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Abstract. Motivated from the study of multiple ergodic average, the inves-
tigation of multiplicative shift spaces has drawn much of interest among re-

searchers. This paper focuses on the relation of topologically mixing properties

between multiplicative shift spaces and traditional shift spaces. Suppose that

X
(l)
Ω is the multiplicative subshift derived from the shift space Ω with given

l > 1. We show that X
(l)
Ω is (topologically) transitive/mixing if and only if Ω

is extensible/mixing. After introducing l-directional mixing property, we de-

rive the equivalence between l-directional mixing property of X
(l)
Ω and weakly

mixing property of Ω.

1. Introduction

Let A = {0, 1, . . . ,m − 1} be a finite alphabet and let Ω ⊆ AN be a shift space

with the shift map σ : Ω→ Ω defined by (σx)i = xi+1 for i ∈ N. Suppose 1 < l is a

natural number. Kenyon et al. [7] defined the multiplicative subshift X
(l)
Ω ⊆ AN as

(1) X
(l)
Ω = {x = (xk)∞k=1 ∈ AN : (xiln−1)n∈N ∈ Ω for all i}.

The name “multiplicative subshift” follows from the fact X
(l)
Ω is multiplicatively

invariant in the sense ΠqX
(l)
Ω ⊆ X

(l)
Ω for all q ∈ N, where Πqx = (xqk)∞k=1. The

study of (1) takes its origin from the multifractal analysis of the 0-level set EΦ(0)

considered by Fan et al. [4], where

(2) EΦ(θ) = {x ∈ {0, 1}N : lim
n→∞

1

n

n∑
k=1

xkx2k = θ}.

The study of (2) is a special case of the multiple ergodic averages AnΦ(x) :=
1
n

∑n−1
k=0 Φ(T k1 x, . . . , T

k
d x) with d = 2, Ti = σi, and Φ(x, y) = x1y1. In the same

paper, they also studied the subset

(3) X2 = {x ∈ {0, 1}N : xix2i = 0 for all i}
of (2). It is easily seen that X2 is a special type of X

(l)
Ω in which Ω is the golden

mean shift (it is called “multiplicative golden mean shift” in [7]). Moreover, the

box dimensions of X2 is dimB X2 = 1
2 log 2

∑∞
n=1

logFn
2n , where Fn is the Fibonacci
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Ω: extensible / X
(l)
Ω : transitive

Ω: transitive

Ω: weakly mixing / X
(l)
Ω : l-directional mixing

Ω: mixing / X
(l)
Ω : mixing

Figure 1. Summary of the result

sequence: F0 = 1, F1 = 2 and Fn+2 = Fn+1 + Fn for n ≥ 0. Later, Kenyon et

al. [7] obtained the general formula of Hausdorff and box dimensions of XΩ. It

is known that the subshift corresponding to the closed invariant subsets of [0, 1]

under the map x 7→ mx (mod 1) has the property that the Hausdorff and box

dimensions are coincident [6]. Even though the Hausdorff and box dimension of XΩ

are not coincident generally (the Hausdorff dimension is less than or equal to the box

dimension), the characterization of the equality is addressed therein. Furthermore,

Peres and Solomyak [10] gave the full dimension spectrum of dimH EΦ(θ), and

mentioned that dimH X2 = dimH EΦ(0). Beyond X2, more dimension results can

be found. Peres et al. [9] considered the multiplicative subshifts X
(S)
Ω , for which S

is the semigroup generated by primes p1, . . . , pk. Namely,

X
(S)
Ω := {x = (xk)∞k=1 ∈ AN : x|iS ∈ Ω for all i such that (i, S) = 1}.

A typical example of X
(S)
Ω is

X2,3 = {x ∈ {0, 1}N : xkx2kx3k = 0 for all k},

where S is the semigroup generated by 2 and 3. The authors in [9] extended

[7] to X
(S)
Ω and obtained the Hausdorff and box dimensions of X

(S)
Ω . Ban et al. [1]

approximated the box dimension dimB

(
X

(S)
Ω ∩ Ω

)
for the case where Ω is a subshift

of finite type. Fan et al. [5] gave a complete solution to the problem of multifractal

analysis of the limit of the multiple ergodic averages 1
n

∑n
i=1 φ(xi, xil, . . . , xilk−1)

for k, l ≥ 2. We refer to [3] for a nice state-of-the-art survey of the the multiple

ergodic averages.

Besides the dimensional aspect of the multiplicative subshifts, the topological

behaviors of X
(l)
Ω or X

(S)
Ω are also fascinating. This paper aims to connect the

mixing properties of Ω and X
(l)
Ω . To be more specific, assuming Ω possesses some

topological property P, can we say something about the mixing properties of X
(l)
Ω ?

Are the properties X
(l)
Ω equipped with stronger or weaker than property P? In

other words, the goal of this paper is trying bridge the topological behaviors of the

two spaces: one is additively invariant and the other is multiplicatively invariant.

Theorems 1.1, 1.2, and 1.3 are the main results of this paper (cf. Figure 1).
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Theorem 1.1. The following are equivalent.

(1) Ω is extensible.

(2) X
(l)
Ω is transitive.

(3) For u, v ∈ B(X
(l)
Ω ) there exists α ∈ N \ lN such that for any k ∈ N0 there

exists x ∈ X
(l)
Ω such that x|s(u) = u and (Π|u|αlks(v)x)|s(v) = v.

(4) X
(l)
Ω is L-directional mixing for some L which has a prime factor p ∈ P

satisfying p - l .

(5) X
(l)
Ω is L-directional mixing for every L which has a prime factor p ∈ P

satisfying p - l .

Theorem 1.2. The following are equivalent.

(1) Ω is weakly mixing.

(2) X
(l)
Ω is l -directional mixing.

(3) X
(l)
Ω is ln-directional mixing for every n ∈ N.

(4) X
(l)
Ω is ln-directional mixing for some n ∈ N.

Furthermore, if l is a prime number, the following is equivalent as above.

(5) X
(l)
Ω is L-directional mixing for every L > 1.

Theorem 1.3. The following are equivalent.

(1) Ω is mixing.

(2) X
(l)
Ω is mixing.

(3) For u, v ∈ B(X
(l)
Ω ), there exists N ∈ N such that for k ≥ N and α ∈ N \ lN

there exists x ∈ X
(l)
Ω such that x|s(u) = u and (Π|u|αlkx)|s(v) = v.

Remark 1.4. The following example distinguishes Theorems 1.1 and 1.2. Let

Ω = XF be defined by forbidden set F = {01}. Then, Ω is extensible yet not

transitive, and X
(l)
Ω satisfies Theorem 1.1. However, X

(l)
Ω is not l -directional mixing.

It can be verified by considering u′ = 0l , v′ = 1 ∈ B(X
(l)
Ω ) and α = 1. Under the

circumstances, no y ∈ X
(l)
Ω should accept v′ since 1 at the the position where v′ is

located is to the right of 0.

We organize the material of this paper as follows. Section 2 elucidates the defini-

tions and propositions that are used in this investigation and gives some examples

to illustrate the idea of the proof of the main theorems. Section 3 is devoted to

the proofs of Theorems 1.1, 1.2, and 1.3. Discussions and some open problems are

carried out in Section 4.

2. Definitions and Examples

Let A be a finite alphabet and let Ω ⊂ AN be a shift space with the shift map

σ : AN → AN. Denote the set of all admissible words of length n by Bn(Ω) and set

B(Ω) = ∪n≥1Bn(Ω). For every u ∈ B(Ω) and x ∈ Ω, let |u| be the length of u and

x[i,j] = (xi, . . . , xj) be the projection of x on [i, j] := {n ∈ N : i ≤ n ≤ j}.
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Definition 2.1. Let (Ω, σ) be a symbolic dynamical system. We say that (Ω, σ) is

(1) extensible if for all u ∈ B(Ω) and for all m ∈ N, there exists x ∈ Ω such that

x[m+1,m+|u|] = u;

(2) transitive if for all u, v ∈ B(Ω) there exists m ∈ N and x ∈ Ω such that

x[1,|u|] = u and x[|u|+m+1,|u|+m+|v|] = v;

(3) totally transitive if σn is transitive for all n ≥ 1;

(4) weakly mixing if for all u1, u2, v1, v2 ∈ B(Ω) there exist m ∈ N and configura-

tions x(1), x(2) ∈ Ω such that x(i)|[1,|ui|] = ui and x(i)|[|ui|+m+1,|ui|+m+|vi|] = vi

for i = 1, 2;

(5) mixing if for all u, v ∈ B(Ω) there exists N ∈ N such that for m ≥ N there

exists x ∈ Ω such that x[1,|u|] = u and x[|u|+m+1,|u|+m+|v|] = v.

It follows from the definitions that

mixing⇒ weakly mixing⇒ totally transitive⇒ transitive⇒ extensible.

Roughly speaking, a weakly mixing system transits any pair of open sets to

another pair simultaneously. Furstenberg [6] demonstrated the property holds for

finitely many sets.

Proposition 2.2 (See [6]). Suppose Ω is a shift space. Then following statements

are equivalent.

(a) Ω is weakly mixing.

(b) For {u1, u2, . . . , uM}, {v1, v2, . . . , vM} ⊂ B(Ω) there exist m ∈ N and configura-

tions {x(i)}Mi=1 satisfying x(i)|s(ui) = ui and (σmx(i))|s(vi) = vi for 1 ≤ i ≤M .

For each shift space Ω and natural number l ≥ 2, the multiplicative shift space

X
(l)
Ω is defined as

X
(l)
Ω = {x = (xk)∞k=1 ∈ AN : (xiln−1)n∈N ∈ Ω for all i}.

We say that u ∈ AS is a pattern in X
(l)
Ω if there exist a finite set S ⊂ N and x ∈ X

(l)
Ω

such that x|S = u, i.e., xi = ui for i ∈ S. In this case, S is called the support of u

and is denoted by s(u). The multiplicative map Π : N× X
(l)
Ω is defined as

(Πqx)i := Π(q, x)i = xqi for i ∈ N, x ∈ X
(l)
Ω .

It is obvious that X
(l)
Ω is invariant under the multiplicative map and thus (X

(l)
Ω , {Πq}q∈N)

is a dynamical system. Therefore, Definition 2.1 can be extended to X
(l)
Ω in a similar

vein.

Definition 2.3. Let (X
(l)
Ω , {Πq}q∈N) be a multiplicative shift. We say that (X

(l)
Ω , {Πq}q∈N)

is

(1) transitive if for u, v ∈ B(X
(l)
Ω ) there exist m ∈ N and x ∈ X

(l)
Ω such that

x|[1,|u|] = u and
(
Π|u|mx

)
|[1,|v|] = v;

(2) mixing if for u, v ∈ B(X
(l)
Ω ) there exists N ∈ N such that for m ≥ N there exists

x ∈ X
(l)
Ω such that x[1,|u|] = u and

(
Π|u|mx

)
|[1,|v|] = v.



TOPOLOGICALLY MIXING PROPERTIES OF MULTIPLICATIVE INTEGER SYSTEM 5

The idea of these definitions is to connect the patterns u, v in X
(l)
Ω under the

action of multiplicative semigroup of positive integers. Observe that, for each given

integer l ≥ 2, every natural number n has a unique decomposition n = αlk, where

α ∈ N \ lN and k ≥ 0. The following proposition comes from straightforward

examination, and thus the proof is omitted.

Proposition 2.4. Consider the multiplicative shift (X
(l)
Ω , {Πq}q∈N). Then X

(l)
Ω is

(1) transitive if and only if for u, v ∈ B(X
(l)
Ω ) there exists (α, k) ∈ (N \ lN) × N0

and x ∈ X
(l)
Ω such that x|s(u) = u and

(
Π|u|αlkx

)
|s(v) = v;

(2) mixing if and only if for all u, v ∈ B(X
(l)
Ω ) there exists N ∈ N such that if

(α, k) ∈ (N \ lN) × N0 with αlk ≥ N there exists x ∈ X
(l)
Ω such that x|s(u) = u

and
(
Π|u|αlkx

)
|s(v) = v.

Without causing ambiguity, we define the multiplicative map Π on the col-

lection of patterns B(X
(l)
Ω ) as follows. For each q ∈ N, the multiplicative map

Πq : ∪S⊂NAS → ∪S⊂NAS is defined as (Πqu)i = uqi for i ∈ s(u) ∩ [1, |u|q ]. In

other words, Suppose S is a subset of N, we define ((Πqu)|S)i = uqji , where

ji = min{k : k ∈ S ∩ (ji−1,
|u|
q ], kq ∈ s(u)} and j0 = 0. In other words, Πqu

is an arithmetic subword of u with tolerance q.

For a multiplicative shift X
(l)
Ω and m,n ∈ N, we define m ' n if and only if

m

n
= li

for some i ∈ Z. It follows immediately that ' is an equivalence relation. With this

we define Λ[i] = {ilk : k ∈ Z} ∩ N for each i ∈ N, where [i] denotes the equivalence

class of i with respect to '. The following proposition comes straightforwardly

from the fundamental theorem of arithmetic.

Proposition 2.5. Let Λ[i] be defined as above. Then

(1) {Λ[i]}i∈N is a partition of N;

(2) for each α ∈ N \ lN, αΛ[i] ⊂ Λ[j] for some [j] 6= [i]. In particular, αΛ[i] =

Λ[αi] if l ∈ P, where P denotes the set consisting of all prime numbers.

For the sake of simplicity, we refer to Λ[i] as Λi with an extra requirement that

i is the smallest element of [i] for the rest of this paper unless otherwise stated.

For every u ∈ B(X
(l)
Ω ), we define u|Λi ∈ B(Ω) and ξ(u) as u|Λi := (uilj−1)j for

1 ≤ j ≤ blogl
|u|
i c and ξ(u) := max{n : n ≤ |u|, l - n}, respectively. In addition, for

1 < q,N ∈ N, let Aq := N \ qN denote the set of positive integers which are not

divisible by q and Aq,N := Aq ∩ [1, N ].

Example 2.6. Suppose A = {0, 1}, l = 2, and Ω is the one-sided golden mean

shift. Then

X2 := X
(2)
Ω = {x = (xi)i∈N : xix2i = 0 for all i ∈ N}.

Suppose u ∈ B8(X
(l)
Ω ) and x ∈ X

(l)
Ω with (Π96x)|s(u) = u. Then ξ(u) = 7, which

means that s(u)∩Λ7 6= ∅, see Figure 2. The supports of u and x|96s(u) = (Π96x)|s(u)
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1 2 4 8 16 32 64 128 256

3 6 12 24 48 96 192 384 768

5 10 20 40 80 160 320 640 1280

7 14 28 56 112 224 448 896 1792

9 18 36 72 144 288 576 1152 2304

11 22 44 88 176 352 704 1408 2816

13 26 52 104 208 416 832 1664 3328

15 30 60 120 240 480 960 1920 3840

17 34 68 136 272 544 1088 2176 4352

19 38 76 152 304 608 1216 2432 4864

21 42 84 168 336 672 1344 2688 5376

Figure 2. The multiplicative map Π breaks the topological struc-

ture of the support of pattern in X
(l)
Ω . Suppose l = 2 and

u ∈ B8(X
(l)
Ω ). The support of u is the green region and (part

of) support of (Π96x)|s(u) is colored in orange. Notably, s(u) is
connected while 96s(u) is broken.

are colored in green and orange, respectively. Observe that the multiplicative map

Π breaks the topological structure of the support of pattern. In general, for any

u, v ∈ B(X
(l)
Ω ) and x ∈ X

(l)
Ω such that (Π|u|αlkx)|s(v) = v and x|s(u) = u, the

supports of u and x||u|αlks(v) are non-overlapping if αlk 6= 1.

One of the main difference between traditional shift spaces and multiplicative

shift spaces is that the multiplicative map messes up the topological structure of

the underlying space, which makes the investigation of dynamical phenomena of

multiplicative shift spaces much more complicated and diversifies mixing properties

in multiplicative subshifts. The following definition introduces a mixing property

called directional mixing that is related to the weakly mixing property in traditional

shift spaces.

Definition 2.7. Suppose X
(l)
Ω is a multiplicative shift space. We say that X

(l)
Ω is q-

directional mixing for some q > 1 if for u, v ∈ B(X
(l)
Ω ) there exists k ∈ N0 such that

for any α ∈ Aq there exists x ∈ X
(l)
Ω satisfying x|s(u) = u and (Π|u|αqkx)|s(v) = v.

Theorem 1.1 reveals that Ω is extensible if and only if X
(l)
Ω is transitive. Example

2.8 yields an observation how Theorem 1.1 holds.

Example 2.8. Let Ω = XF ⊂ ΣN
2 be defined by forbidden set F = {01, 11}.

Apparently, Ω is extensible. We give the equivalence between the extensibility of Ω

and the transitivity of X
(l)
Ω a quick examination through the following discussions

with two l’s.

1. Given that Ω is extensible. Suppose l = 4. Let u′ = 111111 and v′ = 1111

be two words in X
(l)
Ω . Consider α = 7, a prime number greater than l = 4 and
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1 4 16 64 256 1024 4096

2 8 32 128 512 2048 8192

3 12 48 192 768 3072 12288

5 20 80 320 1280 5120 20480

6 24 96 384 1536 6144 24576

7 28 112 448 1792 7168 28672

Figure 3. The weakly mixing property of Ω implies X
(l)
Ω is l -

directional mixing. When αlk = 1 · 43, the (partial) supports of u′

and x||u′|αlks(v′) are colored in green and orange, respectively. See
Example 2.9 for more details.

ξ(u′) = 6. It follows from the extensibility of Ω that for any k ∈ N0 there exists

x ∈ X
(l)
Ω such that x|s(u′) = u′ and (Π|u′|αlkx)|s(v′) = v′.

2. Suppose l = 2 and X
(l)
Ω is transitive. To show that u = 101 ∈ B(Ω) is extensible

at position 5, pick α = 1, k = 2, u′ = 032, and v′ = 1001, there exists y ∈ X
(l)
Ω such

that y|s(u′) = u′ and (Π|u′|αlky)|s(v′) = v′. Let x := (yαl(k+i))i∈N. Then x[5,7] = 101.

The following example provides an intuitive viewpoint for examining Theorem

1.2.

Example 2.9. For each P ⊂ N0 with 0 ∈ P , the spacing shift introduced in [8] is

defined as

(4) ΣP = {s ∈ {0, 1}N : si = sj = 1⇒ |j − i| ∈ P}.
Let P = N0 \ {2 + 10N : N ∈ N0} and Ω = ΣP . Then Ω is weakly mixing but not

mixing since P is thick (see [2] for more details). We use the following examples to

show that 1. Ω is weakly mixing if X
(l)
Ω is l -directional mixing; 2. X

(l)
Ω is l -directional

mixing if Ω is weakly mixing.

1. Let l = 2 and u1 = 11, u2 = 111, v1 = 111, v2 = 11 ∈ B(Ω). It is easily seen

that u′ = 1110010000010000, v′ = 111101 ∈ B(X
(l)
Ω ) and u′|Λ1

= u1, u′|Λ3
= u2,

v′|Λ1
= v1, and v′|Λ3

= v2. More specifically, with α = 1 and k = 4, there is an

x ∈ X
(l)
Ω given that x|s(u′) = u′ and (Π|u′|αlkx)|s(v′) = (Πl7x)|s(v′) = v′ and xi = 0

otherwise. Therefore, u1, v1 are connected in x|Λ1
and u2, v2 are connected in x|Λ3

.

2. Let l = 4 and u′ = 111111, v′ = 1111 ∈ B(X
(l)
Ω ). Then |u′| = α1l

k1 = 6 ·40, |v′| =
4, and α1|v′| = 24. It follows from Corollary 3.2 that for every α ∈ N, k ∈ N0, and

i ∈ Al,|v′|, i|u′|αlk = jlk1+k+c for some j ∈ Al ∈ N0 and c ≤ 2. To connect u′|Λi
and v′|Λj for 1 ≤ i ≤ ξ(u′) and 1 ≤ j ≤ ξ(v′), let k = 4 be assumed so that

[k, k + c + maxi |u′|Λi | + maxi |v′|Λi |] ⊂ [4, 10] ⊂ P . Then for each α ∈ A4 there

exists x ∈ X
(l)
Ω such that x|s(u′) = u′ and (Π43α|u′|x)|s(v′) = v′ and xi = 0 elsewhere.

For the case where α = 1, the supports of u′ and (Π43|u′|x)|s(v′) are colored in green

and orange respectively in Figure 3.

Next, we use the following example to verify Theorem 1.3.
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1 6 36 216 1296 7776

2 12 72 432 2592 15552

3 18 108 648 3888 23328

4 24 144 864 5184 31104

5 30 180 1080 6480 38880

7 42 252 1512 9072 54432

8 48 288 1728 10368 62208

9 54 324 1944 11664 69984

10 60 360 2160 12960 77760

Figure 3. The figure gives an graphical representation of Exam-
ple 2.6. u′ = 11111111, v′ = 11111 ∈ B(X

(6)
Ω ) can be concatenated

when αlk = 243, where the support of u′ and (|u′|αlk)v′ are col-
ored in green and orange respectively.

example, when αlk = 243. The support of u′ and v′ in x are colored in green
and orange respectively. It can be seen in Figure 3 that s(u′) and s(v′) are indeed
separated at a distance greater than or equal to 3.

2. Let l = 2. Then, it is sufficient to choose N = 11 ≥ l3 = 8 and αlk =

N lN = 22528, which is stated in the proof of Theorem 1.3 (1) ⇒ (5). Let u = 1111

and v = 111. It is possible to find u′ ∈ Bln(X
(l)
Ω ) and v′ ∈ Bl|v|−1(X

(l)
Ω ), where

m = 14 ≥ 11 + log2 11− 1 and n = |u|+m− 11 = 7 as in Theorem 1.3 (1) ⇒ (5),
so that for every u, v ∈ B(Ω) and i ≥ m there is x ∈ Ω so that x[1,|u|] = u and
x[i+1,i+|v|] = v. More specifically, ui = 1 only if i = N l j−1 for 1 ≤ j ≤ |u| and
vi = 1 only if i = l j−1 for 1 ≤ j ≤ |u|. Indeed, |s(u′) ∩ Λ11| = ⌊logl

|u′|
N l⌋ = 4 so u

fits in s(u′)∩Λ11. Also, |u′|αlk(s(v′)∩Λ1) ⊂ l18Λ11. Therefore, u, v are connected
by x ∈ X

(l)
Ω , due to the mixing property of X(l)

Ω , x|Λ11
.

However, these theorems do not deal with the transitivity of Ω, and an example
illustrate this is given as follows:

Example 2.7. Let Ω = XF ⊂ ΣN2 be defined by forbidden set F = {00, 11}. Then,
Ω is transitive yet neither totally transitive nor weakly mixing, and X

(l)
Ω satisfies all

properties Theorem 1.1. However, it is not l -directional mixing. It can be verified
by considering patterns u′ = 0110, v′ = 1011 in X

(2)
Ω , and α = 1. If such y ∈ X

(2)
Ω

exists, then k is required to be even for u′|Λ1 and v′|Λ1 , and odd for u′|Λ3 and v′|Λ3 .
This contradicts the existence of k, which leads to a contradiction. Nevertheless, it
is consistent with Theorem 1.2 and with Theorem 1.1.

3. Proofs

Proof of Theorem 1.1. The theorem is proved in the order (3) ⇒ (2) ⇒ (1) ⇒ (3)
and (1) ⇒ (5) ⇒ (4) ⇒ (1).

Figure 4. The figure gives an graphical representation of Exam-

ple 2.10. Two words u′ = 11111111, v′ = 11111 ∈ B(X
(6)
Ω ) can

be concatenated when αlk = 243, where the support of u′ and
(Π|u′|αlkx)|s(v′) are colored in green and orange respectively.

Example 2.10. Let P = {0} ∪ [3,∞) and Ω = ΣP . Then Ω is mixing since P is

cofinite (cf. [2]). In this case, given u, v ∈ B(Ω), if x ∈ AN satisfying xi = 0 except

x|[1,|u|] = u and x|[|u|+3+1,|u|+3+|v|] = v, then x ∈ Ω. We verify directly that 1. X
(l)
Ω

is mixing if Ω is mixing and that 2. Ω is mixing if X
(l)
Ω is mixing.

1. Suppose l = 6, u′ = 11111111 and v′ = 11111. Then, for every αlk ≥ 63 = 216,

there exists x ∈ X
(l)
Ω such that x|s(u′) = u′ and (Π|u′|αlkx)|s(v′) = v′. For example,

when αlk = 243 the support of u′ and v′ in x are colored in green and orange

respectively in Figure 4. It is seen there that s(u′) and s(v′) are indeed separated

at a distance greater than or equal to 3.

2. Let l = 2. Let u = 1011 and v = 111. It is possible to find u′ := 10010001 ∈
Bl|u|−1(X

(l)
Ω ) and v′ := 1101 ∈ Bl|v|−1(X

(l)
Ω ) such that u′|Λ1

= u and v′|Λ1
= v. Then,

for every αlk ≥ l3 there is y ∈ X
(l)
Ω such that y|s(u′) = u′ and (

∏
|u′|αlk y)|s(v′) = v′.

In particular, when for every m ∈ N0, αlk = l3+m there is x := y|Λ1
∈ Ω so that

x[1,|u|] = u and x[m+1,m+|v|] = v.

Notably, none of above relations are equivalent to transitivity of Ω. One may

refers to Remark 1.4 to see that it is not equivalent to Theorem 1.1. As for Theorem

1.2, an example is given as follows.

Example 2.11. Let Ω = XF ⊂ ΣN
2 be defined by forbidden set F = {00, 11}. Then,

Ω is transitive yet neither totally transitive nor weakly mixing, and X
(l)
Ω satisfies

all properties in Theorem 1.1. However, it is not l -directional mixing. It can be

verified by considering patterns u′ = 0110, v′ = 1011 in X
(2)
Ω , and α = 1. If such

y ∈ X
(2)
Ω exists, then k is required to be even for u′|Λ1

and v′|Λ1
, and odd for u′|Λ3

and v′|Λ3
. This contradicts the existence of k. Nevertheless, it is consistent with

Theorem 1.2 and with Theorem 1.1.
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u′

v′

v′

α

(a)

u v

(b)

Figure 5. An illustration for the equivalence between extensibil-

ity of Ω and transitivity of X
(l)
Ω . (A) Whenever Ω is extensible, the

transitivity of X
(l)
Ω can be derived by separate the given words. (B)

If X
(l)
Ω is transitive, then Ω is extensible.

3. Proofs of Main Theorems

This section is devoted to demonstrating the main theorems of this paper. We

start from the equivalence between extensibility of Ω and transitivity of X
(l)
Ω .

Proof of Theorem 1.1. The theorem is proved in the order (3) ⇒ (2) ⇒ (1) ⇒ (3)

and (1) ⇒ (5) ⇒ (4) ⇒ (1). The idea of the proof is referred to Figure 5.

(3) ⇒ (2). It follows directly from definition.

(2) ⇒ (1). We prove that for u ∈ B(Ω) and m ∈ N0 there is x ∈ Ω such

that x[m+1,m+|u|] = u. Let u′, v′ ∈ B(X
(l)
Ω ) such that |u′| = lm, |v′| = l |u|−1

and v′|Λ1 = u. By transitivity of X
(l)
Ω , there are α ∈ Al , k ∈ N0 and y ∈ X

(l)
Ω

such that y|s(u′) = u′ and (Π|u′|αlky)|s(v′) = v′. The proof is completed by letting

xi := (yαlk+i−1).

(1) ⇒ (3). We prove that for arbitrary blocks u′, v′ ∈ B(X
(l)
Ω ), and for k ∈ N0,

there exists y ∈ X
(l)
Ω such that y|s(u′) = u′ and (Π|u′|αlky)|s(v′) = v′ whenever α ∈

P\{l} with α > ξ(u′). Note that for each Λi with 1 ≤ i ≤ ξ(u′), (|u′|αlkΛj)∩Λi = ∅
is always the case, so the existence of y is guaranteed by the extensibility of Ω.

(1) ⇒ (5). We claim that for u′, v′ ∈ B(X
(l)
Ω ) and for any α ∈ AL there exists

y ∈ X
(l)
Ω such that y|s(u′) = u′, (Π|u′|αLky)|s(v′) = v′ whenever pk > ξ(u), p|L but

p - l. Since pk > ξ(u), it follows immediately that

|u′|αLkN ∩ Λi = ∅ for 1 ≤ i ≤ ξ(u′).
In other words, |u′|αLks(v′) is a subset of N \ ∪1≤i≤ξ(u′)Λi. Therefore, for each

i ∈ Al , there exists xi ∈ Ω such that
xi|[1,|s(u′|Λi )|] = u′|Λi , if 1 ≤ i ≤ ξ(u′);

xi|
logl

|u′|αLki
i′ +[1,|v′|Λi |] = v′|Λi , otherwise, where |u′|αLkΛi ⊂ Λi′ ;
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1 6 36 216 1296

2 12 72 432 2592

3 18 108 648 3888

4 24 144 864 5184

5 30 180 1080 6480

7 42 252 1512 9072

8 48 288 1728 10368

9 54 324 1944 11664

10 60 360 2160 12960

(a) u ∈ B8(X
(6)
Ω )

1 2 4 8 16 32 64 128 256

3 6 12 24 48 96 192 384 768

5 10 20 40 80 160 320 640 1280

7 14 28 56 112 224 448 896 1792

9 18 36 72 144 288 576 1152 2304

11 22 44 88 176 352 704 1408 2816

13 26 52 104 208 416 832 1664 3328

15 30 60 120 240 480 960 1920 3840

17 34 68 136 272 544 1088 2176 4352

(b) u ∈ B8(X
(2)
Ω )

Figure 6. Suppose x ∈ X
(l)
Ω and u ∈ B8(X

(l)
Ω ). (A) (x|Λi∩144s(u))’s

are left-aligned since 6 is not a prime. (B) (x|Λi∩96s(u))’s are left-
aligned since 2 is a prime.

since Ω is extensible. Let y ∈ AN be defined by y|Λi = xi. Then y ∈ X
(l)
Ω is the

desired result.

(5) ⇒ (4). It holds automatically since (4) is a particular case of (5).

(4) ⇒ (1). We prove that for u ∈ B(Ω) and m ∈ N0 there is x ∈ Ω such that

x[m+1,m+|u|] = u. Let u′, v′ ∈ B(X
(l)
Ω ) such that |u′| = lm+1, that |v′| = l |u|−1 and

that v′|Λ1
= u. By L-directional mixing property of X

(l)
Ω , there is k ∈ N0 and y ∈

X
(l)
Ω such that y|s(u′) = u′ and (Π|u′|Lky)|s(v′) = v′. Suppose that |u′|Lk = ilc+m+1

for some c ∈ N0, i.e., |u′|Lk ∈ Λi for some l - i. The proof is complete by letting

x := (yilc+j )j∈N. �

Next, we link the weakly mixing property of Ω and the l-directional mixing

property of X
(l)
Ω . Proposition 2.5 implies that the multiplicative transformation

breaks the topological structure of pattern even more significantly in the case l is

not a prime than the case l is a prime. More precisely, for each i ∈ Al = N\ lN, the

product (|u′|αlk)i can be represented as jln+k+c for some l - j, where extra “offset”

c = cα is introduced. Hence, (|u′|αlk)s(v′|Λi) is not “left-aligned” (see Figure 6).

Lemma 3.1 shows that the collection of these offsets {cα}α∈Al is bounded.

Lemma 3.1. Given any N ∈ N, there exists M ∈ N so that AlAl,N := {ab : a ∈
Al , b ∈ Al,N} ⊂ ∪Mi=0l iAl.

Proof. By the fundamental theorem of arithmetic, there exists the unique prime

factorization of l as l = pm1
1 pm2

2 . . . pmrr . Let

M = max{bkpi
mi
c : 1 ≤ i ≤ m, k ∈ Al,N}+ 1,

where kpi = max{m ∈ N0 : pmi |k}. Given a ∈ Al and b ∈ Al,N , there exists

1 ≤ i ≤ r such that bapimi c = 0. Since b bpimi c ≤ M − 1, it comes immediately that

b (ab)pi
mi
c ≤M . Hence, ab ∈ ∪Mi=0l iAl and the proof is complete. �
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Corollary 3.2. Suppose u′, v′ ∈ B(X
(l)
Ω ) with |u′| = α1lk1 . There exists M ∈ N

such that for every α ∈ N, k ∈ N0, and i ∈ Al,|v′|, i|u′|αlk = jlk1+k+c for some

j ∈ Al and c ≤M .

Proof. Observe that there exists M1 ∈ N such that α1Al,|v′| ⊆ ∪M1
i=0l iAl,α1|v′|.

Lemma 3.1 shows that there exists M2 ∈ N so that AlAl,α1|v′| ⊂ ∪M2
i=0l iAl . It

follows that

|u′|Al l
kAl,|v′| ⊆ lk+k1Al ∪M1

i=0 l iAl,α1|v′| ⊆ ∪M1+M2
i=0 lk+k1+iAl ,

the desired result follows by letting M = M1 +M2. �

With the estimation of the offsets, we are ready for the proof of Theorem 1.2.

Proof of Theorem 1.2. The proof is divided into three parts. First we show that

(1) ⇔ (2). After demonstrating the equivalence of (1), (3), and (4), it follows that

(1) ⇔ (5).

(1) ⇒ (2). Given u′, v′ ∈ B(X
(l)
Ω ) with |u′| = α1l

k1 for some α1 ∈ Al , Corollary

3.2 indicates there exists M ∈ N such that for α ∈ Al , k ∈ N0, and i ∈ Al,|v′|,

i|u′|αlk = i′lk1+k+c for some i′ ∈ Al and c ≤M.

Let

∆ = {(u′|Λi , w(r,j)v′|Λj ) :1 ≤ i ≤ ξ(u′), 1 ≤ j ≤ ξ(v′),
0 ≤ r ≤M},

be a finite collection of pairs of blocks in Ω, where ε is the empty word and w(r,j) ∈
B(Ω) ∪ {ε} is chosen so that w(r,j)v′|Λj ∈ B(Ω). Since X

(l)
Ω is weakly mixing, there

exists K ∈ N such that for (u, v) ∈ ∆, there exists w ∈ BK−|u|(Ω) such that

uwv ∈ B(Ω) by Proposition 2.2. Note that K ≥ |u|Λi | for every i ∈ Al,|u′| and so

K ≥ k1.

Next we show that for each α ∈ Al there exists x ∈ X
(l)
Ω such that x|s(u′) = u′

and (Π|u′|αlK−k1x)|s(v′) = v′. Observe that (Π|u′|αlK−k1x)|s(v′) = v′ if and only if

xj′ |
logl

|u′|αlK−k1 j

j′ +[1,|v′|Λj |]
= v′|Λj for 1 ≤ j ≤ ξ(v′),

where j′ ∈ N satisfies (|u′|αlK−k1)Λj ⊂ Λj′ and xj′ := x|Λj′ . The construction

of x is as follows. For 1 ≤ i ≤ ξ(u′), if there exists 1 ≤ j ≤ ξ(v′) such that

|u′|αlKΛj ⊆ Λi, the above discussion implies there exists xi such that

xi|s(u′|Λi ) = u′|Λi and xi|
logl

|u′|αlK−k1 j
i +[1,|v′|Λj |]

= v′|Λj ,

which means that xi|
logl

|u′|αlK−k1 j
i +m

= v′jlm−1 for m ∈ [1, |v′|Λj |]; otherwise, the

existence of xi comes from the extensibility of Ω. For the case where i > ξ(u′), the

existence of xi also comes from the extensibility of Ω. The desired x ∈ X
(l)
Ω then

follows by letting x|Λi = xi.
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(2) ⇒ (1). To show that for u1, u2, v1, v2 ∈ B(Ω) there are x1, x2 ∈ Ω and k ∈ N
such that xi|s(ui) = ui and that xi|k+s(vi) = vi for i = 1, 2, let u′, v′ ∈ B(X

(l)
Ω ) such

that u1, u2, v1, v2 are subword of u′|Λ1 , u
′|Λl+1

, v′|Λ1 , v
′|Λl+1

respectively, and that

|u′| = lk1 for some k1 ∈ N. Since X
(l)
Ω is l-directional mixing, there is a k ∈ N and

an y ∈ X
(l)
Ω such that y|s(u′) = u′ and (Π|u′|lky)|s(v′) = v′. The proof is completed

by letting x1 = y|Λ1
and x2 = y|Λl+1

.

The discussion of (1) ⇒ (3) and (4) ⇒ (1) are similar to that of (1) ⇒ (2) and

(2)⇒ (1), respectively. Since (4) is a special case of (3), the equivalence of (1), (3),

and (4) then follows.

The demonstration of (1)⇔ (5) is analogous to the derivation of (1)⇔ (3) above

together with the proof of Theorem 1.1 (1) ⇔ Theorem 1.1 (5). Thus the detailed

elucidation is omitted for the sake of compactness. �

We finish this section with the proof that Ω is mixing if and only if X
(l)
Ω is mixing.

Proof of Theorem 1.3. The theorem is proved in the order (1) ⇒ (2) ⇒ (3) ⇒ (1).

(1) ⇒ (2). Suppose u′, v′ ∈ B(X
(l)
Ω ) are given. Let ui = u′|Λi , vj = v′|Λj for

i ∈ Al,|u′|, j ∈ Al,|v′|. Since Ω is mixing and Al,|u′|, Al,|v′| are finite, there exists

N0 ∈ N such that for m ≥ N0 there exists x = x(u, v) ∈ Ω such that x|[1,|u|] =

u, x|[m+|u|+1,m+|u|+|v|] = v, provided u = ui, v = vj for some i ∈ Al,|u′|, j ∈ Al,|v′|.

We claim that for α ∈ N, k ∈ N0 such that αlk ≥ lN0 there is y ∈ X
(l)
Ω satisfying

y|s(u′) = u′ and (Π|u′|(αlk)y)|s(v′) = v′, which is equivalent to mixing property in

X
(l)
Ω by Proposition 2.4. Similar to the proof of Theorem 1.2, it suffices to show

that whenever (|u′|αlk)Λj ⊂ Λi for some 1 ≤ i ≤ ξ(u′) and 1 ≤ j ≤ ξ(v′), there

exists xi ∈ Ω such that

xi|[1,|u′|Λi |] = u′|Λi and xi|
logl

|u′|αlkj
i +[1,|v′|Λj |]

= v′|Λj .

Equivalently, we need to show that logl
L2

i − logl
L1

i ≥ N0, where L1 = max(s(u′)∩
Λi) and L2 = min(|u′|αlk(s(v′) ∩ Λj)). Indeed,

logl

L2

i
− logl

L1

i
= logl

|u′|
L1

αlkj ≥ m.

Therefore, Ω being mixing implies that X
(l)
Ω is mixing.

(2) ⇒ (3). This could be proved by choosing proper α or k in (2).

(3) ⇒ (1). Given u, v ∈ B(Ω), let u′, v′ ∈ B(X
(l)
Ω ) such that |u′| = l |u|−1, |v′| =

l |v|−1, u′|Λ1
= u, and v′|Λ1

= v. Hence, there exists N ∈ N such that for α ∈ Al , k ≥
N there exists y ∈ X

(l)
Ω such that y|[1,|u′|] = u′ and (Π|u′|αlky)|[1,|v′|] = v′. We claim

that for m ≥ N there exists x ∈ Ω such that x|[1,|u|] = u, x|[|u|+m+1,|u|+m+|v|] = v.

Indeed, let α = 1 and k = m + 1 > N , there exists y ∈ X
(l)
Ω such that y|s(u′) = u′

and (Π|u′|αlky)|s(v′) = v′. In other words, (y|Λ1
)|[1,|u|] = u and

(Π|u′|αlky)i = yil|u|+m = vj for i = l j−1, j = 1, . . . , |v|.
The proof is then complete by letting x = y|Λ1

. �
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Ω
X

(l)
Ω transitivity l -directional mixing mixing

extensibility EQ T T
transitivity F T T

weakly mixing F EQ T
mixing F F EQ

Table 1. Summary of the main results. In this table, ‘T’ means

that the property in Ω implies the property in X
(l)
Ω and ‘F’ means

the opposite, and ‘EQ’ means two properties are equivalent.

4. Summary and Discussion

Suppose Ω is a traditional shift space and X
(l)
Ω is the corresponding multiplica-

tive shift space for some l > 1. We investigate the relations between the mixing

properties of Ω and X
(l)
Ω . After introducing the l-directional mixing property, we

reveal some if-and-only-if connection between mixing properties of two systems.

Table 1 summarizes the main results of this paper. It is seen that there are still

open problems remained to be studied. We list these problems of interest in the

following, some of which are in preparation.

Question 4.1. In Theorem 1.2, (5) is equivalent to the others if l is a prime

number. Does this hold for arbitrary l > 1?

Question 4.2. Is there any equivalent condition for X
(l)
Ω as transitivity of Ω?

Question 4.3. Do Theorems 1.1, 1.2, and 1.3 hold for two-sided multiplicative

subshift X
(l)
Ω ⊂ AZ?
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