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The purpose of this article is twofold. On one hand, we reveal the equivalence of 
shift of finite type between a one-sided shift X and its associated hom tree-shift TX , 
as well as the equivalence in the sofic shift. On the other hand, we investigate the 
interrelationship among the comparable mixing properties on tree-shifts as those 
on multidimensional shift spaces. They include irreducibility, topologically mixing, 
block gluing, and strong irreducibility, all of which are defined in the spirit of classical 
multidimensional shift, complete prefix code (CPC), and uniform CPC. In summary, 
the mixing properties defined in all three manners coincide for TX . Furthermore, 
an equivalence between irreducibility on TA and irreducibility on XA are seen, and 
so is one between topologically mixing on TA and mixing property on XA, where 
XA is the one-sided shift space induced by the matrix A and TA is the associated 
tree-shift. These equivalences are consistent with the mixing properties on X or XA

when viewed as a degenerate tree-shift.
© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Let A be a finite alphabet. A pattern on Zd over A is a function from a finite subset of Zd to A. Given 
a set of patterns F ; a shift space XF ⊆ AZd is the set of configurations in which patterns from F do not 
appear. Translation of configurations is a natural Zd action on XF and makes it a dynamical system; XF
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is a shift of finite type (SFT) if F is finite. The study of SFTs plays an essential role and is rife with 
numerous undecidability issues whenever d ≥ 2. For the case where d = 1, the algorithm deciding the 
emptiness and the existence of periodic points of an SFT XF comes immediately from its essential graph 
representation; XF contains dense periodic points if it is irreducible [9,10]. For d ≥ 2, however, it is not 
even decidable if XF is nonempty; there is an aperiodic SFT with positive topological entropy (cf. [5,8,16]
for instance).

Several topological conditions were introduced to assure certain types of dynamical behavior, such as the 
density of periodic points, positive topological entropy, and chaos. Boyle et al. [6] demonstrated that every 
two-dimensional block gluing SFT has dense periodic points while the density of periodic points remains to 
be open for general Zd SFTs, yet for d ≥ 3, the existence of periodic points remains unknown even for block 
gluing shifts. Furthermore, every nontrivial block gluing shift space is of positive topological entropy. A 
possible reason for these differences between one- and multidimensional shift spaces is the spatial structure: 
Z is a finitely generated group with no relations while Zd is not, and this difference also exists in their 
semigroup counterparts, Z+ shifts and Zd

+ shifts.
Shifts on trees (also known as tree-shifts) have received extensive attention in recent years [1,2]. Such 

shifts exhibit the natural structure of one-dimensional symbolic dynamics while equipped with multiple 
directional shift transformations. This interesting combination of properties makes the subshifts on trees an 
intermediate class of symbolic dynamics between one-dimensional shift spaces and multidimensional shift 
spaces.

Given the richness in interesting properties of multidimensional shift spaces as well as their relation to 
the physical models, the elucidation of hom-shifts is imperative. A hom-shift is a nearest neighbor SFT on 
Zd or Zd

+ such that if a, b ∈ A are forbidden to sit next to each other in some direction, so are they in all 
coordinate directions. Many important SFTs arise as hom-shifts, for instance, hard square shift. Chandgotia 
and Marcus [7] studied the mixing properties of hom-shifts and related them to some questions in graph 
theory therein. Aside from generalization in Zd or Zd

+, the hom tree-SFT is also considered as an alternative 
path on the study of abstract tree-shifts of finite type. The description of hom tree-SFT is as follows. Let 
T be the free monoid generated by Σ = {0, 1, · · · , k − 1}, Mn({0, 1}) be the set of n × n binary matrices, 
and A ∈ Mn({0, 1}) be given. The set

TA := {t ∈ AT : A(tw, tws) = 1 for w ∈ T and s ∈ Σ}

is called a hom tree-SFT. Mairesse and Marcovici [12] considered hom tree-SFTs for k = 2; they con-
structed a stationary Markov measure μ out of adjacency matrix P induced from A and showed that μ is a 
Markov uniform measure on the tree. The class of hom tree-SFTs is a particular case of Markov tree-shifts 
TA0,A1,...,Ak−1 considered by Ban and Chang [3,4] when Ai = A for 0 ≤ i ≤ k − 1, where TA0,A1,...,Ak−1 is 
defined as

TA0,A1,...,Ak−1 := {t ∈ AT : Ai(tw, twi) = 1 for w ∈ T and 0 ≤ i ≤ k − 1}. (1)

Ban and Chang showed that every tree-shift of finite type is conjugate to a Markov tree-shift; a survey of 
topological properties is also done therein and is related to chaotic behavior of TA0,A1,...,Ak−1 [3,4].

Similar to illustration of hom tree-SFT, for each one-dimensional shift X ⊂ AZ+ there is an associated 
hom tree-shift TX defined as

TX := {t ∈ AT : (tw1w2...wi
)i∈Z+ ∈ X for any sequence (wi)i∈Z+ in Σ}.

In other words, TX is the set consists of configurations whose projection on any infinite path is in X. Petersen 
and Salama [14,15] first proposed the class of tree-shifts and demonstrated that the topological entropy of 
X is no larger than the topological entropy of TX . An immediate result is X being topologically mixing 
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implies TX is of positive topological entropy. It is noteworthy that this definition is related to the d-fold 
axial power of X in [11] or isotropic shift [13], from which the definition of tree-shift can be adapted to

T ′
X := {t ∈ AT : (tgin)n∈Z+ ∈ X for any g ∈ T, i ∈ Σ}.

It is seen from above the definitions of TX and T ′
X coincide if X is a Markov shift, i.e. X = XA is defined by 

a d × d adjacency matrix A ∈ Md({0, 1}) = {0, 1}d×d. Of independent interest, the impact of the nuance 
in the definitions is demonstrated in Remark 3.7.

This paper aims to investigate the relations of topological properties between X and TX . The upcoming 
section characterizes two criteria for determining whether TX is a tree-SFT or a sofic tree-shift as follows.

Theorem 2.1. Suppose X is a shift space. X is an SFT if and only if TX is a tree-SFT.

Theorem 2.5. Suppose Y is a shift space. Y is a sofic shift if and only if TY is a sofic tree-shift.

It is noteworthy that in the latter theorem above, the covering space of TY is not TX in general, for which 
an example is provided in Example 2.6.

Following such a fundamental classification of TX , an extensive elucidation reveals the connections be-
tween mixing properties for shift spaces on Zd and trees. Ban and Chang considered several mixing properties 
for tree-shifts through complete prefix codes (CPCs, cf. [3,4]. Such sets are called complete prefix sets (CPS) 
in the second paper). The relations of mixing properties, such as strong irreducibility (SI), block gluing (BG), 
topologically mixing (TM), and irreducibility (IR), in the sense of the classical multidimensional shift, CPC, 
and uniformly CPC, are delivered in Section 3 as follows.

Theorem 3.3. Suppose T is a tree-shift. Then, the following implications hold:

1. T is SI if T is CPC USI.
2. T is BG if T is CPC UBG.
3. T is TM if T is CPC BG.
4. T is TM if T is BG.

Section 3 is further devoted to studying mixing properties for abstract tree-shift T, hom tree-shift TX , and 
hom tree-SFT TA, and Fig. 5 illustrates the collapse of mixing properties for tree-SFTs. More specifically,

Theorem 3.5. Suppose X is a shift space. The following implications hold:

1. X is mixing if TX is TM.
2. X is transitive if TX is IR.

Theorem 3.8. Suppose A is an adjacency matrix. The following implications hold:

1. XA is mixing if and only if TA is UBG.
2. XA is transitive if and only if TA is IR.

2. Characterizations for TX

This section is devoted to classifying two essential types of tree-shifts. After introducing definitions and 
notations of tree-shifts, Theorems 2.1 and 2.5 reveal necessary and sufficient conditions for characterizing 
whether a tree-shift is a shift of finite type or a sofic shift.
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2.1. Notations and definitions

Let k ≥ 2 and Σk = {0, 1, ..., k − 1}. A k-tree Σ∗
k = ∪n≥0Σn

k is the set of all finite words generated by 
Σk, where Σn

k consists of n-words and Σ0
k = {ε}. The empty word ε denotes the root of the tree and is 

the only word of zero length. A natural visualization of Σ∗
k is the Cayley graph of a free semigroup on k

generators.
Let A = {0, 1, ..., d − 1} be a finite alphabet. A labeled tree is a function t : Σ∗

k → A, and tw := t(w)
denotes the label on the node w ∈ Σ∗

k. Let AΣ∗
k be the set of all labeled trees. Define the shift action 

σ : Σ∗
k ×AΣ∗

k → AΣ∗
k as

(σst)w := σ(s, t)w = tsw for all s, w ∈ Σ∗
k.

Set Δn := ∪n
i=0Σi

k to be the initial subtree of the k-tree. Notably, Δn is of height n + 1. An n-block is a 
function u : Δn → A. In particular, we write every 1-block u as a (k + 1)-tuple (uε; u0, u1, · · · , uk−1). A 
finite subset S ⊆ Σ∗

k is said to be prefix-closed if each prefix of S lies in S. A pattern is a function u : S → A
defined on a finite prefix-closed subset S, where S is the support (or shape) of u and is written as s(u) = S. 
We say that a pattern u appears in a labeled tree t if there is a node s ∈ Σ∗

k such that tsw = uw for all 
w ∈ s(u); otherwise, t avoids u. A tree-shift is a set T ⊆ AΣ∗

k of labeled trees which avoid all of a certain set 
of forbidden blocks. A pattern u is admissible in T if there exists a labeled tree t ∈ T such that (σst)|s(u) = u

for some s ∈ Σ∗
k; otherwise, u is forbidden in T. Denote by Bm(T) the set of all admissible m-blocks in T; 

B(T) := ∪m≥0Bm(T) refers to the set of all admissible blocks in T.
A subset s = {si}i≥0 ⊂ Σ∗

k is called a chain if s0 = ε and si+1 ∈ siΣk for all i ≥ 0; in other words, s is 
an infinite path initiated at the root. Define a projection πs : AΣ∗

k → AZ+ as (πst)i = tsi for i ∈ Z+, where 
Z+ := N ∪ {0}. Suppose X ⊆ AZ+ is a shift space. Define the tree-shift TX by

TX := {t ∈ AΣ∗
k : πs(t) ∈ X for every chain s}.

In particular, suppose X ⊆ AZ+ is a Markov shift by an adjacency matrix A ∈ Md({0, 1}) = {0, 1}d×d. We 
denote the tree-shift TX by TA. Note that every Markov shift is also a vertex shift, i.e., XA has a directed 
graph representation G = (V, E) with the vertex set V = A and the edge set E = {(vi, vj) ∈ V × V :
A(vi, vj) = 1}. For each e = (vi, vj) ∈ E, we denote the initial and terminal states of e as i(e) = vi and 
t(e) = vj , respectively. A Markov shift can also be determined by a directed graph, which is inherently 
equipped with an adjacency matrix (cf. [10]), and this definition is an equivalent definition as above. Hence, 
we also write XA = XG. For each shift space XG, the edge shift of XG is a Markov shift XG′ with its directed 
graph representation G′ = (V′, E′), where V′ = E is its vertex set and E′ = {(e1, e2) ∈ E × E : t(e1) = i(e2)}
is its edge set.

For the sake of convenience, we express w ∈ Σn
k as w = w0w1 · · ·wn in the rest of this elucidation, where 

w0 = ε and wi ∈ Σk. In addition, this paper considers the case k = 2 for the clarity of discussion, while all 
of the results generalize to arbitrary k ∈ N. In the following, we refer to Σ2 as Σ.

2.2. Shifts of finite type

A shift space X = XF is an SFT if the forbidden set F is finite; X is m-step if F ⊂ Am+1. A tree-shift 
of finite type is defined in a similar aspect. T is a tree-SFT if every labeled tree t ∈ T avoids any blocks of 
a finite set, consisting of n-blocks for some n ∈ N. The following theorem reveals a natural and intrinsic 
characterization of one-dimensional SFTs and tree-SFTs.

Theorem 2.1. Suppose X is a shift space. X is an SFT if and only if TX is a tree-SFT.
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Proof. Suppose X is an SFT with the alphabet A and forbidden set FX . Suppose FX ⊆ Am for some 
m ∈ N. We consider a tree-SFT T defined by the forbidden set

F1 := {u ∈ AΔm−1 : ∃s1, · · · , sm−1 ∈ Σ, uεuεs1 · · ·uεs1···sm−1 ∈ FX},

and show that T = TX . It is clear that TX ⊆ T by definition. Suppose t ∈ T and s = {si}i≥0 is a chain. By 
definition of F1,

(πs(t))n (πs(t))n+1 · · · (πs(t))n+m−1 = tsntsn+1tsn+m−1 /∈ FX

for every n ≥ 0. Therefore, πs(x) ∈ X and the desired result follows.
Conversely, suppose TX is a tree-SFT with the alphabet A and forbidden set FTX

⊆ AΔm−1 for some 
m ∈ N. Define an SFT Y by the forbidden set

F2 := {v ∈ Am : ∃u ∈ FTX
, uw = v|w|,∀w ∈ Δm−1}.

We then show that Y = X. Suppose x = (x0, x1, . . .) ∈ X. Define a labeled tree t ∈ AΣ∗ as tw = x|w| for 
every w ∈ Σ∗. Then, it follows from definition of TX that t ∈ TX . Note that (σwt)Δm−1 /∈ FTX

for every 
w ∈ Σ∗ implies x ∈ Y by the definition of F2. This finishes the proof of X ⊆ Y . On the other hand, if 
y = (y0, y1, · · · ) ∈ Y , we show that y ∈ X. Indeed, if we define a labeled tree t ∈ AΣ∗ as tw = y|w| for 
every w ∈ Σ∗, it is clear that t ∈ TX . Thus, y = π0(t) ∈ X by definition of TX , where 0 = {0i}i≥0 is a 
chain. �
Example 2.2. We give an example to illustrate the construction of F1 and F2 in Theorem 2.1.
1. Let X ⊆ {0, 1}Z+ be the golden mean shift, i.e. the forbidden set for X is F = {11}. Then, F1 =
{(uε; u0, u1) = (1; 1, 0), (1; 0, 1), (1; 1, 1)}. It is seen to be the same set as the forbidden set FTX

of TX .
2. At first glance F2 seems artificial. However, one may observe that if v ∈ Am \ Bm(X), then there is 
a corresponding (m − 1)-block u ∈ AΔm−1 \ Bm−1(TX) such that uw = v|w| for every w ∈ Δm−1. For 
instance, suppose TX is a hom tree-shift associated with the golden mean shift X. The forbidden set 
of TX is given by FTX

= AΔ1 \ B1(TX) = {(uε; u0, u1) = (1; 1, 0), (1; 0, 1), (1; 1, 1)}. One may see that 
(uε; u0, u1) = (1; 1, 1) /∈ B1(TX) since 11 ∈ FX . Also, one can deduce from definition 11 ∈ F2 indeed.

2.3. Sofic shifts

A one-dimensional shift space Y ⊆ A(Y )Z+ is sofic if and only if it is a factor of a one-dimensional SFT, 
i.e., there are an m-step SFT X ⊆ A(X)Z+ and a block map f : Bn(X) → A(Y ) such that the image of 
the induced map f∗ : X → A(Y )Z+ is Y . And T ⊆ A(T)Σ∗ is a sofic tree-shift if and only if there exist an 
m-step tree-SFT T ′ ⊆ A(T ′)Σ∗ and a block map g : Bn(T ′) → A(T) such that the image of the induced 
map f∗ : T ′ → A(T)Σ∗ is T. In the following we discuss the relation between sofic TX and sofic X. We note 
that B1(X) = A(X) = A(TX) = B0(TX) are all equal by definition, and thus the following two terms are 
coined to unify the names of such maps on X and TX .

Definition 2.3. Let X be a shift space, and A be some alphabet. A 1-block map on X, f : B1(X) → A, is 
called a symbol map on X, and a 0-block map g : B0(TX) → A is called a symbol map on TX .

Note that in the above definition, the 1-sliding block code induced by f is a map f∗ : X → AZ+
2

defined as ((f∗(x))i)i≥0 = (f(xi))i≥0, and the 0-sliding block code induced by g is a map g∗ : TX → AΣ∗
k

2
defined as ((g∗(x))w)w∈Σ∗

k
= (g(xw))w∈Σ∗

k
. Before we state the main result, we need the following useful 

theorem.



6 J.-C. Ban et al. / Topology and its Applications 302 (2021) 107848
Theorem 2.4. T is a sofic tree-shift if and only if there exist a Markov tree-shift T ′ see (1)) and a symbol 
map g : A(T ′) → A(T) such that the image of g∗ : T ′ → A(T)Σ∗ is T.

Proof. By definition of sofic tree-shift, there exist an m-step tree-SFT T ′′ and an n-block map g′′ : Bn(T ′′) →
A(T) such that g′′∗ (T ′′) = T. We construct a Markov tree-shift T ′ as follows. Put N = max{m, n}. It is 
shown in [4, Proposition 2.4] that there exist a Markov tree-shift T ′ = T ′′ [N ] conjugate to T ′′, and a bijective 
N -block map g′ : BN (T ′′) → A(T ′) such that the induced sliding block code g′∗ satisfies g′∗(T ′′) = T ′. By 
defining the symbol map g(a) = g′′(g′−1(a)|Δn

) on T ′, it is obvious g∗(T ′) = T. �
The following theorem provides a natural and intrinsic characterization of one-dimensional sofic shifts 

and sofic tree-shifts. Notably, the covering space of TY needs not be TX generally; the construction of the 
proper covering space is the main difficulty. See Example 2.6 for instance.

Theorem 2.5. Suppose Y is a shift space. Y is a sofic shift if and only if TY is a sofic tree-shift.

Proof. 1. We first prove that Y is a sofic shift if TY is a sofic tree-shift. Since TY is a sofic tree-shift, by 
Theorem 2.4 there is a Markov tree-shift T defined as

T = TA0,A1 := {t ∈ A(T)Σ
∗

: Ai(tw, twi) = 1, for i = 0, 1},

and a symbol map, say g : A(T)→ A(TY ), such that g∗(T) = TY , in which we assume that A0 and A1 ∈
Md({0, 1}), i.e., A(T) = {0, 1, · · · , d − 1}, for some d ∈ N. In the following we will construct an SFT 
X ⊆ A(X)Z+ and a symbol map f : A(X) → A(Y ) such that f∗(X) = Y . From this we deduce that Y is a 
sofic shift.

Let A(X) = A(T). Define the d ×d matrix A as the coordinatewise maximum of A0 and A1, and define a 
symbol map f : A(X) → A(Y ) by letting f(a) = g(a) for any a ∈ A(X). Since A(X) = A(T ), it is evident 
that f is well-defined. Finally, we define X = XA, namely, the Markov shift associated with adjacency 
matrix A. Note that

XAi
⊆ XA for i = 0, 1. (2)

We first claim that for any chain s = {si}i≥0 and for any x ∈ T we have

f∗(πs(x)) = πs(g∗(x)). (3)

Indeed, one may verify that

πs(g∗(x)) = πs(g∗((xw)w∈Σ∗)) = πs((g(xw))w∈Σ∗) = (f(xsi))i≥0,

and that

f∗(πs(x)) = f∗ ((xsi)i≥0) = (f(xsi))i≥0 = (f(xsi))i≥0,

which shows that the equality (3) holds.
We next claim that f∗(X) = Y . Let x = (x0, x1, · · · ) ∈ X. From the definition of A, we choose a chain 

s = {si}i≥0 according to x such that si = s′0s
′
1 · · · s′i and As′i

(xi, xi+1) = 1 for all i ≥ 1. Thus there exists 
t ∈ T such that πs(t) = x and πs(g∗(t)) ∈ Y , and we conclude that f∗(x) = f∗ (πs(T)) ∈ Y . This proves 
f∗(X) ⊆ Y . For the converse, let 0 = {0i}i≥0 be the leftmost chain of Σ∗. Since g∗(T) = TY , it can be 
verified by definition that Y = π0(g∗(T)). By combining this with (2) and (3), it follows
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Y = π0(g∗(T)) = f∗(π0(T)) = f∗(XA0) ⊆ f∗(X).

Thus f∗(X) = Y .
2. Suppose Y is a sofic shift and (G, f) is the corresponding graph representation, where G = (V, E) is a 

directed graph and f : E → A(Y ) is a map from the edge set E to the symbol set A(Y ). Note that the vertex 
shift XG is conjugate to its edge shift (see [10, Theorem 2.4.10]), i.e., X(1) = XG(1) , where G(1) = (V(1), E(1)), 
where V(1) = E and

E(1) = {(e1, e2) ∈ E × E : t(e1) = i(e2)}.

By defining a symbol map f (1) : A(X(1)) → A(Y ) by f (1) = f , it is clear that f (1)
∗ (X(1)) = Y .

Our goal is to construct a subshift of finite type X(2) = XG(2) , where G(2) = (V(2), E(2)), and symbol 
maps f (2) : A(X(2)) → A(Y ), g(2) : A(TX(2)) → A(TY ) such that

f
(2)
∗ (X(2)) = Y and g

(2)
∗ (TX(2)) = TY . (4)

This shows that TY is a sofic tree-shift since TX(2) is a tree-SFT as shown in Theorem 2.1.
The construction will be established as follows. For v(1), v′ (1) ∈ V(1) = A(X(1)), denote by v(1)Rv′ (1) the 

relation on v(1) and v′ (1) such that

f (1)(v(1)) = f (1)(v′ (1)). (5)

One may verify that it is an equivalence relation. We thus denote by {[v(1)] : v(1) ∈ V(1)} the associated 
equivalence class. Let us introduce a new vertex set

V(2) =
⋃

v(1)∈A(X(1))

2[v(1)]\{∅},

where 2[v(1)] stands for the power set of the [v(1)]. The associated edge set E(2) is defined as follows. For 
v(2), v′ (2) ⊆ V(1), we say (v(2), v′ (2)) ∈ E(2) if for every v′ (1) ∈ v′ (2) there exists v(1) ∈ v(2) such that 
(v(1), v′ (1)) ∈ E(1). Let X = XG(2) be the associated SFT, and f (2) : A(X(2)) → A(Y ) be the symbol map 
which is defined by f (2)(a(2)) = f (1)(a(1)) for all a(1) ∈ a(2). The definition of f (2) is well-defined since if a(1)

and b(1) belong to the same equivalence class, then they have the same image under f (1) by (5). We note 
that there is an associated symbol map, say g(2) : A(TX(2)) → A(TY ) with g(2)(a(2)) = f (2)(a(2)) meanwhile. 
The following two properties are essential for the construction of X(2) and TX(2) .

i. We first show that if v(2)
1 v(2)

2 · · · v(2)
n is a path in G(2), then for all v(1)

n ∈ v(2)
n there exists a path, 

say v(1)
1 v(1)

2 · · · v(1)
n in G(1) such that v(1)

i ∈ v(2)
i for 1 ≤ i ≤ n. We prove it by induction on n. The case 

when n = 1 holds by the definition. Assume the claim holds for n = N . Suppose v(2)
1 v(2)

2 · · · v(2)
N v(2)

N+1 is a 

path in G(2), then for each v(1)
N+1 ∈ v(2)

N+1 there exists, by definition of E(2), an edge (v(1)
N , v(1)

N+1) such that 
v(1)
N ∈ v(2)

N . By induction, there exists a path v(1)
1 v(1)

2 · · · v(1)
N in G(1) such that v(1)

i ∈ v(2)
i for i ≤ N . Thus 

v(1)
1 v(1)

2 · · · v(1)
N v(1)

N+1 is also a path in G(1) such that v(1)
i ∈ v(2)

i for i ≤ N + 1.
ii. If v(2)

1 v(2)
1 · · · v(2)

n and v′ (2)1 v′ (2)1 · · · v′ (2)n are paths in G(2) with f (2)(v(2)
i ) = f (2)(v′ (2)i ) for every 1 ≤ i ≤ n, 

then by writing v′′ (2)1 = v(2)
1 ∪ v′ (2)1 , we get v′′ (2)1 v′′ (2)1 · · · v′′ (2)n is a path in G(2). Indeed, it can be verified by 

definition of E(2) that (v′′ (2)i , v′′ (2)i+1 ) ∈ E(2) for every 1 ≤ i ≤ n − 1.
Now we are ready to show (4). It follows from i that

f
(2)
∗ (X(2)) ⊆ f

(1)
∗ (X(1)) = Y. (6)
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Furthermore, one may observe that every path v(1)
1 v(1)

2 · · · v(1)
n in G(1) is also a path in G(2) by definition of 

E(2). Hence,

Y = f
(1)
∗ (X(1)) ⊆ f

(2)
∗ (X(2)). (7)

Applying (6), for every labeled tree t ∈ TX(2) and every chain s, we assert that πs(g(2)
∗ (t)) = f

(2)
∗ (πs(t)) ∈ Y , 

since πs(t) ∈ X(2) by definition. Thus,

g
(2)
∗ (TX(2)) ⊆ TY . (8)

Our next goal is to claim that if t ∈ TY , there exists t ∈ TX(2) such that g(2)(t) = t. It is equivalent to 
show that for every n ∈ N, there exists u ∈ Bn(TX(2)) such that (g(2)(uw))w∈Δn

= (tw)w∈Δn
. Once this 

claim holds, there exists t(n) ∈ TX(2) such that (g(2)(t(n)
w ))w∈Δn

= (tw)w∈Δn
. By compactness of TX(2) , there 

exists a convergent subsequence t(nk) of t(n) with limk→∞ t
(nk) = t ∈ TX(2) . Since g(2) is a symbol map, 

g
(2)
∗ (t) = t, which proves

TY ⊆ g
(2)
∗ (TX(2)). (9)

By combining (6), (7), (8) and (9), we finish the proof of (4).
We now show the claim, and we prove it by induction on n. The case n = 1 holds due to the following 

reason. If u = (uε; u0, u1) ∈ B1(TY ), there exist paths v[0]
0 v[0]

1 and v[1]
0 v[1]

1 in G(2) such that

f (1)(v[0]
0 )f (1)(v[0]

1 ) = uεu0, (10)

f (1)(v[1]
0 )f (1)(v[1]

1 ) = uεu1. (11)

By ii, there is an admissible block

u = (uε;u0, u1) = (v[0]
0 ∪ v[1]

0 ; v[0]
1 , v[1]

1 ) ∈ B1(TX(2)),

such that

(g(2)(uε); g(2)(u0), g(2)(u1)) = (uε;u0, u1).

Suppose the hypothesis holds for n = N . Then, for every u ∈ BN+1(TY ), there exists u′ ∈ BN (TX(2)) such 
that g(2)(u′

w)w∈ΔN
= (uw)w∈ΔN

. Then, for each z = εz1z2 · · · zN ∈ ΣN , there exist paths v[z0]
0 v[z0]

1 · · · v[z0]
n+1

and v[z1]
0 v[z1]

1 · · · v[z1]
n+1 such that

f (1)(v[z0]
0 )f (1)(v[z0]

1 ) · · · f (1)(v[z0]
n+1) = uεuεz1 · · ·uεz1···zn0, (12)

f (1)(v[z1]
0 )f (1)(v[z1]

1 ) · · · f (1)(v[z1]
n+1) = uεuεz1 · · ·uεz1···zn1. (13)

Hence, applying ii, we extend u′ to an admissible pattern u′′ in TX(2) with support ΔN ∪ {z0, z1}, which is 
defined as

u′′
w :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u′
w ∪ v[z0]

|w| ∪ v[z1]
|w| , if w is a subword of z;

v[z0]
|w| , if w = z0;

v[z1]
|w| , if w = z1;
u′ otherwise;
w
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Fig. 1. Construction of the cover for even shift using Theorem 2.5.

so that

(g(2)(u′′
w))w∈s(u′′) = (uw)w∈s(u′′).

The desired u ∈ BN+1(TX(2)) can be obtained by repeating the process above to every path z ∈ ΣN from 
the leftmost to the rightmost path, and the claim thus holds for all n ∈ N by induction. �
Example 2.6. It is known that the even shift Y is a factor of the golden mean shift with graph representation 
shown in Fig. 1(a) and the conjugate edge shift X(1) in Fig. 1(b). By Theorem 2.5, there exists a cover X(2)

by the symbol map f (2) of Y such that TX(2) is also a cover of TY by the symbol map g(2) = f (2), as is 
shown in Fig. 1(c).

1. In the proof of necessity of Theorem 2.5, we construct an adjacency matrix A from adjacency matrices 
A0 and A1 while preserving the image of f∗. This step is essential since A0 may not coincide with A1 in 
general. For example, one may consider even shift Y ⊆ {0, 1}Z+ and a cover TA0,A1 for TY as follows. Let 
TA0,A1 ⊆ {0, 1, 2, 3, 4}Σ∗ be a Markov tree-shift, where

A0 =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 1
0 1 0 1 0
0 0 1 1 0
0 0 0 0 1
0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎦ , A1 =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 1
0 1 1 1 0
0 1 1 1 0
0 0 0 0 1
0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎦ . (14)

Suppose g′ : {0, 1, 2, 3, 4} → A(X(2)) is a symbol map defined as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g′(0) = {ab, ba},
g′(1) = g′(2) = {aa},
g′(3) = {ab},
g′(4) = {ba}.
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Fig. 2. Demonstration of extension process in Theorem 2.5.

It can be shown that g′∗(TA0,A1) = TX(2) by noting that a. for every (u′
ε; u′

0, u
′
1) ∈ B1(TA0,A1), 

(g′(u′
ε); g′(u′

0), g′(u′
1)) ∈ B1(X(2)), and b. by removing symbol 2, it coincides with X(2). As a result, the 

symbol map g = g(2) ◦ g′ on TA0,A1 satisfies g∗(TA0,A1) = TY . On the other hand, by defining

A :=

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 1
0 1 1 1 0
0 1 1 1 0
0 0 0 0 1
0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎦ (15)

as in Theorem 2.5, it is seen that g∗(TA) = TY by adopting the same argument as above. It is noteworthy 
that A = A1 in this case.

2. In the proof of sufficiency in Theorem 2.5, we construct u ∈ BN+1(TX(2)) by an extension process. 
We now demonstrate the process by our example of even shift, which is illustrated step by step in Fig. 2
and explained as follows. Given an admissible 2-block u ∈ B2(TY ) as in Step 1, we may find an admissible 
1-block u′ in Step 2. Then, for 00, 01, 10, 11 ∈ Σ2, choose the following paths in G(2).

v[00]
0 v[00]

1 v[00]
2 = {ab}{ba}{aa},

v[01]
0 v[01]

1 v[01]
2 = {ab}{ba}{aa},

v[10]
0 v[10]

1 v[10]
2 = {ab}{ba}{aa},

v[11]
0 v[11]

1 v[11]
2 = {ba}{ab}{ba}.

Step 3 and Step 4 then follow from our choice of paths.

3. Mixing properties

Suppose X is a multidimensional shift space. It is known that shift spaces are associated with various 
types of dynamical behavior depending on their intrinsic mixing properties; for instance, a shift space X over 
Z2 being block-gluing implies that the set of periodic points is dense [6]. In addition to the analogous idea 
of the aforementioned mixing properties, we consider a collection of mixing properties defined in the sense 
of the complete prefix code (CPC), from which interesting phenomena also arise in the study of tree-shifts 
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(cf. [3,4]). In this section, the mixing properties for T, TX , and TA, and their connection with X and TX are 
presented.

3.1. Definitions and notations

For each word x ∈ Σ∗, we say that x is a prefix of w ∈ Σ∗, denoted by x  w, if there exists y ∈ Σ∗ such 
that w = xy, the concatenation of x and y. Suppose x, y ∈ Σ∗, define the word distance between x and y as

d(x, y) := |x| + |y| − 2 max{|w| : w  x,w  y}.

From the illustration of Cayley graph of the rooted tree Σ∗, the word distance d(x, y) reflects the length of 
the shortest path from x to y. Suppose H, H ′ ⊂ Σ∗ are two finite subsets. Define

d(H,H ′) := min{d(w,w′) : w ∈ H,w′ ∈ H ′}.

Mixing conditions studied in multidimensional shift spaces extend to tree-shifts as follows.

Definition 3.1.

1. A tree-shift T is called irreducible (IR) if for any admissible n-block u and admissible m-block v, there 
exist w ∈ Σ∗ \ s(u) and t ∈ T such that t|Δn

= u and (σwt)|Δm
= v.

2. A tree-shift T is called topologically mixing1 (TM) if for any two finite subset of Σ∗, say H1 and H2, 
there is a positive number N such that for any labeled trees t1, t2 ∈ T and w ∈ Σ∗ with d(w, H1) ≥ N

there is a labeled tree t ∈ T such that t|H1 = t1|H1 and (σwt)|H2 = t2|H2 .
3. A tree-shift T is called block gluing (BG) if there is a positive number N such that for any admissible 

n-block u, admissible m-block v and w ∈ Σ∗
k with |w| ≥ N + n there is a labeled tree t ∈ T such that 

t|Δn
= u and (σwt)|Δm

= v.
4. A tree-shift T is called strongly irreducible (SI) if there is a positive number N such that for any two 

admissible patterns u, v and w ∈ Σ∗
k with d(w, s(u)) ≥ N there is a labeled tree t ∈ T such that 

t|s(u) = u and (σwt)|s(v) = v.

Note that in the definition above, the patterns are required, as in Section 2.1, to have a finite and prefix-
closed support, which yields slightly different definitions of mixing properties compared to the traditional 
ones on shift spaces over Zd.

A subset P of Σ∗ is called a prefix set if no element in P is a prefix of one another. A prefix set S ⊆ Σ∗

is called a complete prefix code (CPC) if for each w ∈ Σ∗
k with |w| ≥ maxz∈P |z|, there exists x ∈ P such 

that x  w.

Definition 3.2.

1. A tree-shift T is called CPC-irreducible if for any admissible n-block u and m-block v there is a CPC 
P ⊆ ∪i≥n+1Σi and t ∈ T such that t|s(u) = u and (σwt)|s(v) = v for all w ∈ P .

2. A tree-shift T is called CPC-block gluing if there is a CPC P such that for any admissible n-block u and 
admissible m-block v there is a labeled tree t ∈ T such that t links u and v through P . That is, t|Δn

= u

and (σwzt)|Δm
= v for all w ∈ Σn, z ∈ P .

1 Note that an analogous definition of topologically mixing involving the complete prefix code is not mentioned in Definition 3.2, 
since it is not quite related to other results discussed in this article.
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3. A tree-shift T is called CPC-strongly irreducible if there is a CPC P such that for any two admissible 
patterns u and v there is a labeled tree t ∈ T such that t links u and v through P ; i.e., t|s(u) = u and 
(σwzt)|s(v) = v for all w ∈ ∂s(u) and z ∈ P , where ∂s(u) = {w ∈ s(u) : wΣ ∩ s(u) = ∅} is the boundary 
of u.

4. A tree-shift T is called uniform CPC-strongly irreducible/block gluing/irreducible if T is CPC-strongly 
irreducible/block gluing/irreducible with P = Σn for some n ∈ N.

3.2. Relations between mixing conditions for tree-shifts T and TX

This subsection reveals the relations of mixing conditions between traditional and complete-prefix-code 
senses. Such relations indicate that tree-shifts are capable of rich dynamical phenomena.

Theorem 3.3. Suppose T is a tree-shift. Then,

1. T is SI if T is CPC USI.
2. T is BG if T is CPC UBG.
3. T is TM if T is CPC BG.
4. T is TM if T is BG.

Proof. We shall prove 1. and 2., since 3. is proved by Ban and Chang in [3, Proposition 3.6] and 4. follow 
from definition immediately.

1. Suppose there exists P = ΣN such that every pair of admissible patterns u, v can be linked by a 
labeled tree t ∈ TX through P . We show that for every w ∈ Σ∗ with d(w, s(u)) ≥ N + 1, there exists a 
corresponding labeled tree t such that t|s(u) = u and (σwt)|s(v) = v. Suppose w = w′w′′, where w′ ∈ s(u)
satisfies |w′′| = d(w, s(u)) ≥ N + 1. To utilize CPC USI property, we need to prevent w from having no 
prefix lying in the boundary ∂s(u) of u. To that end, extend u to an admissible pattern u with support 
s(u) = s(u)Δ|w′′|−N = {z′z′′ ∈ Σ∗

k : z′ ∈ s(u), z′′ ∈ Δ|w′′|−N} so that its boundary ∂s(u) is a CPC 
and w = w′w′′ for some w′ ∈ ∂s(u) and |w′′| = N (Note that this extension is always possible since by 
definition there exists t ∈ T such that t|s(u) = u). By CPC USI, there is an labeled tree t with t|s(u) = u

and (σz′z′′t)|s(v) = v for every z′ ∈ ∂s(u) and z′′ ∈ ΣN . In particular, (σwt)|s(v) = (σw′w′′t)|s(v) = v since 
w′ ∈ ∂s(u) and w′′ ∈ ΣN .

2. Suppose there exists P = ΣN such that every pair of admissible blocks u, v can be linked by a labeled 
tree t ∈ T through P . We claim that for every w ∈ Σ∗

k with d(w, s(u)) ≥ N , there exists a corresponding 
labeled tree t such that t|s(u) = u and (σwt)|s(v) = v. Extend u to an admissible block u with support 
s(u) = Δ|w|−N and w = w′w′′ for some w′ ∈ ∂s(u) and w′′ ∈ ΣN . By CPC UBG, there is an admissible 
labeled tree t with t|s(u′) = u′ and (σz′z′′t)|s(v) = v for every z′ ∈ s(u) and z′′ ∈ ΣN . In particular, 
(σwt)|s(v) = (σw′w′′t)|s(v) = v since w′ ∈ ∂s(u) and w′′ ∈ ΣN . �

When focusing on the subclass of tree-shifts that consists of all hom tree-shifts TX , we obtain Theorem 3.4
as a refined version of Theorem 3.3.

Theorem 3.4. Suppose X is a shift space. The following implications hold:

1. TX is CPC USI if and only if TX is CPC UBG.
2. TX is CPC UBG if and only if TX is CPC BG.
3. TX is CPC UBG if and only if TX is BG.
4. TX is CPC IR if and only if TX is IR.
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Proof. 1. It suffices to prove the sufficiency. Since TX is CPC UBG, there exists N ∈ N such that ΣN

links arbitrary two admissible blocks. We claim that there exists a CPC P = ΣN so that for all admissible 
patterns u, v there is a labeled tree t ∈ TX such that t|s(u) = u, (σwzt)|s(v) = v for every w ∈ ∂s(u) and 
every z ∈ P . Without loss of generality, u can be extended to some pattern u so that ∂s(u) is a CPC and 
that ∂s(u) ⊆ ∂s(u) by including in s(u) every element g ∈ Σ∗ that has all its prefixes lying in s(u). Suppose 
w = w0w1 · · ·wn ∈ ∂s(u), we write w(i) = w0w1 · · ·wi for 0 ≤ i ≤ n and define for every branch {w(i)}0≤i≤n

an admissible n-block u(w) ∈ Bn(TX) as follows:

u(w)
g = uw(|g|) ,∀ 0 ≤ |g| ≤ n. (16)

Let v be the smallest admissible block such that v is a subpattern of v. Then, since TX is CPC UBG, for 
each w ∈ ∂s(u) there is a labeled tree tw ∈ TX such that tw|s(u(w)) = u(w) and that (σwzt

w)|s(v) = v for 
every w ∈ Σ|w| and every z ∈ P . Define the labeled tree t as

tz :=
{
twz , if w  z, w ∈ ∂s(u);
uz, otherwise.

It follows that ts(u) = u and (σwzt)|s(v) = v for all w ∈ ∂s(u) ⊆ ∂s(u) and all z ∈ P .
2. It is left to prove the sufficiency. Suppose there exists a CPC P such that for every admissible n-

block u and every admissible block v there is a labeled tree t in which u and v linked through P . Let 
N = max{|u| : u ∈ P}. Without loss of generality, we may assume 0N ∈ P . We claim that for all 
u, v ∈ B(TX) there is a labeled tree t ∈ TX such that t|s(u) = u and (σwzt)|s(v) = v for all w ∈ ∂s(u) and 
z ∈ ΣN . Since TX is CPC BG, there is a labeled tree t̂ ∈ TX such that t̂|s(u) = u and that (σwz t̂)|s(v) = v

for all w ∈ Σn and all z ∈ P . Let F : Σ∗ → Σ∗ be the replacement function of branches defined as

Fn,N (z) :=

⎧⎪⎪⎨
⎪⎪⎩
z, if |z| ≤ n;
z1z2 . . . zn0|z|−n, if n < |z| ≤ n + N,

z1z2 . . . zn0Nzn+N+1zn+N+2 . . . z|z|, if n + N < |z|;

and define the labeled tree t as tz := t̂Fn,N (z). Since for every chain s containing w ∈ Σn we have πs(t) =
πFn,N (s)(t̂), it follows that t ∈ TX is well-defined and ts(u) = u, (σwzt)|s(v) = v for all w ∈ ∂s(u) and all 
z ∈ ΣN . The proof is thus finished.

3. The necessity is part of Theorem 3.3. We shall prove the sufficiency. Suppose N ∈ N is the minimal gap 
required to link arbitrary two admissible blocks. We claim that for any admissible n-blocks u and admissible 
block v there is a labeled tree t satisfying t|s(u) = u and (σwzt)|s(v) = v for all w ∈ ∂s(u) and z ∈ ΣN . For 
each w ∈ ∂s(u), define an n-block u(w) ∈ Bn(TX) as (16). Since TX is BG, for each w ∈ ∂s(u) there is a 
labeled tree tw such that tw|s(u(w)) = u(w) and that (σw0N tw)|s(v) = v. Let F be given as above and define 
the labeled tree t as

tz :=
{
twFn,N (z), if w  z, w ∈ ∂s(u);
uz, otherwise.

It follows that ts(u) = u and (σwzt)|s(v) = v for all w ∈ ∂s(u) and all z ∈ P .
4. To prove TX is CPC IR, we first prove the following claim.

Claim. For any n-block u with uw = uz whenever |w| = |z| and any block v, there exist an positive integer 
N and a labeled tree t such that t|s(u) = u and that (σzt)|s(v) = v whenever z ∈ Σn+N .
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Fig. 3. Relations between mixing properties on tree-shifts T.

If the claim holds, given any arbitrary n-block u and block v we can define for every w ∈ ∂s(u) = Σn the block 
u(w) as (16). We then apply this to derive an integer Nw and a labeled tree tw such that tw|s(u(w)) = u(w)

and that (σzt
w)|s(v) = v whenever z ∈ Σn+N . Hence, u and v are linked by a labeled tree t defined as 

tz := twFn,Nw (z) if there is a chain containing z and w ∈ Σn simultaneously. Consequently, we have t|s(u) = u

and (σzt)|s(v) = v for every z ∈ ∪w∈ΣNwΣNw , which is clearly a CPC. We now turn to our claim. Since TX is 
IR, for the n-block u with uw = uz whenever |w| = |z| and the block v there exist g ∈ Σ∗ \ s(u) = ∪i≥n+1Σi

and a labeled tree t̂ such that t̂|s(u) = u and (σg t̂)|s(v) = v. The desired t is then defined as

tz :=
{
t̂g(|z|) if |z| ≤ |g|;
t̂gz′′ if z = z′z′′, |z′| = |g|,

and N = |g| − n. �
3.3. Remarks on Theorem 3.3

Fig. 3 further addresses a completion of Theorem 3.3. In this subsection, we give examples or counterex-
amples for each numbered arrow in the diagram. It remains unknown that whether CPC SI is sufficient for 
SI/BG, and whether CPC BG is sufficient for BG.

Note that (1), (2) and (3) are only sufficient but not necessary, which could be shown if we con-
sider the tree-shift T induced by the forbidden set F = ∪n≥0Fn in which Fn = {u ∈ {0, 1}Δn : uw �=
uz for some w, z ∈ Σn}. Note that every admissible block u or labeled tree t in such a tree-shift can be 
characterized by its leftmost branch since the symbols within each layer of Σ∗ are unique. In particular, 
T = {t ∈ {0, 1}Σ∗ : tg = tw if |g| = |w|} and thus π0(T ) = {0, 1}Z+ .

(1) To see T is CPC BG by Σ, given any n-block u and m-block v, there is a labeled tree

tg =

⎧⎪⎪⎨
⎪⎪⎩
u0|g| , if 0 ≤ |g| ≤ n;
v0|g|−n−1 , if n + 1 ≤ |g| ≤ n + m + 1;
0, otherwise,

which clearly lies in T and links u and v through Σ. We now show T is not CPC SI by contradiction. Assume 
it is CPC SI by a CPC P with N = maxz∈P |z|. Let w ∈ P with |w| = N . Consider admissible patterns u, 
v such that 0 ∈ ∂s(u) ∩ Σ and that there exists z ∈ s(u) ∩ ΣN+1 with uz �= vε. If T is CPC SI, then there 
is a labeled tree t such that t|s(u) = u and (σwzt)|s(v) = v for every w ∈ ∂s(u) and z ∈ P . In particular, 
tz = uz �= vε = t0z, while |z| = |0w| = N + 1, contradicting the definition of F .

(2) We have shown that T is CPC UBG in (1), and it cannot be CPC USI by definition, since it is 
demonstrated above that T is not CPC SI.
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(3) We prove that T is not SI by contradiction, assuming that T is SI by an integer N . Let w ∈ ΣN

be fixed. Consider admissible patterns u, v such that s(u) = {ε, 0} ∪ {1i}N+1≥i≥1 and u1N+1 �= vε. By 
our assumption of SI, there is a labeled tree t such that t|s(u) = u and (σ0wt)|s(v) = v. In particular, 
t1N+1 = u1N+1 �= vε = t0w while |1N+1| = |0w| = N + 1, contradicting the hypothesis of F .

On the other hand, that a tree-shift is CPC SI is neither sufficient nor necessary for it to be CPC UBG 
(see (4)). The reader may refer to [3, Example 3.12] for a detailed proof.

Furthermore, that a tree-shift is SI is neither sufficient nor necessary for the tree-shift to be CPC BG 
(see (10)). If we combine this with the results above, it yields that SI is neither necessary nor sufficient for 
CPC UBG (see (7)), and (8) and (9) are only sufficient but not necessary. Non-necessity part is already 
proved in the above case. As for the non-sufficiency, consider T ⊆ {0, 1}Σ∗ to be induced by the forbidden set 
F = {(1; 1, 1), (0; 1, 1)}. Then, it is SI by a distance 2, since Σ2 always leaves sufficient vacancy for balance 
in symbol 0 and symbol 1. However, one can show that it is not CPC BG by contradiction, assuming there 
exists a CPC P through which all admissible patterns u, v can be linked. Since P is a CPC, there exists 
z ∈ Σ∗ such that z0, z1 ∈ P . Now we consider u = 1 and v = 1, for which a labeled tree t ∈ T satisfies 
tε = 1 and tw = 1 for all w ∈ P . In particular, (tz; tz0, tz1) ∈ F , which contradicts the assumption.

3.4. Relations between X and TX

Aside from investigating relations between mixing conditions for T and TX , respectively, it is of interest 
to study the relations of mixing conditions between a shift space X and its corresponding hom tree-shift 
TX . This subsection reveals that the implications are only one-directional.

Theorem 3.5. Suppose X is a shift space. The following implications hold:

1. X is mixing if TX is TM.
2. X is transitive if TX is IR.

Proof. 1. Suppose u = u0 · · ·un and v = v0 · · · vn are admissible blocks in X. Let u ∈ Bn(TX) and v ∈
Bm(TX) be constructed as ug = u|g| for 0 ≤ |g| ≤ n and vg = v|g| for |g| ≤ m. Since TX is TM, there is 
an N = N(s(u), s(v)) ∈ N such that for all w ∈ ∂s(u) and z ∈ ΣN+i, i ≥ 0, there is a t ∈ TX satisfying 
t|s(u) = u and (σwzt)|s(v) = v. By choosing a chain s containing wz and defining x = πs(t) ∈ X, it is clear 
x[0,n] = u and x[n+|z|,n+m+|z|] = v. This implies X is mixing.

2. Suppose u = u0 · · ·un and v = v0 · · · vn with u and v defined as above. Since TX is IR, there is a 
w /∈ s(u) = Δn and a t ∈ TX satisfying t|s(u) = u and that (σwt)|s(v) = v. By choosing a chain s containing 
w and defining x = πs(t) ∈ X, it is clear that x[0,n] = u and x[|w|,|w|+m] = v, where |w| > n. This implies 
X is transitive. �

Before we present the example illustrating the converse of Theorem 3.5 could fail, a related class of shift 
spaces called bounded density shifts (see [17]) is introduced. Given a function f : Z+ → [0, ∞), the bounded 
density shift associated with f is defined as

Ψf :=
{
x ∈ ZZ

+ :
i+p−1∑
r=i

xr ≤ f(p),∀p ∈ Z+, i ∈ Z

}
,

whose one-sided version is given as

Ψ+ =
{
x[0,∞) : x ∈ Ψf

}
.
f



16 J.-C. Ban et al. / Topology and its Applications 302 (2021) 107848
Fig. 4. Relations between mixing properties on tree-shifts TX and shift spaces X.

It is clear from the definition that a bounded density shift Ψf (and Ψ+
f as well) can be associated with 

infinitely many f ; in other words, there are always infinitely many distinct functions g : Z+ → [0, ∞)
satisfies Ψf = Ψg (or Ψ+

f = Ψ+
g for the one-sided case). Nevertheless, as discussed in [17, Lemma 2.1]

there exists a canonical f such that if Ψf = Ψg (or Ψ+
f = Ψ+

g for the one-sided case), then f ≤ g. This 
requirement of f makes it an integer-valued function.

Bounded density shifts play an essential role in the following discussion.

Remark 3.6. Suppose X is a shift space and TX is its corresponding hom tree-shift. Fig. 4 illustrates 
Theorems 3.4 and 3.5. Notably, the converse of Theorem 3.5 may not hold in general. For instance, one may 
consider that even shift X has mixing property while the hom tree-shift TX is not TM. Suppose X is the 
even shift, which is known to be mixing. However, TX is not even CPC IR by considering admissible blocks

u = 1, v = , (17)

for if it is CPC IR, there exist t ∈ TX and g ∈ Σ∗ such that tε = 1 and (σgt)|s(v) = v. In partic-
ular, t|g0 = t|g10 = 1. By choosing two chains s1, s2 such that g0 ∈ s1 and g10 ∈ s2, we observe 
that πs1(t)[0,|g|+2] = πs1(t)[0,|g|]10 and πs2(t)[0,|g|+2] = πs1(t)[0,|g|]01. Since πs1(t)[0,|g|] �= 0|g|+1, either 
πs1(t)[0,|g|+2] or πs2(t)[0,|g|+2] is a forbidden block of the even shift X and we reach a contradiction that 
t /∈ TX .

Another remark can be made here is that CPC UBG is not necessary for TM, for which an example is 
given as follows. Let X = Ψ+

f be a bounded density shift with f defined as

f(n) := �log3(n + 1)�

for n ≥ 0. It is shown in [17, Lemma 2.13] that f is canonical for Ψf and unboundedness of f implies Ψf is 
mixing by [17, Theorem 2.14]. Consequently, Ψ+

f is also mixing. We then show that TX is TM by proving 
given two arbitrary shapes H1, H2 and M = maxz∈H1∪H2 |z|, there exists an integer

N = max
1≤�≤M+1

{min{N� ∈ N : f(� + N�) ≥ f(M + 1) + f(�)}} (18)

as mentioned in Definition 3.1. More specifically, if H1, H2 and N are given as above, then for all w ∈ Σ∗

satisfies d(w, H1) ≥ N and all t1, t2 ∈ T, one can define the following labeled tree:

tz :=

⎧⎪⎪⎨
⎪⎪⎩

(t1)z, if z ∈ H1;
(t2)w′ , if z = ww′, w′,∈ H2;
0, otherwise.
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It suffices to show that t ∈ TX , i.e. πs(t) ∈ X for every chain s. Suppose s is an arbitrary chain that contains 
w. Without loss of generality, the set H1 ∩ s and wH2 ∩ s can be expressed as follows:

H1 ∩ s = {zs1s2 · · · si}0≤i≤n,

wH2 ∩ s = {ws′1s′2 · · · s′i}0≤i≤m,

where z ≤ w and |w| − |z| ≥ N . It is sufficient to prove that πs(t) ∈ TX . To be more precise, for every 
|z| ≤ i ≤ |z| + n and |w| ≤ j ≤ |w| + m, equation (18) together with n, m ≤ M + 1 and monotonicity of f
implies that

j∑
r=i

πs(t)r =
|z|+n∑
r=i

πs(t)r +
j∑

r=|w|
πs(t)r

≤ f(|z| + n− i + 1) + f(M + 1)

≤ f(|z| + n− i + 1 + N)

≤ f(j − i + 1).

This shows that πs(t) ∈ X for every chain s and thus t ∈ TX . It is left to show TX is not CPC UBG. 
Otherwise, suppose TX is CPC UBG by P = ΣN . Note that [17, Corollary 2.6 and Lemma 2.7] assures that

x = (xi)i∈Z+ = (f(i + 1) − f(i))i∈Z+

lies in X. Since the alphabet of X consists of only symbol 0 and 1, it follows from the definition of f that 
if y ∈ X satisfies y[0,3N−1] = x[0,3N−1] then yi = 0 for every 3N ≤ i ≤ 3N+1 − 2. To see this, note that for 
3N ≤ n ≤ 3N+1 − 1,

N + 1 = f(n) ≥
n−1∑
i=0

yi ≥
3N−1∑
i=0

yi = f(3N ) = N + 1.

Hence, if we consider the admissible block (3N − 1)-block u defined by ug = x|g| and 0-block v = 1 and 
suppose u and v are linked by some t ∈ TX , then tg = 1 for every |g| = 3N +N −1 by the definition of CPC 
UBG. However, tg = π0(t)3N+N−1 = 1 with 3N ≤ 3N +N − 1 ≤ 3N+1 − 1 implies that π0(t) /∈ X, which is 
a contradiction.

Since TX is not UBG if X is the bounded density shift as given above, it is neither CPC BG nor BG by 
Theorem 3.4.

Remark 3.7. It is noteworthy that the example regarding (17) also distinguishes the hom tree-shifts from 
the axial product on semigroups. In fact, if X is the even shift and T ′

X is its axial power on Σ∗, then u and 
v can be linked by an t ∈ T ′

X , as opposed to TX . More explicitly, define t as

tg :=
{

1, if g ∈ {ε, 000, 0010, 0011};
0, otherwise.

Then, t ∈ T ′
X , t|s(u) = u, and (σ0t)|s(v) = v.

Whenever X = XA is a Markov shift determined by the binary matrix A, the relations of mixing 
conditions between XA and TA are equivalent as characterized by Theorem 3.8.
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Fig. 5. Relations between mixing properties on hom tree-SFTs TA and Markov shifts XA.

Theorem 3.8. Suppose A is an adjacency matrix. The following implications hold:

1. XA is mixing if and only if TA is CPC UBG.
2. XA is transitive if and only if TA is IR.

Proof. For simplicity, for the rest of the proof, we denote by [w] the set of all prefixes of w ∈ Σ∗ with ε
included.

1. The sufficiency is part of Theorem 3.4. It remains to show the necessity. Since XA is a Markov shift, 
there is an integer N ∈ N such that for all admissible blocks û, ̂v ∈ B(XA) and all n ≥ N , there is a 
configuration x ∈ XA such that x[0,|û|−1] = û and x[|û|+n−1,|û|+n+|v̂|−2] = v̂. We use this property to show 
that for every admissible m-blocks u and every admissible block v in TA, there is a labeled tree t such that 
t|s(u) = u and (σwzt)|s(v) = v for all w ∈ Σm and z ∈ ΣN . Suppose z ∈ ∂s(v) is fixed. By mixing property 
of XA, for every branch [w] with w ∈ ∂s(u) there exists x(w) ∈ XA such that x(w)|[0,|w|−1] = u[w] and that 
x(w)|[|w|+N−1,|w|+N+|z|−2] = v[z]. Take, by definition of admissible block, labeled trees tu, tv ∈ TA such that 
tu|s(u) = u and tv|s(v) = v and define the desired labeled tree

tz :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
tvz′ , if z = wzz′, w ∈ ∂s(u);

x
(w)
|z′| , if z = wz′, w ∈ ∂s(u), |z′| ≤ N ;

tuz , otherwise,

which lies in TX and satisfies t|s(u) = u and (σwzt)|s(v) = v.
2. Since the sufficiency is proved in Theorem 3.4, we prove the necessity. Let u, v, tu, tv have the same 

meaning as above. Since XA is irreducible, for every branch [w] with w ∈ ∂s(u) there exists x(w) ∈ XA such 
that x(w)|[0,|w|−1] = u[w] and that x(w)|[|w|+Nw−1,|w|+Nw+|z|−2] = v[z] for some Nw depending on w. In a 
similar manner, the desired labeled tree linking u and v is defined as

tz :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
tvz′ , if z = wzz′, w ∈ ∂s(u);

x
(w)
|z′| , if z = wz′, w ∈ ∂s(u), |z′| ≤ Nw;

tuz , otherwise,

and the proof is completed. �
Remark 3.9. Suppose A is an adjacency matrix. We see from Theorem 3.4 that CPC UBG implies TM, 
from Theorem 3.5 that TM implies XA is mixing, and from Theorem 3.8 that XA being mixing implies TA
is CPC UBG. Hence, all of the above are equivalent. See Fig. 5.
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