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a b s t r a c t

We identify the mean growth of the independence number of random binary search
trees and random recursive trees and show normal fluctuations around their means. Sim-
ilarly we also show normal limit laws for the domination number and variations of it for
these two cases of random tree models. Our results are an application of a recent general
theorem of Holmgren and Janson on fringe trees in these two random tree models.

© 2020 Published by Elsevier B.V.

1. Introduction and results

In this note we study the independence number, the domination number and related parameters of random binary
earch trees and random recursive trees asymptotically. First, in Section 2, we derive asymptotics for the mean and
ariance and provide central limit laws for the independence number of both tree models. This covers a few other graph
arameters which are affine functions of the independence number, see Remark 1.7(c). In Section 3, we also provide
entral limit laws for the domination number and related parameters for both of these cases of random tree models.
inally, albeit coinciding with the independence number on trees, we also give a direct proof of such a theorem for the
lique cover number in Section 4.
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We first recall the parameters under consideration and present the models of trees we are looking at and state our
esults.

ndependence and domination number. The independence number of a graph is the size of a maximum independent set
n the graph, where an independent set is a subset of the vertices of the graph so that no two vertices of this subset are
onnected (are neighbors) within the graph. The independence number is an important and well-known graph parameter:
esides its applications in scheduling theory, coding theory and collusion detection in voting pools (see [1,5,21]), it has
ttracted a lot of interest especially in theoretical computer science: the independence number is well known to be
P-hard to compute in general, see for example [31]. Since then, exact fast exponential algorithms have been developed
see [27,28]) as well as polynomial-time algorithms for special graph classes (claw-free graphs, P5-free graphs, perfect
raphs, see [15,24,29]). In general, it is also NP-hard to approximate the independence number (that is, it is not possible
o approximate it up to a constant factor in polynomial time) [3], but again for special graph classes such as planar
raphs, or more generally, for graphs closed under taking minors, polynomial-time approximation schemes do exist [2,14].
or bipartite graphs, thus in particular trees, by König’s theorem, all vertices not in the minimum vertex cover can be
ncluded in a maximum independent set (see also the remark below), and thus the independence number can be found in
olynomial time. In combinatorics, it has also received considerable attraction, starting with the early work by Bollobás [4].
Given a finite graph G with vertex set V , a subset W ⊂ V is called a dominating set for V if every vertex in V lies at

raph distance at most 1 from W . The domination number of G is then defined to be the minimum number m such that
here exists a dominating set W of size m. Finding dominating sets is important in finding ‘central’ or ‘important’ sets
f vertices in a network, in contexts such as facility location [16], molecular biology [26] and in wireless networks [33].
ominating sets have attracted considerable attention in discrete mathematics (see [16,17] and [18]) and as in the case
f the independence number, in theoretical computer science: it was shown already in the 1970s (see [22]) that the
omination number is NP-hard to compute, and it is also NP-hard to approximate up to a logarithmic factor in general [30].
ince then, as in the case of the independence number, exact fast exponential algorithms have been developed [12,35],
nd faster algorithms for special graph classes have been found as well (see for example [34] for series–parallel graphs).
or trees, linear-time algorithms are known [7].

andom recursive tree and random binary search tree. A random recursive tree is a labeled rooted tree which can be
onstructed as follows. For the first step we start with the root vertex labeled 1. In the nth step, n ≥ 2, one of the existing
ertices labeled 1, . . . , n − 1 is chosen uniformly at random where a vertex with label n is attached. Subsequently, a
andom recursive tree with n vertices is denoted by Λn. For reference, see the survey of Smythe and Mahmoud [32]. We
ill need the following fact: A random recursive tree with n vertices can be cut into two trees by removing the edge
etween the root vertex labeled 1 and the vertex labeled 2. This yields two trees both with a random size, both sizes
eing uniformly distributed on {1, . . . , n − 1}. Moreover, conditional on their sizes, these two trees are independent and
oth are (after proper relabeling of their vertices) random recursive trees of their respective size.
The random binary search tree can be constructed from a uniformly distributed random permutation (Π1, . . . , Πn) of

1, . . . , n}. The first number Π1 becomes the root of the tree. Then the numbers Π2, . . . , Πn are successively inserted
ecursively. Each number is compared with the root. If it is smaller than the root, it is directed to the root’s left subtree,
therwise to its right subtree. There, this procedure is recursively iterated until an empty subtree is reached, where the
umber is inserted as a new vertex. Subsequently, a random binary search tree with n vertices is denoted by Tn. For
eference, see Knuth [23]. We need the following decomposition property: The left and right subtrees at the root of the
inary search tree both have random sizes uniformly distributed on {0, . . . , n − 1}. Conditional on their sizes they are

independent and both are (after proper relabeling of their vertices) random binary search trees of their respective sizes.

Results on the independence number. We denote by In the independence number of Tn and by În the independence
number of Λn. We have the following asymptotic results:

Theorem 1.1. For the independence number In of a random binary search tree with n vertices we have, as n → ∞, that
E[In] = µn + O(1), Var(In) ∼ σ 2n and

In − µn
√
n

d
−→ N (0, σ 2)

ith

µ = 2(
√
5 − 3)

∫ 1

0

x
√
5
− 1

(3
√
5 − 7)x

√
5 + 2

dx = 0.54287631 . . . (1)

and a constant σ > 0.

Theorem 1.2. For the independence number În of a random recursive tree with n vertices we have, as n → ∞, that
E[̂In] = µ̂n + O(1), Var(̂In) ∼ σ̂ 2n and

În − µ̂n
√

d
−→ N (0, σ̂ 2)
n
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with the Euler–Gompertz constant

µ̂ =

∫ 1

0

1
1 − log x

dx = 0.59634736 . . . (2)

and a constant σ̂ > 0.

Remark 1.3. Stephan Wagner (Stellenbosch University) informed us that he and his student Kenneth Dadedzi have an
independent approach to results similar of our Theorems 1.1 and 1.2; they use generating functions to determine the
spectrum of the Laplacian operator on these trees, see [9]. Stephan also informed us that our representation (7) for µ̂ has
the explicit integral representation given in (2); see also [25].

Results on the domination number. For the domination number of random binary search trees and random recursive
trees we have similar results.

Theorem 1.4. For the domination number Dn of a random binary search tree with n vertices we have, as n → ∞, that
E[Dn] = νn + O(1), Var(Dn) ∼ τ 2n with some constants ν, τ > 0 and

Dn − νn
√
n

d
−→ N (0, τ 2).

imilarly, for the domination number D̂n of a random recursive tree with n vertices we have, as n → ∞, that E[̂Dn] = ν̂n+O(1),
Var(Dn) ∼ τ̂ 2n with some constants ν̂, τ̂ > 0 and

D̂n − ν̂n
√
n

d
−→ N (0, τ̂ 2).

emark 1.5. For the case of the random recursive tree, it has been shown in [8] that the numerical value of the constant
atisfies ν̂ = 0.3745 . . . .

emark 1.6. A variation of the domination number, the so-called k-domination number of a graph, was introduced in [11].
his is defined as the minimum size of a set S of vertices in a graph such that each vertex of the graph (outside the set
) has at least k neighbors in S. We can analyze these numbers as well in the case of random binary search trees and
andom recursive trees and obtain normal limit laws corresponding to the ones in Theorem 1.4. For binary search trees,
here each vertex has degree at most 3, however, we also have to assume that k ≤ 3 (to avoid the trivial case |S| = n),

while for random recursive trees, we may consider the k-domination number for any constant k > 0.

Remark 1.7. (a) Various quantities for random binary search trees have systematically been studied with respect to limit
distributions by Devroye [10] and Hwang and Neininger [20]. However, the independence number and the domination
number do not fit under the assumptions made in those two studies. Our proof relies on a recent refined study of fringe
trees of random binary search trees and random recursive trees of Holmgren and Janson [19] which extends parts of the
results of [10,20].

(b) Holmgren and Janson [19] also give general formulae for expectation and variance which cover our variances σ 2

nd σ̂ 2 in Theorems 1.1 and 1.2 and also expectations ν and ν̂ as well as variances τ 2 and τ̂ 2 in Theorem 1.4. Their
epresentations allow one to compute numerical approximations for these values.

(c) There are a few (other) related graph parameters which are covered by our results, since they are affine functions
f the independence number: The matching number (also known as edge independence number) is the size of a maximum
et of edges so that no two edges have a common vertex. For all bipartite graphs and in particular trees, the matching
umber and the independence number add up to the size of the tree. Hence, for the matching numbers Mn and M̂n of a
andom binary search tree and a random recursive tree with n vertices respectively, we have E[Mn] = (1 − µ)n + O(1)
ith the same variance and limit as for In in Theorem 1.1, and E[M̂n] = (1− µ̂)n+O(1) with the same variance and limit
s for În in Theorem 1.2.
The edge cover number of a connected graph is the minimum number of edges so that all vertices are incident to at

east one edge. The edge cover number and the independence number coincide for trees.
The vertex cover number is the minimum number of vertices such that every edge has at least one of these vertices as

n endpoint. The matching number and the vertex cover number coincide for trees.
The multiplicity of the eigenvalue 1 of the normalized Laplacian operator of a tree is twice the independence number

f the tree minus its size, see [6, Theorem 1]. Hence, Theorems 1.1 and 1.2 imply the asymptotics of this multiplicity of
he two random tree models considered in the present note as well. See [9] for a more general study of the asymptotics
f the spectra of these random trees.
The clique cover number of a finite graph G is the minimum number of colors needed to color properly the vertices of

he complement of G (the complement of G has the same vertex set as G, and two vertices are adjacent in the complement
f G if and only if they are not adjacent in G). For trees, the clique cover number coincides with the independence number.
e give a variant of the derivation of Theorems 1.1 and 1.2 in terms of the clique cover number, see Section 4.
66
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2. Independence number

For our proof we use a simple construction of a maximum independent set by starting at the leaves. For a rooted tree
(or a forest of rooted trees) denote by leaf(T ) the set of leaves of T and by p(leaf(T )) the set of the parents of the leaves

of T . Recursively, define

T [0]
:= T and T [ℓ]

:= T [ℓ−1]
\

(
leaf(T [ℓ−1]) ∪ p(leaf(T [ℓ−1]))

)
for ℓ ≥ 1.

So, T [0], T [1], T [2], . . . is a sequence of rooted trees or forests of rooted trees starting with T where in each step all the
leaves together with their parents are removed from the present tree or forest until we reach the empty graph. Note, that
when starting with a tree the sequence generated may also contain forests.

Lemma 2.1. Let T be a rooted tree. Then
∞⋃

ℓ=0

leaf
(
T [ℓ]

)
is a maximum independent set of T .

Proof. Let T be a rooted tree or forest of rooted trees. We first show that there is always a maximum independent set of
T which contains leaf(T ). To see this choose an arbitrary maximum independent set A of T . If A does not contain a leaf ν
then it has to contain its parent p(ν). However, then also (A\ {p(ν)})∪{ν} is a maximum independent set of T which now
ontains the leaf ν. Iterating this process implies the existence of a maximum independent set of T containing leaf(T ).
Further, a maximum independent set containing leaf(T ) cannot contain any vertex of p(leaf(T )) and hence consists of

he union of leaf(T [0]) and a maximum independent set of T [1]. Applying the previous argument to T [1] and using induction
mplies the assertion. □

Subsequently, we call the maximum independent set of a rooted tree constructed in Lemma 2.1 the layered independent
et.
result of Holmgren and Janson [19]. Recalling notions from Holmgren and Janson [19] a functional of trees is a real-
alued function of trees. For a rooted tree T and a vertex v ∈ T the fringe tree T (v) is the subtree rooted at v ∈ T which
onsists of all descendants of v in T . For a functional f of rooted trees we define

F (T ) = F (T ; f ) :=

∑
v∈T

f (T (v)). (3)

orollary 1.15 in [19] states that for a functional f with the growth condition f (T ) = O(|T |
α) for some α < 1

2 and the
random binary search tree Tn we have E[F (Tn)] ∼ µFn, Var(F (Tn)) ∼ σ 2

F n as n → ∞, and that F (Tn), after normalization,
is asymptotically normally distributed. The constant µF is given by

µF =

∞∑
k=1

2E[f (Tk)]
(k + 1)(k + 2)

. (4)

Note that in (1.25) in [19] also an expression for σ 2
F is given. A similar result also holds for the random recursive tree Λn,

where the corresponding constant µ̂F is given by

µ̂F =

∞∑
k=1

E[f (Λk)]
k(k + 1)

. (5)

Further note that the proofs in [19] also imply that E[F (Tn)] = µFn + O(1) and that E[F (Λn)] = µ̂Fn + O(1) under the
stronger growth assumption that f (T ) = O(1).

Putting things together now implies Theorems 1.1 and 1.2:

Proof of Theorems 1.1 and 1.2. Note that the independence number of a rooted tree can be covered as a function F in
3) as follows. We set f as the indicator function

f (T ) :=

{
1, if the root of T is contained in the layered independent set of T ,

0, otherwise.

he structure of the layered independent set in Lemma 2.1 implies that any vertex v ∈ T is contained in the layered
ndependent set of T if and only if it is contained in the layered independent set of T (v).

Hence, the independence number of T is given by F (T ) =
∑

v∈T f (T (v)) as in (3). This implies that In = F (Tn) and
n = F (Λn) in distribution. We have f (T ) = O(1). Hence, Corollary 1.15 of Holmgren and Janson [19] implies the assertions
f Theorems 1.1 and 1.2 where σ , σ̂ > 0 follows from numerical computation (see Remark 1.7(b)) and only the constants
and µ̂ need to be identified. In view of (4) and (5) we need to find E[f (T )] and E[f (Λ )].
k k
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For the random recursive tree T note that T can be cut into two trees by removing the edge between the root vertex
abeled 1 and the vertex labeled 2. We denote the two resulting trees by T1 and T2. Now, the root of T is contained in the
ayered independent set of T if and only if the root of T1 is contained in the layered independent set of T1 and the root of
2 is not contained in the layered independent set of T2. Now, the decomposition property of the random recursive tree
entioned in the introduction implies that with p̂n = E[f (Λn)] we have the recurrence

p̂n =
1

n − 1

n−1∑
j=1

(1 − p̂j )̂pn−j, n ≥ 2, (6)

with initial condition p̂1 := 1. Furthermore, for the constant µ̂ in Theorem 1.2 we have the representation

µ̂ =

∞∑
k=1

p̂k
k(k + 1)

. (7)

Now, to find the integral expression for µ̂ in (2) consider the generating function

P̂(z) :=

∑
k≥1

p̂kzk.

From (6) and the initial conditions we obtain

zP̂ ′(z) = −P̂(z)2 +
1

1 − z
P̂(z).

his Riccati equation can be solved by standard methods: We define Q̂ (z) as P̂(z) = zQ̂ ′(z)/Q̂ (z) and obtain

Q̂ ′′(z) =
1

1 − z
Q̂ ′(z),

which implies Q̂ ′(z) = (1 − z)−1 and thus Q̂ (z) = − log(1 − z) + c with a constant c ∈ R. Hence, we obtain

P̂(z) =
z

(1 − z)(− log(1 − z) + c)
,

and the initial condition P̂ ′(0) = 1 yields c = 1. Now we obtain

µ̂ =

∞∑
k=1

p̂k
k(k + 1)

=

∫ 1

0

∫ t

0

1
(1 − z)(1 − log(1 − z))

dzdt

=

∫ 1

0

∫ 1

z

1
(1 − z)(1 − log(1 − z))

dtdz

=

∫ 1

0

1
(1 − log(1 − z))

dz,

which, after substitution, is the expression in (2) for the Euler–Gompertz constant. This concludes the proof of
Theorem 1.2.

For the binary search tree case note that the root of the tree T is contained in its layered independent set if and only
if both children vℓ and vr of the root are not contained in the layered independent set of T (vℓ) and T (vr) respectively.
Now, the decomposition property of the random binary search tree mentioned in the introduction implies that with
pk = E[f (Tk)] we have the relation

pn :=
1
n

n−1∑
j=0

(1 − pj)(1 − pn−1−j), n ≥ 1, (8)

with initial value p0 := 0 and for µ in Theorem 1.1 that

µ =

∞∑
k=0

2pk
(k + 1)(k + 2)

. (9)

Now, a similar derivation as for the previous case implies the integral representation for µ in (1). □

3. Domination number

We will show that we again can apply Corollary 1.15 in [19] (on normal limit laws for the number of fringe trees) to
deduce normal limit laws for the domination number of random binary search trees and random recursive trees. Note
that the domination number is not directly related to the independence number; in particular it is not an affine function
of the independence number.
68



M. Fuchs, C. Holmgren, D. Mitsche et al. Discrete Applied Mathematics 292 (2021) 64–71

D
n
n

v
T

e

r
s
h

c
o
g

r
w

i

W
n
H
b
ν̂
s

i

4

t
p
c
i
c

P
c
o
T
t

Proof of Theorem 1.4. Let T be a rooted tree with n vertices and let S be a minimum dominating set of T and let
(T ) := |S| be its size. There are potentially several minimum dominating sets, but we may order these sets by counting
odes in S that are at each depth from the root giving rise to a vector, where the ith component describes the number of
odes at depth i that belongs to S, and then put a lexicographical order on these vectors (that is, those with more nodes

at a depth closer to the root are larger with respect to this order).
We now introduce the following descriptions of so-called root-dependent and root-independent trees. Let r be the root

ertex of T . We say that T is root-dependent if D(T \ r) = D(T )− 1. If this is not true, i.e., D(T \ r) > D(T )− 1 we say that
is root-independent.
We now assume that S is a minimum dominating set of T with the property that it is the largest with respect to the

lexicographical order described above. We will show that v ∈ S, if and only if, T (v) is root-independent and v is included
in a minimum dominating set of T (v) (we call this the Property A) except for maybe the root vertex r ∈ T (which is
treated differently).

If we have a vertex v ̸= r that is not contained in S and T (v) is a root-independent tree which has a minimum
dominating set containing v, then all the vertices of S from T (v) form a dominating set of T (v) \ v. Since T (v) is root-
independent we have that D(T (v) \ v) ≥ D(T (v)), and thus we could replace the set S ∩ T (v) with a minimum dominating
set of T (v) that contains v without increasing the size of S. However, that would give a minimum dominating set with a
larger lexicographical order than S, which is a contradiction to that S has the largest order.

On the other hand, if S contains a vertex v ̸= r that is not contained in a minimum dominating set of a root-independent
tree T (v), it could either be because the tree T (v) is root-dependent or because every minimum dominating set of T (v)
xcludes v. We now show that in both cases this gives a contradiction.
In the first case, that is, if T (v) is root-dependent, we could remove v from S and replace it with its parent and then

eplace the elements of S coming from T (v) \ v with a minimum dominating set of T (v) \ v. This does not increase the
ize of S and it is still dominating. However, this gives a minimum dominating set with a larger lexicographical order,
ence the set S we had chosen is not the largest with respect to this order.
In the second case, that is, if T (v) is root-independent, but no minimum dominating set of T (v) contains v, then we

ould replace v with its parent, and use a minimum dominating set of T (v) instead (since no minimum dominating set
f T (v) contained v, it must be inefficient to include v in S if we only wanted to dominate T (v)). Thus, we would again
et a minimum dominating set with a larger lexicographical order, which is a contradiction.
Finally, we note that a similar discussion as above shows that the root r will be included in S if any of the subtrees Ti

ooted at the children i = 1, 2, . . . ,m of r is root-dependent, or if all of these subtrees have minimum dominating sets
hich all exclude their root i.
Now, the domination number of a rooted tree T can be covered as a function F in (3) as follows. We set f as the

ndicator function

fdom(T ) :=

{
1, if the root of T satisfies Property A,

0, otherwise.

e write Fdom(T ) =
∑

v∈T fdom(T (v)) as in (3) and note that |Fdom(T ) − D(T )| ≤ 1. This implies that the domination
umbers Dn := D(Tn) = Fdom(Tn) + O(1) and D̂n := D(Λn) = Fdom(Λn) + O(1) in distribution. We have fdom(T ) = O(1).
ence, Corollary 1.15 of Holmgren and Janson [19] implies the assertions of Theorem 1.4. Unfortunately, as mentioned
efore, we do not have a closed expression for ν and ν̂ (but, as mentioned in Remark 1.5, the numerical value satisfies
= 0.3745 . . . ), and neither for τ 2 and τ̂ 2; however, the positivity of these constants follows by computing the first few
ignificant digits (see Remark 1.7(b)).
It is also clear that we can easily modify our proof to obtain similar results for the k-domination number as discussed

n Remark 1.6. □

. Clique cover number

Computing the clique cover number, see Remark 1.7(c), of a general graph is NP-hard [22], and it is also NP-hard
o approximate it up to a factor n1−ε for any ε > 0 [36]. However, it is well known that for triangle-free graphs, in
articular trees, the clique cover number coincides with the independence number on trees, see [13]. Hence, the clique
over number of random binary search trees and random recursive trees is covered by Theorems 1.1 and 1.2. However,
n this section we give a direct proof of Theorems 1.1 and 1.2 for the clique cover number to show that this parameter
an also be captured by the fringe tree representation and Corollary 1.15 in [19].

roof. For a tree T , consider T (v) with root v and subtrees T1, . . . , Tk with corresponding roots v1, . . . , vk that are the
hildren of v. For such a tree T (v), let Ev be the indicator event that there exists a subtree Ti and an optimal clique coloring
f the vertices of Ti (that is, a coloring using a minimal number C(Ti) of colors, so that every edge of the complement of
i is such that its incident vertices get different colors) such that vi is the only vertex with color 1 in Ti. We then set f as
he indicator function

fcc(T (v)) :=

{
0, if Ev holds,

1, otherwise.

69
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We show now that the clique cover number of T is equal to the number of vertices that were assigned 1. Indeed, we
will show that there exists an optimal clique coloring which uses that number of colors. This coloring will be constructed
inductively over all layers bottom up. Moreover, we will simultaneously prove by induction that our coloring indeed is
proper and optimal. The deepest layer contains the set of leaves. Every leaf is assigned 1 under f since there are no subtrees
f the leaves. Clearly all leaves are adjacent in the complement, so the set of leaves forms a clique in the complement,
nd thus all leaves must have different colors. The base case is satisfied. Now, suppose inductively that for a layer ℓ with
ertices u1, . . . , ujℓ ,

⋃jℓ
i=1 Fi is optimally colored (optimal in the sense of the clique cover number), where Fi is the forest

orresponding to the union of subtrees (at level ℓ − 1) pending from vertex ui. Now, we color the ui’s as follows: assume
hat for Fi say t colors are used. Shift these t colors to the set {1, . . . , t} and then try all possible permutations of {1, . . . , t}
o check whether there exists a permutation such that Eui holds. If there is a permutation such that f (T (ui)) evaluates to
, assign to ui the same color before the shift of the colors that was used for the root that was assigned color 1 after
hifting and permuting colors. Otherwise, assign to ui a color which was not used yet. We have to show now that this
oloring of u1, . . . , ujℓ gives a proper and optimal coloring of

⋃jℓ
i=1 T (ui). First, we show that it is proper. Note that the

(ui)’s are all colored properly by definition of the color of ui and the induction hypothesis which implies that any two
ertices k1, k2 from different trees in Fi have different colors. Moreover, again by induction hypothesis, any two vertices
1, k2 from different forests Fi have also different colors. Thus, it suffices to show that all ui’s are colored differently since
he subgraph induced by these vertices form a clique in the complement. However, this is clear since the colors of the ui’s
ither come from Fi or are entirely new colors. Thus, the coloring is indeed proper. To show that the coloring is optimal,
irst note that the clique cover number is monotone under adding vertices: if two vertices need to be assigned different
olors in a subtree (subforest), they still need to be assigned different colors after adding a new vertex. If a vertex uj is
ssigned 0, then no new color is used for such a vertex, and this coloring remains optimal. If a vertex uj is assigned 1, then
ote that uj must obtain a color different from all other vertices except for possibly those that are roots of the pending
ubtree (since uj is adjacent to all of them in the complement). If there were a coloring assigning uj the same color as the
oot of a pending subtree (and no other vertex of the subtree), then after permuting the colors one could assign to such a
oot color 1, and to no other vertex in the subtrees of T (uj) has color 1, and hence uj would be assigned 0, contradicting
his possibility. Hence uj must be assigned a new color, and the coloring remains optimal.

Hence, the clique cover number of T is given by Fcc(T ) =
∑

v∈T fcc(T (v)) as in (3). This implies that the clique cover
umbers Cn := C(Tn) = Fcc(Tn) and Ĉn := C(Λn) = Fcc(Λn) in distribution. We have fcc(T (v)) = O(1). Hence, Corollary 1.15
f Holmgren and Janson [19] implies the assertions of Theorems 1.1 and 1.2. □
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