B = s < B F

LB Hm~

TR e o A Sl
Hamiltonian Walks on the Hanoi Graph

hERE MBS L

FrAiEwR #E
P R R/ 110 & 12 °

DOI:10.6814/NCCU202101772



R

During the preparation of my master’s thesis, I have received lots of invaluable
helps from many people. First of all, the profound gratitude is going to my
supervisor Professor, Dr. Lung-Chi Chen. He has given me great guidances and
encouragements throughout the process of selecting the research topic, improving
the outline, query references, writing the thesis and the argumentation. His
perceptive comments on every draft, which provide me with many enlightening
ideas, have inspired me to a large extent. The completion of this paper is inseparable
from his patient guidance. Secondly, I would like to express my heartfelt thanks
to all the teachers who helped and taught me. Their courses have broadened my
horizon and stimulated my interest in Mathematician. They have also helped me a
lot in my life throughout the master career. Also, I want to thank all the authors,
whose books and articles have given me many inspiration throughout the process

of completing my thesis.

DOI:10.6814/NCCU202101772



v R

AR T nF2REHER (CFEFER-PPR) PR
B s o Bobtie AR A h(n) ~ BHE o W FEHB L v B AR
TR E B AR A B G T Bheped oA BT BB ¥t ot B bR

2P FENERRL 2B e T TR LG 1y 22 B

=
T e AR R T e o HobriE A IR G
2
/ ~ 25w n 3n—1 4 ‘F' . (-’E‘i_y—'—Z) R
W(n) ~ tGaras 16" (2y2) A9 w= T2

MaEs @ B3R - BRI BELA R

il

DOI:10.6814/NCCU202101772



Abstract

We’ve derived the number of Hamiltonian walks on the two-dimensional
Hanoi graph at stage n, whose asymptotic behaviour is given by h(n) ~ 255%
And the asymptotic behaviour the logarithmic ratio of the number of Hamiltonian
walks on these Hanoi graphs with that one end at the topmost vertex is given
by 2. When the parallel edges in the three directions on these Hanoi graphs are
weighted by three numbers, x,y, z, the weighted sum of their Hamiltonian paths
is also derived by us, and the asymptotic behaviour of it is given by h'(n) ~
e 16"(ryz)*" ", in which w = w

Key word: Hanoi graph, Hamiltonian walk, asymptotic behaviour
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Chapter 1

Introduction

1.1 Hanoi graphs

Hanoi graph, a kind of simple fractal lattice, are undirected graphs whose vertices represent
the possible states of the Tower of Hanoi puzzle [7], its edges represent the allowable moves
between pairs of states. The puzzle consists of a set of disks of different sizes, which are placed
on a set of fixed towers in increasing order of size. The Hanoi graph for the puzzle with n disks
on the k towers is denoted by H;' [5] [6]. Each state of the puzzle is determined by choosing a
tower for each disk, so the graph has £" vertices [6].

In the Tower of Hanoi puzzle denoted by H’, each state of the puzzle is determined by
choosing a tower for each disk. So this graph has k" vertices [6].

In the movement of this puzzle, the smallest disk on each tower could be moved to an
unoccupied tower or a tower with a larger smallest disk. If there are ¢ unoccupied towers, the

number of allowable moves is

(k;i>+i(k—i): (];)—@ P= 01, k=1,

which there are (%) Z;:o (;) (i — 7)"(—1)? vertices on behalf of it. Whenever, in H}", there are

() >, (;)(z — j)"(—1) vertices have degree (£) — (2).
In other hand, there are (£)k"~*(k — 2)"~! edges which is on behalf of moving the 7"
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smallest disk. So,

n - k n—i i— 1(k n n
ety =3 (5)r -2 = (5) = k-2,
i=1
Therefore, we have a combinatorial identity which is

2(()-G) OB Qoo =3()w-oan,

= j=o

(a) H (b) H3

(c) H3

Figure 1.1: Hanoi graphs with 3 towers

1.2 Hamiltonian walk

A Hamiltonian walk is defined to be a walk on a graph that visits each vertex once and
only once [3], is also a special spanning tree. In general, problems about Hamiltonian walks is

an important issue in graph theory. It’s difficult to determine whether such a walk is in general
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graphs. People have made some processing in some especially graphs, such as the Sierpinski
gaskets [2] [3] and fractal lattices [1] [4] [8].
In this paper, we will only discuss the Hamiltonian walks in /7. In chapter 2, we will show

the number of Hamiltonian walks given by 3 for n=1 and

25 1 3 1
h(n) = =216 + —4" + 237 4 = 12.1
(n) =410  +34" + 33"+ 3 (1.2.1)

forn > 2.

The asymptotic behaviour of it is

25 x 16™
h(n) - —m —, (1.2.2)
while’ ~/ is defined as
. f(n)

No more than that, we’ve also obtained that the ratio of logarithms for the number of
Hamiltonian walks on the Hanoi graph with one end at the topmost vertex is given by 2.
In chapter 3, we will derive the weighted sum of Hamiltonian walks with edges in three

directions is weighted by «, y, z, and got the asymptotic behaviour as

25w

K(n)m —20
()~ T 2T < 13

16" (zy2)*" . (1.2.4)

(z+y+2)°
TYZz ’

in which w =
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Chapter 2

Hamiltonian paths in weightless Hanoi

graph

In this chapter, we will count the number of Hamiltonian paths in Hanoi graphs without

being weighted.

2.1 Preliminaries

In this section, we will do some relevant definitions at first.

To count the number of Hamiltonian walks on /15, let us define some quantities as follows.

N B AN Lo AL

fitn)  fa(n)  fa(n) fs(n)O fa(n)  fs(n)  ho(n)  gi(n)

e O
g2(n)

Figure 2.1: Tllustration for the quantities f1(n),f2(n),f3(n),q1(n),g2(n) and ho(n). fo(n) is the
numbers of both the second graph and the third one.

Definition 2.1.1. Consider the Hanoi graph H3 for a puzzle with n disks on 3 towers.
(i) Define h(n) as the number of Hamiltonian walks on H}.
(ii) Define ho(n) as the number of Hamiltonian walks on H} with one end at the topmost vertex.

(iii) Define fi(n) as the number of Hamiltonian walks on HY with one end at the rightmost
4
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vertex, another one at the leftmost vertex.

1v) Define fo(n) as the number of Hamiltonian walks on with one end at the topmost vertex,
D th ber of Hamilt lks on HY with d at the topmost vert

another one not at rightmost vertex nor left one.

v) Define f3(n) as the number of Hamiltonian walks on with no end at any of the outmos
D th b Hamiltoni Ik HE with d at any of th tmost

vertices.

In figure 2.1, An open circle denoting an outmost vertex corresponds to an end of a walk;
a solid one corresponds it to be a middle point; if a vertex is not denoted by any of them, that
means any of these would be done. In addition, two outmost vertices connected by a solid line
belong to a same path without another outmost vertex; if an outmost vertex is not connected with
any others, then it’s not connected to other outmost vertices; if two outmost vertices connected
by a solid line, that means they are connected but the another outmost vertex may in the middle
of them.

According to the definitions of these functions, we can find

ho(n) = 2f1(n) + f2(n), 2.1.1)

and

h(n) = 3fi(n) + 3f2(n) + fs(n). (2.1.2)

But it’s not enough to get the value of f1(n), fa(n) and f3(n). To calculate them, we need

following definitions.

Definition 2.1.2. Consider the Hanoi graph H3 for a puzzle with n disks on 3 towers.

(i) Define gi(n) as the number of spanning subgraphs with two walks such that the topmost
vertex be the end of one walk and the other two outmost vertices be ends of another walk on H3'.
(ii) Define g2(n) as the number of spanning subgraphs with two walks such that the topmost
vertex be the end of one walk and the other two outmost vertices belong to another walk, and

only the right one be an end.

Then, we can easily get the initial values as

1) =g1(1) =1, g(1) = fo(1) = f3(1) =0 and g¢:1(2) =5.
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ANESS

Figure 2.2: Tllustration for the expression of fi(n + 1)

AN L AN LN AN

Figure 2.3: Illustration for the expression of fo(n + 1

2.2 Building recursions to count the number of Hamiltonian

walks

In this section, we will enumerate the number of Hamiltonian walks A (n) and show the
relationships between these number by building some recursions.

Consider the quantity fi(n + 1), according to the figure 2.2, we have

fln+1) = filn)= (1) =1 (2.2.1)

and get

by referencing (2.1.1).
Consider the quantity f>(n + 1), which has two equivalence cases. According to the figure

(2.3), we have

fa(n + 1) = 2(fE(n) fo(n) + fi(n) + fi(n)g1(n))
= 2(fa(n) + 14 g1(n)) = 2(ho(n) = 1+ g1(n))
= ho(n+1)—2=2(ho(n) — 14+ g1(n))

= ho(n +1) = 2(ho(n) + g1(n)).

(2.2.3)

Noticed that the first graph on the right side at the figure (2.4) show the states of walks that
one end at the rightmost vertex in the topper subgraph, another one in the topper subgraph too,
but not the leftmost vertex. Otherwise the other vertices on the topper subgraph won’t be on this

Hamiltonian walk.
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Figure 2.4: Illustration for the expression of f3(n + 1). In the third sense,both of the left and
right second-largest triangle have Hamiltonian walks with one end at the topmost vertex, but
both the same sides outmost vertices are not the another end.

e

Figure 2.5: Illustration for the expression of g;(n + 1)

Finally, consider the quantities f3(n+1), gi(n+ 1) and go(n + 1), according to the figures
(2.4), (2.5) and (2.6), we have the following recursions as

fs(n+1) = 3(2f{(n)g2(n) + (f1(n))*(ho(n) — f1(n))*)

(2.2.4)
= 3 (292(n) + (ho(n) = 1)%),
gi(n+1) =3f2(n)g1(n) + f2(n)ho(n) = 3g1(n) + ho(n), (2.2.5)
and
=f1(n)g1(n)(ho(n) — 1) +2f1(n)gi(n) + 27 (n)(g1(n) + g2(n)) (2.2.6)

+fi(n)ho(n)(ho(n) = 1) + fi(n)gi(n) + fi()ga(n) + f1(n)gi(n)(ho(n) — 1)
=hi(n) — ho(n) + 2ho(n)g1(n) + 3g7(n) + 3ga(n).

L EN LN L
P Ty o B

Figure 2.6: Illustration for the expression of go(n + 1)
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In summary, we have a set of recursions that is

;

ho(n + 1) = 2(ho(n) + g1(n))

)
)

g1(n+ 1) = 3g1(n) + ho(n)
)

| 92(n + 1) = h§(n) — ho(n) + 2ho(n)gi(n) + 3g7(n) + 3ga(n).
2.3 Number of Hamiltonian walks

In this section, we will solve the recursions in the previous section and get the number of

Hamiltonian walks. Consider the recursions (2.2.3) and (2.2.5), we have
g1(n+2) =5g1(n+ 1)+ 4g1(n) = 0. (2.3.1)

By the definition of g, (n), we can easily get g1(1) = 1 and ¢;(2) = 5. So, the solution of

the recursion (2.3.1) can be solved as
1 n
g1(n) = 5(4 —1). (23.2)

At the same time, we can get the solution of hy(n) through (2.2.5).

Theorem 2.3.1. The number of Hamiltonian walks on H3 with one end at the topmost vertex is

given by
ho(n) = g1(n + 1) = 3g1(n) = %(4" 1), (2.3.3)
Hence, we have
Fo(n) = ho(n) — 2 = %(4” ). (2.3.4)

Therefore, we can also get a recursion of g,(n) that is

g2(n + 1) = hi(n) — ho(n) + 2ho(n)gi(n) + 347 (n) + 3g2(n)

2.3.
— %16”—%4"—%—1—392(71). o
Such that n n n
R R G
8
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So, we have

2 1 3 1
=—16"— 4"+ =3" + = 2.3.7

because of go(1) = 0, which obtained

fs(n +1) = 3(2g2(n) + (ho(n) — 1)°)

2.3.8)
25 8 9 4 (
— Z916" — 24n ~Z an =

3910 T3t T3 T3

So, we can get the solution of f5(n) as the following theorem.

Theorem 2.3.2. The number of Hamiltonian walks on H3 with no end at any of the outmost

vertices is given by 0 for n=1 and

25 9 3 4
A T e L N L 23.9
s(n) =54 3% T30 T3 (2.3.9)

forn > 2.

Since (2.1.2), we have the following theorem to show the number of Hamiltonian walks on

HY.
Theorem 2.3.3. The number of Hamiltonian walks on H? is 3 for n=1 and

25 1 3 1
e [ N LMl LT 2.3.1
h(n) = o 16"+ 54"+ 3" 4 (2.3.10)

forn > 2.

Counterpart to this conclusion, the number of Hamiltonian walks on the Sierpinski gasket

had been derived by Shu-Chiuan Chang and Lung-Chi Chen [3].

Remark 2.3.4. If we defined the number of Hamiltonian walks on the two-dimensional
Sierpinski gasket SG(n) to be HSG(n), then it is 12 for n = 1 and

V3?2 [ BT xITE . Tx13x 17
H5GM) = == Gosgx 30 T s ) 2311
o 11 x 257 ran 4391 L 1 )6 o
23 % 35 x 13 28 %35 2% 3"

Sforn > 2 where 6;; is the Kronecker delta function.
9

DOI:10.6814/NCCU202101772



Considering the asymptotic behaviour when n is large, let us use the symbol f(n) ~ g(n)

to denote lim,, .. f(n)/g(n) =

Theorem 2.3.5. When n is large, the asymptotic behaviour of the number of Hamiltonian walks

on H3 is given by
25 x 16"

hn) ~ =555

(2.3.12)

The logarithmic ratio of the number of Hamiltonian walks on the Hanoi graph wit that one

end at the topmost vertex, when n is large, is given by

In(h(n)) N ln(6 >) + 2nIn(4) N
in(ho(n)) ~ “In(1) = nin()

(2.3.13)

10
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Chapter 3

Hamiltonian paths in weighted Hanoi

graph

In last chapter, we’ve counted the number of Hamiltonian paths in a Hanoi graph without
being weighted as (2.3.10). In this chapter, we will calculate the weighted sum of Hamiltonian

paths in a weighted Hanoi graph whose edges in three directions is weighted by z, y, 2.

3.1 Preliminaries

Definition 3.1.1. Similarly as HY, let H'; be a weighted Hanoi graph for a puzzle with n disks
on 3 towers which is weighted on edges as follows.

(i) Weighted as x if the edge on H'S which is parallel to the base of H'Y.

(ii) Weighted as vy if the edge on H'S which is parallel to the right leg of H'S.

(iii) Weighted as = if the edge on H'3 which is parallel to the left leg of H'S.

If the weight of each Hamiltonian path is defined as the production of the weights of its
edges, to calculate the weighted sum of Hamiltonian walks on H'%, let us define some quantities

as follows.

Definition 3.1.2. Consider the weighted Hanoi graph H'% for a puzzie with n disks on 3 towers.
(i) Define I (n) as the weighted sum of Hamiltonian walks on H'.

(ii) Define hy(0,n) as the weighted sum of Hamiltonian walks on H'; with one end at the the
topmost vertex.

(iii) Define h{,(1,n) as the weighted sum of Hamiltonian walks on H'; with one end at the the
11
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Figure 3.1: The weighted Hanoi graph, H'>

PRV - AR/ x

f1(0,n)  f5(0,n) f5(0,n) f5(0,n) h’On)glon g5(0, ar, n)gh (0

2 Nt S50 7

fillin)  f3(1,n)  f3(1,n) f31nh’(1n 91(1,n) g5(1, ,ng5(1, B, n)

S A A AN A N

fi2,n) f5(2,n)  f5(2,n) f3(2,m) h6(2,n) 91(2,1) g5(2, a, n)gy(2, B, 1)

Figure 3.2: Tllustration for the quantities f{ (¢, n),f5(i,n),f3(i,n),91 (4, n)),g5(%, o, n)),g5(i, B, n)
and h{(i,n) fori = 0,1,2. f}(0,n) is the weighted sum of both the second graph and the third
one, which similarly as f(1,n) and f5(2,n).

12

DOI:10.6814/NCCU202101772



leftmost vertex.
iv) Define h),(2,n) as the weighted sum of Hamiltonian walks on H'; with one end at the the
0 g 3
rightmost vertex.
v) Define f{(n) as the weighted sum of Hamiltonian walks on H'; with both two ends at outmost
1 g 3
vertices.
(vi) Define f{(0,n) as the weighted sum of Hamiltonian walks on H'; with one end at the
rightmost vertex, another one at the leftmost vertex.
(vii) Define f{(1,n) as the weighted sum of Hamiltonian walks on H'y with one end at the
rightmost vertex, another one at the topmost vertex.
(viii) Define f{(2,n) as the weighted sum of Hamiltonian walks on H'y with one end at the
lefttmost vertex, another one at the topmost vertex.
ix) Define f}(n) as the weighted sum of Hamiltonian walks on H'; with one end at an outmost
2 g 3
vertex, another one not at any outmost vertex.
x) Define 15(0,n) as the weighted sum of Hamiltonian walks on H'; with one end at the topmost
2 g 3 P
vertex, another one not at rightmost vertex nor left one.
xi) Define (1, n) as the weighted sum of Hamiltonian walks on H'; with one end at the leftmost
2 4 3
vertex, another one not at other outmost vertices.
(xii) Define f5(2,n) as the weighted sum of Hamiltonian walks on H'; with one end at the
rightmost vertex, another one not at others.
xiii) Define fi(n) as the weighted sum of Hamiltonian walks on H'; with no end at any of the
3 g 3 y
outmost vertices.
xiv) Define f5(0,n) as the weighted sum of Hamiltonian walks on H'y with no end at any o
3 g 3 y
the outmost vertices. And the path on leftmost vertex to the rightmost one is path thought of the
topmost one.
xv) Define fi(1,n) as the weighted sum of Hamiltonian walks on H'. with no end at any o
3 g 3 y
the outmost vertices. And the path on topmost vertex to the leftmost one is path thought of the
P P P g
leftmost one.
xvi) Define f5(2,n) as the weighted sum of Hamiltonian walks on H': with no end at any o
3 g 3 y
the outmost vertices. And the path on topmost vertex to the rightmost one is path thought of the

rightmost one.

In figure 3.2, An open circle denoting an outmost vertex corresponds to an end of a walk;

13
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a solid one corresponds it to be a middle point; if a vertex is not denoted by any of them, that
means any of these would be done. In addition, two outmost vertices connected by a solid line
belong to a same path without another outmost vertex; if an outmost vertex is not connected with
any others, then it’s not connected to other outmost vertices; if two outmost vertices connected
by a solid line, that means they are connected but the another outmost vertex may in the middle
of them.

These definitions follow

H(n) = fi(n) + fy(n) + f3(n), (3.1.1)
fitn) = fi(0,n) + fi(L,n) + fi(2,n), (3.1.2)
f(n) = £(0,n) + fo(L,n) + f5(2,n), (3.13)
fa(m) = £3(0,n) + f5(1,n) + f3(2,n) (3.14)

ho(0,n) = fi(1,n) + fi(2,n) + f3(0,n)
hé)(lvn) :f{(07n)+f{(27n)+fé(1vn) (3.1.5)
h6<27n) = f{(ovn) + f{(17n) + f§(2,n)

In addition, for the convenience of calculation, we define a function h{(n) as

hiy(n) == BY(0,n) + BY(1,n) + hiy(2,n) (3.1.6)

To get the solutions of f](n), f5(n) and f(n), we need following definitions.

Definition 3.1.3. Consider the weighted Hanoi graph H'% for a puzzie with n disks on 3 towers.
(i) Define g} (n) as the weighted sum of spanning subgraphs with two walks such that an outmost

vertex be the end of one walk and the other two outmost vertices be ends of another walk on
H'S.
(ii) Define ¢, (0,n) as the weighted sum of spanning subgraphs with two walks such that the

14
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topmost vertex be the end of one walk and the other two outmost vertices be ends of another
walk on H'.

(iii) Define g\(1,n) as the weighted sum of spanning subgraphs with two walks such that the
leftmost vertex be the end of one walk and the other two outmost vertices be ends of another
walk on H'.

(iv) Define gy(2,n) as the weighted sum of spanning subgraphs with two walks such that the
rightmost vertex be the end of one walk and the other two outmost vertices be ends of another
walk on H';.

(v) Define g5(n) as the weighted sum of spanning subgraphs with two walks such that an outmost
vertex be the end of one walk and the other two outmost vertices belong to another walk, and
only one be an end.

(vi) Define g4(0,n) as the weighted sum of spanning subgraphs with the topmost is not the end
of either walk in the cases of gy(n).

(vii) Define g4(0, v, n) as the weighted sum of spanning subgraphs connecting the leftmost vertex
and topmost vertex in the cases of gh(0,n).

(viii) Define ¢4(0, 3,n) as the weighted sum of spanning subgraphs connecting the rightmost
vertex and topmost vertex in the cases of g5(0,n).

(ix) Define g4(1,n) as the weighted sum of spanning subgraphs with the leftmost is not the end
of either walk in the cases of gy(n).

(x) Define g4 (1, «, n) as the weighted sum of spanning subgraphs connecting the leftmost vertex
and rightmost vertex in the cases of gy(2,n).

(xi) Define g4(1, 3, n) as the weighted sum of spanning subgraphs connecting the topmost vertex
and rightmost vertex in the cases of gh(2,n).

(xii) Define g4(2,n) as the weighted sum of spanning subgraphs with the rightmost is not the
end of either walk in the cases of gh(n).

(xiii) Define g4(2,,n) as the weighted sum of spanning subgraphs connecting the rightmost
vertex and topmost vertex in the cases of gy(1,n).

(xiv) Define g4(2, 3, n) as the weighted sum of spanning subgraphs connecting the rightmost

vertex and lefimost vertex in the cases of g5(1,n).
It follows

g1(n) = ¢1(0,n) + g1 (1,n) + g1(2,n) (3.1.7)

15
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Figure 3.3: Illustration for the expression of f](0,n + 1)

and

while we can easily get

and

as the initial values.

[ 95(2,n) = 95(2, ,n) + g5(2, B,n),

(1) = fo(1) = f5(1) = 0

71(0,2) = 32722 + 2232 4 22220
dy(1,2) = 2°y*2% 4+ 327y 2% + 2%y

91(2,2) = 2?2 + 2%y*2? + 32%y?2?

(3.1.8)

(3.1.9)

(3.1.10)

(3.1.11)

3.2 Building recursions to calculate the weighted sum of

Hamiltonian walks

In this section, we will enumerate the relationship between these variables by building some

recursions.
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Consider the quantities f;(i,n + 1),7 = 0, 1,2, according to the figure 3.3, we have

( 2
10,0 +1) = y= [ [ fi(i,n)
=0
2
An+1) =2z ] fili,n) (3.2.1)
1=0
2
fien+1) =ay [ fili,n).
=0

So we can get

which follows

1=0
with |
£1(0,m) = —(ay2)""
£l n) = ~(zy)
? 1 (3.2.2)
fi2,n) = S (ay2)""
1 1 1 n—1
i) = ( + = + D)(@y2)”

In order to facilitate calculate, let F'(n) := (zyz) 3" F(n) for all function F(n). So that

we have

(= 1
0,n)=—
fl( ,TL) T
= 1
f{(lan) —
31/ (3.2.3)
]
2,n) = —
fl( ,TL) >
~ 1 1 1
/ P p— p— p—
\fl(n)_x+y+z
Consider the quantities f5(i,n + 1),7 = 0, 1,2, which has two symmetrical equivalence,
17

DOI:10.6814/NCCU202101772



PO AT A

Figure 3.4: Illustration for the expression of f(1,n + 1)

according to the figure 3.4, we have

f(L,n 4 1) =y f1(0,n) f{(2,n)(f1(0,n) + f5(2,n))
+y2£1(0,n) f1(2,n)(f1(2,n) + £5(0,n)) (3.24)
+ryzf1(0,n) f1(2,1)(91(0,n) + ¢1(2,n))
as similar as
[30,n 4+ 1) =22 fi(1,n) fi(2,0)(f1(2,n) + f5(1,n))
+ry fi(L,n) f1(2,n)(fi(1,n) + f3(2,1)) (3.25)
+ryzfi(1,n) fi(2,1)(91(1,n) + 41 (2,n)),

and
f§(2,n + 1) :yzf{(ovn)f{(lan)(f{(lvn) + fé(O,n))

+xzf1(0,n) f{ (L, n)(f1(0,n) + f5(1,n)) (3.2.6)
+ayz f1(0,n) fi(1,7)(g1(0,n) + g1(1, n)),

while we can get some recursions of quantities h((i,n + 1), = 0,1, 2 by referencing (3.1.5)

and (3.2.3) as

/

1- 1- 1-

1- 1- 1-
Bo(Ln 1) = ZRo(2 ) + B (0,m) + 31 (0,m) +G1(2,m) (3.2.7)

1~ 1- 1~
;hg(Q,n +1)= Ehg(O,n) + gh{)(l, n)+ 31(0,n) + g, (1,n).

\
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Figure 3.5: Tllustration for the expression of f5(0,n + 1). In the third sence,both of the left and
right second-largest triangle have Hamiltonian walks with one end at the topmost vertex, but
both the same sides outmost vertices are not the another end.

e

Figure 3.6: Illustration for the expression of ¢;(0,n + 1)

Consider the quantities f5(i,n + 1),7 = 0, 1, 2, according to the figure 3.5, we have

730,74 1) = my=F1(0,m) (2, mgh(1L, B m) + 2y £ (0, m) £ (1, m)gh(2, o)
2 0,1 0,m) = FE (L) (0, m) — (2, ) (328
= Fo0,m -+ 1) = (B (0, m) = 1)(eHh(0.m) = 1)+ ygh(1, 6:) + 2G4(2, 0, ).

So, we have the recursions as the rotation types of (3.2.8) as

(730,04 1) = —(yl(0.7) = 1)(=hf(0.2) — 1) +yda(L, B.n) + 24(2. 0, n)

fi(l,n+1) = =(zhh(1,n) = 1)(zh(1,n) — 1) + z3,(0, a,n) + z5,(2, ,n)  (3.2.9)

NP |8~

| f3(2,n 4+ 1) = ~(xhy(2,n) = 1) (yho(2,n) — 1) + 2350, B, n) + ya (1, o, ).

Let
g5(n) = x35(0,n) + yg5(1,n) + 25(2,n),

we can get
% yZ =y Tz ~ l’y ~
f3(n+1) = ?(ho(o,n))Q + ?(%(1; n))? + 7(%(27 n))?

y+z r+z Tty

h(1,n) — hi(2,n) (3.2.10)

hi(0,n) —
+1+1+1+~’()
-+ —-+- n).
ey 93

Now, we have got the recursions of fi’(j,n +1),i =1,2,3and 5 = 0,1,2. To get the
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Figure 3.7: Illustration for the expression of ¢g5(1, a,n + 1)

solutions of them, we need some recursions of g, (i, n + 1)andgs (i, j,n + 1),i = 0,1, 2andj =

a, B.
Consider the quantities ¢} (i,n + 1),7 = 0, 1,2, according to the figure 3.6, we have

91(0,n + 1) = 22f{(0,n) f1(2,n)g1(0,n) + 2y f1(0,n) f{(1,7)g1 (0, n)
+2(f1(0,n))*ho (0, n) + y2f1(1,n) f1(2,n)g; (0, 1) (3.2.11)

1~
= 31(0,n+ 1) = 331 (0, n) + =0, m).

4 1~
5,(0,m + 1) = 35;(0,n) + =R (0, )

1-
gG(L,n+1)=3g(1,n) + ghg(l, n) (3.2.12)

1-
(2 4 1) = 331(2,m) +Z 7 (2, ).

Consider the quantity ¢5(i,j,n + 1),i = 0,1,2, j = «, 3, according to the figure 3.7,

20
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we have

go(L, a,n + 1) =yz fi(1,1)g1(0,n)(hy(0,n) — f1(2,n))
+ayzfi(1,1)g,(0,n)g1(1,n) + xyz f{(1,n) (g1 (0, 1))
+azf1(0,n) f1(1,1)(95(2,n) + ¢1(1,n) + ¢1(0,n))
+2 £1(0,1)ho(0,n)(ho(2,n) = f1(0,n)) + zyzfi(1,n)g;(0,7)g1 (1, n)
+x2f1(0,n) f1(2,1)g5(1, o, n) + 2y f1(1,7)g1 (0, n) (hg(2, 1) — £1(0,m))
= ygo(L,a,n + 1) =ygs(1, ., n) + 245(2,n) + 241 (1,n) — yg1(0,n)
+22y2,(0,n)31 (1, 1) + 2y2(31(0,n))* + 2y, (0, n)hj (2, n)

=1 (0, m) (0, ) + yho (0, m)h(2,m) — 21 (0, m).
(3.2.13)
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(234,(0, 00, + 1) =2 (0, v, n) + ygh(1,m) + 4G (0,n) — 23 (2, )
+22y23,(0,n) 3 (2,n) + 2y2(F,(2,n))* + 223, (2, n)%(l, n)
Fayd, (2, n)hh (2, ) + 2Rl (1, n)R)(2,n) — gﬁg(g,n)

2350, 8,n + 1) =235(0, 8,1) + 2G5(2,n) + 2§,(0,n) — 2g;(1,n)
+22y231(0,n)7; (1,n) + zy2(3;(1,n))* + 2ygh (1, n)hj(2,n)

azg (1, n)h (1, n) + ohh (1, n) R, (2, 1) — g%(l,n)

ygs(1,a,n + 1) =ygs(1,a,n) + 235(2,n) + 23,(1,n) — yg,(0,n)
+22y2§1(0,7)§1 (1, n) + zy=(31(0,n))? + 2y, (0,n)hy(2,n)

21 (0, )R (0,m) + yhig(0.0)5(2,m) = 26 (0,m) o

yah(L, B+ 1) =ygh(L, B.n) + 23a(l,n) + 23 (1) — yh (2.1)
20523, (1,3 (2,m) + 2y2(3h(2,m))* + Y23 (2,0 0, )
Faygh (2, )R(2,m) + yho 0,2 m) — 21 (2,m)

205(2,c,n + 1) =235(2, @, n) + 2G5(0,n) + 29y

—~

2a n) /] 291(1, n)
1,1))? + y2g; (1, n)hy(0,n)

tazg (1, n)hp(L,n) + 2hh(0, )k (1, n) — g%(l,n)

—~

+22y2G1(1,1)31 (2, n) + 2y2(J

205(2, 8,n + 1) =235(2, 8, n) + yg5(1,n) + y31(2,n) = 261(0, n)

+22y231(0,7)3, (2, 1) + 2y2(3;(0,n))2 + 228, (0, n)hy (1, n)

=31 (0, )i (0,m) + 2B (0, mB (1, m) = =i (0, m).

3.3 Get the weighted sum

In this section, we will solve the recursions in the previous section and get the weighted

sum of these weighted Hamiltonian walks. Considering functions (3.2.7) and (3.2.12), we have
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(0,1 +2) — 23,(0,n + 1) — 2, (0,n)
=g (Ln+2) =27 (Ln+1)—25(1,n)

i
i
=1(2,n+ 2) — 24,
(n+

(3.3.1)
1(2,n+1) —2¢,(2,n)
=0 1) —2g;(n).
So that
gi(n+2)—=5g(n+1)+4g,(n) =0, (3.3.2)
where we have
- rtyt+z or+y+z
(1) = T g gy = L)
TYz TYz
as the initial values.
So, we can get the solution of recursion (3.3.2), that is
. 1 T+y+z
n)=-4"=1)——. 333
dhln) = 5@ = )L (333)
In this way, we have a recursion of §;(0, n) as
31(0,n+2) —237(0,n+ 1) — 27,(0,n)
=71 (1,n+2) =241 (L,n+1) - 26,(1,n)
=g1(2,n +2) —231(2,n + 1) — 277(2,n) (3.3.4)
=g)(n + 1) = 2g3(n)
1 rT+y+z
=—(2-4"+1)———.
3( +1) TYZ

Noticed that 1 + /3 is the solutions of 22 — 2z — 2 = 0. By Vandermonde’s, assume that
300,n) = A1 +V3)"+ B(1—3)"+C-4" + D,
where A, B, C, D is fixed by z, y, z. Noticed that

- N T _ 3r+y+z
1(0,0)=0 10,1) = — 0,2) = —F——
gl(’) ) gl(?) IyZ’ 91(7)
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and

N ~ s 3(x+y+z2) 1llx+5y+5z
1(0,3) =231(0,2) +2g;(0,1 = :
gl(v ) gl(? )+ gl(a )+ Tyz TYz
We have
A+B+C+D=0
(A+B)+\/§(A—B)+4C+D:x—w
3 (3.3.5)
4(A+B)+2\/§(A—B)+16(J+D:%
11 5y +5
10(A + B) + 6v/3(A— B) + 64C + D = —~ 2V T2
\ TYz
The solution of these equations is
(A \/_<2:E— —z)
18 TYZ
B__ V/_(2x~— ——z)
18 ryz (3.3.6)
_Ttytz
 9ayz
(e ol )
Y/ | Qayz
So, we can get
(
vr.Qx " 'vg 20 —y — 2 n
9:(0,n) = 18( P )1 +V3) _1_8<ac—yz)(1_\/§>
rT+yt+=z r+yt+z
LA /A et
+ 9ryz ) 9ryz
\/_ 3,2y — x/_ 3 2y—x—=z n
L) = Va1 VA
3.3.7
T a7
9xyz 9ryz
n(2n) =12 (T)(1+f) <x—yz)(1_\/§>
r+yt+z r+yt+z
(I TV TE
L 9ryz 9ryz
24
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At the same time, we can get the solution of 7 (i, n),

1=20,1,2as

(
~, 3—2V3 20—y — 2 3+ 23 20 —y — 2
— 1 n 1 — n
By (0.m) = (gL VB () () (- )
rTH+y+z 2 +y+ 2)
Z I T A yn 2 T T
+ 9yz W+ 9yz
~, 3—2V3 20—x — 2 n 3+ 23 20— — 2 n
ho(1,m) = (=) )L+ V3)" + ( TR )(1—V3)
) 2 +y+2) v
r+y+=z T4y
Z I T A yn L 22 T I T )
+ 9z A+ 9z
~, 3-2V3 22—z —vy 34+2V3 22—z —vy
Bo(2om) = () (VA (S (0 - V)
rT+y+z 2 +y+2)
I T A yyn 22 T I T A
L + 9xy A+ 9xy
(3.3.8)
while n > 2, where
~ 1- 1~ 1-
!/ :_l _/1 _/2 )
ho(n) Iho((),n) + yho( ,n) + zhO( ;)
So, we have
p rtytz, o,
hO(n)_—Sxyz (4" + 2). (3.3.9)
Therefore, by (3.1.5), we have
(
5 3—2V3 2\ Yy — % 3+ 23 20 —y — z
— 1 n 1— n
flom) = (gD VA () (T - V)
+(x+y+z>4n+2(x+y—|—z)_y+z
9yz 9yz Yz
% B 3—2\/§ 20 —x—z A 3—|—2\/§ 20— — 2 n
falm) = SIS @ Va4 () () (- V)
+(x+y+z)4n+2(m+y+z)_x+z
9xz 9xz Tz
5 3—2V3 22—ax—y 342V3 22—x—y
2,n) = 1 " 1— "
fa(2n) = (=) o )(1+V3)" + ( TR 0 )(1—V3)
+(a:+y+z)4n+2(a:~l—y+z)_x+y'
\ 9y zy Ty

Defines u, w as

P4y —ay—az—ay

(3.3.10)

(x+y+2)°

we have f](n) = 2(w — u).

1
3

I N bl

TYz rYz
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So, the solution of f}(n) is as follows.

Theorem 3.3.1. The weighted sum of Hamiltonian walks on H'y with one end at an outmost

vertex, another one not at any outmost vertex is given by 0 for n=1I and

Ju(l —V/3)" + (%)4” - g(Qw —3u) (3.3.11)

5 _92\/§)u(1 +V3)" 4+ (3 +92\/§

Fan) = (

forn > 2.

Now, we’ve got the solutions of f{(n) and f5(n). In order to get the solution of f;(n), we
can consider some modifications to recursions of ¢5(7,j,n), i=0,1,2, j=a,f.

Add up all the equation of (3.2.14), we have

Gs(n +1) = 3g5(n) + K(n), (3.3.12)
in which
R =~ (TR0 + T 2R+ TR )

+2 <$i~16(1, n)RY(2,m) + g0, n) R (2, n) + 2hh(0, ) (1, n))
1~/ ~/ 1~/ ~/ 1~/ ~/
20y (RGO WHO.) + THo WA Lr) + T2 007120
1~/ ~/ 1~/ ~ 1~/ ~/
+ ey (;m(o,n)glu, n)+ (L (2 m) + h 2w G
1~/ ~/ 1~/ ~/ 1~/ ~/
_'_;}7’0(17 n)gl(()? n) + ;h’O(zv n)gl(17 n) -+ EhO(Oa n)gl(27 ’I’L)

+ 2xy2 ((61(0,n))* + (35 (1,n))* + (31(0,n))?)

+4wyz (31(0,n)g1 (1, n) + 51(0,n)31(2,n) + §1(1,n) 71 (2, n)) -

According to (3.3.7) and (3.3.8), we have

K(n) = (2 _12\/§>u(4 +2v3y — (2 izﬁ)u(ﬁl - 2V3)" - 5(-2)"
+(3_92\/§)u(1+\/§)”+(3+92\/§)U(1—\/§)” (3:3.19)
+ 06— a2
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Noticed that g4(1) = 0, we have

n—1

i) =8 3 oK)

39-—23V@§ 39 +23V/3 .
TSI T2V3)" + +5 9 19 u(d—2v3) (3.3.15)

+E(_2)+< (1 V) - (55 (- vy
2w

( )16" — (?)4” +oeud” + (

=

3" + =

13 13 9

as the constant ¢ = —@
495

According to (3.2.10), we have

il +1) = S (000, 1)) + (i (1, 1))+ (2 )

Ytz T+ 2= T+ z

h6(17 n) \

NO(Ovn) - %(2,71)

UGRY /e
+ =+ =+ =+ Gi(n)
rT Yy oz

116 — 67+/3

:(2x9xn

o B2+ Ve (B -

25w Sw w 4w
1 n - _ 471 n o 8
1310 T (g Feus” + (

(3.3.16)

Ju(4 +2v3)" (%) (4—-2v3)"

+(

in which we can get the solution of f4(n) as the following theorem.

Theorem 3.3.2. the weighted sum of Hamiltonian walks on H'S with no end at any of the outmost

vertex is given by 0 for n=1 and

1,433 — 2501/3 433 + 2501/3
/ — 3 JoY avvve 4 9 n e P evrve 4—9 n
i) = (o) (S s uld 4+ 2V3) o (S (e - 2v3)
2 3—2v3 3+2v3
2o - 2B vy - A2 - vay G317
25w 2w cu 4w u
— 16" — (—=)4" + (—=—)3" + 3+ —=—=
+(16><27><13) (27) +(3) (39) +27 3]
9 2 2 2 2
as the constant ¢ = — — while u = = Ty ATy rr T oy and w = wfor
495 TYz TYZ

n > 2.
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According to (3.1.1), (3.2.2), (3.3.11) and (3.3.17), we have the following solution to show

the weighted sum of Hamiltonian walks on H' we need.

Theorem 3.3.3. The weighted sum of weighted Hamiltonian walks on H'3 is given by xy+ xz+
yz forn = 1 and

h(n) = fi(n) + f3(n) + f3(n)

w1, 433 — 2504/3 433 + 250v/3
= (2y2)*" (Y (4 2v3)" + (T (4 - 2v/3)" (3.3.18
(o) (g 4 2V3) o+ (=S ua — 2B (33.18)
2u 25w w cu w w
—(=2)" —_)16" — 4" —)3" —)3" + —
+45( ) +(16><27><13) +(27) +(3) +(39) +27]
9 2 2 2 9
astheconstantc:—E whilet=> ATy <27 — 2Y and w — (z+y+2) for
495 TYZ rYz

n > 2.

Especially, ifr =y =2 =1,e.g. u = 0 and w = 9. We can get

Consider the asymptotic behaviour of i'(n), we have

Theorem 3.3.4. When n is large, the asymptotic behaviour of the weighted sum of Hamiltonian

walks on H'; is given by

25w

n gn—1
ta o ~1i 1316 (xyz)” . (3.3.19)

W' (n)
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