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Abstract

This paper establishes the large deviation principle (LDP) for multiple averages on Nd . We extend the
previous work of Carinci et al. (2012) to multidimensional lattice Nd for d ≥ 2. The same technique is
also applicable to the weighted multiple average launched by Fan (2021). Finally, the boundary conditions
are imposed to the multiple sum and explicit formulae of the energy functions with respect to the
boundary conditions are obtained.
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1. Introduction

In this article, we study the large deviation rate function of the (weighted) multiple average
n the multidimensional lattice Nd . Before presenting our main results, we would like to explain
elow the motivation behind this study. Let (X, T ) be a topological dynamical system where

T is a continuous map on a compact metric space X . Defined by F = ( f1, . . . , fd ) a d-tuple
f functions, where fi : X → R for 1 ≤ i ≤ d. The multiple ergodic theory is the study of
he asymptotic behavior of the multiple sum

AnF(x) =

n−1∑
k=0

f1(T k
1 (x)) f2(T k

2 (x)) · · · fd (T k
d (x)). (1)

uch problem was initiated by Furstenberg [14] on his proof of the Szemerédi’s theorem. Host
nd Kra [16] proved the L2-convergence of (1) when T j = T j (T j (x) means the j th iteration
f x under T .) and f j ∈ L∞(µ), Bourgain [4] proved the almost everywhere convergence when
= 2. Later, the multifractal analysis and the dimension theory of the multiple ergodic averages

AnF(x)
N in N (or Z) are also interesting research subjects and have been studied in depth recently

cf. [1,2,5,12,13,17–20]). We also refer the reader to [10] for a survey and for a complete
ibliography on this subject. Those works concentrate on what are known as multiplicative
ubshifts. Precisely, let Σm = {0, . . . , m − 1} and Ω ⊆ ΣN

m be a subset. We suppose that S is
semigroup generated by primes p1, . . . , pk−1, and set

X (S)
Ω = {(xk)∞k=1 ∈ ΣN

m : x |i S ∈ Ω , ∀i ∈ N, gcd(i, S) = 1}, (2)

here gcd(i, S) = 1 means that gcd(i, s) = 1, ∀s ∈ S. It is worth noting that the investigation of
X (S)
Ω was started from the study of the set X p1,p2,...,pk−1 defined below. Namely, if p1, . . . , pk−1

re primes, define

X p1,p2,...,pk−1 = {(xi )∞i=1 ∈ ΣN
m : xi xi p1 · · · xi pk−1 = 0, ∀i ∈ N}. (3)

t is clear that X p1,p2,...,pk−1 is a special case of X (S)
Ω with Ω a closed subset of ΣN

m . Results for
ausdorff and Minkowski dimension of (2) or (3) are obtained in [2,12,17,18] . The authors call

X (S)
Ω ‘multiplicative subshifts’ in [17] since it is invariant under multiplicative integer action.
hat is,

x = (xk)k≥1 ∈ X (S)
Ω ⇒ ∀i ∈ N, (xik)k≥1 ∈ X (S)

Ω .

For p1, . . . , pk−1 ∈ Nd , we define

Xp1,p2,...,pk−1 = {(xi)i∈Nd ∈ ΣNd

m : xixi·p1 · · · xi·pk−1 = 0, ∀i ∈ Nd
}, (4)

here i · j denotes the coordinate-wise product of i and j, i.e., i · j = (i1 j1, . . . , id jd ) for
= (il)d

l=1, j = ( jl)d
l=1 ∈ Nd . It is obvious that Xp1,p2,...,pk−1 is a Nd version of X p1,p2,...,pk−1 .

ecently, Ban, Hu and Lai [1] established the Minkowski dimension of (4). Related works on
he dimension theory of the multidimensional multiple sum can also be found in [5]. Let( )N
m1 ≥ m2 ≥ · · · ≥ md ≥ 2, Σm1,...,md = Σm1 × · · · × Σmd

2
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and define

Xm1,...,md
Ω = {(x (1)

i , . . . , x (d)
i )∞i=1 ∈ Σm1,...,md : (x (1)

iql , . . . , x (d)
iql ) ∈ Ω , ∀q ∤ i}. (5)

he set (5) is called self-affine sponges under the action of multiplicative integers. Brunet
tudies the dimensions of (5) and establishes the associated Ledrappier–Young formula.

It is stressed that the problems of multifractal analysis and dimension formula of multiple
verage on ‘multidimensional lattices’ are new and difficult. The difficulty is that it is not
asy to decompose the multidimensional lattices into independent sublattices according to the
iven ‘multiple constraints’, e.g., the p′

i s in (4), and calculate its density among the entire
attice. Fortunately, the technique developed in [1] is useful and leads us to investigate the
DP for the multidimensional multiple averages launched by Carinci et al. in 2012 [6], and
ultidimensional weighted multiple sum mentioned in [11]. Both topics are described in the

ollowing two paragraphs.
LDP for multiple averages on Z. Let A = {+1, −1} and denote by Pr the product of

ernoulli with the parameter r on A. For σ ∈ AZ, the authors [6] study the thermodynamic
imit of the free energy function associated to the sum

SN (σ ) =

N∑
i=1

σiσ2i , (6)

efined as

Fr (β) = lim
N→∞

1
N

logEr (eβSN ).

e note that if we think (6) as a Hamiltonian and the parameter β as the inverse temperature
n the lattice spin systems on AZ, this is the simplest version of the multiplicative Ising model
efined in [7]. Note that the Hamiltonian (6) is long-range, non-translation invariant interaction
nd much more difficult to treat. In [6], the authors prove that the sequence of multiple average

SN
N satisfies a LDP with the rate function

Ir (x) = sup
β∈R

(βx − Fr (β)), (7)

here

Fr (β) = log([r (1 − r )]
3
4 |vT

· e+|Λ+) + G(β).

he reader is referred to [6] for the explicit definitions of v, e+, Λ+ and G(β). Roughly
peaking, the LDP characterizes the limit behavior, as ϵ → 0, of a family of probability
easures {µϵ} on a probability space (X,B) in terms of a rate function. In [6], the rate function

ssociated with the multiple average SN
N is defined by

Ir (x) = lim
ϵ→0

lim
N→∞

−
1
N

logPr

(
SN

N
∈ [x − ϵ, x + ϵ]

)
. (8)

he authors prove that (8) exists and satisfies the Fenchel–Legendre transform (7) of the
ree energy function Fr (β). If Fr (β) is differentiable, then the rate function can be clearly
emonstrated (Lemma 2.2.31 [8]) to be given by:

Ir (y) = ηy − Fr (η)

here η is the value such that F ′(η) = y.
3
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Thus, the characterization the differentiability of the free energy function Fr (β) is also a
ajor subject of the LDP, and it is highly related to the phase transition phenomena of the
ultiplicative Ising model (cf. [15]). We refer the reader to [8,9] for the formal definitions

f LDP and Fenchel–Legendre transform. The multiplicative Ising model with boundary
onditions is also considered in [7]. In the first part of this work we investigate how to extend
he work of [6,7] to Nd without and with boundary conditions. This will be done in Section 3
nd Section 5 respectively. We also extend some results of the weighted multiple average [11]
o the Nd version, and describe them below.

Multifractal analysis for weighted sums on Z. Let (X, T ) be a topological dynamical
ystem. Fan [11] studies the multifractal analysis of the weighted (Birkhoff) sum

S(w)
N f (x) =

N∑
n=1

wn f (T n x). (9)

s follows. Suppose (wn)∞n=1 takes a finite number of values and fn(x) = xngn(xn−1, . . .), where
gn depends on finite number of coordinates (see condition (C1) in Theorem 4.1) and (wn)

∞

n=1
atisfies the frequency condition (see (C2) in Theorem 4.1). The spectrum of the Hausdorff
imension of the level set E(α)(defined in (44)) is obtained in Theorem 4.1. Let µ be the
öbius function, the author also considers the level set F(α) (defined in (46)). The dimension

pectrum for the level set F(α) is also obtained in Theorem 4.2. In the second part of this
tudy we establish the LDP based on the weighted multiple sum

S(w)
N =

N∑
i=1

wnσiσ2i (10)

n Nd . Our main results are presented below.
Suppose N = (N1, N2, . . . , Nd ) ∈ Nd and σ ∈ ANd

, the (multidimensional) multiple sum is
defined as

Sp
N1×N2×···×Nd

(σ ) =

N1∑
i1=1

N2∑
i2=1

· · ·

Nd∑
id=1

σiσp·i. (11)

Following [6], let Pr be a product of Bernoulli with the parameter r over two symbols on A.
The free energy function associated with the sum Sp

N1×N2×···×Nd
is set as3

Fr (β) = lim
N→∞

1
N1 N2 · · · Nd

logEr (exp(βSp
N1×N2×···×Nd

)). (12)

The associated large deviation rate function of the multiple average

Sp
N1×N2×···×Nd

N1 N2 · · · Nd
(13)

s defined as

Ir (x) = lim
ε→0

lim
N→∞

−
1

N1 N2 · · · Nd
logPr

(
Sp

N1×N2×···×Nd

N1 N2 · · · Nd
∈ [x − ε, x + ε]

)
. (14)

n Theorem 3.2 an explicit formula for Fr (β) is derived and β ↦→ Fr (β) is proven to be
ifferentiable. Furthermore, the multiple average (13) is shown to satisfy a LDP. Due to the fact

3 To shorten notation, we write N → ∞ instead of N , N , ..., N → ∞.
1 2 d

4
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that β → Fr (β) is differentiable, an explicit expression is obtained also for Ir (x). Surprisingly,
he formula for Fr (β) indicates that I1/2(x) is independent of the dimension d ∈ N and p ∈ Nd .
n the other hand, let w = (wi)i∈Nd , the weighted multiple sum is defined as

Sp,w
N1×N2×···×Nd

=

N1∑
i1=1

N2∑
i2=1

· · ·

Nd∑
id=1

wiσiσp·i. (15)

We denote by Fw
r (β) (resp. I w

r (x)) the corresponding free energy function (resp. large
deviation rate function) of the weighted multiple average

Sp,w
N1×N2×···×Nd

N1 N2 · · · Nd
(16)

s in (12) (resp. (14)). The formula of Fw
1/2(β) is rigorously calculated in Theorem 4.3, the LDP

or the average (16) are also established therein. It is worth to emphasize that the formula I w
1/2 in

heorem 4.3 is almost identical to the dimension formula (44) established in Theorem 4.1 [11],
nd that I w

1/2 does not depend on the dimension d ∈ N and the multiple constraint p ∈ Nd . In
ddition, similar results are also obtained if (wi)i∈Nd is the Möbius function (Corollary 4.5).
inally, the boundary conditions on the multiple sum (11) are imposed and the corresponding
nergy functions are defined. The explicit formulae of these energy functions are determined
n Section 5.

. Preliminaries

In this section, we provide necessary materials and results on the decomposition of the
ultidimensional lattice Nd into independent sublattices and calculate their densities.
Given p1, p2, . . . , pd ≥ 1 (with p1, p2, . . . , pd not all equal to 1) and N1, N2, . . . , Nd ≥ 1,

e let Mp = {(pm
1 , pm

2 , . . . , pm
d ) : m ≥ 0} be the subset of Nd , and denote by Mp(i) a version

f the lattice Mp starting from i ∈ Nd , i.e. Mp(i) = {(i1 pm
1 , i2 pm

2 , . . . , id pm
d ) : m ≥ 0}. Finally

e define Ip = {i ∈ Nd
: p j ∤ i j for some 1 ≤ j ≤ d} as the index set of Nd .

More definitions are needed to characterize the partition of the N1 × N2 × · · · × Nd lattice.
et NN1×N2×···×Nd = {i ∈ Nd

: 1 ≤ i j ≤ N j for all 1 ≤ j ≤ d} be the N1×N2×· · ·×Nd lattice
nd LN1×N2×···×Nd (i) = Mp(i)∩NN1×N2×···×Nd be the subset of Mp(i) in the N1×N2×· · ·×Nd

attice. Then we define JN1×N2×···×Nd ;ℓ = {i ∈ NN1×N2×···×Nd : |LN1×N2×···×Nd (i)| = ℓ}, where
· | denotes cardinality, as the set of points i in the N1 × N2 × · · · × Nd lattice such that
he cardinality of the set Mp(i) ∩ NN1×N2×···×Nd is exactly ℓ. Let KN1×N2×···×Nd ;ℓ = {i ∈

p∩NN1×N2×···×Nd : |LN1×N2×···×Nd (i)| = ℓ} be the set of points i in Ip that the cardinality of the
et Mp(i) ∩NN1×N2×···×Nd is exactly ℓ. The following lemmas give the disjoint decomposition
f Nd and the limit of the density of KN1×N2×···×Nd ;ℓ which is the Nd version of Lemma 2.1
nd 2.2 [1], respectively.

emma 2.1. For p1, p2, . . . , pd ≥ 1,

Nd
=

⨆
i∈Ip

Mp(i).

roof. We first claim that for all i ̸= i′ ∈ Ip, Mp(i) ∩ Mp(i′) = ∅. Indeed, suppose that this
oes not hold, then there exist i ̸= i′ ∈ Ip such that Mp(i) ∩ Mp(i′) ̸= ∅. Since i ̸= i′, then
here exist m ̸= m ≥ 0 such that (i pm1 , . . . , i pm1 ) = (i ′ pm2 , . . . , i ′ pm2 ). Without loss of
1 2 1 1 d d 1 1 d d

5
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generality, we assume m1 > m2, then ik pm1−m2
k = i ′

k for all 1 ≤ k ≤ d , which gives pk |i ′

k

or all 1 ≤ k ≤ d . This contradicts i′ ∈ Ip. It remains to show that the equality holds. For
∈ Nd , then ik = i ′

k pαk
k with pk ∤ i ′

k and αk ≥ 0 for all 1 ≤ k ≤ d. Take γ = mink{αk}, then
i1
pγ

1
, . . . ,

id
pγ

d
) ∈ Ip, which implies i ∈ Mp( i1

pγ
1
, . . . ,

id
pγ

d
). Since the converse is clear, the proof

s thus completed. □

emma 2.2. For N1, N2, . . . , Nd , and ℓ ≥ 1, we have the following assertions.

1. |JN1×N2×···×Nd ;ℓ| =

d∏
k=1

⌊
Nk

pℓ−1
k

⌋
−

d∏
k=1

⌊
Nk

pℓ
k

⌋
.

2. lim
N→∞

|KN1×N2×···×Nd ;ℓ|

|JN1×N2×···×Nd ;ℓ|
= 1 −

1
p1 p2 · · · pd

.

3. lim
N→∞

1
N1 · · · Nd

N1···Nd∑
ℓ=1

|KN1×···×Nd ;ℓ| log Fℓ =

∞∑
ℓ=1

lim
N→∞

|KN1×···×Nd ;ℓ|

N1 · · · Nd
log Fℓ.

roof.

1. Since |LN1×···×Nd (i)| = ℓ, we have

JN1×···×Nd ;ℓ = {i : ik pℓ−1
k ≤ Nk for all 1 ≤ k ≤ d} ∩

(
∪

d
k=1{i : ik pℓ

k > Nk}
)
.

Thus, the inclusion–exclusion principle infers that

|JN1×···×Nd ;ℓ| =

⏐⏐⏐⏐⏐
d⋃

n=1

(
A ∩ {i : in pℓ

n > Nn}
)⏐⏐⏐⏐⏐

=

d∑
n=1

⏐⏐A ∩ {i : in pℓ
n > Nn}

⏐⏐
−

∑
1≤n1<n2≤d

⏐⏐⏐A ∩ {i : in1 pℓ
n1

> Nn1 and in2 pℓ
n2

> Nn2}

⏐⏐⏐
+

∑
1≤n1<n2<n3≤d

⏐⏐⏐A ∩ {i : in1 pℓ
n1

> Nn1 , in2 pℓ
n2

> Nn2 and in3 pℓ
n3

> Nn3}

⏐⏐⏐
− · · · + (−1)d−1

⏐⏐A ∩ {i : i1 pℓ
1 > N1, i2 pℓ

2 > N2, . . . , id pℓ
d > Nd}

⏐⏐ ,
where A = {i : ik pℓ−1

k ≤ Nk for all 1 ≤ k ≤ d}.
It follows that

|JN1×···×Nd ;ℓ| =

d∑
n=1

⎡⎣(⌊ Nn

pℓ−1
n

⌋
−

⌊
Nn

pℓ
n

⌋)∏
k ̸=n

⌊
Nk

pℓ−1
k

⌋⎤⎦
−

∑ ⎡⎣ ∏ (⌊
Nk1

pℓ−1

⌋
−

⌊
Nk1

pℓ
k

⌋) ∏ ⌊
Nk2

pℓ−1

⌋⎤⎦

1≤n1<n2≤d k1=n1,n2 k1 1 k2 ̸=n1,n2 k2

6
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+

∑
1≤n1<n2<n3≤d

⎡⎣ ∏
k1=n1,n2,n3

(⌊
Nk1

pℓ−1
k1

⌋
−

⌊
Nk1

pℓ
k1

⌋) ∏
k2 ̸=n1,n2,n3

⌊
Nk2

pℓ−1
k2

⌋⎤⎦
− · · · + (−1)d−1

d∏
k=1

(⌊
Nk

pℓ−1
k

⌋
−

⌊
Nk

pℓ
k

⌋)
.

Thus, we have

|JN1×···×Nd ;ℓ| =

d∏
k=1

⌊
Nk

pℓ−1
k

⌋
−

d∏
k=1

⌊
Nk

pℓ
k

⌋
.

2. For m(i)
2 > m(i)

1 ≥ 1, 1 ≤ i ≤ d and we define the rectangular lattice

Rm(1)
1 ,m(1)

2 ;...;m(d)
1 ,m(d)

2
=

{
i ∈ Nd

: m(k)
1 ≤ ik ≤ m(k)

2 for all 1 ≤ k ≤ d
}

.

Clearly, the complement of Ip is Ic
p = {i : pk | ik for all 1 ≤ k ≤ d} and⏐⏐⏐Rm(1)

1 ,m(1)
2 ;...;m(d)

1 ,m(d)
2

∩ Ip

⏐⏐⏐ =

⏐⏐⏐Rm(1)
1 ,m(1)

2 ;...;m(d)
1 ,m(d)

2

⏐⏐⏐− ⏐⏐⏐Rm(1)
1 ,m(1)

2 ;...;m(d)
1 ,m(d)

2
∩ Ic

p

⏐⏐⏐ .
Thus, ⏐⏐⏐Rm(1)

1 ,m(1)
2 ;...;m(d)

1 ,m(d)
2

∩ Ip

⏐⏐⏐
≥

⏐⏐⏐Rm(1)
1 ,m(1)

2 ;...;m(d)
1 ,m(d)

2

⏐⏐⏐− 1
p1 p2 · · · pd

⏐⏐⏐Rm(1)
1 ,m(1)

2 +2p1;...;m(d)
1 ,m(d)

2 +2pd

⏐⏐⏐
and ⏐⏐⏐Rm(1)

1 ,m(1)
2 ;...;m(d)

1 ,m(d)
2

∩ Ip

⏐⏐⏐
≤

⏐⏐⏐Rm(1)
1 ,m(1)

2 ;...;m(d)
1 ,m(d)

2

⏐⏐⏐− 1
p1 p2 · · · pd

⏐⏐⏐Rm(1)
1 ,m(1)

2 −2p1;...;m(d)
1 ,m(d)

2 −2pd

⏐⏐⏐ .
Then, by the Squeeze theorem,

lim
m(k)

2 −m(k)
1 →∞

1≤k≤d

|Rm(1)
1 ,m(1)

2 ;...;m(d)
1 ,m(d)

2
∩ Ip|

|Rm(1)
1 ,m(1)

2 ;...;m(d)
1 ,m(d)

2
|

= 1 −
1

p1 p2 · · · pd
.

Consequently,

lim
N→∞

|KN1×···×Nd ;ℓ|

|JN1×···×Nd ;ℓ|
= lim

N→∞

|JN1×···×Nd ;ℓ ∩ Ip|

|JN1×···×Nd ;ℓ|
= 1 −

1
p1 p2 · · · pd

.

3. Define K̄N1×···×Nd ;ℓ =

{
|KN1×···×Nd ;ℓ| if ℓ ≤ N1 · · · Nd ,

0 if ℓ > N1 · · · Nd .
Then

lim
N→∞

1
N · · · N

N1···Nd∑
|KN1×···×Nd ;ℓ| log Fℓ = lim

N→∞

1
N · · · N

∞∑
K̄N1×···×Nd ;ℓ log Fℓ.
1 d
ℓ=1 1 d

ℓ=1

7
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Hence from the Weierstrass M-test with
1

N1 · · · Nd

⏐⏐K̄N1×···×Nd ;ℓ log Fℓ

⏐⏐ ≤
1

N1 · · · Nd
|JN1×···×Nd ;ℓ| log Fℓ

=
1

N1 · · · Nd

(
d∏

k=1

⌊
Nk

pℓ−1
k

⌋
−

d∏
k=1

⌊
Nk

pℓ
k

⌋)
log Fℓ

≤
1

N1 · · · Nd

(
N1 · · · Nd

pℓ−1
1 pℓ−1

2 · · · pℓ−1
d

)
log Fℓ

=
1

(p1 p2 · · · pd )ℓ−1 log Fℓ

for all N1, . . . , Nd ∈ N and
∞∑

ℓ=1

log Fℓ

(p1 p2 · · · pd )ℓ−1 < ∞, we deduce that

∞∑
ℓ=1

K̄N1×···×Nd ;ℓ log Fℓ

N1 · · · Nd
converges uniformly in N1, . . . , Nd .

This implies

lim
N→∞

1
N1 · · · Nd

N1···Nd∑
ℓ=1

|KN1×···×Nd ;ℓ| log Fℓ = lim
N→∞

1
N1 · · · Nd

∞∑
ℓ=1

K̄N1×···×Nd ;ℓ log Fℓ

=

∞∑
ℓ=1

lim
N→∞

1
N1 · · · Nd

K̄N1×···×Nd ;ℓ log Fℓ

=

∞∑
ℓ=1

lim
N→∞

1
N1 · · · Nd

|KN1×···×Nd ;ℓ| log Fℓ.

The proof is complete. □

. LDP of multiple averages on Nd

In this section, we establish the LDP for the multiple average (13), where the multiple
um Sp

N1×N2×···×Nd
is defined in (11). The associated free energy function Fr (β) and the large

eviation rate function Ir (x) are also defined in (12) and (14) respectively.
Let N1, N2, . . . , Nd ∈ N and p = (p1, p2, . . . , pd ) ∈ Nd . The explicit formula for Fr (β) and

he LDP of the multiple average (13) are established in Theorem 3.2. The following theorem
s essential in the proofs of our results.

heorem 3.1 (Gärtner–Ellis [8], Theorem 2.3.6). If the limit (12) exists and such limit is finite
n a neighborhood of origin, then (14) is equal to the Fenchel–Legendre transform of (12), i.e.,

Ir (x) = sup
β∈R

(βx − Fr (β)) .

oreover, if the function (12) is differentiable, and let η be the value such that (Fr )′(η) = y,
hen

Ir (y) = ηy − Fr (η).

heorem 3.2. For any d ≥ 1 and p1, p2, . . . , pd ≥ 1, then the following statements hold
rue.
8
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1. The explicit expression of the free energy function associated to the multiple sum
Sp

N1×N2×···×Nd
is

Fr (β) =
2p1 p2 · · · pd − 1

2p1 p2 · · · pd
log(r (1 − r )) +

p1 p2 · · · pd − 1
p1 p2 · · · pd

log |vT
· e+|

2
+ logΛ+ + G(β),

(17)

where Λ±, vT , h, e+ and G(β) are defined in (24), (23), (21), ((26) and (29) respectively.
2. The function Fr (β) is differentiable with respect to β ∈ R.
3. The multiple average (13) satisfies a LDP with rate function given by

Ir (x) = sup
β∈R

(βx − Fr (β)) .

Furthermore, if (Fr )′(η) = y, then Ir (y) = ηy − Fr (η).

roof.

1. By Lemma 2.1, we decompose the sum (11) as

Sp
N1×N2×···×Nd

=

∑
i∈Ip

⎛⎝ ∑
x∈LN1×N2×···×Nd (i)

σxσp·x

⎞⎠ . (18)

For a given i ∈ Ip, the i-th term of the external sum in (18) is nothing else than the
Hamiltonian of a one-dimensional nearest-neighbors Ising model, since⎧⎨⎩ ∑

x∈LN1×N2×···×Nd (i)

σxσp·x

⎫⎬⎭ D
=

⎧⎨⎩
|LN1×N2×···×Nd (i)|∑

ℓ=1

τ
(i)
ℓ τ

(i)
ℓ+1

⎫⎬⎭ ,

where τ
(i)
ℓ are Bernoulli with parameter r , independent for different values of i and for

different values of ℓ and D
= denotes equality in distribution. We introduce the notation

Z (β, h, ℓ + 1) (as in [6]) for the sum:

Z (β, h, ℓ + 1) =

∑
τ∈{−1,1}ℓ+1

eβ
∑ℓ

i=1 τi τi+1+h
∑ℓ+1

i=1 τi
(19)

that is the partition function of the one-dimensional Ising model with coupling strength
β and external field h in the volume {1, . . . , ℓ}, with free boundary conditions. Then

Er

(
eβ

∑ℓ
i=1 τi τi+1

)
= (r (1 − r ))

ℓ+1
2 Z (β, h, ℓ + 1), (20)

where

h =
1
2

log
(

r
1 − r

)
. (21)

By the computation in ([3], Chapter 2), (19) becomes

Z (β, h, ℓ + 1) =vT
[

eβ+h e−β

e−β eβ−h

]ℓ

v = |vT
· e+|

2
Λℓ

+
+ |vT

· e−|
2
Λℓ

−
, (22)

where

vT
=

(
e

h
2 , e

−h
2

)
(23)
9
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and

Λ± = eβ

(
cosh(h) ±

√
sinh2(h) + e−4β

)
(24)

that are the largest, resp. smallest, eigenvalues of the transition matrix
[

eβ+h e−β

e−β eβ−h

]
with e± the corresponding normalized eigenvectors.
The partition function (22) can be rewritten as:

Z (β, h, ℓ + 1) =|vT
· e+|

2
Λℓ

+
+ (∥v∥

2
− |vT

· e+|
2
)Λℓ

−

=|vT
· e+|

2
Λℓ

+
+ (2 cosh(h) − |vT

· e+|
2
)Λℓ

−

(25)

with e+ given by:

e+ =
w+

∥w+∥
with w+ =

(
−e−β

eh+β
− Λ+

)
. (26)

Then by (18) and (20), (12) becomes

Fr (β) = lim
N→∞

1
N1 · · · Nd

∑
i∈Ip

log(r (1 − r ))
|LN1×N2×···×Nd

(i)|+1
2 Z (β, h, |LN1×N2×···×Nd (i)| + 1).

(27)

Then by Lemma 2.1, Lemma 2.2 and (27), we have

Fr (β) =

∞∑
ℓ=1

(p1 p2 · · · pd − 1)2

(p1 p2 · · · pd )ℓ+1 log(r (1 − r ))
ℓ+1

2 Z (β, h, ℓ + 1). (28)

Combining (25) and (28) yields

Fr (β) =

∞∑
ℓ=1

(p1 p2 · · · pd − 1)2

(p1 p2 · · · pd )ℓ+1 log(r (1 − r ))
ℓ+1

2

+

∞∑
ℓ=1

(p1 p2 · · · pd − 1)2

(p1 p2 · · · pd )ℓ+1 log
(
|vT

· e+|
2
Λℓ

+ + (2 cosh(h) − |vT
· e+|

2
)Λℓ

−

)
=

2p1 p2 · · · pd − 1
2p1 p2 · · · pd

log(r (1 − r ))

+

∞∑
ℓ=1

(p1 p2 · · · pd − 1)2

(p1 p2 · · · pd )ℓ+1 log |vT
· e+|

2
+

∞∑
ℓ=1

(p1 p2 · · · pd − 1)2

(p1 p2 · · · pd )ℓ+1 ℓ logΛ+ + G(β)

=
2p1 p2 · · · pd − 1

2p1 p2 · · · pd
log(r (1 − r )) +

p1 p2 · · · pd − 1
p1 p2 · · · pd

log |vT
· e+|

2
+ logΛ+ + G(β),

where

G(β) =

∞∑
ℓ=1

(p1 p2 · · · pd − 1)2

(p1 p2 · · · pd )ℓ+1 log

(
1 +

(
2 cosh(h)

|vT · e+|
2 − 1

)(
Λ−

Λ+

)ℓ
)

. (29)

2. For the proof of differentiability of β ↦→ Fr (β), it is enough to show that the sum
∞∑ (p1 p2 · · · pd − 1)2

(p p · · · p )ℓ+1

[
log

(
1 +

(
2 cosh(h)

T 2 − 1
)(

Λ−

Λ

)ℓ
)]′
ℓ=1 1 2 d |v · e+| +

10
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converges uniformly with respect to β ∈ R, where the notation ′ stays for derivative
with respect to β. Indeed, for all ℓ ≥ 1[

log

(
1 +

(
2 cosh(h)

|vT · e+|
2 − 1

)(
Λ−

Λ+

)ℓ
)]′

=

[
2 cosh(h)
(vT ·e+)2

]′ (
Λ−

Λ+

)ℓ

+

[
2 cosh(h)
(vT ·e+)2 − 1

]
ℓ
(
Λ−

Λ+

)ℓ−1 (
Λ−

Λ+

)′

1 +

(
2 cosh(h)
(vT ·e+)2 − 1

) (
Λ−

Λ+

)ℓ
.

(30)

Note that, for all ℓ ≥ 1

0 ≤

⏐⏐⏐⏐Λ−

Λ+

⏐⏐⏐⏐ℓ ≤ 1. (31)

Then (30) and (31) give⏐⏐⏐⏐⏐
[

log

(
1 +

(
2 cosh(h)

|vT · e+|
2 − 1

)(
Λ−

Λ+

)ℓ
)]′

⏐⏐⏐⏐⏐
≤

⏐⏐⏐⏐[ 2 cosh(h)
(vT · e+)2

]′
⏐⏐⏐⏐+ [

2 cosh(h)
(vT · e+)2 − 1

]
ℓ

⏐⏐⏐⏐(Λ−

Λ+

)′
⏐⏐⏐⏐ .

(32)

For any bounded closed interval [a, b] ⊆ R, there exists a positive constant Ma,b such
that

0 =

[
2 cosh(h)

|v|
2 − 1

]
≤

[
2 cosh(h)
(vT · e+)2 − 1

]
≤ Ma,b, for all β ∈ [a, b]. (33)

It remains to check that
⏐⏐⏐⏐[ 2 cosh(h)

(vT ·e+)2

]′
⏐⏐⏐⏐ and

⏐⏐⏐⏐(Λ−

Λ+

)′
⏐⏐⏐⏐ are bounded on [a, b].

Direct computation infers that(
Λ−

Λ+

)′

=

(−4e−4β) [cosh(h) − f (β)]
[

1−e−4β

f (β) − cosh(h) + f (β)
]

(1 − e−4β)2 , (34)

where f (β) =

√
sinh2(h) + e−4β . For the boundedness of (34), we apply the fact that

f (β) is bounded away from zero on the interval [a, b], thus⏐⏐⏐⏐(Λ−

Λ+

)′
⏐⏐⏐⏐ ≤ Ka,b, (35)

for some constant Ka,b and for all β ∈ [a, b]. Note that the L’Hôpital’s rule is applied
to the definition of derivative and (35) when β = 0 and β near 0 respectively. Namely,
for β = 0(

Λ−

Λ+

)′

(0) = lim
ϵ→0

Λ−

Λ+
(ϵ) −

Λ−

Λ+
(0)

ϵ

= lim
ϵ→0

cosh(h) − f (β)
ϵ (cosh(h) + f (β))

.

(36)

Applying L’Hôpital’s rule to (36), we obtain⏐⏐⏐⏐(Λ−

)′

(0)
⏐⏐⏐⏐ =

1
2 ≤ 1. (37)
Λ+ cosh (h)
11
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For |β| → 0+, applying L’Hôpital’s rule twice to (34), we have⏐⏐⏐⏐(Λ−

Λ+

)′

(0+)
⏐⏐⏐⏐ =

1
cosh2(h)

. (38)

Then (37) and (38) imply that
⏐⏐⏐⏐(Λ−

Λ+

)′
⏐⏐⏐⏐ is a continuous function near β = 0, which

implies its boundedness when β is near to 0.
It is easy to check that

eh−2β > 0 and sinh(h) −

√
sinh2(h) + e−4β < 0, for all β ∈ [a, b]. (39)

Then (39) gives

vT
· e+ ̸= 0, for all β ∈ [a, b]. (40)

Combining (40) and the fact that 0 < C < f (β) for some C , we have⏐⏐⏐⏐[ 2 cosh(h)
(vT · e+)2

]′
⏐⏐⏐⏐ ≤ Na,b, (41)

for some constant Na,b and for all β ∈ [a, b].
The uniform convergence of β ↦→ Fr (β) on [a, b] is thus obtained by the Weierstrass M-
test using (32), (35) and (41). Since a and b are arbitrary, we obtain the differentiability
of Fr (β) on R.

3. Theorem 3.2 (3) follows from Theorem 3.1 and (1), (2) of Theorem 3.2. □

Remark 3.3. We note that when r =
1
2 , we have

I 1
2
(y) =η

eη
− e−η

eη + e−η
− log(eη

+ e−η) + log 2,

here

y =
eη

− e−η

eη + e−η
.

hus, I 1
2

is independent of the dimension d ∈ N and the multiple constraint vector p =

(p1, . . . , pd ) ∈ Nd .

Corollary 3.4. For any p1, p2 ≥ 1,

1. The free energy function associated to the sum Sp
N1×N2

is

Fr (β) =
2p1 p2 − 1

2p1 p2
log(r (1 − r )) +

p1 p2 − 1
p1 p2

log |vT
· e+|

2
+ logΛ+ + G(β),

where

G(β) =

∞∑
ℓ=1

(p1 p2 − 1)2

(p1 p2)ℓ+1 log

(
1 +

(
2 cosh(h)

|vT · e+|
2 − 1

)(
Λ−

Λ+

)ℓ
)

.

2. In addition, if we let p = (2, 1), then the free energy function associated to the sum

S(2,1)
N1×N2

=

N1∑ N2∑
σ(i1,i2)σ(2i1,i2)
i1=1 i2=1

12
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R

Fig. 1. Plot of the Fr (β) with p1 = 2 and p2 = 1 for different r values.

is

Fr (β) = log
(

(r (1 − r ))
3
4 |vT

· e+|Λ+

)
+ G(β), (42)

where

G(β) =
1
2

∞∑
ℓ=1

1
2ℓ

log

(
1 +

(
2 cosh(h)

|vT · e+|
2 − 1

)(
Λ−

Λ+

)ℓ
)

.

emark 3.5.

1. Formula (42) is obtained in [6] for the multiple sum (6). Therefore (17) is a multidi-
mensional version of the free energy function on Nd .

2. When r = 1/2, we have h = 0, Λ+ = eβ
+e−β and |vT

· e+|
2

= ∥v∥
2

= 2. This implies
G(β) = 0 and

F1
2
(β) = log

(
1
2

(eβ
+ e−β)

)
. (43)

Thus, F1
2

is independent of the dimension d ∈ N and the choice of p ∈ Nd .

3. When r ̸= 1/2, we have h =
1
2 log(r/1 − r ) ̸= 0. Then for all β ∈ R, the vector v is

not parallel to the vector w+ and so is e+, that gives

|vT
· e+|

2
< ∥v∥

2
∥e+∥

2
= (r (1 − r ))−

1
2 .

This gives the effect of multiple constraint.
4. Figs. 1 and 2 illustrate the free energy functions for different r ∈ (0, 1) which is obtained

from Theorem 3.2 by truncating the sum to the first 100 terms. Fig. 1 is the graph
obtained for the case d = 2 with p1 = 2 and p2 = 1. In fact this coincides with
the one-dimensional result shown in [6]. Fig. 2 shows the free energy behavior for the
multidimensional case d = 5 with p1 = 2, p2 = 3, p3 = 5, p4 = 7 and p5 = 11.
13
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Fig. 2. Plot of the Fr (β) with p1 = 2, p2 = 3, p3 = 5, p4 = 7 and p5 = 11 for different r values.

. LDP of weighted multiple averages on Nd

Let (X, T ) be a topological dynamical system. Fan [11] studies the multifractal analysis of
he following weighted sum

S(w)
N f (x) =

N∑
n=1

wn fn(T n x) =

N∑
n=1

wn fn(xn, xn+1, . . .),

here f = ( fn) ⊆ C(X ). Define the level set E(α) according to the weighted average S(w)
N f (x)

N
s

E(α) =

{
x ∈ X : lim

N→∞

S(w)
N f (x)

N
= α

}
. (44)

he Hausdorff dimension of (44) is given in the following theorem.

heorem 4.1 (A. Fan, [11], Theorem 1.5). Let A = {−1, 1}. Suppose the function fn be of the
orm fn(x) = xng(xn+1, xn+2, . . .) for some gn satisfying the following condition:

(C1) for all n ≥ 1, gn(xn+1, . . .) takes values in A and only depends on a finite number of
coordinates.
Moreover assume the collection of weights (wn)n∈N be such that, for all n ∈ N, wn takes
values in a finite set {v1, v2, . . . , vm} and satisfies the following condition:

(C2) for all 1 ≤ j ≤ m, the following frequencies exist

Pj := lim
N→∞

#{1 ≤ n ≤ N : wn = v j }

N
.

Then for α ∈ (−
∑

Pj |v j |,
∑

Pj |v j |),

dim E(α) =
1

log 2

m∑
Pj

(
log(eλαv j + e−λαv j ) − λαv j

eλαv j − e−λαv j

eλαv j + e−λαv j

)
, (45)
j=1

14
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r

n

f

w

where λα is the unique solution of the equation
m∑

j=1

Pjv j
eλαv j − e−λαv j

eλαv j + e−λαv j
= α.

Let µ : N → {−1, 0, 1} be the Möbius function, the author also considers the level set

F(α) =

{
(xn)∞n=1 ∈ {−1, 1}

N
: lim

N→∞

1
N

N∑
n=1

µ(n)xn xn+1 = α

}
(46)

for which the dimension spectrum is given in the following theorem.

Theorem 4.2 (A. Fan, [11], Theorem 1.6). For α ∈ (−π2

6 , π2

6 ),

dim F(α) = 1 −
6
π2 +

6
π2 log 2

H (
1
2

+
π2

12
α),

where H (x) = −x log x − (1 − x) log(1 − x).

In this section, we establish the LDP based on the weighted multiple average (16). The main
esults of this section are presented below.

Let N1, N2, . . . , Nd , p1, p2, . . . , pd ≥ 1. Assume the weights w = (wi)i∈Nd take a finite
umber of values v1, v2, . . . , vm and the following frequencies exist

Pk := lim
N→∞

#{x ∈ LN1×N2×···×Nd (i) : wx = vk}

|LN1×N2×···×Nd (i)|
(47)

or all i ∈ Ip and 1 ≤ k ≤ m.

Theorem 4.3. Let d ≥ 1 and p1, p2, . . . , pd ≥ 1, and let the w = (wi)i∈Nd be a collection of
eights satisfying the frequency condition (47), then the following statements hold true.

1. The free energy function associated to the sum (15) is equal to

Fw
1
2

(β) =

m∑
k=1

Pk log(eβvk + e−βvk ) − log 2.

2. The function Fw
1
2

(β) is differentiable with respect to β ∈ R.

3. The multiple average (16) satisfies a LDP with rate function

I w
1
2

(x) = sup
β∈R

(
βx −

m∑
k=1

Pk log(eβvk + e−βvk ) + log 2

)
that is equal to:

I w
1
2

(y) =

m∑
k=1

Pk

(
ηvk

eηvk − e−ηvk

eηvk + e−ηvk
− log(eηvk + e−ηvk )

)
+ log 2,

where

y =

m∑
k=1

Pk
vk(eηvk − e−ηvk )

eηvk + e−ηvk
.

15
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R
(

s

Proof.

1. Observe that the transition matrices commute, i.e.,[
eβvi e−βvi

e−βvi eβvi

] [
eβv j e−βv j

e−βv j eβv j

]
=

[
eβv j e−βv j

e−βv j eβv j

] [
eβvi e−βvi

e−βvi eβvi

]
, (48)

for all 1 ≤ i < j ≤ m. According to (48), we exchange the order of matrix products
on the sublattices LN1×N2×···×Nd (i) for all i ∈ Ip so that the products have the following
forms [

eβv1 e−βv1

e−βv1 eβv1

]k1
[

eβv2 e−βv2

e−βv2 eβv2

]k2

· · ·

[
eβvm e−βvm

e−βvm eβvm

]km

(49)

and then we choose the same eigenvectors for all
[

eβvi e−βvi

e−βvi eβvi

]
, 1 ≤ i ≤ m.

Then by Lemmas 2.1 and 2.2 and (47), we have

Fw
1
2

(β) =

∞∑
ℓ=1

(p1 p2 · · · pd − 1)2

(p1 p2 · · · pd )ℓ+1 log
1

2ℓ+1

×
(
1 1

) m∏
k=1

[
1

√
2

1
√

2
1

√
2

−
1

√
2

][
eβvk + e−βvk 0

0 eβvk − e−βvk

]Pkℓ
[

1
√

2
1

√
2

1
√

2
−

1
√

2

](
1
1

)

=

∞∑
ℓ=1

(p1 p2 · · · pd − 1)2

(p1 p2 · · · pd )ℓ+1 log
1
2ℓ

m∏
k=1

(eβvk + e−βvk )Pkℓ

=

m∑
k=1

Pk

∞∑
ℓ=1

(p1 p2 · · · pd − 1)2

(p1 p2 · · · pd )ℓ+1

[
−ℓ log 2 + ℓ log(eβvk + e−βvk )

]
=

m∑
k=1

Pk log(eβvk + e−βvk ) − log 2.

2. The formula in Theorem 4.3 (1) implies

(Fw
1
2

)′(β) =

m∑
k=1

Pk
vk(eβvk − e−βvk )

eβvk + e−βvk

and

(Fw
1
2

)′′(β) =

m∑
k=1

Pk
4v2

k

(eβvk + e−βvk )2 > 0.

3. The result (3) of Theorem 4.3 follows from Theorem 3.1 and items (1) and (2) of
Theorem 4.3. □

emark 4.4. Note that the rate function I w
1
2

is dependent only on the frequency Pk , defined in

47), and not on the dimension d ∈ N and the multiple constraint vector p = (p1, . . . , pd ) ∈ Nd .

Note that when wi = 1 for all i ∈ Nd , Fw
1
2

(β) is equal to the free energy function of the

um S =
∑N

σ σ in [6].
N i=1 i 2i

16



J.-C. Ban, W.-G. Hu and G.-Y. Lai Indagationes Mathematicae xxx (xxxx) xxx

w
c

C
t

P

t

T

5

p
H

w
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We say w = (wi)i∈Nd is a Möbius weight if it is Möbius on each spin, for instance, in the
spin

(α1, α2, . . . , αd ), (αp1, α2 p2, . . . , αd pd ), . . . , (αpr
1, α2 pr

2, . . . , αd pr
d ),

e put w(α1 pi−1
1 ,α2 pi−1

2 ,...,αd pi−1
d ) = µ(i) for all 1 ≤ i ≤ r + 1. Then we have the following

orollary

orollary 4.5. Let d ≥ 1, p1, p2, . . . , pd ≥ 1, and let w = (wi)i∈Nd be a Möbius weight,
hen the free energy function associated to sum Sp,w

N1×N2×···×Nd
is equal to

Fw
1
2

(β) =
6
π2 log

(
1
2

(eβ
+ e−β)

)
.

roof. Since

lim
r→∞

1
r

r∑
n=1

|µ(n)| =
6
π2 ,

he frequency of 1, −1 and 0 denoted by P1, P−1 and P0 respectively (defined in (47)), satisfy
P1 + P−1 =

6
π2 and P0 = 1 −

6
π2 .

Then by Theorem 4.3, we have

Fw
1
2

(β) =

m∑
k=1

Pk log(eβvk + e−βvk ) − log 2

=(P0 − 1) log 2 + (P1 + P−1) log(eβ
+ e−β)

=
6
π2 log

(
1
2

(eβ
+ e−β)

)
.

he proof is complete. □

. Boundary conditions on multiple sums

In [7] the authors consider the ‘multiplicative Ising model’ on the lattice N0 = N∪{0} with
arameters β the inverse temperature , J the coupling strength, and h the magnetic field. The
amiltonian is given by

H (σ ) = −β

(∑
i∈N

Jσiσ2i + h
∑
i∈N

σi

)
(50)

here the spin configuration σ = (σi )i∈N0 lives in AN0 .
In [7] the authors consider also the Hamiltonian in the finite lattice [1, 2N ]∩N with boundary

ondition η = (ηi )∞i=1, ηi ∈ {−1, 1} that is defined as follows

Hη

N (σ[1,2N ]) = −β

(
N∑

i=1

Jσiσ2i +

2N∑
i=1

hσi ±

2N∑
i=N+1

σiη2i

)
. (51)

n this circumstance, H∅

N (σ[1,2N ]) = −β
(∑N

i=1 Jσiσ2i +
∑2N

i=1 hσi

)
denotes the Hamiltonian

ith free boundary conditions.
17
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Following [7], we impose the boundary conditions on the multiple sum (11) when r =
1
2 .

To avoid the cumbersome computation, we restrict ourselves on the case when d = 2 since the
case of general dimensions can be treated in the same fashion.

For N1, N2 ≥ 1, define the Dirichlet boundary condition Type 1 (BC1) by, putting +1 on
the boundary. That is,

σ(1,1), . . . , σ(1,N2) = +1, σ(1,N2), . . . , σ(N1,N2) = +1,

σ(1,1), . . . , σ(N1,1) = +1, σ(N1,1), . . . , σ(N1,N2) = +1.

The Dirichlet boundary conditions Type 2 (BC2) are defined by “all +1 except (i1, i2) with
1 < i1 < N1 and 1 < i2 < N2”. The Periodic boundary condition (BCp) is defined by
“all spins have same sign on its starting point and end. That is, for any (i1, i2) ∈ Ip1,p2 ∩

NN1×N2 ,

σ(i1,i2) = σ( j1, j2)

where ( j1, j2) is the smallest point (coordinate-wise) in LN1×N2 (i1, i2) such that j1 ≥ N1 and
j2 ≥ N2”.

Define the energy function corresponding to the BCi boundary conditions by

F (BCi)(β) := lim
N1,N2→∞

1
N1 N2

logE 1
2 ;(BCi)

(
eβS

(p1,p2)
N1×N2

)
, i ∈ {1, 2, p}. (52)

heorem 5.1.

1. The explicit formulas for the energy functions F (BCi)(β), for i ∈ {1, 2, p}, are given
by:

F (BC1)(β) = log(eβ
+ e−β) − log 2,

F (BC2)(β) = log(eβ
+ e−β) −

(
2p1 p2 − 1

p1 p2

)
log 2,

F (BCp)(β) = log(eβ
+ e−β) −

(
2p1 p2 − 1

p1 p2

)
log 2

+

∞∑
ℓ=1

(p1 p2 − 1)2

(p1 p2)ℓ+1 log

[
1 +

(
eβ

− e−β

eβ + e−β

)ℓ
]

.

2. The functions F (BCi)(β) for i ∈ {1, 2, p} are differentiable with respect to β ∈ R.
3. The multiple average (13) with boundary conditions BCi satisfies the LDP with rate

function

I (x) = sup
β∈R

(
βx − F (BCi)(β)

)
, i ∈ {1, 2, p}.

(BCi) ′ (BCi)
Furthermore, if (F ) (η) = y, then I (y) = ηy − F (η), i ∈ {1, 2, p}.

18
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Proof.

1. Applying the decomposition in Section 3 to (52), we have

F (BC1)(β) = lim
N1,N2→∞

1
N1 N2

{N1 N2∑
ℓ=1

AN1,N2;ℓ log
1

2ℓ+1

⏐⏐V ℓ
⏐⏐

+

N1 N2∑
ℓ=1

BN1,N2;ℓ log
1

2ℓ+1

[
(V ℓ)11 + (V ℓ)21

]
+

N1 N2∑
ℓ=1

CN1,N2;ℓ log
1

2ℓ+1

[
(V ℓ)11 + (V ℓ)12

]
+

N1 N2∑
ℓ=1

DN1,N2;ℓ log
1

2ℓ+1 (V ℓ)11

}
,

where

V ℓ
=

[ 1
2 (eβ

+ e−β)ℓ +
1
2 (eβ

− e−β)ℓ 1
2 (eβ

+ e−β)ℓ −
1
2 (eβ

− e−β)ℓ
1
2 (eβ

+ e−β)ℓ −
1
2 (eβ

− e−β)ℓ 1
2 (eβ

+ e−β)ℓ +
1
2 (eβ

− e−β)ℓ

]
and the coefficients AN1,N2;ℓ, BN1,N2;ℓ, CN1,N2;ℓ and DN1,N2;ℓ are the numbers of
sublattices LN1×N2 (i1, i2), (i1, i2) ∈ Ip1,p2 with cardinality ℓ which intersects the
boundaries

(1, 1), . . . , (1, N2), (N1, 1), . . . , (N1, N2), (1, 1), . . . , (N1, 1), (1, N2), . . . , (N1, N2)

empty, exact starting point, exact end and two points respectively.
For any β ∈ R, we have

lim
N1,N2→∞

1
N1 N2

N1 N2∑
ℓ=1

AN1,N2;ℓ log
1

2ℓ+1

⏐⏐V ℓ
⏐⏐ ≤ F (BC1)(β) (53)

and

F (BC1)(β) ≤ lim
N1,N2→∞

1
N1 N2

N1 N2∑
ℓ=1

|KN1×N2;ℓ| log
1

2ℓ+1

⏐⏐V ℓ
⏐⏐ , (54)

where KN1×N2;ℓ is defined in Section 2.
Indeed,

|KN1×N2;ℓ| − 2

(⌊
N1

pℓ−1
1

⌋
−

⌊
N1

pℓ
1

⌋
+

⌊
N2

pℓ−1
2

⌋
−

⌊
N2

pℓ
2

⌋)
≤ AN1,N2;ℓ, (55)

since the boundaries

(1, 1), . . . , (1, N2) and (N1, 1), . . . , (N1, N2)

intersect at most
⌊

N2
pℓ−1

2

⌋
−

⌊
N2
pℓ

2

⌋
sublattices with length ℓ, and the boundaries

(1, 1), . . . , (N1, 1) and (1, N2), . . . , (N1, N2)

intersect at most
⌊

N1
ℓ−1

⌋
−

⌊
N1

ℓ

⌋
sublattices with length ℓ.
p1 p1
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Then (53) and (55) give

lim
N1,N2→∞

1
N1 N2

N1 N2∑
ℓ=1

(
|KN1×N2;ℓ| − 2EN1,N2;ℓ

)
log

1
2ℓ+1

⏐⏐V ℓ
⏐⏐ ≤ F (BC1)(β), (56)

where EN1,N2;ℓ =

⌊
N1

pℓ−1
1

⌋
−

⌊
N1
pℓ

1

⌋
+

⌊
N2

pℓ−1
2

⌋
−

⌊
N2
pℓ

2

⌋
.

On the other hand, combining (54) and Theorem 3.2,

F (BC1)(β) ≤ F1
2
(β), (57)

where F1
2
(β) = log

( 1
2 (eβ

+ e−β)
)
.

It remains to show that

lim
N1,N2→∞

1
N1 N2

N1 N2∑
ℓ=1

2EN1,N2;ℓ log
1

2ℓ+1

⏐⏐V ℓ
⏐⏐ = 0. (58)

It is enough to rewrite (58) as

lim
N1,N2→∞

C
N1 N2

∞∑
ℓ=1

ℓ

(
N1

(
1

pℓ−1
1

−
1
pℓ

1

)
+ N2

(
1

pℓ−1
2

−
1
pℓ

2

))
, (59)

where C is a constant dependent only on the maximum eigenvalue of V . Indeed, (59)
is equal to 0 by direct computation.
By the Squeeze Theorem with (56)–(58), we obtain

F (BC1)(β) = log
(

1
2

(eβ
+ e−β)

)
.

2. Since the free energy function corresponding to (BC2) is

F (BC2)(β) = lim
N1,N2→∞

1
N1 N2

{N1 N2∑
ℓ=1

AN1,N2;ℓ log
1

2ℓ+1 [(V ℓ)11 + (V ℓ)21]

+

N1 N2∑
ℓ=1

BN1,N2;ℓ log
1

2ℓ+1 [(V ℓ−1)11V11 + (V ℓ−1)21V11]

+

N1 N2∑
ℓ=1

CN1,N2;ℓ log
1

2ℓ+1 [(V ℓ−1)11V11 + (V ℓ−1)12V21]

+

N1 N2∑
ℓ=1

DN1,N2;ℓ log
1

2ℓ+1 (V ℓ−1)11V11

}

similarly to what we obtained in the proof of F (BC1), we have that

F (BC2)(β) = lim
N1,N2→∞

1
N N

N1 N2∑
|KN1×N2;ℓ| log

1
2ℓ+1 [(V ℓ)11 + (V ℓ)21].
1 2
ℓ=1
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By Lemmas 2.1 and 2.2, we have

F (BC2)(β) = log
(

1
2

(eβ
+ e−β)

)
+

∞∑
ℓ=1

(p1 p2 − 1)2

(p1 p2)ℓ+1 log
(

1
2

)
= log

(
1
2

(eβ
+ e−β)

)
−

(
p1 p2 − 1

p1 p2

)
log 2

= log(eβ
+ e−β) −

(
2p1 p2 − 1

p1 p2

)
log 2.

3. Using a method similar to the one used in the proof of item 2, we obtain

F (BCp)(β) = lim
N1,N2→∞

1
N1 N2

N1 N2∑
ℓ=1

|KN1×N2;ℓ| log
1

2ℓ+1 tr(V ℓ).

The proof is completed by Lemma 2.1, Lemma 2.2 and direct computation.
4. Theorem 5.1 (2) follows from the direct calculation of the formula established in

Theorem 5.1 (1). Theorem 5.1 (3) follows from Theorem 3.1. This completes the
proof. □

emark 5.2. The reason for what F(BC1) is equal to (43) lies in the fact that (BC1) affects at
ost 2(N1+ N2) sublattices and then 2(N1+N2)

N1 N2
tends to zero as N1 and N2 tend to infinity. On

he other hand, (BC2) and (BCp) affect almost all sublattices in N1 × N2 lattice. This makes
he difference between F (BC1) and F (BCi), i ∈ {2, p}.

. Conclusion and some open problems

.1. Conclusion

In Section 3, we obtained an explicit formula for the free energy function Fr (β) associated
o the multiple sum (11). Then we established a LDP for the multiple average (13) with
ate function Ir (y) = ηy − Fr (η), with η so that F ′

r (η) = y. This is obtained using the
ifferentiability of Fr (β) and Theorem 3.1. In Section 4, the LDP of the weighted multiple
verage (16) is also established for r = 1/2. Note that, when r ̸= 1/2, the free energy function
s difficult to compute since the matrices do not commute in general. The boundary conditions
BCi), i∈ {1, 2, p} are imposed to the multiple sum (11) in Section 5. Rigorous formulae for
he free energy functions associated with the boundary conditions are derived. Consequently,
he LDP results follow as well. The following problem remains open.

roblem 1. In this article, we only consider the 2-multiple sum (11). The k-multiple sum is
efined similarly. Namely, for p1, p2, . . . , pk−1 ∈ Nd , define

Sp1,p2,...,pk−1
N1×N2×···×Nd

:=

N1∑
ii =1

N2∑
i2=1

· · ·

Nd∑
id=1

σiσp1·iσp2·i · · · σpk−1·i.

heorem 3.2 (or Theorem 4.3) demonstrates the absence of the phase transition phenomenon
or the multiplicative Ising model with 2-multiple sum. Does the phase transition phenomenon
ccur with respect to the k-multiple sum for k ≥ 3? Such a problem depends on explicitly
alculating the free energy function Fr (β), and this is an extremely difficult task.
21
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