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中文摘要

本篇文章使用了強化學習結合深度學習的技術去訓練自動交易系統，

我們分別建立了深度卷積網路和全連接網路去預測動作的 Q 值，並使用

DDQN的模型去更新我們的動作價值。我們的交易系統每天採用 10天前的

股票資訊，去預測股票的趨勢，並最大化我們的利益。

DDQN是一種深度強化學習模型，透過建立目標網路和調整誤差函數

使得他能夠避免 DQN的過估計問題，並得到更好的效能，在我們的實驗

中，我們得到了一個良好的效果，證明 DDQN在自動交易系統上是有效的。

關鍵字：深度強化學習、神經網路、Q 學習、深度雙 Q 網路、股票交

易
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Abstract

In this paper,We use the artificial neural network combinedwith reinforcement

learning to train the automated trading system. We construct the CNNmodel and the

fully-connected model to predict the Q-values of the actions and use the algorithm

of DDQN to correct the TD error. According to past 10 days data, the system

predicts the trend of the stocks and maximize our profit.

DDQN is a deep reinforcement model, which is an improvement of DQN,

build the target network and modify loss function to avoid overestimation and get

better performance. In our experiment, we get a good result that DDQN is feasible

on automated trading systems.

Keywords: Deep Reinforcement Learning, Neural Network, Q-Learning, DDQN,

Stocks Trading
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Chapter 1

Introduction

In recent years, the development of artificial intelligence, whether in image classification,

semantic analysis, recommendation systems, etc., has achieved impressive results. In many

fields, AI has even surpassed human performance. For instance, in 2017, AlphaGo [10] defeated

the world Go champion Ke Jie, in which deep reinforcement learning played a very crucial role.

Reinforcement learning is a kind of machine learning, which expects an agent to learn the

optimal behavior strategy by taking actions in an environment. However, in the actual work,

conventional reinforcement learning is unable to cope with complex and large amounts of data.

To solve these problems, scientist combined reinforcement learning with deep learning, solved

the restriction of tabular form and improved the generalization ability of the model. In 2013,

DeepMind combined Q-learning [14] with CNNs [5], which is called DQN [8], exceeded human

experts in three games of Atari 2600. Nowadays, deep reinforcement learning has been applied

with big success in various fields.

This paper adopted double deep Q-learning [13] to establish an auto-trading system. We

chose underlying stocks of Taiwan 50, which contains top fifty companies in Taiwan, as data.

To evaluate the capacity of our model, we compared our profit to other trading strategies in

practical.

1



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202200014

Chapter 2

Deep Learning

In traditional machine learning, we need to divide the problem into several parts and

artificially extract features from the data, and then use algorithms to make the machine learn.

However, designing a large number of complex feature engineering is a daunting task when

dealing with cluttered and unstructured data [2]. Deep learning is a branch of machine learning

with the structure of artificial neural network and deep layers. It implements an end-to-end [9]

approach where the input is the raw data and the output is the final result, reducing a lot of

human intervention.

The basic idea of deep learning is to find the best function based on the training data, by

which the answer can be obtained. For example, If you want to know whether a stock will go

up or down on a certain day in the future,

f(“ Date ”) = “ The close price of the stock. ”

In practice, both input and output of the function must be vectors. The neural network

operates a series of weighted calculations from the input vector, and modifies itself by the

difference of output values and real answers. Through this progress, we can find the suitable

function solving our problems.

In conclusion, we divide deep learning into three steps. First of all, construct the model.

The function set would be determined by this structure of network. Next, we choose the loss

function which can identify the function is good or not. Lastly, train the model according to the

training data. Thus, the model can be modified itself and get the best function from its function

set.

2
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Figure 2.1: Three Steps of Deep Learning

2.1 Neurons and Neural Networks

Artificial neural network [15] is the core structure of deep learning. its name and concept

inspired by the human brain, and mimics the way biological neurons send signals to each other.

This section will introduce how do neural networks work.

A neuron in neural network is a simple function that usually consists of linear and non-linear

components. As shown in Figure 2.2, x1, x2, ..., xn are the inputs and w1, w2, ..., wn are the

corresponding weights. We multiply them one by one and add up total, and plus a bias b. Lastly,

an activation function σ, which is the non-linear part, sends out the output h = σ(
∑n

i=1 wixi+b)

for the neuron.

Figure 2.2: A Neuron in Neural Networks

3
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As the following example, we can clearly understand the process of the operation. Suppose

x1, x2, x3 are 3, (−1), 1; w1, w2, w3 are 2, (−3), (−2); and b is 2. Let the activation

function σ be ReLU which will output directly if input is positive number, otherwise, it will

output zero. First, wemultiply each xi andwiwhere i is 1, 2, 3, and add up. We get
∑n

i=1 wixi =

3 × 2 + (−1) × (−3) + 1 × (−2) = 7. Next, we plus the bias b = 2, then we get 7 + 2 = 9.

Note that the weights and the bias would be modified while training the model. Finally, send

the number into the activation function σ(9) = 9. Hence, the output h = 9.

We can build a neural network by connecting individual neurons. As below Figure 2.3, it

is a simple neural network. We can divide it into three parts. The first layer which is on the

left side called input layer, the last layer which is on the right side called output layer, and the

rest of layers are called hidden layers. Each neuron receives the output from all neurons of the

previous layers as input, and its own output sends to all neurons of next layer. This process

keeps one direction from input layer to output layer. We call it fully connected feed-forward

neural network.

Figure 2.3: Neural Network

When the neural network was constructed, the function set is determined. Hence, if the

structure of the model is bad, the functions in this function set would be not work.

2.2 Activation Function

In reality, most of the problems can not be predicted linearly. We need some non-linear

functions, called activation function [6], to make our neurons have non-linear relationship.

There are some common activation functions as following.

4
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1. Sigmoid Function

Equation:

f(x) =
1

1 + e−x

Range: (0, 1)

Graph:

Figure 2.4: Sigmoid Function

2. Hyperbolic tangent (tanh)

Equation:

f(x) =
ex − e−x

ex + e−x

Range: (−1, 1)

Graph:

Figure 2.5: Hyperbolic Tangent (tanh)

5
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3. Rectified linear unit (ReLU)

Equation:

f(x) = max(x, 0)

Range: [0,∞)

Graph:

Figure 2.6: Rectified Linear Units (ReLU)

2.3 Loss Function

After deciding the structure of the model, there are lots of undetermined coefficients called

parameters, consisting of weights and bias, denoted by θ. Then the network is a function set

based on θ, denoted by {f(x|θ)}where x is the input. As mentioned earlier, the purpose of deep

learning is to find an optimal function. To find the optimal function, we would like to find out

the best parameters θ∗. Hence, we need a judgment criterion to rate our functions.

Here, we define y represents the actual answer, and f(x|θ) represents the output value. The

judgment criterion, called loss functionL(θ), estimates the distance between y and f(x|θ) under

the parameter θ. Thus, through the loss function, we can evaluate the network with the θ. Then

we can obtain θ∗ as long as we minimize the loss function. As below, we show some simple loss

functions.

1. Mean Absolute Error (MAE)

Equation:

MAE(θ) =
1

k

k∑
i=1

||yi − f(xi|θ)||

6
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where k is the total number of data

2. Mean squared error (MSE)

Equation:

MSE(θ) =
1

2k

k∑
i=1

||yi − f(xi|θ)||2

where k is the total number of data

3. Binary cross-entropy(H)

Equation:

H(θ) = −1

k

k∑
i=1

[yi log(f(xi|θ)) + (1− yi) log(f(xi|θ))]

where k is the total number of data, and each yi = 0 or 1

2.4 Gradient Descent Method

Gradient Descent Method is an approach to minimize the loss function. The core concept

is taking steps in the opposite direction of the gradient of the function. We take a look at below

Figure 2.7 as simple example. This is a graph for L(θ) = θ2 − θ + 1. Suppose the initial

point located at (a, L(a)), and we hope to move it to the minimum location of L(θ). First, we

calculate L′(a), and then multiply it by the learning rate η. Lastly, move (a, L(a)) to the new

spot (a − ηL′(a), L(a − ηL′(a))). η is usually a small positive number, and we’ll introduce it

later. Since L′(a) > 0 and η > 0, we shift the initial point left to reduce L(θ). Repeating these

steps, until the gradient of the function is zero. Likewise, the operation at (b, L(b)) is the same.

Figure 2.7: L(θ) = θ2 − θ + 1

7
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If there are lots of parameters of the function, we can calculate the partial derivatives of each

parameters, and do the same operations on each one. Given θ = {w1, w2, ..., wm, b1, b2, ..., bn} is

the parameters of the network with initial random values. The new θ will be as below. Actually,

the gradient decent calculated easily by chain rule from the last layer to the beginning. This

approach is applied in most of the models, called back propagation [3].

θnew =



w1
new

w2
new

...

wm
new

b1
new

b2
new

...

bn
new



=



w1 − η ∂L
∂w1

w2 − η ∂L
∂w2

...

wm − η ∂L
∂wm

b1 − η ∂L
∂b1

b2 − η ∂L
∂b2

...

bn − η ∂L
∂bn


The learning rate η is a hyperparameter set by human. It controls the speed of the

movement. If η is too big, the point may cross the lowest spot and getting worse. On the

other hand, if η is too small, we’ll waste lots of time on the moves and even get stuck in the

local minimum. There are many optimizers can control η automatically. The most well-known

are Adagrad, RMSprop or Adam.

8
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Chapter 3

Convolutional Neural Network (CNN)

Before the development of CNN, there were two problems with image processing in neural

networks: first, the image data was too large, making the training too inefficient; the other

was that the information of images easily lost through the digitization process, and the original

features could not be retained. CNN is a method good at dimension reduction, which could

reduce a large number of parameters while retaining the original features.

The original CNN is composed of three parts: convolutional layer, pooling layer, and fully-

connected layer. The convolutional layer is used to extract local features from the image; the

pooling layer is used to significantly reduce the numbers of parameters; and the fully-connected

layer is used to output the required result.

1. Convolutional Layer

In convolutional layer, we decide some convolutions (or called filters) and use them to

slide over the image. This process helps us to extract some features from the image.

There’s an example as Figure 3.1, we use a 3 × 3 convolution to slide over the 5 × 5

image to get a 3 × 3 feature map.

9
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Figure 3.1: Convolutional Layer

2. Pooling Layer

Even after doing the convolution, the image is still large. Hence, we use the pooling

layer to reduce dimension. The most common pooling method is maximum pooling. As

Figure 3.2, we slide over the feature map and find the maximum value to get the pooled

feature map. Pooling layers can reduce the dimensionality of data more efficient than

convolutional layers, which can not only greatly reduce the amount of operations, but

also effectively avoid overfitting.

Figure 3.2: Pooling Layer

3. Fully-Connected Layer

10
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The data processed by the convolutional layers and the pooling layers are finally flattened

and fed to the fully-connected layer to obtain the desired result.

Typically, our CNN network has several convolutional and pooling layers interleaved until

the parameter space is small enough. Finally, we flatten the vectors and feed them to the fully-

connected layer to output the result. Compared to other image classification algorithms, CNNs

use relatively little preprocessing and work well in various field.

Figure 3.3: The Process of CNN

11
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Chapter 4

Reinforcement Learning

Machine learning can be divided into three main categories: supervised learning,

unsupervised learning, and reinforcement learning. Supervised learning deals with labeled

training data. The machine learns from these known output data and expects to get the correct

answer when it comes to unseen input data. As the concept we mentioned in previous chapter,

it automatically create a function that maps inputs to outputs.

Unsupervised learning learns some hidden structures from a large amount of unlabeled data.

A common example of this approach is data clustering. In reality, we can cluster the consumer

groups and design corresponding products for different group.

Reinforcement learning is the third method between supervised learning and unsupervised

learning. It does not have labeled data, but not without relevant information. The main purpose

of reinforcement learning is to solve the problem of sequential decision making. In more detail,

reinforcement learning expects the agent to learn itself over time in an environment and make

the optimal behavioral strategies.

4.1 Introduction

Before we dive into the details, let’s give an example to get a clearer picture. Assuming

a grid world with a number of treasures and traps scattered throughout. A robot decides which

direction to go by observing. Our goal is to collect as much treasure as possible while avoiding

traps. Reinforcement learning is an approach for the robot to learn the behavioral strategies

on their own. We will introduce terms that reinforcement learning settings through the above

12
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examples.

1. Agent

Agent is the intelligence that explore and learn in the environment.

2. Environment

Environment is the space in which the agent is located.

3. Reward

Reward is the value that an agent obtains from the environment from time to time. The

purpose of the reward is to provide an agent with information about its success or not.

The values can be some integers or some vectors, as we decide.

4. Observation

Observation refers to information about the environment that the agent can perceive in

addition to the reward. In general, the agent can only observe a limited domain of the

environment, just like humans.

5. Action

The agent interacts with the environment via actions. The actions can be classified in two

types. One type is discrete and can be described as whether to do a certain action. The

other is continuous, which is generally represented by vectors.

As above example, the agent is the robot which is located in the grid world. And we call

the entire grid world the environment. The agent can observe information within three grids.

Through this observation, the agent takes an action tomove up. Aftermoving to the new spot, the

agent gets a treasure and a new observation. In the following figure, we can clearly understand

the interaction between the agent and the environment in reinforcement learning.

Figure 4.1: The interaction between agent and enviorment

13
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4.2 Markov Decision Processes

In order to deal with a series of interactions between agent and environment, we construct

mathematical models for reinforcement learning throughMarkovDecision Processes to simplify

the problem.

1. Markov Process

By observing the environment, the agent would get a state. All possible states in the

environment form a finite state space S. Through a series of observations, we get a series

of states from the state space. The state change is called Markov Process (S, Pss′) if it

satisfies the condition:

P [St+1|St] = P [St+1|S1, ..., St].

This means the transition probability from the pervious state St to the next state St+1 does

not change at any time t. With Markov Process, we have the transition matrix Pss′ to

describe the transition probabilities between the states s and s′. For example, assume that

the weather changes with sunny and rainy days. If it is sunny today, tomorrow will be

40% sunny and 60% rainy. On the other hand, if today is rainy, tomorrow will be 20%

sunny and 80% rainy. We can organize these transitions into the following table.

sunny rainy

sunny 0.4 0.6

rainy 0.2 0.8

In practice, it it almost impossible to know the exact transition probabilities. We can

only observe the environment to get a series of the states, which is called episode

{sunny, rainy, sunny, sunny, rainy, sunny, rainy, rainy}. When we have more and more

observations, we can estimate the transition probabilities.

2. Markov Reward Process

We extend Markov Process to Markov Reward Process (S, Pss′ , R, γ) by added reward

R and discount factor γ. In MRP, the agent will receive a reward whenever the states

14
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transferred. For every episode {s1, r1, s2, r2, ..., sT}, the return at time t is defined as:

Gt = rt+1 + γrt+2 + ... =
T−t∑
k=0

γkrt+k+1.

The discount factor represents the foresight of the agent. When γ = 1, the return Gt will

be the sum of the sequential rewards, which means that the future is as important as the

present; When γ = 0, Gt will be the present reward, which means not caring about the

future at all.

3. Markov Decision Process

We add the action space A in Markov Decision Process (S,A, P a
ss′ , R, γ). To describe the

action decisions of the agent, we define the policy π:

π(a|s) = P [At = a|St = s].

The policy π(a|s) describes the probabilities of the actions based on the states.

Lastly, we define the state value function Vπ(s) and the state-action value function

Qπ(s, a). Vπ(s) is the expected return with policy π at state s, andQπ(s, a) is the expected

return with policy π at state s and an action a.

Vπ(s) = Eπ[Gt|St = s]

Qπ(s, a) = Eπ[Gt|St = s, At = a]

Given a policy π to an agent, it can interact with environment and get the episode

{s1, a1, r1, s2, a2, r2, ..., sT}. Although we can use Gt to represent the value of state st, it

is not subjective because the episode is specific. Hence, we prefer to use Vπ(s) orQπ(s, a)

which is the expected value with many episodes.

In dynamic programming, we iteratively calculate the value function by the Bellman

equation:

Vπ(s) =
∑
a∈A

π(a|s)(
∑
s′∈S

P a
ss′(r

a
ss′ + γVπ(s

′))).

15
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After we finish all the paths, we can get the value function of all the states by recording the

transition probabilities and rewards of all Markov chain. This way of updating values is called

full-width backup. However, when the environment is too complex to construct whole transition

probabilities table, the dynamic programming won’t work. In next section, we’ll introduce the

methods to deal with this problem.

4.3 Monte Carlo Method and Temporal Difference

Monte CarloMethod uses sample backup. At the end of each episode, Monte CarloMethod

calculates the value of each states and makes a weighted average. As the episodes become more

and more, our estimation becomes closer to the actual expected value. In practice, we use the

following formula to update the estimates.

V (st)← V (st) + α(Gt − V (st))

Q(st, at)← Q(st, at) + α(Gt −Q(st, at))

α is a step-size parameter, influence the degree of smoothing of estimation updates.

The adaptability to the environment is the advantage of Monte Carlo Method. We only

rely on the interactions between the agent and the environment. However, in the previous

experimental results, the estimation of the state values would deviate significantly from the

actual value. In addition, the estimates cannot be updated until the end of the episode.

Instead of estimating at the end of each episodes, Temporal Difference updates the

estimation at each step. At each time t + 1, TD method updates the estimations immediately

with following formula.

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)]

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1 −Q(st, at))]

Both Monte Carlo Method and Temporal Difference don’t need to construct the whole

transition model for environment. They update the values from the experience of the episodes.

This concept is called model-free. In the face of complex environments, a model-free approach

will be more effective than a model-based one.

16
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4.4 Q-Learning

Q-Learning is one kind of TD method. We first initialize a Q-table to record the values of

the state-action pairs, and then updates the Q-table for each step of each episode according to

the following formula:

Q(st, at)← Q(st, at) + α(rt+1 + γmaxat+1Q(st+1, at+1)−Q(st, at))

It considers the maximum valuation among all the next state-action value function

Q(st+1, at+1) to updateQ(st, at). The next state-actionQ values are calculated without choosing

the next action. For a clear understanding of Q-Learning, the pseudocode algorithm is shown

as below:

Algorithm 1 Q-Learning Algorithm
Initialize Q(s, a) arbitrarily
for each episode do

Initialize state s
for each step of the episode do

Choose an action at according to Q function and state st
Take an action at; observe reward rt+1 and next state st+1

Q(st, at)← Q(st, at) + α(rt+1 + γmaxat+1Q(st+1, at+1)−Q(st, at))
st ← st+1

end for
end for

17
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Chapter 5

Deep Reinforcement Learning

Practical tasks often have high-dimensional inputs, which are difficult to be processed with

traditional reinforcement learning. There are two ways to solve this problem. One is to use

manual feature engineering to reduce the dimensionality of the input data, which is usually a

tough project. The other approach is to use deep learning to take advantage of computation to

do the work automatically.

5.1 Deep Q-Learning Network (DQN)

In traditional Q-Learning, we update Q-table iterative according to each step of episodes.

However, when the state and action space are too large, Q-table is difficult to be recorded and

established. In 2013, DeepMind published that Deep Q-learning Network called DQN. Actually

it is a combination of Q-Learning and neural network, turning Q-table into Q-Network. Solving

the curse of dimensionality by representing Q as a function.

Q(s, a; θ) ≈ Q(s, a)

θ is the parameter of themodel. The structure of themodel is the connection of two convolutional

layers and two fully connected layers. The input is four frames of 84×84 images and the output

is 18 Q-value of the actions.

18
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Figure 5.1: The composed of DQN

After the network is established, the loss function is set asL(θ) = E[(r+γmaxa′Q(s′, a′; θ)−

Q(s, a; θ))] with stochastic gradient decent. Using ϵ-greedy method to generate the transitions

(st, at, rt, st+1), i.e., do random action with probability ϵ and do argmaxaQ(st, a; θ) at time t.

And store the transitions into ”Replay Memory” as training data to train the model.

Replay memory is designed to eliminate correlations between data. It builds a store and

collects the transitions. When we want to update the Q-values, we sample some transitions for

calculation. It has the advantage of helping the network to converge.

Algorithm 2 Deep Q-learning
Initialize replay memory D to capacity N
initialize state-action value function Q with random weights
for episode = 1,M do

Initialize sequence s1 = x1 and preprocessed sequenced ϕ1 = ϕ(s1)
for t = 1, T do

With probability ϵ select a random action at
Otherwise select at = argmaxaQ(ϕ(st), a; θ)
Execute action at in emulator and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and process ϕt+1 = ϕ(st+1)
Store transition (ϕ(t), at, rt, ϕt+1) in D
Sample random minibatch of transitions (ϕj, aj, rj, ϕj+1) from D

Set yj =

{
rj, for terminal ϕj+1

rj + γmaxa′Q(ϕj+1, a
′; θ), for non-terminal ϕj+1

Perform a gradient descent step on (yj − Q(ϕj, aj; θ))
2 with respect to the network

parameters θ
end for

end for

We structurally divide this pseudocode algorithm into three layers.

1. First Layer

Initialize replay memoryD with capacityN to store the transitions, and initialize network

with parameter θ. Then, doM episodes.
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2. Second Layer

For each episode, initialize the sequence and do the pre-processing of input. Then, do T

steps for the episode.

3. Third Layer

Choose an action at with ϵ-greedy method, and store the transition into replay memory.

Lastly, Sample some transitions from replay memory, and optimize the loss function with

gradient descend.

There are some improvements of DQN as following:

1. Nature DQN

In 2015, DeepMind improvesDQNwith ”Target Network”, named ”NatureDQN”. Target

network is used to provide target value yi for main network to learn. The reason is that

in 2013 DQN, the target value yi is provided by main network, which leads to a constant

change of labels. If we use the constantly changing labels to adjust our network, the

value estimation could easily lose control. Target network was so effective in smoothing

convergence of the network that it was used in all later models. The loss function change

into the following formula:

L(θ) = (r + γmaxa′Q(s′, a′; θ−))−Q(s, a; θ),

where θ− is the parameter of target network and θ is the parameter of main network. And

we adjust the parameter of target network equal to the parameter of main network every

C steps.

2. Double DQN (DDQN)

Double Deep Q-Learning is designed for solving overestimation problems. In DQN, we

use themaximum value of next state-action Q-value to evaluate the state values. However,

the objective state value should be the expected value of all next state-action Q-value in

this state. Therefore, the problem of overestimation occurs. In order to deal with this

problem, we use different networks to select action and evaluate the Q-value. Then the

20



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202200014

loss function changes to the following form:

L(θ) = (r + γQ(s′, argmaxa′Q(s′, a′, θ); θ−))−Q(s, a; θ))2.

3. Dueling DQN

The dueling network separate Q-network into two estimators: one for the state value

function V and the other for the advantage function A. It considers that a value function

Q is contributed by the value of the state itself and the action a under the state, i.e.,

Qπ(s, a) = V π(s)+Aπ(s, a). The V function is independent of the action and represents

the value of the state; the advantage functionA is related to the action and represents how

good the action is in the state. The dueling network separately calculates the V function

and the A function, and combines them into a single Q function at the final layer.

4. Priorized Experience Replay

Priorized Experience Replay is amethod that solves the problem of inefficient convergence

of Q-Learning. According to the formula, r + γmaxa′Q(s′, a) − Q(s, a), the transitions

with larger TD error will be selected from the memory buffer for updating priority.

5.2 Policy Gradient

In DQN, we use an indirect method to find the optimal policy with the Q-value, which is

called value-base. Instead of a strategy, we obtain a Q-table that compare Q(s, a) each time

according to the state s to get a higher valuation of a, and then connect the pieces to form

a complete strategy. Now, we present a direct method, called Policy Gradient, for network

learning to find the optimal policy.

In Policy Gradient, we want to get a best policy directly. The policy with parameter θ is

defined as the following form:

a = π(s|θ) or a = µ(s|θ),

where π is the stochastic policy output the distribution of action, and µ is the deterministic policy

output one action.
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To evaluate the goodness of a policy, we compare the total rewards obtained. Assume the

policy π guides the agent go through the episode τ = (s0, a0, r0, s1, a1, r1, ..., st, at, rt). We

define the objective performance function to evaluate the policy:

J(θ) = E[r0 + r1 + r2 + ...+ rt|πθ].

Now, if we can calculate the gradient of this function, we can do gradient ascent and find the

maximum value, which will optimize our network. In 1999, the paper [12] publish that the

stochastic policy gradient is:

∇Jθ(πθ) = Es∼ρπ ,a∼πθ
[∇θlogπθ(a|s)Qπ(s, a)].

And in 2014, the paper [11] demonstrated that deterministic policy gradient is:

∇Jθ(µθ) = Es∼ρµ [∇θµθ(s)∇aQ
µ(s, a)|a=µθ(s)].

ρ is the distribution of the state under the policy.

In 2015, Google published a new structure of neural network called DDPG [7]. It combines

the skills of DQN and DPG and adopts Actor-Critic method. In Actor-Critic method, the model

is divided into two parts: value-based and policy-based networks. The policy network is called

actor, which outputs the action. And the value network is called critic, which is used to evaluate

the goodness of the action chosen by actor, and outputs the TD error to update the actor and

critic networks.

Figure 5.2: The Architecture of DDPG

The main concept of DDPG:
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1. DPG

Deterministic policy gradient theorem supports the mathematical theory for DDPG.

2. DQN

DDPG also uses replay memory and target network to train the network stably.

3. Behavior Policy

In the training process, we insert the random noise into the decision of the action. The

decision of the action is changed from a deterministic process to a stochastic process,

which allows the agent to better explore environment.

at = µ(st|θµ) +Nt

23
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Chapter 6

Automated Trading System

In this paper, we will use Double Deep Q-Learning with CNN model [1] [4] and fully-

connected model to allow the agent to buy stocks automatically. We expect the agent can learn

the trend of the stocks and maximize the profit.

6.1 Dataset Preparation

We chose the stocks in Taiwan50, which contains the top 50 largest and most representative

stocks in Taiwan, as our data. We randomly select 40 stocks in Taiwan50 from 2015 to 2019

as training datasets and 2020 as validation datasets. And the rest 10 stocks in 2020 are used as

testing datasets. There are five feature of each data: Open, High, Low, Close, Volume. Open

is the opening price at which a security first trades when an exchange opens for a day; High is

the highest price for the stocks in a trading day; Close is the closing price that is the last price

at which a security traded during the regular trading day; Volume is the number of shares of a

security traded during a given period of time. In order to eliminate the differences of scale range

between the stocks, we use Feature Scaling method to normalize our data.

xi −Xmin

Xmax −Xmin

Xmax and Xmin are maximum value and minimum value in the set. Feature Scaling transform

the values in the set into [0, 1]. Normalization allows the values of data at different scales to be

adjusted to a nominally common scale that is meaningful for comparison.
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6.2 Trading System Settlement

1. Environment

The environment represents the entire financial market. We do an action in the

environment and it will return a reward. In this paper, the environment is the 50 stocks of

Taiwan50 and the agent will interact with the environment maximize the profit.

2. State

The states are observations from the environment that are input to the neural network. We

set each state contain pass 10 days of Open, High, Low, Close, Volume and the number

of stocks held at that time. In fully-connected mode, our states are size of 51 × 1 matrix;

and in CNN mode, the states are size of 6 × 10 matrix. The states are like below figures.

Figure 6.1: State Input to Fully-Connected Model

Figure 6.2: State Input to CNN Model

3. Action

We suppose that agent can act five actions: buy 100 shares, buy 10 shares, hold, sell 10

shares, and sell 100 shares. If the agent buys or sells a stock, we will trade at the closing

price of the current bar.
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Figure 6.3: Action

4. Reward

Whenever the agent makes a trade, we will give a negative reward as commission, just

like the real situation. When the agent sells the stocks, we will return a reward as profit,

which may be positive or negative. On the last day, we will clear all hand-on stocks and

calculate a reward to return as profit.

6.3 Initial Parameter Settlement

We set the initial funds as 100,000 and no shares of stocks on hand at the beginning. To

enrich our state-action pairs in the replay memory, we will choose a random offset from the

beginning of the data and up to 200 steps in an episode in which we use ϵ-greedy with ϵ =

1
0.1×episode+1

to choose actions. The learning rate is set as 0.001 and the discount rate set as 0.99.

In Double Deep Q-Learning, we have the skill ”separate target network”, means that the target

weight which compute Q-values of actions, are different with updating weight. We set the ”

target update step” as every 2 episode, which means the target weight would equal updating

weight every 2 episode.

26



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202200014

6.4 Neural Network

We have two types of network: One is a CNN network, which contains three convolutional

layers and two fully-connected layers; the other is a fully-connected network, which consists of

three fully-connected layers. We compared these two architectures of DDQN and the buy-hold

policy.

6.4.1 CNN in DDQN

The first layer is convolution. The kernel size and the activation function are set as 6 × 4

and ReLU function. The first layer of filter are 32, which output 32 channels to next layer. The

second layer is also a convolution. Because the output channel from above layer is 32, the input

channel in second layer is 32. We set the kernel size in second layer as 32 × 2, the activation

function is also ReLU, and the second layer of filter are 64. The third layer is still a convolution

with kernel size 64 × 2, ReLU function and 64 filters. The fourth and the fifth layer are fully-

connected layer with ReLU function. We set them as 512 units and finally output a 5-dimension

vector which represents the Q-value of the action.

Figure 6.4: Fully-Connected Model
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6.4.2 Fully-Connected Network in DDQN

We use three fully-connected layers with the activation function are ReLU. The units are

512 in each three layers and finally outputs a 5-dimension vector.

Figure 6.5: CNN Model

6.5 Result

The result is shown as following figure. We choose training episode = 14000, 15000, and

16000, where the validation result is convergence, to compare with buy-hold policy. The buy-

hold policy means that we take all money to buy the stocks in the beginning and sell all in the

end. We can find that whether CNN or fully-connected model are better than buy-hold policy

when the value of buy-hold policy is negative. It means that our DDQN networks specializes

in down-trending stocks. In CNN mode, we have six profit rates higher than buy-hold policy;

three profit rates are almost even; and one profit rate is less than buy-hold policy. On the other

hand, in fully-connected network mode, we have five higher profit rates; two are almost even;
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three are less than buy-hold. Both DDQN with CNN and DDQN with fully-connected network

have better result than basic reward rate. And CNN mode has more stable and better result than

fully-connected network mode. We attribute this to CNN’s excellent performance in feature

capture.

Figure 6.6: Result
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Chapter 7

Conclusion

In this paper, we construct the CNN and fully-connected network with DDQN to predict

the trend of the stocks. In particular, we use different stocks from the test data, hoping to predict

the unseen stocks from the existing stock information. To compared with the performance of

CNN and fully-connected network, we select three nearly episodes and find that CNN has more

stable and precise prediction. The result shows that CNN is good at feature capture and work

in stocks trading. Although there’s some stocks are not ideal in our automated trading system,

most of them get good performance, the automated trading system with DDQN could achieve

good outcome.

To get the better profit rate, there are two points can be improved. One is to use more skills

of deep reinforcement learning, for example, priorized experience replay, dueling network, etc.

The other point is to change the algorithms of reinforcement learning. Policy gradient method

is also a way worth trying.
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