In the training phase, the lowest MAE, MAPE and RMSE can be 

obtained from MW-LTS-500, while the highest MAE, MAPE and RMSE can be obtained from 

MW-LTS-0 (Table 17). The same results were obtained at the testing stage. The version that 

includes both LTS principle and the regularization module is not only useful for effective learning 

but also has superior forecasting performance. 

 After confirming the effect of regularizing module on both effectiveness and efficiency, we 

can further look at the effect of the maximum number of executions of regularizing module on 

effectiveness and efficiency. The MW-LTS-500 can be found with less hidden node and training 

time than the MW-LTS-100. For example, the MW-LTS-500 version takes 360.94 seconds and 

employs 7.85 hidden nodes on average for a window during the training process, which is more 

efficient than the MW-LTS-100 version that takes 534.68 seconds, and employs 15.99 hidden 

nodes. In addition, setting a larger number of activations also enhances the forecasting power of 

the network at the testing stage. The lowest of MAE, MAPE, and RMSE can be obtained from the 

MW-LTS-500 version. When the maximum number of iterations of the regularization module is 

set higher, the difference between the training loss and the test loss is closer (Figure 18). Therefore, 

the more regularizing times used, the less time it will take to train and the more it will help to avoid 

overfitting. The actual and forecasted values during testing via MW-LTS-0, MW-LTS-100, and 

MW-LTS-500 as shown in Figure 19. 

 

Table 17. Forecasting performance of the version with LTS principle 

Models 
Training stage Testing stage 

MAE MAPE RMSE MAE MAPE RMSE 

MW-LTS-0 1820.24  4.02 2314.32  3271.44  7.43 3450.17 

MW-LTS-100 1153.27  2.52  1510.34 2427.44  5.50 2562.26  

MW-LTS-500 1112.11 2.43 1453.04 1923.63 4.19 2071.42 
Values	in	bold	represent	the	best	model	
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Figure 18. The training loss and testing loss of the version with LTS principle 

 

 

Figure 19. Out-of-sample performance of MW-LTS-0, MW-LTS-100, and MW-LTS-500  
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500 is first compared to LTS-500, MW-SLFN, and SLFN. These models are based on SLFN, but 

LTS-500 and MW-SLFN only contain SS mechanism and moving window mechanism, 

respectively. The number of adopted hidden nodes in the hidden layer of the SLFN-based 

forecasting model is set to 8 units which is the average number of hidden nodes used by the MW-

LTS-500 to train a window on average. The hyperparameter settings of the corresponding 

mechanisms are the same as those of MW-LTS-500. In other words, if the forecasting model 

contains a moving window mechanism, the length of the training block and testing block are set to 

values of 159 and 4, respectively; Or if the SS mechanism is included, the selection module follows 

the LTS principle, the maximum number of training iterations of the regularization module is set 

to 500, and the hyperparameters of the other modules are set as shown in Figure 6 - Figure 8. 

 MW-LTS-500 is further compared with six popular methods in the literature (i.e., SARIMA, 

SLFN, SVM, RNN, LSTM, and GRU). All MAE, MAPE, and RMSE aforementioned were used 

for measuring and evaluating the performance and accuracy of the proposed model in comparison 

with other forecasting models. These models without moving window module use the convenient 

ratios to divide the training and test data into the ratio of 80:20, in which the first 376 observations 

(from October 31, 2011, to February 25, 2019) were used for training the model, whereas the final 

95 observations (from March 4, 2019, to December 21, 2020) were employed to validate the 

performance of the proposed model. We also use the same period of data to train and test the MW-

LTS-500.  

 The hyperparameters of each model are given as follows: for the SARIMA model, the 

notation for these elements is specified as SARIMA(trend autoregression order, trend difference 

order, trend moving average order)(seasonal autoregressive order, seasonal difference order, 

seasonal moving average order, and the number of time steps for a single seasonal period) whose 

value is set as SARIMA(1,1,0)(0,1,2,53). These values are determined by the auto_arima function 

in python, which performs a random search over a hyperparameter space; for the SVR model, the 

kernel type is set to radial basis, the kernel coefficient is set to 0.1; for the NN-based models (i.e., 
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SLFN, RNN, LSTM, and GRU), the structure is set as a single hidden layer and contains only 8 

neurons, and the activation function of the hidden node is set as ReLU with Adam optimizer 

(Kingma & Ba, 2014) to adjust the parameters. During the training period, each training was 

conducted with a batch size of 14, and the training was repeated 300 times. Since the RNN-based 

models (i.e., RNN, LSTM, and GRU) learn in a sequence-to-sequence way, the input variable used 

is not only the copper price, but the rest of the variables all contain a lag time of 4 units. 

 Table 18 summarizes the performance measure of the SLFN-based models used in this 

study. Comparison with LTS-500 and SLFN, the lower loss (i.e., MAE, MAPE, and RMSE) can 

be obtained by LTS-500. This can be seen as an SS mechanism that is helpful in forecasting 

performance. Comparing MW-SLFN and SLFN, the model with moving window mechanism also 

contributes to reduce forecasting error. The MW-LTS-500 is best model among these network 

architectures from the result of forecasting performance. We can confirm the incorporation of a 

moving window mechanism with the SS mechanism is effective for four-weeks ahead copper price 

forecasts. The forecasting result of SLFN-based model for test data are plotted in Figure 20. 

 

Table 18. Out-of-sample performance comparison of the SLFN-based models 

Model MAE MAPE RMSE 

ALFM (MW-LTS-500) 1576.39  3.33  2080.75  

LTS-500 2361.18  4.87  3367.10  

MW-SLFN 2436.76  4.99  3270.72  

SLFN 3649.32  7.77  4570.24  

Values	in	bold	represent	the	best	model	
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Figure 20. Out-of-sample performance comparison of the SLFN-based models	

	

 The proposed MW-LTS-500 also presents several noteworthy contributions to improve the 

performance of the copper price forecasting for four-weeks ahead. Table 19 indicates that among 

these forecasting model used for comparison, the lowest MAE, MAPE, and RMSE have been 

gained from the proposed forecasting model (i.e., MW-LTS-500). This suggests that the ASLFN 

with a moving window mechanism and an SS mechanism can increase the forecasting accuracy on 

the copper price. The forecasting result of each model for test data are plotted in Figure 21. 

 

Table 19. Out-of-sample performance comparison of the models 

Model MAE MAPE RMSE 

ALFM (MW-LTS-500) 1576.39  3.33  2080.75  

SARIMA 2873.98  6.02  3764.86  

SLFN 3649.32  7.77  4570.24  

SVR 3359.37  6.85  4318.43  

RNN 2646.85  5.50  3686.23  

LSTM 2584.56  5.46  3319.30  

GRU 3354.81  6.87  4228.00  

Values	in	bold	represent	the	best	model	

35000

37000

39000

41000

43000

45000

47000

49000

51000

53000

55000

57000

59000

61000

201
9/3

/4

201
9/4

/4

201
9/5

/4

201
9/6

/4

201
9/7

/4

201
9/8

/4

201
9/9

/4

201
9/1

0/4

201
9/1

1/4

201
9/1

2/4

202
0/1

/4

202
0/2

/4

202
0/3

/4

202
0/4

/4

202
0/5

/4

202
0/6

/4

202
0/7

/4

202
0/8

/4

202
0/9

/4

202
0/1

0/4

202
0/1

1/4

202
0/1

2/4

Av
g.

 C
op

pe
r p

ric
e 

(C
N

Y$
 P

ER
 T

O
N

N
E)

Date

Actual ALFM (MW-LTS-500) LTS-500 MW-SLFN SLFN



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202200079

52 

 

Figure 21. Out-of-sample performance comparison of MW-LTS-500 with other models 
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Chapter 6 Discussion and Conclusions 

6.1 Summary  

 Forecasting copper prices with high accuracy and reliability are critical for investors and 

businesses. Investigation results showed that copper prices have complicated movements from 

2011 to 2020, and accurate forecasting fluctuations in copper prices is a challenge. This study 

proposes an adaptive learning-based forecasting model (ALFM) to cope with the concept drift and 

the complex fitting function form behind the copper price. ALFM consists of two parts: the moving 

window mechanism, and the sequentially structuring (SS) mechanism. The moving window 

mechanism first changes the data into the form of a window, which is used to cope with structural 

and conceptual change. The SS mechanism is implemented in ASLFN to avoid the vanishing 

gradient and overfitting issues that are often faced by modeling neural networks. Since the SS 

mechanism was first proposed and developed in this study, it needs to be further validated. 

 Through the empirical result, we have several major findings that can contribute to the 

literature. We confirm that all modules of the SS mechanism are necessary. Each version is learned 

during the training process through the following three paths� familiar route, thinking route, and 

cramming route. When the thinking route and cramming route are performed, it means that the 

matching module and the cramming module have been activated to learn new material, respectively. 

The necessity of the reorganizing module in the SS mechanism has also been verified since the 

reorganizing module is activated in all versions to delete irrelevant neurons during the training 

process. Also, both matching module and cramming module help to solve vanishing gradient from 

the evidence of both modules are required for all versions to ensure learning all training data set. 

 Comparing the MW-PO-100 and MW-LTS-100 versions, LTS principle helps to improve 

the learning efficiency and prediction of the neural network. In the LTS version, both MW-LTS-

100 and MW-LTS-500 require less training time and forecasting error than MW-LTS-0, which is 

considered necessary for the regularizing module and helps the neural network to learn in an 
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efficient way and reduce the overfitting phenomenon. Comparing MW-LTS-100 and MW-LTS-

500, we can further find that the effectiveness and efficiency of learning are more obvious when 

the number of activations increases. 

 The MW-LTS-500 is the best architecture of the adaptive learning-based forecasting model. 

To verify the proposed forecasting model does lead to good performances on copper price volatility, 

we compare the proposed MW-LTS-500 with other state-of-art models (i.e., SARIMA, SLFN, 

SVM, RNN, LSTM, and GRU). The results demonstrate the superiority of the MW-LTS-500 model 

overall comparison methods. The numerical results imply that the MW-LTS-500 model provides 

the lowest MAE, MAPE, and RMSE of 1576.39, 3.33, and 2080.75, respectively.  

 To the best of our knowledge, the research not only examines the structural and conceptual 

change on copper price but also proposes the tool to solve it. We have conducted a variety of 

experiments to validate the proposed ALFM which has a notable forecasting power in copper price 

forecasting. Such an adaptive network structure can systematically adjust the number of adopted 

hidden nodes during the learning process. This allows us to solve the challenges of modeling NN-

based models such as vanishing gradient, and overfitting tendency. 

6.2 Theoretical and practical contributions 

 To fill the theoretical gap, the ALFM proposed in the literature simultaneously deals with 

the challenges (i.e., concept drift/structural change, and non-linear fitting function form) embedded 

in the copper price data stream. First, this study validates the issue of structural change in copper 

prices by the methodology proposed by Bai and Perron (1998, 2003). Based on the previous 

literature, we find that the concept is similar to the term “concept drift” in fields of engineering and 

machine learning. Hence, the method of concept drift handling (i.e., moving window mechanism) 

is used to address the issue of underlying structural change behind the copper price. 

 Additionally, NN-based models are often used to cope with the non-linear fitting function 

form in the data stream. But there are some fundamental challenges associated with the NN-based 

model like vanishing gradient, and overfitting. This study proposed the SS mechanism for the 
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ASLFN in response to these issues. Eventually, an adaptive learning-based forecasting model 

(ALFM) for learning the patterns embedded in the data stream obtained from a structural change 

environment to form a forecasting model that is adaptive within the learning process. Through the 

empirical results, the ALFM outperforms state-of-the-art models within an acceptable training time. 

 The experimental results obtained with real data confirm the proposed ALFM works quite 

well in capturing the overall medium-term trend. In practice, medium-term forecasting brings great 

benefits in energy management and production planning in order to ensure continuous production 

and raw material sufficiency. An accurate and robust model can further guide related copper 

manufacturing companies, policymakers, and investors to catch the volatility of copper prices in a 

dynamic environment. As a result, copper producers can plan their procurement decision and 

production operations more efficiently and responsively. Policymakers can regulate the market 

more effectively based on accurate price forecasting. Investors can better design profitable 

medium-term investment strategies.  

6.3 Limitations and future works 

 Despite the remarkable contributions of this study, there is some direction for future 

research regarding the modeling and learning of the proposed forecasting model, ASLFN. First, 

the length of the training period N and the testing period B in the study are based on try-and-error 

for all the periods of observations (October 31, 2011, to December 21, 2020). Due to the high 

volatility and structural and conceptual changes in the copper price, it frequently moves in a 

different way. If the moving window mechanism is chosen to solve for different intervals of copper 

prices, the setting of the window size must be revisited or the moving-window scheme with variable 

can also be attempted in practice. Second, all the modules in the SS mechanism have been 

confirmed necessary and can effectively solve the vanishing gradient and overfitting phenomena. 

However, there are some modules (i.e., cramming module, and reorganizing module) whose 

processes can be further optimized to improve efficiency. The cramming module is used to solve 
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the vanishing gradient by recruiting extra hidden nodes and the reorganizing module is used to 

prune irrelevant hidden nodes to prevent poor network generalization capabilities. 

 In terms of the application, there are some future works. Wahab & Adewuyi (2021) 

confirmed the characteristics of structural breaks and non-linearity in the other metal prices (i.e., 

gold, silver, platinum, and palladium). Meanwhile, these phenomena also exist in the time series 

of macro-economic variables (Nasir & Vo, 2020), and the financial market (Mahata et al., 2020). 

It would be interesting to confirm whether there would be any major changes in the results when 

the proposed technique can be utilized as a forecasting tool to deal with other forecasting problems 

with structural and conceptual change. 
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Appendix A - The learning process  

Table A1. The learning process of MW-PO-100 version 
Wia FRb TRc CRd Wi FR TR CR Wi FR TR CR 

1 96.86% 0.63% 2.52% 27 88.68% 10.69% 0.63% 53 88.05% 9.43% 2.52% 
2 79.87% 4.40% 15.72% 28 71.07% 5.66% 23.27% 54 96.23% 3.77% 0.00% 
3 93.71% 1.89% 4.40% 29 79.87% 3.14% 16.98% 55 94.34% 5.66% 0.00% 
4 87.42% 1.26% 11.32% 30 78.62% 3.14% 18.24% 56 33.96% 1.26% 64.78% 
5 88.05% 2.52% 9.43% 31 89.94% 0.63% 9.43% 57 58.49% 6.92% 34.59% 
6 94.34% 1.26% 4.40% 32 93.08% 5.03% 1.89% 58 90.57% 8.81% 0.63% 
7 92.45% 1.89% 5.66% 33 80.50% 5.66% 13.84% 59 94.34% 4.40% 1.26% 
8 83.65% 3.14% 13.21% 34 79.25% 4.40% 16.35% 60 91.19% 8.18% 0.63% 
9 90.57% 3.77% 5.66% 35 55.35% 1.89% 42.77% 61 96.86% 3.14% 0.00% 
10 91.82% 0.63% 7.55% 36 93.08% 4.40% 2.52% 62 96.23% 2.52% 1.26% 
11 86.79% 3.14% 10.06% 37 88.68% 4.40% 6.92% 63 69.81% 10.69% 19.50% 
12 86.79% 1.26% 11.95% 38 92.45% 1.89% 5.66% 64 96.23% 2.52% 1.26% 
13 86.79% 0.63% 12.58% 39 89.94% 2.52% 7.55% 65 97.48% 1.26% 1.26% 
14 84.28% 1.26% 14.47% 40 93.71% 3.77% 2.52% 66 96.23% 2.52% 1.26% 
15 96.86% 3.14% 0.00% 41 94.97% 2.52% 2.52% 67 98.11% 0.63% 1.26% 
16 81.13% 3.14% 15.72% 42 96.86% 3.14% 0.00% 68 96.23% 2.52% 1.26% 
17 93.71% 1.26% 5.03% 43 94.34% 5.66% 0.00% 69 95.60% 2.52% 1.89% 
18 79.87% 1.89% 18.24% 44 67.30% 6.92% 25.79% 70 95.60% 0.63% 3.77% 
19 89.31% 3.14% 7.55% 45 86.16% 6.92% 6.92% 71 94.34% 1.26% 4.40% 
20 94.34% 4.40% 1.26% 46 93.08% 5.03% 1.89% 72 91.82% 3.77% 4.40% 
21 100.00% 0.00% 0.00% 47 98.11% 1.89% 0.00% 73 89.94% 5.66% 4.40% 
22 89.94% 3.14% 6.92% 48 98.11% 1.89% 0.00% 74 89.94% 5.66% 4.40% 
23 81.13% 3.77% 15.09% 49 96.86% 3.14% 0.00% 75 94.34% 1.26% 4.40% 
24 87.42% 4.40% 8.18% 50 94.97% 5.03% 0.00% 76 95.60% 2.52% 1.89% 
25 97.48% 2.52% 0.00% 51 89.94% 10.06% 0.00% 77 93.71% 3.14% 3.14% 
26 96.23% 2.52% 1.26% 52 30.82% 6.92% 62.26% 78 93.08% 3.14% 3.77% 

aWindow index; bFamiliar route; cThinking route; dCramming route 
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Table A2. The learning process of MW-LTS-0 version 
Wia FRb TRc CRd Wi FR TR CR Wi FR TR CR 

1 66.67% 33.33% 0.00% 27 73.58% 1.89% 24.53% 53 72.33% 27.04% 0.63% 
2 66.04% 32.70% 1.26% 28 93.08% 2.52% 4.40% 54 82.39% 17.61% 0.00% 
3 76.73% 22.01% 1.26% 29 93.71% 3.77% 2.52% 55 82.39% 17.61% 0.00% 
4 85.53% 9.43% 5.03% 30 93.71% 3.14% 3.14% 56 74.21% 22.01% 3.77% 
5 81.76% 6.92% 11.32% 31 96.23% 2.52% 1.26% 57 77.36% 11.32% 11.32% 
6 81.76% 8.81% 9.43% 32 87.42% 11.32% 1.26% 58 79.25% 11.32% 9.43% 
7 71.70% 6.29% 22.01% 33 89.94% 8.81% 1.26% 59 77.99% 20.75% 1.26% 
8 88.68% 4.40% 6.92% 34 91.19% 8.18% 0.63% 60 62.89% 35.85% 1.26% 
9 91.82% 7.55% 0.63% 35 94.34% 4.40% 1.26% 61 86.79% 11.95% 1.26% 
10 89.31% 10.69% 0.00% 36 94.34% 5.03% 0.63% 62 90.57% 9.43% 0.00% 
11 91.82% 8.18% 0.00% 37 94.34% 5.03% 0.63% 63 78.62% 20.13% 1.26% 
12 77.99% 7.55% 14.47% 38 88.05% 6.92% 5.03% 64 94.97% 2.52% 2.52% 
13 91.19% 7.55% 1.26% 39 85.53% 10.69% 3.77% 65 47.80% 0.63% 51.57% 
14 89.31% 10.06% 0.63% 40 86.16% 5.03% 8.81% 66 98.11% 0.63% 1.26% 
15 95.60% 4.40% 0.00% 41 88.05% 10.69% 1.26% 67 98.11% 1.26% 0.63% 
16 86.16% 3.14% 10.69% 42 96.86% 3.14% 0.00% 68 94.97% 3.77% 1.26% 
17 95.60% 4.40% 0.00% 43 66.67% 32.08% 1.26% 69 97.48% 0.63% 1.89% 
18 85.53% 13.84% 0.63% 44 84.91% 14.47% 0.63% 70 71.07% 28.30% 0.63% 
19 71.07% 28.30% 0.63% 45 94.97% 3.77% 1.26% 71 91.19% 7.55% 1.26% 
20 94.97% 4.40% 0.63% 46 68.55% 31.45% 0.00% 72 89.94% 8.81% 1.26% 
21 81.76% 18.24% 0.00% 47 84.28% 15.72% 0.00% 73 84.28% 11.32% 4.40% 
22 77.36% 13.84% 8.81% 48 79.25% 5.03% 15.72% 74 79.87% 18.87% 1.26% 
23 69.81% 30.19% 0.00% 49 77.36% 8.81% 13.84% 75 94.97% 3.77% 1.26% 
24 93.71% 6.29% 0.00% 50 68.55% 2.52% 28.93% 76 94.97% 3.77% 1.26% 
25 88.68% 11.32% 0.00% 51 75.47% 24.53% 0.00% 77 95.60% 3.77% 0.63% 
26 94.34% 1.89% 3.77% 52 64.78% 27.67% 7.55% 78 89.94% 8.18% 1.89% 

aWindow index; bFamiliar route; cThinking route; dCramming route 
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Table A3. The learning process of MW-LTS-100 version 
Wia FRb TRc CRd Wi FR TR CR Wi FR TR CR 

1 99.37% 0.00% 0.63% 27 99.37% 0.63% 0.00% 53 95.60% 3.14% 1.26% 
2 98.74% 0.00% 1.26% 28 96.86% 3.14% 0.00% 54 98.11% 1.89% 0.00% 
3 97.48% 1.26% 1.26% 29 96.86% 0.00% 3.14% 55 97.48% 2.52% 0.00% 
4 84.28% 1.26% 14.47% 30 98.74% 1.26% 0.00% 56 94.34% 1.26% 4.40% 
5 94.34% 0.00% 5.66% 31 96.23% 0.63% 3.14% 57 88.05% 0.00% 11.95% 
6 93.71% 5.03% 1.26% 32 96.23% 0.63% 3.14% 58 89.94% 0.00% 10.06% 
7 89.31% 0.63% 10.06% 33 96.23% 0.63% 3.14% 59 96.86% 1.26% 1.89% 
8 97.48% 1.26% 1.26% 34 96.23% 0.63% 3.14% 60 97.48% 1.89% 0.63% 
9 99.37% 0.00% 0.63% 35 92.45% 2.52% 5.03% 61 95.60% 3.77% 0.63% 
10 98.74% 0.63% 0.63% 36 96.23% 0.63% 3.14% 62 98.11% 1.89% 0.00% 
11 98.74% 1.26% 0.00% 37 96.23% 0.63% 3.14% 63 98.74% 0.00% 1.26% 
12 77.99% 0.63% 21.38% 38 96.23% 0.63% 3.14% 64 97.48% 0.63% 1.89% 
13 99.37% 0.00% 0.63% 39 96.23% 1.26% 2.52% 65 47.80% 0.63% 51.57% 
14 99.37% 0.00% 0.63% 40 96.86% 0.00% 3.14% 66 98.74% 0.63% 0.63% 
15 100.00% 0.00% 0.00% 41 96.86% 0.63% 2.52% 67 98.74% 0.63% 0.63% 
16 56.60% 1.89% 41.51% 42 100.00% 0.00% 0.00% 68 52.20% 0.63% 47.17% 
17 100.00% 0.00% 0.00% 43 98.74% 0.63% 0.63% 69 97.48% 1.26% 1.26% 
18 95.60% 3.77% 0.63% 44 94.97% 3.14% 1.89% 70 96.86% 2.52% 0.63% 
19 89.94% 8.81% 1.26% 45 92.45% 3.14% 4.40% 71 99.37% 0.00% 0.63% 
20 99.37% 0.00% 0.63% 46 100.00% 0.00% 0.00% 72 96.23% 0.00% 3.77% 
21 100.00% 0.00% 0.00% 47 100.00% 0.00% 0.00% 73 96.86% 1.89% 1.26% 
22 99.37% 0.63% 0.00% 48 100.00% 0.00% 0.00% 74 98.11% 0.00% 1.89% 
23 93.71% 6.29% 0.00% 49 77.36% 3.77% 18.87% 75 98.74% 0.00% 1.26% 
24 100.00% 0.00% 0.00% 50 94.97% 4.40% 0.63% 76 98.74% 0.00% 1.26% 
25 96.23% 3.77% 0.00% 51 97.48% 2.52% 0.00% 77 98.11% 0.63% 1.26% 
26 94.97% 3.14% 1.89% 52 93.71% 3.14% 3.14% 78 98.11% 0.63% 1.26% 

aWindow index; bFamiliar route; cThinking route; dCramming route 
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Table A4. The learning process of MW-LTS-500 version 
Wia FRb TRc CRd Wi FR TR CR Wi FR TR CR 

1 99.37% 0.00% 0.63% 27 100.00% 0.00% 0.00% 53 93.08% 2.52% 4.40% 
2 99.37% 0.00% 0.63% 28 100.00% 0.00% 0.00% 54 98.74% 1.26% 0.00% 
3 96.86% 1.26% 1.89% 29 100.00% 0.00% 0.00% 55 100.00% 0.00% 0.00% 
4 91.82% 1.26% 6.92% 30 100.00% 0.00% 0.00% 56 95.60% 0.00% 4.40% 
5 95.60% 0.00% 4.40% 31 99.37% 0.63% 0.00% 57 98.11% 1.26% 0.63% 
6 94.34% 5.03% 0.63% 32 98.74% 1.26% 0.00% 58 98.11% 1.89% 0.00% 
7 96.86% 0.63% 2.52% 33 100.00% 0.00% 0.00% 59 98.11% 0.63% 1.26% 
8 98.74% 0.63% 0.63% 34 96.23% 0.63% 3.14% 60 96.86% 2.52% 0.63% 
9 99.37% 0.00% 0.63% 35 93.71% 2.52% 3.77% 61 96.23% 0.00% 3.77% 
10 99.37% 0.63% 0.00% 36 96.23% 0.63% 3.14% 62 97.48% 0.00% 2.52% 
11 100.00% 0.00% 0.00% 37 96.23% 0.63% 3.14% 63 98.74% 0.00% 1.26% 
12 77.36% 1.26% 21.38% 38 96.23% 0.63% 3.14% 64 98.11% 0.00% 1.89% 
13 99.37% 0.00% 0.63% 39 95.60% 1.26% 3.14% 65 96.86% 2.52% 0.63% 
14 99.37% 0.00% 0.63% 40 97.48% 0.00% 2.52% 66 98.11% 0.63% 1.26% 
15 100.00% 0.00% 0.00% 41 97.48% 0.00% 2.52% 67 98.11% 1.26% 0.63% 
16 94.97% 5.03% 0.00% 42 100.00% 0.00% 0.00% 68 97.48% 1.26% 1.26% 
17 99.37% 0.00% 0.63% 43 99.37% 0.00% 0.63% 69 98.74% 0.00% 1.26% 
18 97.48% 1.26% 1.26% 44 98.11% 1.26% 0.63% 70 96.86% 2.52% 0.63% 
19 99.37% 0.00% 0.63% 45 96.23% 2.52% 1.26% 71 98.11% 0.00% 1.89% 
20 99.37% 0.00% 0.63% 46 100.00% 0.00% 0.00% 72 96.23% 0.00% 3.77% 
21 100.00% 0.00% 0.00% 47 100.00% 0.00% 0.00% 73 98.11% 0.63% 1.26% 
22 100.00% 0.00% 0.00% 48 99.37% 0.63% 0.00% 74 98.74% 0.00% 1.26% 
23 96.86% 1.89% 1.26% 49 79.87% 1.89% 18.24% 75 98.11% 0.63% 1.26% 
24 100.00% 0.00% 0.00% 50 97.48% 2.52% 0.00% 76 98.11% 0.63% 1.26% 
25 100.00% 0.00% 0.00% 51 98.11% 1.89% 0.00% 77 98.74% 0.00% 1.26% 
26 98.11% 0.63% 1.26% 52 92.45% 3.14% 4.40% 78 98.74% 0.00% 1.26% 

aWindow index; bFamiliar route; cThinking route; dCramming route 
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Appendix B - The number of adopted hidden nodes 

Table B1. The number of adopted hidden nodes 
Wia V1b V2c V3d V4e Wi V1 V2 V3 V4 Wi V1 V2 V3 V4 

1 12 1 2 2 27 4 56 1 1 53 10 3 7 21 
2 72 7 2 2 28 99 15 1 1 54 1 1 1 1 
3 21 7 4 4 29 81 6 15 1 55 1 1 1 1 
4 54 9 63 30 30 87 9 1 1 56 286 18 21 21 
5 45 48 28 21 31 45 1 15 1 57 151 51 57 4 
6 22 46 4 2 32 9 3 15 1 58 4 42 48 1 
7 27 102 39 6 33 57 6 15 1 59 6 6 9 6 
8 54 33 7 4 34 77 1 15 15 60 4 6 4 4 
9 27 2 2 2 35 201 3 15 9 61 1 6 3 18 
10 36 1 2 1 36 9 1 15 15 62 6 1 1 12 
11 48 1 1 1 37 32 1 15 15 63 94 6 6 6 
12 51 63 102 102 38 23 18 15 15 64 6 12 9 9 
13 60 6 4 2 39 27 18 12 15 65 6 245 109 4 
14 69 3 2 2 40 9 39 15 12 66 6 1 1 1 
15 1 1 1 1 41 9 3 12 12 67 6 1 1 1 
16 76 48 197 1 42 1 1 1 1 68 6 1 115 3 
17 14 1 1 2 43 1 7 4 4 69 9 9 6 6 
18 78 4 4 4 44 96 3 9 3 70 18 3 3 3 
19 27 3 6 4 45 30 6 21 7 71 21 3 3 3 
20 6 3 3 3 46 7 1 1 1 72 21 3 12 12 
21 1 1 1 1 47 1 1 1 1 73 21 18 3 3 
22 27 42 1 1 48 1 60 1 1 74 21 3 3 6 
23 69 1 1 2 49 1 60 80 78 75 21 6 6 6 
24 30 1 1 1 50 1 120 3 1 76 9 6 6 6 
25 1 1 1 1 51 1 1 1 1 77 15 3 6 6 
26 6 15 9 6 52 273 37 15 21 78 18 3 4 6 

aWindow index; bMW-PO-100; cMW-LTS-0; dMW-LTS-100; eMW-LTS-500  
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Appendix C - The training time 

Table C1. The training time 
Wia V1b V2c V3d V4e Wi V1 V2 V3 V4 Wi V1 V2 V3 V4 

1 672.46 14.71 78.60 214.25 27 53.18 2411.46 55.42 164.16 53 2287.99 99.98 118.34 861.97 
2 5909.43 38.19 104.62 213.66 28 5955.66 911.81 56.05 164.70 54 40.69 21.85 47.98 195.54 
3 209.72 115.99 140.93 315.79 29 4135.71 275.33 194.52 165.19 55 42.00 22.45 50.05 196.14 
4 2054.24 346.61 1152.03 512.59 30 6204.83 552.18 54.70 163.66 56 19790.97 393.72 425.47 642.05 
5 1795.54 808.95 358.19 459.95 31 3246.61 53.50 261.43 163.84 57 8745.53 945.57 932.80 257.90 
6 508.86 449.73 143.91 256.80 32 1046.85 184.12 290.65 161.73 58 109.53 647.54 718.35 218.37 
7 1312.93 2619.47 539.39 336.97 33 2710.87 220.27 319.57 164.08 59 1270.42 588.74 263.40 453.25 
8 3360.70 520.48 88.62 225.70 34 4104.14 26.89 306.31 432.27 60 40.65 170.32 78.18 232.48 
9 1444.45 41.47 77.96 221.68 35 17492.62 233.66 515.27 691.64 61 40.47 65.66 93.26 405.30 
10 1160.07 11.86 65.15 183.92 36 919.65 30.16 389.00 497.47 62 968.40 14.56 48.41 320.51 
11 860.64 25.53 51.81 183.63 37 3196.84 29.76 420.48 533.76 63 2112.23 101.42 131.61 313.20 
12 1838.00 1357.84 2884.57 3150.11 38 2691.35 312.84 446.97 550.89 64 1193.85 118.01 102.99 253.02 
13 1337.79 38.24 80.44 220.42 39 1705.24 323.98 461.49 556.68 65 747.36 9912.40 7685.57 215.18 
14 2245.49 81.50 77.42 223.06 40 563.63 575.14 507.90 597.91 66 804.50 62.14 73.39 246.52 
15 43.75 12.34 48.14 192.85 41 612.80 164.64 367.21 684.63 67 855.21 36.56 73.02 202.04 
16 2894.16 1926.41 7500.54 211.68 42 35.31 10.37 45.92 174.10 68 873.06 52.26 7142.41 247.12 
17 717.73 14.38 49.78 223.76 43 37.63 55.73 76.31 213.34 69 894.25 323.60 77.31 193.49 
18 3994.10 51.83 90.96 261.05 44 3422.69 108.75 135.66 253.50 70 973.40 56.09 105.24 226.97 
19 1060.46 54.70 103.91 228.13 45 2182.99 199.80 264.74 245.56 71 551.95 90.03 172.64 324.39 
20 300.97 182.20 81.95 231.63 46 147.95 15.87 45.29 199.13 72 299.88 91.76 189.34 357.82 
21 38.89 12.31 51.68 192.31 47 42.88 12.75 46.33 196.39 73 386.00 167.64 128.58 268.94 
22 1244.70 1702.86 69.43 193.97 48 39.42 2001.34 46.01 197.44 74 454.78 93.99 149.30 245.42 
23 3350.21 63.24 91.06 253.68 49 37.91 2591.34 2328.15 2601.12 75 636.12 280.76 299.28 209.93 
24 1993.89 12.01 49.97 184.40 50 39.34 6076.16 321.97 230.95 76 378.94 269.26 84.28 216.81 
25 49.80 15.53 49.45 168.62 51 41.14 17.65 55.37 209.84 77 647.40 250.76 85.24 218.09 
26 85.41 542.62 102.28 209.01 52 17307.20 365.15 168.92 912.26 78 842.42 66.03 114.40 235.07 

aWindow index; bMW-PO-100; cMW-LTS-0; dMW-LTS-100; eMW-LTS-500 

(Units: second) 
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Appendix D - The number of hidden nodes deleted by reorganizing module 

Table D1. The reorganizing module executions 
Wia V1b V2c V3d V4e Wi V1 V2 V3 V4 Wi V1 V2 V3 V4 

1 1 0 2 2 27 5 28 8 5 53 275 37 14 21 
2 15 0 6 3 28 16 59 0 0 54 9 2 6 20 
3 72 6 4 7 29 99 18 1 0 55 0 0 0 0 
4 21 22 7 7 30 81 9 14 0 56 24 1 1 1 
5 54 12 62 30 31 87 14 1 0 57 300 21 21 20 
6 44 47 30 22 32 45 4 15 0 58 150 54 57 3 
7 22 49 13 8 33 12 3 15 0 59 4 42 48 1 
8 36 102 38 5 34 58 8 15 1 60 5 6 8 5 
9 54 34 8 5 35 80 4 24 24 61 3 6 4 4 
10 27 1 3 1 36 204 5 15 9 62 1 5 2 18 
11 36 0 1 0 37 10 3 15 15 63 5 1 1 12 
12 54 4 1 1 38 36 4 15 15 64 94 6 6 6 
13 51 63 101 103 39 26 18 15 15 65 6 13 8 8 
14 60 6 5 3 40 30 21 12 15 66 6 250 111 9 
15 68 2 1 1 41 12 42 15 12 67 6 3 3 3 
16 0 1 2 0 42 8 2 11 11 68 6 6 0 4 
17 86 47 196 2 43 0 0 0 0 69 6 1 115 3 
18 23 0 0 4 44 28 7 4 4 70 9 9 6 6 
19 87 4 4 3 45 99 3 9 2 71 18 6 3 9 
20 27 3 6 4 46 32 5 20 6 72 21 6 9 9 
21 5 2 2 2 47 6 0 0 0 73 21 6 15 15 
22 7 1 0 0 48 0 1 0 0 74 21 21 9 3 
23 30 41 0 5 49 0 63 2 1 75 21 3 3 6 
24 78 0 0 1 50 0 63 80 77 76 21 6 6 6 
25 29 0 0 0 51 0 119 2 0 77 9 6 6 6 
26 1 1 1 1 52 25 0 1 1 78 15 9 8 6 

aWindow index; bMW-PO-100; cMW-LTS-0; dMW-LTS-100; eMW-LTS-500   


