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Abstract

This paper establishes the large deviation principle (LDP) for multiple averages on NY. We extend the
previous work of Carinci et al. (2012) to multidimensional lattice N4 for d > 2. The same technique is
also applicable to the weighted multiple average launched by Fan (2021). Finally, the boundary conditions
are imposed to the multiple sum and explicit formulae of the energy functions with respect to the
boundary conditions are obtained.
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1. Introduction

In this article, we study the large deviation rate function of the (weighted) multiple average
in the multidimensional lattice N¢. Before presenting our main results, we would like to explain
below the motivation behind this study. Let (X, T') be a topological dynamical system where
T is a continuous map on a compact metric space X. Defined by F = (f,..., f;) a d-tuple
of functions, where f; : X — R for 1 <i < d. The multiple ergodic theory is the study of
the asymptotic behavior of the multiple sum

n—1
AnF() =) AT (T ) -+ fa(Tf(x)), (1

k=0
Such problem was initiated by Furstenberg [14] on his proof of the Szemerédi’s theorem. Host
and Kra [16] proved the Lz—convergence of (1) when T; = T/ (T/(x) means the jth iteration
of x under T'.) and f; € L*°(u), Bourgain [4] proved the almost everywhere convergence when
d = 2. Later, the multifractal analysis and the dimension theory of the multiple ergodic averages
% in N (or Z) are also interesting research subjects and have been studied in depth recently
(cf. [1,2,5,12,13,17-20]). We also refer the reader to [10] for a survey and for a complete
bibliography on this subject. Those works concentrate on what are known as multiplicative
subshifts. Precisely, let X, = {0,...,m — 1} and 2 C YN be a subset. We suppose that S is

m

a semigroup generated by primes py, ..., pr—1, and set

X9 = {2, € N xlis € 2,Vi € N, ged(, §) = 1), @
where gcd(i, S) = 1 means that gcd(7, s) = 1, Vs € S. It is worth noting that the investigation of
X g) was started from the study of the set X71-P2-~Pk=1 defined below. Namely, if p, ..., pr_i
are primes, define

XP1P2esPiel = ()%, € EE‘ D XiXip, c Xip_, = 0,Vi € N}. 3)

It is clear that X?1-P2+~Pk-1 is a special case of Xg) with 2 a closed subset of XN, Results for
Hausdorff and Minkowski dimension of (2) or (3) are obtained in [2,12,17,18] . The authors call
X g) ‘multiplicative subshifts’ in [17] since it is invariant under multiplicative integer action.
That is,

x=(un=1 € XY = VieN, k1 € X9
For pi, ..., pi—1 € N? we define
XPUP2 Pt = ()i € SN ¢ Xixip, - Xip, = 0, Vi € N}, )
where i - j denotes the coordinate-wise product of i and j, ie., i-j = (@1j1,...,1qjq) for

Recently, Ban, Hu and Lai [1] established the Minkowski dimension of (4). Related works on
the dimension theory of the multidimensional multiple sum can also be found in [5]. Let

.....

N
lemzz"'ZdeZ Eml de(ZmIX-"XEmd)
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and define

X" =G X € Dy mg () X)) € 2.Yq i) )
The set (5) is called self-affine sponges under the action of multiplicative integers. Brunet
studies the dimensions of (5) and establishes the associated Ledrappier—Young formula.

It is stressed that the problems of multifractal analysis and dimension formula of multiple
average on ‘multidimensional lattices’ are new and difficult. The difficulty is that it is not
easy to decompose the multidimensional lattices into independent sublattices according to the
given ‘multiple constraints’, e.g., the pis in (4), and calculate its density among the entire
lattice. Fortunately, the technique developed in [1] is useful and leads us to investigate the
LDP for the multidimensional multiple averages launched by Carinci et al. in 2012 [6], and
multidimensional weighted multiple sum mentioned in [11]. Both topics are described in the
following two paragraphs.

LDP for multiple averages on Z. Let A = {41, —1} and denote by P, the product of
Bernoulli with the parameter » on A. For o € A%, the authors [6] study the thermodynamic
limit of the free energy function associated to the sum

N
Sn(o) =) _oion, (6)
i=1

defined as
1
. _ BSN
Fi(f) = lim —logE, ("),

We note that if we think (6) as a Hamiltonian and the parameter 8 as the inverse temperature
in the lattice spin systems on A%, this is the simplest version of the multiplicative Ising model
defined in [7]. Note that the Hamiltonian (6) is long-range, non-translation invariant interaction
and much more difficult to treat. In [6], the authors prove that the sequence of multiple average
SWN satisfies a LDP with the rate function

Ir(-x) = SuP(ﬂx - F)(ﬁ))» @)
BeR

where

F,(B) = log([r(1 — NIF o7 - e1A4) + G(B).

The reader is referred to [6] for the explicit definitions of v, ey, A4 and G(B). Roughly
speaking, the LDP characterizes the limit behavior, as ¢ — 0, of a family of probability
measures {/t.} on a probability space (X, B) in terms of a rate function. In [6], the rate function
associated with the multiple average SWN is defined by

. . 1 Sy
I.(x) = 3%1\}21100 N log P, (W elx —€,x+ e]) . (8)

The authors prove that (8) exists and satisfies the Fenchel-Legendre transform (7) of the
free energy function F,(B). If F,.(B) is differentiable, then the rate function can be clearly
demonstrated (Lemma 2.2.31 [8]) to be given by:

I(y) =ny — F,(n)
where 7 is the value such that F'(n) = y.
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Thus, the characterization the differentiability of the free energy function F,(B) is also a
major subject of the LDP, and it is highly related to the phase transition phenomena of the
multiplicative Ising model (cf. [15]). We refer the reader to [8,9] for the formal definitions
of LDP and Fenchel-Legendre transform. The multiplicative Ising model with boundary
conditions is also considered in [7]. In the first part of this work we investigate how to extend
the work of [6,7] to N? without and with boundary conditions. This will be done in Section 3
and Section 5 respectively. We also extend some results of the weighted multiple average [11]
to the N¢ version, and describe them below.

Multifractal analysis for weighted sums on Z. Let (X, T) be a topological dynamical
system. Fan [11] studies the multifractal analysis of the weighted (Birkhoff) sum

N
SV () = D wa f(T"). ©
n=1
as follows. Suppose (w,);2, takes a finite number of values and f,(x) = x,,g,(x,—1, ...), where
gn depends on finite number of coordinates (see condition (C1) in Theorem 4.1) and (w,);2,
satisfies the frequency condition (see (C2) in Theorem 4.1). The spectrum of the Hausdorff
dimension of the level set E(a)(defined in (44)) is obtained in Theorem 4.1. Let u be the
Mbobius function, the author also considers the level set F(«) (defined in (46)). The dimension
spectrum for the level set F(«) is also obtained in Theorem 4.2. In the second part of this
study we establish the LDP based on the weighted multiple sum

N
SV =Y waoion (10)
i=1
in N¢. Our main results are presented below.
Suppose N = (Ny, Np, ..., Ny) € N¢ and o € ANd, the (multidimensional) multiple sum is
defined as
N1 Ny Ny

SllgllxNzx...XNd(o'): ZZ"'ZO‘iGp.i. (11)

i1=1ir=1 ig=1
Following [6], let P, be a product of Bernoulli with the parameter » over two symbols on A.
The free energy function associated with the sum S,’:,I X Nyxx Ny 18 S€t as’

1
F . H P
r(ﬂ) = NhIIl NiN,--- Ny IOg Er(exp(ﬂle ><N2><~~~><Nd))' (12)

The associated large deviation rate function of the multiple average

P
SN] XNy x-+xNg

13
NiNy--- Ny (13)
is defined as
I,(x) = lim lim —;logﬂj’ SV elx—e x+e (14)
: e>0N—>oo N|Ny--- Ny : NiN,--- Ny ’ '

In Theorem 3.2 an explicit formula for F,(B) is derived and 8 +— F,(B) is proven to be
differentiable. Furthermore, the multiple average (13) is shown to satisfy a LDP. Due to the fact

3 To shorten notation, we write N — oo instead of Ny, Ny, ..., Ny — o0.

4



J.-C. Ban, W.-G. Hu and G.-Y. Lai Indagationes Mathematicae xxx (Xxxx) xxx

that 8 — F,(B) is differentiable, an explicit expression is obtained also for I.(x). Surprisingly,
the formula for F,.(8) indicates that /;,>(x) is independent of the dimension d € N and p € N,
On the other hand, let w = (wj);ene, the weighted multiple sum is defined as

Ny M Ny
p.w — .0 .
SN1><N2><--~><Nd = E E T E Wjoi0p.i- (15)
i1=lir=l1 ig=1

We denote by FY(B) (resp. I(x)) the corresponding free energy function (resp. large
deviation rate function) of the weighted multiple average

Sllzilthx---de

NiNy---Ny
as in (12) (resp. (14)). The formula of F f;z(ﬂ) is rigorously calculated in Theorem 4.3, the LDP
for the average (16) are also established therein. It is worth to emphasize that the formula / 1% in
Theorem 4.3 is almost identical to the dimension formula (44) established in Theorem 4.1 [11],
and that 11% does not depend on the dimension d € N and the multiple constraint p € N?. In
addition, similar results are also obtained if (wj);cne 1s the Mobius function (Corollary 4.5).
Finally, the boundary conditions on the multiple sum (11) are imposed and the corresponding
energy functions are defined. The explicit formulae of these energy functions are determined
in Section 5.

(16)

2. Preliminaries

In this section, we provide necessary materials and results on the decomposition of the
multidimensional lattice N¢ into independent sublattices and calculate their densities.

Given p1, p2, ..., pa > 1 (with py, pa, ..., pg not all equal to 1) and Ny, Np, ..., Ny > 1,
we let M, = {(p", pi', ..., pi') : m > 0} be the subset of N¢, and denote by M, (i) a version
of the lattice M, starting from i € N, ie. M) = {G1pY, i2py, ..., igpy) : m = 0}. Finally
we define 7, = {i € N9 . pj J(ij for some 1 < j < d} as the index set of N4,

More definitions are needed to characterize the partition of the Ny x N, x - -+ x Ny lattice.
LetNleNzx---de ={ie Ne:1< ij <Njforall 1 <j <d}bethe Ny xNyx---xNy lattice
and Ly, xnyx-x vy, 1) = MpA) NNy, x v, x--xn, be the subset of M (i) in the Ny x Ny x - - - x Ny
lattice. Then we define Ty, xnyx--xNyit = {1 € Nyyxnyscexny & 1LNy xNyxxny (D] = £}, where
| - | denotes cardinality, as the set of points i in the Ny x Ny x --- x Ny lattice such that
the cardinality of the set Mp(i) N Ny, xn,x.-xn, i exactly £. Let Ky, xn,x-xnge = {i €
Ipﬂ./\/}v1 xNyx--xNg : LNy xNyx--xn, ()] = £} be the set of points i in Z,, that the cardinality of the
set Mp(i) NN, Ny xNyx--xNy 18 €xactly £. The following lemmas give the disjoint decomposition
of N? and the limit of the density of KNy Ny x---x Ngz¢ Which is the N¢ version of Lemma 2.1
and 2.2 [1], respectively.

Lemma 2.1. For py, pa2,..., pa > 1,
N = || My(i).

i€Zp

Proof. We first claim that for all i # i € Z,,, Mp(®i) N Mp(@i') = @. Indeed, suppose that this
does not hold, then there exist i 7 i’ € Z,, such that Mp(i) N Mp(i’) # @. Since i # i', then
there exist m; # my > 0 such that (i; p|"', ..., iap}") = (| p{?, ..., i,py?). Without loss of

5
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. . myp—my
generality, we assume m; > my, then i;p,

for all 1 < k < d. This contradicts i’ € Z,. It remains to show that the equality holds. For

=i, for all 1 < k < d, which gives pli}

ieN, then ix = iy pe* with p fi; and o > 0 for all 1 < k < d. Take y = ming{oy}, then

([’)ly, My e Z,, which implies i € /\/lp( e, ;)iy). Since the converse is clear, the proof
d

is thus completed 0

Lemma 2.2. For Ny, N,, ..., Ny, and £ > 1, we have the following assertions.
d d
Ny N
LN IN xNyxxNgse | = 1_[ — |~ 1_[ L7J
- Pk k=1 Py
>t omoNgxeshgel 1
N—=00 | TN x Ny Ny P1P2 " Pd
1 Nl — Ky Nyl
3. NILH;O NN, ZZ; [Ny xx Ny ] log Fy 2 nglgo NN, log F,.
Proof.

1. Since | Ly, x...xn,({)] = £, we have
Tnyseoxhge =it igpp ' < Ni forall 1 <k <d}n (UL {iziepf > Ni}).

Thus, the inclusion—exclusion principle infers that

d

J@ntizipl > NY)

n=1

|;ZV1X~~XAM;£|__

d
=Z|Aﬂ{l l,,pn>N}|

n=1

. ¢ . Y)
— ‘A N{i: InyPuy > N,, and InyPpy > Ny}
1<ni<np<d
PP Y Y
+ E ‘A N{i: In; Pn, > N,,, InyPp, > N,, and Iny Py > Nys}
1<ny<np<n3<d

— -~-—i—(—l)‘1_1 |Aﬂ{i:i1p(1Z > Nl,izpﬁ > Ng,...,idpf,

where A = {i:iyp, ' < N forall 1 <k <d).

It follows that
J { J) %
i Pk

|\7N1><-~><Nd;2| - (\\
Ny N

- () ]
1<ni<ny<d | ki ny pl pkl ko#ny,ny pk2

6
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cox () |

4
1<ni<np<n3<d | ky=ny,n,n3 pkl pkl ko#ny,no,n3 pkz

d

Ny Ny
d—1

— o (=D H ==
-1 y4
k=1 \L Pk Py

Thus, we have

d d
Nk Nk
|;7N1x-uxAM§z|:: I_I {—1 —-I_I {___J.

2
k=1 L P k=1 L Pk
2. For m(2’ ) S m(li) > 1,1 <i <d and we define the rectangular lattice
s d . (k . k
Rmﬁ”,m(z”;...;m(ld),m;d> = Hl e N . m(1 ) <i < m(z) foralll <k < d] .
Clearly, the complement of Z,, is Z; = {i : pi | iy for all 1 <k < d} and
‘R (1) (1);...;m(ld),m(2d) ﬂIp‘ = ‘Rm(ll)vm(zl)%G’"(ld)’m(zd)‘ — ‘Rm(ll)vm(zl)%G’"(ld)’m(zd) ﬂI;‘ .

my - my

‘Rm(11>’m(21) D D ﬂIp‘

Yeens

1
> ‘Rm(ll),m(zl);m;m(ld)’mgd) — m ‘Rm(ll),mgl)+2m2...:m(1d),m(2d)+2pd)
and
‘Rm(l”,m(zl);...;m(ld),m(z‘l) ﬂIp‘
1
< ‘Rm(ll).m(zl);m;m(ld),mgd) — m ‘Rm(ll),mg)—Zm;---:m(ld),m(zd)—Zpd) .
Then, by the Squeeze theorem,
li |Rm(ll).m(21>;...;m(ld),m(zd) ﬂIp| 1 1
m(zk)_,lnl?boo Ry D@ @] T pippd
1<k<d
Consequently,
lim Ny soxvgsel lim | Ty xvgie VLol { ;
N=00 | TN xxNgsel  N=oo [Ty xoxvyg:e] P1P2 " Pd
3. Define Ky, x...xn,c = { gCleme(/;Z' gﬁ i 11\\;11 ZZ Then
1 Ni---Ng 1 00 _
Nh_)Hgom 6:21 |’CN1 ><~-><Nd;€| lOg F[ = nglgom ; KN1><---><Nd;E log Fg.
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Hence from the Weierstrass M-test with
1

_ 1
m Kle---de;élong < —]lelex...XNd;g“OgF[

= Ny

d
1 Ny {NkJ
= — | — — | | log F
Nl"”d(ﬂbflJ IE Pi

1 Ni--- Ny 0w F
1 - - 0og Iy
N]"'Nd p{ lpgl...pﬁl

IA

=———logF,
(p1p2--- pa)!
> log F
for all Ny,...,.N;, € N and Z—“ < 00, we deduce that
= (pip2--- pa)
o =
Ky x..xn,-¢1og F, . .
Z Ny xNgi € O8 T converges uniformly in Ny, ..., Ny.
— Ny« Ny
This implies
1 Ni--Ng 1 00
lim ——— KNy scxnyiellog Fy = lim ———— Y Ky, x.xn,¢ log F,
NﬁooN]"‘Nd ; | Ni Ndad g £ NHOONl"'NdZI: Ny Nyt g £

= 1
= lim ———— Ky, x..xn,:¢ l0g F,
D im Ky 1og Fo

- 1
= Z lim WlKNlX"'XNd;el log F;.
The proof is complete. [

3. LDP of multiple averages on N¢

In this section, we establish the LDP for the multiple average (13), where the multiple
sum S}\’,IX Ny x Ny is defined in (11). The associated free energy function F,(8) and the large
deviation rate function I,(x) are also defined in (12) and (14) respectively.

Let N\, Na,...,Nys e Nand p = (p1, p2, ..., pa) € N?. The explicit formula for F,.(8) and
the LDP of the multiple average (13) are established in Theorem 3.2. The following theorem
is essential in the proofs of our results.

Theorem 3.1 (Gdrtner—Ellis [8], Theorem 2.3.6). If the limit (12) exists and such limit is finite
in a neighborhood of origin, then (14) is equal to the Fenchel-Legendre transform of (12), i.e.,

I(x) = sup (Bx — F,(B)) .
BeR

Moreover, if the function (12) is differentiable, and let n be the value such that (F,)(n) =y,
then

I.(y) = ny — F,(n).

Theorem 3.2. For any d > 1 and py, p2,..., pa = 1, then the following statements hold
true.
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1. The explicit expression of the free energy function associated to the multiple sum

p .
SN1><N2><---><Nd 1§

2p1pr-- - pa—1
FrB) = 2P P 7 o0t — ) +

pip2-- Pd
2p1p2--- pd P2

—1
o log |vT ~e+|2 +log Ay +G(B),
a7

where Ay, v7, h, eq and G(B) are defined in (24), (23), (21), ((26) and (29) respectively.
2. The function F,(B) is differentiable with respect to B € R.
3. The multiple average (13) satisfies a LDP with rate function given by

I,(x) =sup (Bx — F.(B)) .
BeR
Furthermore, if (F,)(n) =y, then I,(y) = ny — F,(n).

Proof.

1. By Lemma 2.1, we decompose the sum (11) as

Sll\)llxNzx---de = Z Z Ox0px | - (18)

iGIp X€£N1XN2><M><Nd(i)
For a given i € Z,, the i-th term of the external sum in (18) is nothing else than the

Hamiltonian of a one-dimensional nearest-neighbors Ising model, since

|£N1><N2><---><Nd(i)\
D S
Z OxOpx (= Z T -
XE[:N|><N2><~-><Nd(i) =1
where re(i) are Bernoulli with parameter r, independent for different values of i and for
. D e e . .

different values of £ and = denotes equality in distribution. We introduce the notation

Z(B, h, £+ 1) (as in [6]) for the sum:
ZB,h, L+ 1) = Z BT nimath T

Te{—1,1)t+!

19)

that is the partition function of the one-dimensional Ising model with coupling strength

B and external field 4 in the volume {1, ..., £}, with free boundary conditions. Then
E, (eﬂZf:n ffffﬂ) = (- ZB. b e+ 1), (20)
where
1 r
h=-1 . 21
2 % (1 - r) @D
By the computation in ([3], Chapter 2), (19) becomes
p+h ,—p ¢
T|€ e T 2 e T 2 e
Z(,B,l’l,ﬁ-‘rl) =v |:e—ﬂ eﬁ—hi| U:|U '€+| A++|U -€,| /17, (22)
where
T b =h
v =(€2,62) (23)
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Ay =ef (cosh(h) + /sinh*(h) + 6—4/3) (24)

. . . [efth P
that are the largest, resp. smallest, eigenvalues of the transition matrix |~ _5 5,
e e

and

with ey the corresponding normalized eigenvectors.
The partition function (22) can be rewritten as:

2 2
ZB, b, e+ 1) =" e AL+ (Jull? = o7 - eg[H)AY

1T ., 2t T AT N (25)
=[v" -ei| AL + 2cosh(h) — |v" ey | )AL
with e, given by:
. —e P
e, = ||w+|| with wy = <€h+'8 _ A+> . (26)
Then by (18) and (20), (12) becomes
X No x--x N,y DI+1
Fr(p) = Jim S 3 loglr(l ) 2 L ]+ D
- 1eIp
27
Then by Lemma 2.1, Lemma 2.2 and (27), we have
— (P1p2---pa— 1)
Py P — ol
F.(B) = Z Pipr p)lH log(r(1 —r)) 2 Z(B,h, £+ 1). (28)
Combining (25) and (28) yields
— (p1p2-++ pa — 1)?
Fupy =Y P2 P T o1 — )T
® 2 (P1p2--- pa) ! g1 =¥
o (p1p2- - pa— 17 2 2
+ Zwlog (|UT cey | AL + 2cosh(h) — o7 - ey | )A‘_)
1
A T )
2P1P2 “pd
(p1p2---pa — 1)? (p1p2- 1)?
4y pa — U S e A N Y
X; (p1p2--- pa)t+! oglv” - el Z (pipa--pa)itt 2 @)
2
= %Mg(r(l M+ %mgw ce " +log Ay +G(P),
where
o] 4
(pip2---pa—1)° 2 cosh(h) A
g(B) = log|{l+(———-1)(— . (29)
; (p1p2--- pa)™! & [T el | Ay

2. For the proof of differentiability of g — F,(8), it is enough to show that the sum

i(l’lpz'“pd —1)? tog ( 1+ <2cosh(h) 3 1) <£>e '
i (p1p2--- pa)™! [T ey | Ay

10
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converges uniformly with respect to 8 € R, where the notation ’ stays for derivative
with respect to 8. Indeed, for all £ > 1

e (- (5))]
s [vT -e+|2 Ay
] () + [ —1)e() " (%) ““

4
2 cosh(h) A_
L (e - 1) (%)

Note that, for all £ > 1

t
<1 €1V

0<

+
Then (30) and (31) give

[ ( 2 cosh(h) AN\ T
log| 1+ (—2 — l> <—>
v - ey Ay (32)

- [Zcosh(h)] +[200sh(h) B 1:|£ (&)
Ay

T LT -ey)? T - ey )?
For any bounded closed interval [a, b] € R, there exists a positive constant M, such
that
2 cosh(h 2 cosh(h
0= [&2() — } < [L(i - 1] < M, ,, forall 8 € [a, bl. (33)
o] o )
It remains to check that ‘[%] and (ﬁ—;) are bounded on [a, b].
Direct computation infers that
_ 4B
A\ (e [oosh(h) — F(B)I | 'S5~ — cosh(h) + £(B)] G
(AT) B (1— %)y ’

where f(B) = /sinh?(h) 4+ e—*8. For the boundedness of (34), we apply the fact that
f(B) is bounded away from zero on the interval [a, b], thus

A !
(+)
for some constant K, ; and for all 8 € [a, b]. Note that the L’Hopital’s rule is applied

to the definition of derivative and (35) when B = 0 and B near O respectively. Namely,
for =0

/ Aoy — A=(0
<£> © = tim 2290~ 5O
/1+ e—0 € (36)
cosh(h) — f(B)

= |l1m .
=0 € (cosh(h) + f(B))
Applying L’Hopital’s rule to (36), we obtain
1
— < 1
cosh’(h)

=< Kap, (35)

/L’O
(AT)“—

(37)

11
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For |8] — 0%, applying L’Hopital’s rule twice to (34), we have

()

/
Then (37) and (38) imply that ‘(ﬁt)

implies its boundedness when S is near to 0.
It is easy to check that

¢""? > 0 and sinh(h) — y/sinh?(h) + e=48 < 0, for all B € [a, b]. (39)

Then (39) gives

1
_ . 38
cosh?(h) (%8)

is a continuous function near § = 0, which

vl ey #0, forall B € [a,bl. (40)
Combining (40) and the fact that 0 < C < f(B) for some C, we have
2eosh® 1 < v, (41)
(T -ey)? '

for some constant N, ; and for all 8 € [a, b].
The uniform convergence of 8 +— F,(B) on [a, b] is thus obtained by the Weierstrass M-
test using (32), (35) and (41). Since a and b are arbitrary, we obtain the differentiability
of F,(B) on R.

3. Theorem 3.2 (3) follows from Theorem 3.1 and (1), (2) of Theorem 3.2. [

where

Remark 3.3. We note that when r = %, we have
el — e N,
I%(y) Zﬁm —log(e" + e ") + log2,
el — e
Y= e+ e N ’

Thus, I, is independent of the dimension d € N and the multiple constraint vector p =

(pl,...

, pa) € N°.

Corollary 3.4. For any py, p» > 1,

1. The free energy function associated to the sum Sll\),1 «N, IS

2 -1 -1
Fi(B) = 22— log(r(1 = ) + P log o7 - ¢4+ log 41 + G(B).
p1p2 pPi1D2
where
2 (pipr — 1)? <2<:osh(h) ><A)‘f
gp) = A Jog 14+ ———L 1) (= )
(IB) ZI: (p]pz)Z-H g ( |UT . €+|2 /l+

2. In addition, if we let p = (2, 1), then the free energy function associated to the sum
N1 N
@n  _
SN = D D 00 iz
i1=1ir=1
12
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A r=1/2
r=1/4 |/
r=1/8

=2 r=1/16

\\ r=1/32
27\ 7 /) S
4 /
A
S
15 4
\ ,/ /

Fig. 1. Plot of the F.(B) with pj =2 and p, =1 for different r values.

is
Fr(B) = log ((r(1 = m)i " - e414. ) +G(B), (42)

where

11 2 cosh(h) )(A)‘Z
=-) —log|l+(———=-1)(==) |.
Gh)=32 5 og( (|vT_e+|2 T

Remark 3.5.

1.

Formula (42) is obtained in [6] for the multiple sum (6). Therefore (17) is a multidi-
mensional version of the free energy function on N

. Whenr =1/2, wehave h =0, A, = ef +¢7# and |vT -e+|2 = ||lv||?> = 2. This implies

G(B) =0 and
1 _
F1(B) = log <§(e’3 +e ﬂ)) ) (43)

Thus, F 1 is independent of the dimension d € N and the choice of p € N¢.

. When r # 1/2, we have h = %log(r/l —r) # 0. Then for all 8 € R, the vector v is

not parallel to the vector w, and so is e, that gives
T 2 2 2 -1
7 e[ < [vl*lles]” = (1 =r))2.

This gives the effect of multiple constraint.

. Figs. 1 and 2 illustrate the free energy functions for different r € (0, 1) which is obtained

from Theorem 3.2 by truncating the sum to the first 100 terms. Fig. 1 is the graph
obtained for the case d = 2 with p; = 2 and p, = 1. In fact this coincides with
the one-dimensional result shown in [6]. Fig. 2 shows the free energy behavior for the
multidimensional case d =5 with p; =2, p, =3, p3 =5, ps =7 and ps = 11.

13
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3l r=1/2
r=1/4 |/
25| r=1/8 | |
\ —r=116("
B =132}
21K\ 777,
N\ 7/ /
15k % T
D Sy 474
| A Y /4
A b A
0.5} b 4
\\ \ ! \\\ ///// E
i N . S -~ e
05 ’
A1t .
3 2 1 0 1 2 3

Fig. 2. Plot of the F,(B) with p; =2, p» =3, p3 =5, p4 =7 and ps = 11 for different r values.

4. LDP of weighted multiple averages on N¢

Let (X, T) be a topological dynamical system. Fan [11] studies the multifractal analysis of
the following weighted sum

N N
S](\;U)f(x) = Z wnfn(T”x) = Z wn.ﬁl(xn’ Xn41s -+ - ‘)9

n=1 n=1
(O
where f = (f,) € C(X). Define the level set E(x) according to the weighted average SNTf()
as
S(w)
E@={xex: im XS0 _ 1 (44)
N—oo N

The Hausdorff dimension of (44) is given in the following theorem.

Theorem 4.1 (A. Fan, [11], Theorem 1.5). Let A = {—1, 1}. Suppose the function f, be of the
form f,(x) = x,8(Xy41, Xny2, . ..) for some g, satisfying the following condition:

(ClI) for all n > 1, g,(xp41, . ..) takes values in A and only depends on a finite number of

coordinates.
Moreover assume the collection of weights (w,)en be such that, for all n € N, w,, takes
values in a finite set {vy, va, ..., vy} and satisfies the following condition:

(C2) for all 1 < j < m, the following frequencies exist
. #Hl1<n<N:w,=v;}
P; = lim
N—o00 N
Then for o € (—Y_ Pjlv;|, Y~ Pjlvj),

ekav/- _ e*)»avj
> ; (45)

: 1 - AqUj —AqV;
dim E(a) = _log2 21: P; <10g(e i +e 7) = AqVj —e’»av_i =y
J:

14
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where A, is the unique solution of the equation

e}»avj _ e*)»avj

m

Pvi— =q.
Zl J je)‘avj +e—kavj
j=

Let u: N — {—1,0, 1} be the Mdbius function, the author also considers the level set
|
_ 00 N. ; _ _
Fl@) =02y € (=1, 1)7: lim — ;M(’l)xnxnﬂ =a (46)
for which the dimension spectrum is given in the following theorem.

Theorem 4.2 (A. Fan, [11], Theorem 1.6). For a € (—%2, ”6—2),

2

6 1
dimF)=1- — HG=+ —
im F(c) + (2+ 1201),

72 w2log2
where H(x) = —xlogx — (1 — x)log(l — x).

In this section, we establish the LDP based on the weighted multiple average (16). The main
results of this section are presented below.

Let Ny, Na, ..., Ny, p1, p2, ..., pa = 1. Assume the weights w = (wj)jce take a finite
number of values vy, v,, ..., v, and the following frequencies exist
#{X € LN xN>xoxcn, D) : =
P, ;= lim { NixNy Ny (1) ‘wx Ui} 47
N— o0 |£N1><N2><~--><Nd(l)|
forallieZy,and 1 <k <m.
Theorem 4.3. Letd > 1 and py, pa, ..., pa > 1, and let the w = (wi);ene be a collection of

weights satisfying the frequency condition (47), then the following statements hold true.

1. The free energy function associated to the sum (15) is equal to

FY(B) =) Prlog(el™ +e7') — log2.
k=1

2. The function FY'(B) is differentiable with respect to € R.
2
3. The multiple average (16) satisfies a LDP with rate function
I7V(x) =sup | Bx — Z P log(eP’* 4 ¢ P%) + log 2
2 BeR k=1
that is equal to:

m
ek — ok
w — _ vk —NVk
1% = kE 1 Py (ka P log(e"™* + e )) +log2,

where
" V(e — ek
y= E P
k=1

ek + e~ M%

15
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Proof.

1. Observe that the transition matrices commute, i.e.,
eBvi BT [ oPVi o BY) _ ePvi BV [ ePVi o Bui 48
e Bvi oPui e Pvi ePui | T e PYi ePYi e Pui QPui |° (“48)
for all 1 <i < j < m. According to (48), we exchange the order of matrix products
on the sublattices Ly, xn, x...xn, (i) for all i € Z,, so that the products have the following

forms
efui e Pui ki ePr2 e~ P2 ky eBom e~ Pom Kin 49)
e Pl Bl e P2 o2 T eBom pPum

eﬁvl 67,3'”1'

and then we choose the same eigenvectors for all [ —pu  gBu i| 1 <i <m.
Then by Lemmas 2.1 and 2.2 and (47), we have

— (p1p2+++ pa — 1)? 1
FY = lo
%('B) Z (plpz'-'pd)e“ g2£+1

n L Bui —Bug Pt
el + e 0
X (] 1) 1_[ |: _fi:| [ 0 ePok _ e—ﬂvk]

k=1 V2

S5l
S5l
(-l
—
— —

3

(prp2---pa—1)° 1~ B Pl
— § log — (eﬂvk te ﬂvk) k

e p )] ¢ | l
= (pip2---pa) 28

o0
(p1p2--pa—1)7* _
P, § —Clog2 + £log(efU + P
« "= (pip2-pa)! [ ]

I
=~
3 i Ms

= Z Py log(eP% 4 ¢ P) — log2.
k=1

2. The formula in Theorem 4.3 (1) implies

ve(eP — e Pur)

m
W/ —
(FYY () = ,; L T

and
Fw Vi _ - 4Uk 0
DB =2 P ey~

k=1

3. The result (3) of Theorem 4.3 follows from Theorem 3.1 and items (1) and (2) of
Theorem 4.3. [

Remark 4.4. Note that the rate function /7 is dependent only on the frequency Py, defined in
2
(47), and not on the dimension d € N and the multiple constraint vector p = (p1, ..., p4) € N9,
Note that when w; = 1 for all i € N, FY¥(B) is equal to the free energy function of the
2

sum Sy = YN | o;0%; in [6].
16
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We say W = (wj)jene 1S @ Mobius weight if it is Mobius on each spin, for instance, in the
spin

(a1, a9, ..., 0q), (@p1,0ps, ..., 04 Pa), ..., (@p], C2ps, ..., 0qPy),
we put Wiy pi=! wrp g = u(@) for all 1 < i < r 4+ 1. Then we have the following
Thaaph
corollary

Corollary 4.5. Letd > 1, p1,p2, ..., pa > 1, and let w = (Wi)jene be a Mobius weight,
then the free energy function associated to sum S}:,’lwx Nyx--xN, IS equal to

N 6 1 B
F% (B) == log (5(@8 +e ﬂ)) .

Proof. Since
| 6
lim — = —,
Jim ; o] = —

the frequency of 1, —1 and O denoted by P;, P_; and P, respectively (defined in (47)), satisfy
P1+P_1=%andP0=1—n—62.
Then by Theorem 4.3, we have

m

FY(B) = Z Py log(eP% + e P%) — log?2
2 k=1
=(Py — 1)log2 + (P; + P_))log(e? +e¢7#)

6 1
— B -B

The proof is complete.

5. Boundary conditions on multiple sums

In [7] the authors consider the ‘multiplicative Ising model” on the lattice Ny = NU {0} with
parameters B the inverse temperature , J the coupling strength, and h the magnetic field. The
Hamiltonian is given by

H(o) = —B (Z J o103 —i—hZa,) (50)

ieN ieN
where the spin configuration o = (0;);en, lives in ANo,
In [7] the authors consider also the Hamiltonian in the finite lattice [1, 2N ]NN with boundary
condition n = (1;)72,, n; € {—1, 1} that is defined as follows

N N N
Hy(o1128) = —B (Z Joioy + Zhﬁi + Z Uﬂ?m) . (51

i=1 i=1 i=N+1

In this circumstance, H?,(a[l,z;v]) = -8 (ZlNz  Joio; + leivl hai> denotes the Hamiltonian
with free boundary conditions.

17
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1
3
To avoid the cumbersome computation, we restrict ourselves on the case when d = 2 since the

Following [7], we impose the boundary conditions on the multiple sum (11) when r =

case of general dimensions can be treated in the same fashion.
For Ny, N, > 1, define the Dirichlet boundary condition Type 1 (BC1) by, putting +1 on
the boundary. That is,

O, 1)s - +» O, Ny = +1, 001,ny)5 -+ -» Oy Ny = +1,
O, ys - Oy, 1) = +1, 0, 195 - - > Oy Ny = +1

The Dirichlet boundary conditions Type 2 (BC2) are defined by “all +1 except (i1, i) with
Il <iip < Niand 1 < iy < N,”. The Periodic boundary condition (BCp) is defined by

“all spins have same sign on its starting point and end. That is, for any (i}, i2) € Zp, ,, N
NN[XNz?
Oliy.ia) = 9(j1.j2)

where (ji, j») is the smallest point (coordinate-wise) in Ly, xn, (i1, i2) such that j; > N; and
J2 = Ny

Define the energy function corresponding to the BCi boundary conditions by

F® lim L logE PR e 1,2 52
— . 1 XN
T N L - ietl.2.ph 42

Theorem 5.1.

1. The explicit formulas for the energy functions FB)(B), for i € {1,2,p}, are given
by:

FE®D(B) = log(eﬂ +e Py — log2,

2 -1
FE() = log(e” + ™) — ( S ) log2,

Pip2
2 —1
F(BCP)(ﬁ) — log(eﬂ + e_ﬂ) _ <&) log2
pPip2
00 £
(prp2 — 1) ef —ef
+ —1 1+ —— .
; (P F ef +ef

2. The functions FE(B) for i € {1, 2, p} are differentiable with respect to B € R.
3. The multiple average (13) with boundary conditions BCi satisfies the LDP with rate

function

I(x) =sup (Bx — FED(B)), ie{1,2,p}.
BeR

Furthermore, if (F®Y(n) =y, then 1(y) = ny — FE (), i € {1,2,p}.
18
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Proof.

1. Applying the decomposition in Section 3 to (52), we have

1 [ I
FODB) = i " Ay log — |V*
B) Nm Nl | & NNy 108 S V']
N{N»

1
+ Z By, Ny log ) [(VO1 4+ (V2]
=1
NNy

1
+ Z Cny ny;e log Yy [(VO1 + (V1]
=1

NNy 1
+ Y Dwyvyelog %(Vz)u} ,
=1

where
vt Lef 4 e P) 4 Lef —ePY  Lef e Py — L(ef — e P)t
T3P e Py =P —e P S(ef +e ) 4 3(ef —eP)
and the coefficients Ay, ny.¢» Bw, ,ny:e» Cnynye and Dy, n,.¢ are the numbers of

sublattices Ly, xn, (i1, i2), (i1,i2) € Zp, p, with cardinality ¢ which intersects the
boundaries

(191)7"‘7(171\]2)7 (Nl7 1)7"‘9(N17N2)’ (171)7"‘7(N17 1)’ (17N2)""7(N17N2)
empty, exact starting point, exact end and two points respectively.
For any 8 € R, we have

NNy

1
D Awvpelog oo [VE] < FEO(p) (53)
(=1

lim
Ni,Ny—oo NINZ

and
NNy

1 4
> Kxyniellog 5 [V
=1

FE®V(B) < lim
(ﬂ) - Ni,Ny—o0 N1N2

; (54)

where Ky, xn,;¢ 18 defined in Section 2.
Indeed,

N N N N
Konpmel —2 (| 20 ‘H* N —H < Anirnes  55)
P P § 2 P>

since the boundaries

1,1),...,(1, Np) and (Ny, 1), ..., (Ny, Np)

intersect at most {%J — {%J sublattices with length ¢, and the boundaries
P2 2

(1, 1),...,(N1, 1) and (l,Nz), ...,(N[,NQ)

intersect at most {%J — {%J sublattices with length £.
1

Py
19
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Then (53) and (55) give

NNy

1
2 (Knpwsiel = 2B, wye) log oo [VE| < FEVB), - (56)
=1

N N N- N-
= 1] 3] o223

On the other hand, combining (54) and Theorem 3.2,

FEEUB) < Fy(B), 57)

lim
Ni,Ny—oo Nl N2

where F%(ﬂ) log( (e + e ﬂ))
It remains to show that

NN

Z 2EnN, Ny log — 2“1 V| =o. (58)

lim
Ni,Ny—o0 NINZ

It is enough to rewrite (58) as

1 1 1 1
N ——+M(—=-=]]. 59
whm N1 ( ‘( = pf) 2(p§1 p§)> (>9)

where C is a constant dependent only on the maximum eigenvalue of V. Indeed, (59)
is equal to O by direct computation.
By the Squeeze Theorem with (56)—(58), we obtain

FEED(B) = log (%(eﬁ - e‘ﬂ)> :

2. Since the free energy function corresponding to (BC2) is

FER@) = lim I > Avy 108 IOV On1 + (V0
=1

NN

+ Z BNI,NQ;ZIOgW[(VK D Vin 4+ (VD Vil
(=1
NNy

+ ) Cywyelog =—— zz+1 —— (VD) Vin + (VD V]
(=1

N|N»
+ Y Dy, N2Z10g2£+1(v )11V11}
=1

similarly to what we obtained in the proof of F®BD we have that

NNy
> IKN xnyiel log = 2“1 (V11 + (VO)l
=1

20
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By Lemmas 2.1 and 2.2, we have

1 ad —1)? 1
(i )+ ()
=1

1 —1
= log (—(eﬂ + e_ﬁ)) — (&> log2
2 P1p2

2 —1
=log(e? +e7P) — <%> log2.
pPip2

3. Using a method similar to the one used in the proof of item 2, we obtain
NiNp

FEP(g) = lim Z KCnyxy:e| log Wtr(v ).

Ni,Np—o0 Nl

The proof is completed by Lemma 2.1, Lemma 2.2 and direct computation.

4. Theorem 5.1 (2) follows from the direct calculation of the formula established in
Theorem 5.1 (1). Theorem 5.1 (3) follows from Theorem 3.1. This completes the
proof. [J

Remark 5.2. The reason for what F(BC1) is equal to (43) lies in the fact that (BC1) affects at
most 2(N1+ N2) sublattices and then 2(1]\\’,'—4,;,1\’2) tends to zero as N, and N, tend to infinity. On
the other hand, (BC2) and (BCp) affect almost all sublattices in Ny x N, lattice. This makes
the difference between F®BCD and FE® i e {2, p}.

6. Conclusion and some open problems

6.1. Conclusion

In Section 3, we obtained an explicit formula for the free energy function F,(B8) associated
to the multiple sum (11). Then we established a LDP for the multiple average (13) with
rate function I,(y) = ny — F,(n), with 5 so that F/(n) = y. This is obtained using the
differentiability of F,(B) and Theorem 3.1. In Section 4, the LDP of the weighted multiple
average (16) is also established for r = 1/2. Note that, when r # 1/2, the free energy function
is difficult to compute since the matrices do not commute in general. The boundary conditions
(BCi), i€ {1, 2, p} are imposed to the multiple sum (11) in Section 5. Rigorous formulae for
the free energy functions associated with the boundary conditions are derived. Consequently,
the LDP results follow as well. The following problem remains open.

Problem 1. In this article, we only consider the 2-multiple sum (11). The k-multiple sum is
defined similarly. Namely, for pi, pa, ..., Prk—1 € N¢, define

Ni Ny Ny
P1.P2;--- Pk—1
SN] xNyx-x Ny “— Z Z T Z 0i0p;i0pyi " Opy_yi-
ij=1ir=1 ig=1
Theorem 3.2 (or Theorem 4.3) demonstrates the absence of the phase transition phenomenon
for the multiplicative Ising model with 2-multiple sum. Does the phase transition phenomenon
occur with respect to the k-multiple sum for & > 3? Such a problem depends on explicitly
calculating the free energy function F,(8), and this is an extremely difficult task.
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