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中文摘要

本文給出了 n 階 2 維漢諾圖（又稱漢諾塔圖、河內圖）上哈密頓

路徑的數量，其漸進表現是 h(n) ∼ 25×16n

624
。這類漢諾圖上的哈密頓路

徑總數量與起點在最上面的顶點的哈密頓路徑數量的對數的比值漸進

至 2。同時，當這類漢諾圖上三個方向的平行邊分別被 x, y, z 這三個數

加權後，我們也推導出了它們的哈密頓路徑的加權和，其漸進表現為

h′(n) ∼ 25w
16×27×13

16n(xyz)3
n−1
，其中 w =

(x+ y + z)2

xyz
。

關鍵字：漢諾圖、哈密頓路徑、漸進表現
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Abstract

We’ve derived the number of Hamiltonian walks on the twodimensional

Hanoi graph at stage n, whose asymptotic behaviour is given by h(n) ∼ 25×16n

624
.

And the asymptotic behaviour the logarithmic ratio of the number of Hamiltonian

walks on these Hanoi graphs with that one end at the topmost vertex is given

by 2. When the parallel edges in the three directions on these Hanoi graphs are

weighted by three numbers, x, y, z, the weighted sum of their Hamiltonian paths

is also derived by us, and the asymptotic behaviour of it is given by h′(n) ∼
25w

16×27×13
16n(xyz)3

n−1 , in which w =
(x+ y + z)2

xyz
.

Key word: Hanoi graph, Hamiltonian walk, asymptotic behaviour
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Chapter 1

Introduction

1.1 Hanoi graphs

Hanoi graph, a kind of simple fractal lattice, are undirected graphs whose vertices represent

the possible states of the Tower of Hanoi puzzle [7], its edges represent the allowable moves

between pairs of states. The puzzle consists of a set of disks of different sizes, which are placed

on a set of fixed towers in increasing order of size. The Hanoi graph for the puzzle with n disks

on the k towers is denoted by Hn
k [5] [6]. Each state of the puzzle is determined by choosing a

tower for each disk, so the graph has kn vertices [6].

In the Tower of Hanoi puzzle denoted by Hn
k , each state of the puzzle is determined by

choosing a tower for each disk. So this graph has kn vertices [6].

In the movement of this puzzle, the smallest disk on each tower could be moved to an

unoccupied tower or a tower with a larger smallest disk. If there are i unoccupied towers, the

number of allowable moves is

(
k − i

2

)
+ i(k − i) =

(
k

2

)
−

(
i

2

)
, i = 0, 1, · · · , k − 1,

which there are
(
k
2

)∑i
j=o

(
i
j

)
(i− j)n(−1)j vertices on behalf of it. Whenever, in Hn

k , there are(
k
2

)∑i
j=o

(
i
j

)
(i− j)n(−1)j vertices have degree

(
k
2

)
−
(
i
2

)
.

In other hand, there are
(
k
2

)
kn−i(k − 2)i−1 edges which is on behalf of moving the ith

1
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smallest disk. So,

e (Hn
k ) =

n∑
i=1

(
k

2

)
kn−i(k − 2)i−1 =

1

2

(
k

2

)
(kn − (k − 2)n) .

Therefore, we have a combinatorial identity which is

1

2

k−1∑
i=0

((
k

2

)
−

(
i

2

))(
k

2

) i∑
j=o

(
i

j

)
(i− j)n(−1)j =

1

2

(
k

2

)
(kn − (k − 2)n) .

(a) H1
3 (b) H2

3

(c) H3
3

Figure 1.1: Hanoi graphs with 3 towers

1.2 Hamiltonian walk

A Hamiltonian walk is defined to be a walk on a graph that visits each vertex once and

only once [3], is also a special spanning tree. In general, problems about Hamiltonian walks is

an important issue in graph theory. It’s difficult to determine whether such a walk is in general

2
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graphs. People have made some processing in some especially graphs, such as the Sierpinski

gaskets [2] [3] and fractal lattices [1] [4] [8].

In this paper, we will only discuss the Hamiltonian walks inHn
3 . In chapter 2, we will show

the number of Hamiltonian walks given by 3 for n=1 and

h(n) =
25

624
16n +

1

3
4n +

3

13
3n +

1

3
(1.2.1)

for n ≥ 2.

The asymptotic behaviour of it is

h(n) ∼ 25× 16n

624
, (1.2.2)

while ′ ∼′ is defined as

f(n) ∼ g(n) ⇔ lim
x→+∞

f(n)

g(n)
= 1. (1.2.3)

No more than that, we’ve also obtained that the ratio of logarithms for the number of

Hamiltonian walks on the Hanoi graph with one end at the topmost vertex is given by 2.

In chapter 3, we will derive the weighted sum of Hamiltonian walks with edges in three

directions is weighted by x, y, z, and got the asymptotic behaviour as

h′(n) ∼ 25w

16× 27× 13
16n(xyz)3

n−1

. (1.2.4)

in which w =
(x+ y + z)2

xyz
.

3
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Chapter 2

Hamiltonian paths in weightless Hanoi

graph

In this chapter, we will count the number of Hamiltonian paths in Hanoi graphs without

being weighted.

2.1 Preliminaries

In this section, we will do some relevant definitions at first.

To count the number of Hamiltonian walks onHn
3 , let us define some quantities as follows.

f1(n) f2(n) f2(n) f3(n) f3(n) f3(n) h0(n) g1(n)

g2(n)

Figure 2.1: Illustration for the quantities f1(n),f2(n),f3(n),g1(n),g2(n) and h0(n). f2(n) is the
numbers of both the second graph and the third one.

Definition 2.1.1. Consider the Hanoi graph Hn
3 for a puzzle with n disks on 3 towers.

(i) Define h(n) as the number of Hamiltonian walks on Hn
3 .

(ii) Define h0(n) as the number of Hamiltonian walks onHn
3 with one end at the topmost vertex.

(iii) Define f1(n) as the number of Hamiltonian walks on Hn
3 with one end at the rightmost

4
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vertex, another one at the leftmost vertex.

(iv) Define f2(n) as the number of Hamiltonian walks onHn
3 with one end at the topmost vertex,

another one not at rightmost vertex nor left one.

(v) Define f3(n) as the number of Hamiltonian walks on Hn
3 with no end at any of the outmost

vertices.

In figure 2.1, An open circle denoting an outmost vertex corresponds to an end of a walk;

a solid one corresponds it to be a middle point; if a vertex is not denoted by any of them, that

means any of these would be done. In addition, two outmost vertices connected by a solid line

belong to a same path without another outmost vertex; if an outmost vertex is not connected with

any others, then it’s not connected to other outmost vertices; if two outmost vertices connected

by a solid line, that means they are connected but the another outmost vertex may in the middle

of them.

According to the definitions of these functions, we can find

h0(n) = 2f1(n) + f2(n), (2.1.1)

and

h(n) = 3f1(n) + 3f2(n) + f3(n). (2.1.2)

But it’s not enough to get the value of f1(n), f2(n) and f3(n). To calculate them, we need

following definitions.

Definition 2.1.2. Consider the Hanoi graph Hn
3 for a puzzle with n disks on 3 towers.

(i) Define g1(n) as the number of spanning subgraphs with two walks such that the topmost

vertex be the end of one walk and the other two outmost vertices be ends of another walk onHn
3 .

(ii) Define g2(n) as the number of spanning subgraphs with two walks such that the topmost

vertex be the end of one walk and the other two outmost vertices belong to another walk, and

only the right one be an end.

Then, we can easily get the initial values as

f1(1) = g1(1) = 1, g2(1) = f2(1) = f3(1) = 0 and g1(2) = 5.

5



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101772

=

Figure 2.2: Illustration for the expression of f1(n+ 1)

+= + +

Figure 2.3: Illustration for the expression of f2(n+ 1)

2.2 Building recursions to count the number of Hamiltonian

walks

In this section, we will enumerate the number of Hamiltonian walks h(n) and show the

relationships between these number by building some recursions.

Consider the quantity f1(n+ 1), according to the figure 2.2, we have

f1(n+ 1) = f 3
1 (n) = f 3n

1 (1) = 1 (2.2.1)

and get

h0(n) = f2(n) + 2 (2.2.2)

by referencing (2.1.1).

Consider the quantity f2(n+1), which has two equivalence cases. According to the figure

(2.3), we have

f2(n+ 1) = 2(f 2
1 (n)f2(n) + f 3

1 (n) + f 2
1 (n)g1(n))

= 2(f2(n) + 1 + g1(n)) = 2(h0(n)− 1 + g1(n))

⇒ h0(n+ 1)− 2 = 2(h0(n)− 1 + g1(n))

⇒ h0(n+ 1) = 2(h0(n) + g1(n)).

(2.2.3)

Noticed that the first graph on the right side at the figure (2.4) show the states of walks that

one end at the rightmost vertex in the topper subgraph, another one in the topper subgraph too,

but not the leftmost vertex. Otherwise the other vertices on the topper subgraph won’t be on this

Hamiltonian walk.

6
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+= +

Figure 2.4: Illustration for the expression of f3(n + 1). In the third sense,both of the left and
right secondlargest triangle have Hamiltonian walks with one end at the topmost vertex, but
both the same sides outmost vertices are not the another end.

+= + +

Figure 2.5: Illustration for the expression of g1(n+ 1)

Finally, consider the quantities f3(n+1), g1(n+1) and g2(n+1), according to the figures

(2.4), (2.5) and (2.6), we have the following recursions as

f3(n+ 1) = 3
(
2f 2

1 (n)g2(n) + (f1(n))
2(h0(n)− f1(n))

2
)

= 3
(
2g2(n) + (h0(n)− 1)2

)
,

(2.2.4)

g1(n+ 1) = 3f 2
1 (n)g1(n) + f 2

1 (n)h0(n) = 3g1(n) + h0(n), (2.2.5)

and

g2(n+ 1)

=f1(n)g1(n)(h0(n)− 1) + 2f1(n)g
2
1(n) + 2f 2

1 (n)(g1(n) + g2(n))

+f1(n)h0(n)(h0(n)− 1) + f1(n)g
2
1(n) + f 2

1 (n)g2(n) + f1(n)g1(n)(h0(n)− 1)

=h2
0(n)− h0(n) + 2h0(n)g1(n) + 3g21(n) + 3g2(n).

(2.2.6)

+= + +

++ + + +

Figure 2.6: Illustration for the expression of g2(n+ 1)

7
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In summary, we have a set of recursions that is



h0(n+ 1) = 2(h0(n) + g1(n))

f3(n+ 1) = 6g2(n) + 3(h0(n)− 1)2

g1(n+ 1) = 3g1(n) + h0(n)

g2(n+ 1) = h2
0(n)− h0(n) + 2h0(n)g1(n) + 3g21(n) + 3g2(n).

(2.2.7)

2.3 Number of Hamiltonian walks

In this section, we will solve the recursions in the previous section and get the number of

Hamiltonian walks. Consider the recursions (2.2.3) and (2.2.5), we have

g1(n+ 2)− 5g1(n+ 1) + 4g1(n) = 0. (2.3.1)

By the definition of g1(n), we can easily get g1(1) = 1 and g1(2) = 5. So, the solution of

the recursion (2.3.1) can be solved as

g1(n) =
1

3
(4n − 1). (2.3.2)

At the same time, we can get the solution of h0(n) through (2.2.5).

Theorem 2.3.1. The number of Hamiltonian walks onHn
3 with one end at the topmost vertex is

given by

h0(n) = g1(n+ 1)− 3g1(n) =
1

3
(4n + 2). (2.3.3)

Hence, we have

f2(n) = h0(n)− 2 =
1

3
(4n − 4). (2.3.4)

Therefore, we can also get a recursion of g2(n) that is

g2(n+ 1) = h2
0(n)− h0(n) + 2h0(n)g1(n) + 3g21(n) + 3g2(n)

=
2

3
16n − 1

3
4n − 1

3
+ 3g2(n).

(2.3.5)

Such that
g2(n+ 1)

3n+1
− g2(n)

3n
=

2

9

(
16

3

)n

− 1

9

(
4

3

)n

− 1

9

(
1

3

)n

. (2.3.6)

8
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So, we have

g2(n) =
2

39
16n − 1

3
4n +

3

26
3n +

1

6
, (2.3.7)

because of g2(1) = 0, which obtained

f3(n+ 1) = 3(2g2(n) + (h0(n)− 1)2)

=
25

39
16n − 8

3
4n +

9

13
3n +

4

3
.

(2.3.8)

So, we can get the solution of f3(n) as the following theorem.

Theorem 2.3.2. The number of Hamiltonian walks on Hn
3 with no end at any of the outmost

vertices is given by 0 for n=1 and

f3(n) =
25

624
16n − 2

3
4n +

3

13
3n +

4

3
(2.3.9)

for n ≥ 2.

Since (2.1.2), we have the following theorem to show the number of Hamiltonian walks on

Hn
3 .

Theorem 2.3.3. The number of Hamiltonian walks on Hn
3 is 3 for n=1 and

h(n) =
25

624
16n +

1

3
4n +

3

13
3n +

1

3
(2.3.10)

for n ≥ 2.

Counterpart to this conclusion, the number of Hamiltonian walks on the Sierpinski gasket

had been derived by ShuChiuan Chang and LungChi Chen [3].

Remark 2.3.4. If we defined the number of Hamiltonian walks on the twodimensional

Sierpinski gasket SG(n) to be HSG(n), then it is 12 for n = 1 and

HSG(n) =
(2
√
3)2

6

{
(
52 × 72 × 172

212 × 35 × 13
)16n + (

7× 13× 17

23 × 35
)4n

+(
11× 257

23 × 35 × 13
)3n +

4391

23 × 35
− (

1

24 × 35
)δn2

} (2.3.11)

for n ≥ 2 where δij is the Kronecker delta function.

9
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Considering the asymptotic behaviour when n is large, let us use the symbol f(n) ∼ g(n)

to denote limn→∞f(n)/g(n) = 1.

Theorem 2.3.5. When n is large, the asymptotic behaviour of the number of Hamiltonian walks

on Hn
3 is given by

h(n) ∼ 25× 16n

624
. (2.3.12)

The logarithmic ratio of the number of Hamiltonian walks on the Hanoi graph wit that one

end at the topmost vertex, when n is large, is given by

ln(h(n))
ln(h0(n))

∼
ln( 25

624
) + 2n ln(4)

ln(1
3
) + n ln(4)

∼ 2. (2.3.13)

10
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Chapter 3

Hamiltonian paths in weighted Hanoi

graph

In last chapter, we’ve counted the number of Hamiltonian paths in a Hanoi graph without

being weighted as (2.3.10). In this chapter, we will calculate the weighted sum of Hamiltonian

paths in a weighted Hanoi graph whose edges in three directions is weighted by x, y, z.

3.1 Preliminaries

Definition 3.1.1. Similarly as Hn
3 , let H ′n

3 be a weighted Hanoi graph for a puzzle with n disks

on 3 towers which is weighted on edges as follows.

(i) Weighted as x if the edge on H ′n
3 which is parallel to the base of H ′n

3 .

(ii) Weighted as y if the edge on H ′n
3 which is parallel to the right leg of H ′n

3 .

(iii) Weighted as z if the edge on H ′n
3 which is parallel to the left leg of H ′n

3 .

If the weight of each Hamiltonian path is defined as the production of the weights of its

edges, to calculate the weighted sum of Hamiltonian walks onH ′n
3 , let us define some quantities

as follows.

Definition 3.1.2. Consider the weighted Hanoi graphH ′n
3 for a puzzle with n disks on 3 towers.

(i) Define h′(n) as the weighted sum of Hamiltonian walks on H ′n
3 .

(ii) Define h′
0(0, n) as the weighted sum of Hamiltonian walks on H ′n

3 with one end at the the

topmost vertex.

(iii) Define h′
0(1, n) as the weighted sum of Hamiltonian walks on H ′n

3 with one end at the the

11
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x xx

y

y

yy

z

z

z z

Figure 3.1: The weighted Hanoi graph, H ′2
3

f ′
1(0, n) f ′

2(0, n) f ′
2(0, n) f ′

3(0, n) h′
0(0, n) g′1(0, n) g

′
2(0, α, n)g

′
2(0, β, n)

f ′
1(1, n) f ′

2(1, n) f ′
2(1, n) f ′

3(1, n) h′
0(1, n) g′1(1, n) g

′
2(1, α, n)g

′
2(1, β, n)

f ′
1(2, n) f ′

2(2, n) f ′
2(2, n) f ′

3(2, n) h′
0(2, n) g′1(2, n) g

′
2(2, α, n)g

′
2(2, β, n)

Figure 3.2: Illustration for the quantities f ′
1(i, n),f ′

2(i, n),f ′
3(i, n),g′1(i, n)),g′2(i, α, n)),g′2(i, β, n)

and h′
0(i, n) for i = 0, 1, 2. f ′

2(0, n) is the weighted sum of both the second graph and the third
one, which similarly as f ′

2(1, n) and f ′
2(2, n).

12
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leftmost vertex.

(iv) Define h′
0(2, n) as the weighted sum of Hamiltonian walks on H ′n

3 with one end at the the

rightmost vertex.

(v) Define f ′
1(n) as the weighted sum of Hamiltonian walks onH ′n

3 with both two ends at outmost

vertices.

(vi) Define f ′
1(0, n) as the weighted sum of Hamiltonian walks on H ′n

3 with one end at the

rightmost vertex, another one at the leftmost vertex.

(vii) Define f ′
1(1, n) as the weighted sum of Hamiltonian walks on H ′n

3 with one end at the

rightmost vertex, another one at the topmost vertex.

(viii) Define f ′
1(2, n) as the weighted sum of Hamiltonian walks on H ′n

3 with one end at the

lefttmost vertex, another one at the topmost vertex.

(ix) Define f ′
2(n) as the weighted sum of Hamiltonian walks onH ′n

3 with one end at an outmost

vertex, another one not at any outmost vertex.

(x) Define f ′
2(0, n) as the weighted sum of Hamiltonian walks onH ′n

3 with one end at the topmost

vertex, another one not at rightmost vertex nor left one.

(xi) Define f ′
2(1, n) as the weighted sum of Hamiltonian walks onH ′n

3 with one end at the leftmost

vertex, another one not at other outmost vertices.

(xii) Define f ′
2(2, n) as the weighted sum of Hamiltonian walks on H ′n

3 with one end at the

rightmost vertex, another one not at others.

(xiii) Define f ′
3(n) as the weighted sum of Hamiltonian walks on H ′n

3 with no end at any of the

outmost vertices.

(xiv) Define f ′
3(0, n) as the weighted sum of Hamiltonian walks on H ′n

3 with no end at any of

the outmost vertices. And the path on leftmost vertex to the rightmost one is path thought of the

topmost one.

(xv) Define f ′
3(1, n) as the weighted sum of Hamiltonian walks on H ′n

3 with no end at any of

the outmost vertices. And the path on topmost vertex to the leftmost one is path thought of the

leftmost one.

(xvi) Define f ′
3(2, n) as the weighted sum of Hamiltonian walks on H ′n

3 with no end at any of

the outmost vertices. And the path on topmost vertex to the rightmost one is path thought of the

rightmost one.

In figure 3.2, An open circle denoting an outmost vertex corresponds to an end of a walk;

13
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a solid one corresponds it to be a middle point; if a vertex is not denoted by any of them, that

means any of these would be done. In addition, two outmost vertices connected by a solid line

belong to a same path without another outmost vertex; if an outmost vertex is not connected with

any others, then it’s not connected to other outmost vertices; if two outmost vertices connected

by a solid line, that means they are connected but the another outmost vertex may in the middle

of them.

These definitions follow

h′(n) = f ′
1(n) + f ′

2(n) + f ′
3(n), (3.1.1)

f ′
1(n) = f ′

1(0, n) + f ′
1(1, n) + f ′

1(2, n), (3.1.2)

f ′
2(n) = f ′

2(0, n) + f ′
2(1, n) + f ′

2(2, n), (3.1.3)

f ′
3(n) = f ′

3(0, n) + f ′
3(1, n) + f ′

3(2, n) (3.1.4)

And 
h′
0(0, n) = f ′

1(1, n) + f ′
1(2, n) + f ′

2(0, n)

h′
0(1, n) = f ′

1(0, n) + f ′
1(2, n) + f ′

2(1, n)

h′
0(2, n) = f ′

1(0, n) + f ′
1(1, n) + f ′

2(2, n).

(3.1.5)

In addition, for the convenience of calculation, we define a function h′
0(n) as

h′
0(n) := h′

0(0, n) + h′
0(1, n) + h′

0(2, n) (3.1.6)

To get the solutions of f ′
1(n), f ′

2(n) and f ′
3(n), we need following definitions.

Definition 3.1.3. Consider the weighted Hanoi graphH ′n
3 for a puzzle with n disks on 3 towers.

(i) Define g′1(n) as the weighted sum of spanning subgraphs with two walks such that an outmost

vertex be the end of one walk and the other two outmost vertices be ends of another walk on

H ′n
3 .

(ii) Define g′1(0, n) as the weighted sum of spanning subgraphs with two walks such that the

14
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topmost vertex be the end of one walk and the other two outmost vertices be ends of another

walk on H ′n
3 .

(iii) Define g′1(1, n) as the weighted sum of spanning subgraphs with two walks such that the

leftmost vertex be the end of one walk and the other two outmost vertices be ends of another

walk on H ′n
3 .

(iv) Define g′1(2, n) as the weighted sum of spanning subgraphs with two walks such that the

rightmost vertex be the end of one walk and the other two outmost vertices be ends of another

walk on H ′n
3 .

(v) Define g′2(n) as the weighted sum of spanning subgraphs with two walks such that an outmost

vertex be the end of one walk and the other two outmost vertices belong to another walk, and

only one be an end.

(vi) Define g′2(0, n) as the weighted sum of spanning subgraphs with the topmost is not the end

of either walk in the cases of g′2(n).

(vii) Define g′2(0, α, n) as the weighted sum of spanning subgraphs connecting the leftmost vertex

and topmost vertex in the cases of g′2(0, n).

(viii) Define g′2(0, β, n) as the weighted sum of spanning subgraphs connecting the rightmost

vertex and topmost vertex in the cases of g′2(0, n).

(ix) Define g′2(1, n) as the weighted sum of spanning subgraphs with the leftmost is not the end

of either walk in the cases of g′2(n).

(x) Define g′2(1, α, n) as the weighted sum of spanning subgraphs connecting the leftmost vertex

and rightmost vertex in the cases of g′2(2, n).

(xi) Define g′2(1, β, n) as the weighted sum of spanning subgraphs connecting the topmost vertex

and rightmost vertex in the cases of g′2(2, n).

(xii) Define g′2(2, n) as the weighted sum of spanning subgraphs with the rightmost is not the

end of either walk in the cases of g′2(n).

(xiii) Define g′2(2, α, n) as the weighted sum of spanning subgraphs connecting the rightmost

vertex and topmost vertex in the cases of g′2(1, n).

(xiv) Define g′2(2, β, n) as the weighted sum of spanning subgraphs connecting the rightmost

vertex and leftmost vertex in the cases of g′2(1, n).

It follows

g′1(n) = g′1(0, n) + g′1(1, n) + g′1(2, n) (3.1.7)

15
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=

Figure 3.3: Illustration for the expression of f ′
1(0, n+ 1)

and 

g′2(n) = g′2(0, n) + g′2(1, n) + g′2(2, n)

g′2(0, n) = g′2(0, α, n) + g′2(0, β, n)

g′2(1, n) = g′2(1, α, n) + g′2(1, β, n)

g′2(2, n) = g′2(2, α, n) + g′2(2, β, n),

(3.1.8)

while we can easily get 
f ′
1(0, 1) = yz

f ′
1(1, 1) = xz

f ′
1(2, 1) = xy,

(3.1.9)


g′1(0, 1) = x

g′1(1, 1) = y

g′1(2, 1) = z,

(3.1.10)

g′2(1) = f ′
2(1) = f ′

3(1) = 0

and 
g′1(0, 2) = 3x3y2z2 + x2y3z2 + x2y2z3

g′1(1, 2) = x3y2z2 + 3x2y3z2 + x2y2z3

g′1(2, 2) = x3y2z2 + x2y3z2 + 3x2y2z3

(3.1.11)

as the initial values.

3.2 Building recursions to calculate the weighted sum of

Hamiltonian walks

In this section, wewill enumerate the relationship between these variables by building some

recursions.

16
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Consider the quantities f ′
1(i, n+ 1), i = 0, 1, 2, according to the figure 3.3, we have



f ′
1(0, n+ 1) = yz

2∏
i=0

f ′
1(i, n)

f ′
1(1, n+ 1) = xz

2∏
i=0

f ′
1(i, n)

f ′
1(2, n+ 1) = xy

2∏
i=0

f ′
1(i, n).

(3.2.1)

So we can get
2∏

i=0

f ′
1(i, n+ 1) = x2y2z2

2∏
i=0

(f ′
1(i, n))

3

which follows
2∏

i=0

f ′
1(i, n) = (xyz)3

n−1

with 

f ′
1(0, n) =

1

x
(xyz)3

n−1

f ′
1(1, n) =

1

y
(xyz)3

n−1

f ′
1(2, n) =

1

z
(xyz)3

n−1

f ′
1(n) = (

1

x
+

1

y
+

1

z
)(xyz)3

n−1

.

(3.2.2)

In order to facilitate calculate, let F̃ (n) := (xyz)−3n−1
F (n) for all function F (n). So that

we have 

f̃ ′
1(0, n) =

1

x

f̃ ′
1(1, n) =

1

y

f̃ ′
1(2, n) =

1

z

f̃ ′
1(n) =

1

x
+

1

y
+

1

z
.

(3.2.3)

Consider the quantities f ′
2(i, n + 1), i = 0, 1, 2, which has two symmetrical equivalence,

17
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+= + +

+= + +

Figure 3.4: Illustration for the expression of f ′
2(1, n+ 1)

according to the figure 3.4, we have

f ′
2(1, n+ 1) =xyf ′

1(0, n)f
′
1(2, n)(f

′
1(0, n) + f ′

2(2, n))

+yzf ′
1(0, n)f

′
1(2, n)(f

′
1(2, n) + f ′

2(0, n))

+xyzf ′
1(0, n)f

′
1(2, n)(g

′
1(0, n) + g′1(2, n))

(3.2.4)

as similar as
f ′
2(0, n+ 1) =xzf ′

1(1, n)f
′
1(2, n)(f

′
1(2, n) + f ′

2(1, n))

+xyf ′
1(1, n)f

′
1(2, n)(f

′
1(1, n) + f ′

2(2, n))

+xyzf ′
1(1, n)f

′
1(2, n)(g

′
1(1, n) + g′1(2, n)),

(3.2.5)

and
f ′
2(2, n+ 1) =yzf ′

1(0, n)f
′
1(1, n)(f

′
1(1, n) + f ′

2(0, n))

+xzf ′
1(0, n)f

′
1(1, n)(f

′
1(0, n) + f ′

2(1, n))

+xyzf ′
1(0, n)f

′
1(1, n)(g

′
1(0, n) + g′1(1, n)),

(3.2.6)

while we can get some recursions of quantities h′
0(i, n + 1), i = 0, 1, 2 by referencing (3.1.5)

and (3.2.3) as 

1

x
h̃′
0(0, n+ 1) =

1

y
h̃′
0(1, n) +

1

z
h̃′
0(2, n) + g̃′1(1, n) + g̃′1(2, n)

1

y
h̃′
0(1, n+ 1) =

1

z
h̃′
0(2, n) +

1

x
h̃′
0(0, n) + g̃′1(0, n) + g̃′1(2, n)

1

z
h̃′
0(2, n+ 1) =

1

x
h̃′
0(0, n) +

1

y
h̃′
0(1, n) + g̃′1(0, n) + g̃′1(1, n).

(3.2.7)

18
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+= +

Figure 3.5: Illustration for the expression of f ′
3(0, n+ 1). In the third sence,both of the left and

right secondlargest triangle have Hamiltonian walks with one end at the topmost vertex, but
both the same sides outmost vertices are not the another end.

+= + +

Figure 3.6: Illustration for the expression of g′1(0, n+ 1)

Consider the quantities f ′
3(i, n+ 1), i = 0, 1, 2, according to the figure 3.5, we have

f ′
3(0, n+ 1) = xyzf ′

1(0, n)f
′
1(2, n)g

′
2(1, β, n) + xyzf ′

1(0, n)f
′
1(1, n)g

′
2(2, α, n)

+ yzf ′
1(0, n)(h

′
0(0, n)− f ′

1(1, n))(h
′
0(0, n)− f ′

1(2, n))

⇒ f̃ ′
3(0, n+ 1) =

1

x
(yh̃′

0(0, n)− 1)(zh̃′
0(0, n)− 1) + yg̃′2(1, β, n) + zg̃′2(2, α, n).

(3.2.8)

So, we have the recursions as the rotation types of (3.2.8) as


f̃ ′
3(0, n+ 1) =

1

x
(yh̃′

0(0, n)− 1)(zh̃′
0(0, n)− 1) + yg̃′2(1, β, n) + zg̃′2(2, α, n)

f̃ ′
3(1, n+ 1) =

1

y
(xh̃′

0(1, n)− 1)(zh̃′
0(1, n)− 1) + xg̃′2(0, α, n) + zg̃′2(2, β, n)

f̃ ′
3(2, n+ 1) =

1

z
(xh̃′

0(2, n)− 1)(yh̃′
0(2, n)− 1) + xg̃′2(0, β, n) + yg̃′2(1, α, n).

(3.2.9)

Let

g̃′3(n) = xg̃′2(0, n) + yg̃′2(1, n) + zg̃′2(2, n),

we can get
f̃ ′
3(n+ 1) =

yz

x
(h̃′

0(0, n))
2 +

xz

y
(h̃′

0(1, n))
2 +

xy

z
(h̃′

0(2, n))
2

− y + z

x
h̃′
0(0, n)−

x+ z

y
h̃′
0(1, n)−

x+ y

z
h̃′
0(2, n)

+
1

x
+

1

y
+

1

z
+ g̃′3(n).

(3.2.10)

Now, we have got the recursions of f̃ ′
i(j, n + 1), i = 1, 2, 3 and j = 0, 1, 2. To get the

19



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101772

+= + +

++ + + +

Figure 3.7: Illustration for the expression of g′2(1, α, n+ 1)

solutions of them, we need some recursions of g̃′1(i, n+ 1)andg̃′2(i, j, n+ 1), i = 0, 1, 2andj =

α, β.

Consider the quantities g′1(i, n+ 1), i = 0, 1, 2, according to the figure 3.6, we have

g′1(0, n+ 1) = xzf ′
1(0, n)f

′
1(2, n)g

′
1(0, n) + xyf ′

1(0, n)f
′
1(1, n)g

′
1(0, n)

+ x(f ′
1(0, n))

2h′
0(0, n) + yzf ′

1(1, n)f
′
1(2, n)g

′
1(0, n)

⇒ g̃′1(0, n+ 1) = 3g̃′1(0, n) +
1

x
h̃′
0(0, n).

(3.2.11)

E.g. 
g̃′1(0, n+ 1) = 3g̃′1(0, n) +

1

x
h̃′
0(0, n)

g̃′1(1, n+ 1) = 3g̃′1(1, n) +
1

y
h̃′
0(1, n)

g̃′1(2, n+ 1) = 3g̃′1(2, n) +
1

z
h̃′
0(2, n).

(3.2.12)

Consider the quantity g′2(i, j, n + 1), i = 0, 1, 2, j = α, β, according to the figure 3.7,

20
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we have

g′2(1, α, n+ 1) =yzf ′
1(1, n)g

′
1(0, n)(h

′
0(0, n)− f ′

1(2, n))

+xyzf ′
1(1, n)g

′
1(0, n)g

′
1(1, n) + xyzf ′

1(1, n)(g
′
1(0, n))

2

+xzf ′
1(0, n)f

′
1(1, n)(g

′
2(2, n) + g′1(1, n) + g′1(0, n))

+xf ′
1(0, n)h

′
0(0, n)(h

′
0(2, n)− f ′

1(0, n)) + xyzf ′
1(1, n)g

′
1(0, n)g

′
1(1, n)

+xzf ′
1(0, n)f

′
1(2, n)g

′
2(1, α, n) + xyf ′

1(1, n)g
′
1(0, n)(h

′
0(2, n)− f ′

1(0, n))

⇒ yg̃′2(1, α, n+ 1) =yg̃′2(1, α, n) + zg̃′2(2, n) + zg̃′1(1, n)− yg̃′1(0, n)

+2xyzg̃′1(0, n)g̃
′
1(1, n) + xyz(g̃′1(0, n))

2 + xyg̃′1(0, n)h̃
′
0(2, n)

+yzg̃′1(0, n)h̃
′
0(0, n) + yh̃′

0(0, n)h̃
′
0(2, n)−

y

x
h̃′
0(0, n).

(3.2.13)

21



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202101772

E.g.

xg̃′2(0, α, n+ 1) =xg̃′2(0, α, n) + yg̃′2(1, n) + yg̃′1(0, n)− xg̃′1(2, n)

+2xyzg̃′1(0, n)g̃
′
1(2, n) + xyz(g̃′1(2, n))

2 + xzg̃′1(2, n)h̃
′
0(1, n)

+xyg̃′1(2, n)h̃
′
0(2, n) + xh̃′

0(1, n)h̃
′
0(2, n)−

x

z
h̃′
0(2, n)

xg̃′2(0, β, n+ 1) =xg̃′2(0, β, n) + zg̃′2(2, n) + zg̃′1(0, n)− xg̃′1(1, n)

+2xyzg̃′1(0, n)g̃
′
1(1, n) + xyz(g̃′1(1, n))

2 + xyg̃′1(1, n)h̃
′
0(2, n)

+xzg̃′1(1, n)h̃
′
0(1, n) + xh̃′

0(1, n)h̃
′
0(2, n)−

x

y
h̃′
0(1, n)

yg̃′2(1, α, n+ 1) =yg̃′2(1, α, n) + zg̃′2(2, n) + zg̃′1(1, n)− yg̃′1(0, n)

+2xyzg̃′1(0, n)g̃
′
1(1, n) + xyz(g̃′1(0, n))

2 + xyg̃′1(0, n)h̃
′
0(2, n)

+yzg̃′1(0, n)h̃
′
0(0, n) + yh̃′

0(0, n)h̃
′
0(2, n)−

y

x
h̃′
0(0, n)

yg̃′2(1, β, n+ 1) =yg̃′2(1, β, n) + xg̃′2(1, n) + xg̃′1(1, n)− yg̃′1(2, n)

+2xyzg̃′1(1, n)g̃
′
1(2, n) + xyz(g̃′1(2, n))

2 + yzg̃′1(2, n)h̃
′
0(0, n)

+xyg̃′1(2, n)h̃
′
0(2, n) + yh̃′

0(0, n)h̃
′
0(2, n)−

y

z
h̃′
0(2, n)

zg̃′2(2, α, n+ 1) =zg̃′2(2, α, n) + xg̃′2(0, n) + xg̃′1(2, n)− zg̃′1(1, n)

+2xyzg̃′1(1, n)g̃
′
1(2, n) + xyz(g̃′1(1, n))

2 + yzg̃′1(1, n)h̃
′
0(0, n)

+xzg̃′1(1, n)h̃
′
0(1, n) + zh̃′

0(0, n)h̃
′
0(1, n)−

z

y
h̃′
0(1, n)

zg̃′2(2, β, n+ 1) =zg̃′2(2, β, n) + yg̃′2(1, n) + yg̃′1(2, n)− zg̃′1(0, n)

+2xyzg̃′1(0, n)g̃
′
1(2, n) + xyz(g̃′1(0, n))

2 + xzg̃′1(0, n)h̃
′
0(1, n)

+yzg̃′1(0, n)h̃
′
0(0, n) + zh̃′

0(0, n)h̃
′
0(1, n)−

z

x
h̃′
0(0, n).

(3.2.14)

3.3 Get the weighted sum

In this section, we will solve the recursions in the previous section and get the weighted

sum of these weighted Hamiltonian walks. Considering functions (3.2.7) and (3.2.12), we have
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g̃′1(0, n+ 2)− 2g̃′1(0, n+ 1)− 2g̃′1(0, n)

=g̃′1(1, n+ 2)− 2g̃′1(1, n+ 1)− 2g̃′1(1, n)

=g̃′1(2, n+ 2)− 2g̃′1(2, n+ 1)− 2g̃′1(2, n)

=g̃′1(n+ 1)− 2g̃′1(n).

(3.3.1)

So that

g̃′1(n+ 2)− 5g̃′1(n+ 1) + 4g̃′1(n) = 0, (3.3.2)

where we have

g̃′1(1) =
x+ y + z

xyz
and g̃′1(2) =

5(x+ y + z)

xyz

as the initial values.

So, we can get the solution of recursion (3.3.2), that is

g̃′1(n) =
1

3
(4n − 1)

x+ y + z

xyz
. (3.3.3)

In this way, we have a recursion of g̃′1(0, n) as

g̃′1(0, n+ 2)− 2g̃′1(0, n+ 1)− 2g̃′1(0, n)

=g̃′1(1, n+ 2)− 2g̃′1(1, n+ 1)− 2g̃′1(1, n)

=g̃′1(2, n+ 2)− 2g̃′1(2, n+ 1)− 2g̃′1(2, n)

=g̃′1(n+ 1)− 2g̃′1(n)

=
1

3
(2 · 4n + 1)

x+ y + z

xyz
.

(3.3.4)

Noticed that 1±
√
3 is the solutions of x2 − 2x− 2 = 0. By Vandermonde’s, assume that

g̃′1(0, n) = A(1 +
√
3)n +B(1−

√
3)n + C · 4n +D,

where A,B,C,D is fixed by x, y, z. Noticed that

g̃′1(0, 0) = 0, g̃′1(0, 1) =
x

xyz
, g̃′1(0, 2) =

3x+ y + z

xyz
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and

g̃′1(0, 3) = 2g̃′1(0, 2) + 2g̃′1(0, 1) +
3(x+ y + z)

xyz
=

11x+ 5y + 5z

xyz
.

We have 

A+B + C +D = 0

(A+B) +
√
3(A−B) + 4C +D =

x

xyz

4(A+B) + 2
√
3(A−B) + 16C +D =

3x+ y + z

xyz

10(A+B) + 6
√
3(A−B) + 64C +D =

11x+ 5y + 5z

xyz
.

(3.3.5)

The solution of these equations is

A =

√
3

18
(
2x− y − z

xyz
)

B = −
√
3

18
(
2x− y − z

xyz
)

C =
x+ y + z

9xyz

D = −x+ y + z

9xyz
.

(3.3.6)

So, we can get

g̃′1(0, n) =

√
3

18
(
2x− y − z

xyz
)(1 +

√
3)n −

√
3

18
(
2x− y − z

xyz
)(1−

√
3)n

+ (
x+ y + z

9xyz
)4n − x+ y + z

9xyz

g̃′1(1, n) =

√
3

18
(
2y − x− z

xyz
)(1 +

√
3)n −

√
3

18
(
2y − x− z

xyz
)(1−

√
3)n

+ (
x+ y + z

9xyz
)4n − x+ y + z

9xyz

g̃′1(2, n) =

√
3

18
(
2z − x− y

xyz
)(1 +

√
3)n −

√
3

18
(
2z − x− y

xyz
)(1−

√
3)n

+ (
x+ y + z

9xyz
)4n − x+ y + z

9xyz
.

(3.3.7)
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At the same time, we can get the solution of h̃′
0(i, n), i = 0, 1, 2 as

h̃′
0(0, n) = (

3− 2
√
3

18
)(
2x− y − z

yz
)(1 +

√
3)n + (

3 + 2
√
3

18
)(
2x− y − z

yz
)(1−

√
3)n

+ (
x+ y + z

9yz
)4n +

2(x+ y + z)

9yz

h̃′
0(1, n) = (

3− 2
√
3

18
)(
2y − x− z

xz
)(1 +

√
3)n + (

3 + 2
√
3

18
)(
2y − x− z

xz
)(1−

√
3)n

+ (
x+ y + z

9xz
)4n +

2(x+ y + z)

9xz

h̃′
0(2, n) = (

3− 2
√
3

54
)(
2z − x− y

xy
)(1 +

√
3)n + (

3 + 2
√
3

18
)(
2z − x− y

xy
)(1−

√
3)n

+ (
x+ y + z

9xy
)4n +

2(x+ y + z)

9xy
(3.3.8)

while n ≥ 2, where

h̃′
0(n) =

1

x
h̃′
0(0, n) +

1

y
h̃′
0(1, n) +

1

z
h̃′
0(2, n).

So, we have

h̃′
0(n) =

x+ y + z

3xyz
(4n + 2). (3.3.9)

Therefore, by (3.1.5), we have

f̃ ′
2(0, n) = (

3− 2
√
3

18
)(
2x− y − z

yz
)(1 +

√
3)n + (

3 + 2
√
3

18
)(
2x− y − z

yz
)(1−

√
3)n

+ (
x+ y + z

9yz
)4n +

2(x+ y + z)

9yz
− y + z

yz

f̃ ′
2(1, n) = (

3− 2
√
3

18
)(
2y − x− z

xz
)(1 +

√
3)n + (

3 + 2
√
3

18
)(
2y − x− z

xz
)(1−

√
3)n

+ (
x+ y + z

9xz
)4n +

2(x+ y + z)

9xz
− x+ z

xz

f̃ ′
2(2, n) = (

3− 2
√
3

54
)(
2z − x− y

xy
)(1 +

√
3)n + (

3 + 2
√
3

18
)(
2z − x− y

xy
)(1−

√
3)n

+ (
x+ y + z

9xy
)4n +

2(x+ y + z)

9xy
− x+ y

xy
.

(3.3.10)

Defines u,w as

u :=
x2 + y2 + z2 − xy − xz − xy

xyz
, w :=

(x+ y + z)2

xyz
,

we have f̃ ′
1(n) =

1
3
(w − u).
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So, the solution of f̃ ′
2(n) is as follows.

Theorem 3.3.1. The weighted sum of Hamiltonian walks on H ′n
3 with one end at an outmost

vertex, another one not at any outmost vertex is given by 0 for n=1 and

f̃ ′
2(n) = (

3− 2
√
3

9
)u(1 +

√
3)n + (

3 + 2
√
3

9
)u(1−

√
3)n + (

w

9
)4n − 2

9
(2w − 3u) (3.3.11)

for n ≥ 2.

Now, we’ve got the solutions of f ′
1(n) and f ′

2(n). In order to get the solution of f ′
3(n), we

can consider some modifications to recursions of g′2(i, j, n), i = 0, 1, 2, j = α, β.

Add up all the equation of (3.2.14), we have

g̃′3(n+ 1) = 3g̃′3(n) + K̃(n), (3.3.12)

in which

K̃(n) := −
(
y + z

x
h̃′
0(0, n) +

x+ z

y
h̃′
0(1, n) +

x+ y

z
h̃′
0(2, n)

)
+ 2

(
xh̃′

0(1, n)h̃
′
0(2, n) + yh̃′

1(0, n)h̃
′
0(2, n) + zh̃′

0(0, n)h̃
′
0(1, n)

)
+ 2xyz

(
1

x
h̃′
0(0, n)g̃

′
1(0, n) +

1

y
h̃′
0(1, n)g̃

′
1(1, n) +

1

z
h̃′
0(2, n)g̃

′
1(2, n)

)
+ xyz

(
1

x
h̃′
0(0, n)g̃

′
1(1, n) +

1

y
h̃′
0(1, n)g̃

′
1(2, n) +

1

z
h̃′
0(2, n)g̃

′
1(0, n)

+
1

y
h̃′
0(1, n)g̃

′
1(0, n) +

1

z
h̃′
0(2, n)g̃

′
1(1, n) +

1

x
h̃′
0(0, n)g̃

′
1(2, n)

)
+ 2xyz

(
(g̃′1(0, n))

2 + (g̃′1(1, n))
2 + (g̃′1(0, n))

2
)

+ 4xyz (g̃′1(0, n)g̃
′
1(1, n) + g̃′1(0, n)g̃

′
1(2, n) + g̃′1(1, n)g̃

′
1(2, n)) .

(3.3.13)

According to (3.3.7) and (3.3.8), we have

K̃(n) = −(
9− 5

√
3

18
)u(4 + 2

√
3)n − (

9 + 5
√
3

18
)u(4− 2

√
3)n − u

9
(−2)n

+ (
3− 2

√
3

9
)u(1 +

√
3)n + (

3 + 2
√
3

9
)u(1−

√
3)n

+ (
4w

9
)16n − (

2w

9
)4n − 2w

9
,

(3.3.14)
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Noticed that g̃′3(1) = 0, we have

g̃′3(n) = 3n
n−1∑
k=1

1

3k
K̃(k)

= (
39− 23

√
3

2× 9× 11
)u(4 + 2

√
3)n + (

39 + 23
√
3

2× 9× 11
)u(4− 2

√
3)n

+
u

45
(−2)n + (

√
3u

9
)(1 +

√
3)n − (

√
3u

9
)(1−

√
3)n

+ (
4w

9× 13
)16n − (

2w

9
)4n + cu3n + (

w

13
)3n +

w

9

(3.3.15)

as the constant c = −206

495
.

According to (3.2.10), we have

f̃ ′
3(n+ 1) =

yz

x
(h̃′

0(0, n))
2 +

xz

y
(h̃′

0(1, n))
2 +

xy

z
(h̃′

0(2, n))
2

− y + z

x
h̃′
0(0, n)−

x+ z

y
h̃′
0(1, n)−

x+ z

x
h̃′
0(2, n)

+
1

x
+

1

y
+

1

z
+ g̃′3(n)

= (
116− 67

√
3

2× 9× 11
)u(4 + 2

√
3)n + (

116 + 67
√
3

2× 9× 11
)u(4− 2

√
3)n

− 4u

45
(−2)n + (

3−
√
3

9
)u(1 +

√
3)n + (

3 +
√
3

9
)u(1−

√
3)n

+ (
25w

27× 13
)16n − (

8w

27
)4n + cu3n + (

w

13
)3n +

4w

27
− u

3
,

(3.3.16)

in which we can get the solution of f ′
3(n) as the following theorem.

Theorem 3.3.2. the weighted sum of Hamiltonian walks onH ′n
3 with no end at any of the outmost

vertex is given by 0 for n=1 and

f ′
3(n) = (xyz)3

n−1

[(
433− 250

√
3

4× 9× 11
)u(4 + 2

√
3)n + (

433 + 250
√
3

4× 9× 11
)u(4− 2

√
3)n

+
2u

45
(−2)n − (

3− 2
√
3

9
)u(1 +

√
3)n − (

3 + 2
√
3

9
)u(1−

√
3)n

+ (
25w

16× 27× 13
)16n − (

2w

27
)4n + (

cu

3
)3n + (

w

39
)3n +

4w

27
− u

3
]

(3.3.17)

as the constant c = −206

495
while u =

x2 + y2 + z2 − xy − xz − xy

xyz
and w =

(x+ y + z)2

xyz
for

n ≥ 2.
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According to (3.1.1), (3.2.2), (3.3.11) and (3.3.17), we have the following solution to show

the weighted sum of Hamiltonian walks on H ′n
3 we need.

Theorem 3.3.3. The weighted sum of weighted Hamiltonian walks onH ′n
3 is given by xy+xz+

yz for n = 1 and

h′(n) = f ′
1(n) + f ′

2(n) + f ′
3(n)

= (xyz)3
n−1

[(
433− 250

√
3

4× 9× 11
)u(4 + 2

√
3)n + (

433 + 250
√
3

4× 9× 11
)u(4− 2

√
3)n

+
2u

45
(−2)n + (

25w

16× 27× 13
)16n + (

w

27
)4n + (

cu

3
)3n + (

w

39
)3n +

w

27
]

(3.3.18)

as the constant c = −206

495
while u =

x2 + y2 + z2 − xy − xz − xy

xyz
and w =

(x+ y + z)2

xyz
for

n ≥ 2.

Especially, if x = y = z = 1, e.g. u = 0 and w = 9. We can get

h′(n) = h(n).

Consider the asymptotic behaviour of h′(n), we have

Theorem 3.3.4. When n is large, the asymptotic behaviour of the weighted sum of Hamiltonian

walks on H ′n
3 is given by

h′(n) ∼ 25w

16× 27× 13
16n(xyz)3

n−1

. (3.3.19)
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