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Abstract. In previous work, we gave asymptotic counting results for the number of tree-child
and normal networks with k reticulation vertices and explicit exponential generating functions
of the counting sequences for k = 1, 2, 3. The purpose of this note is two-fold. First, we make
some corrections to our previous approach which overcounted the above numbers and thus
gives erroneous exponential generating functions (however, the overcounting does not affect our
asymptotic counting results). Secondly, we use our (corrected) exponential generating functions
to derive explicit formulas for the number of tree-child and normal networks with k = 1, 2, 3

reticulation vertices. This re-derives recent results of Carona and Zhang, answers their question
for normal networks with k = 2, and adds new formulas in the case k = 3.

1. Introduction and Results

Phylogenetic networks have become a standard tool in evolutionary biology over the last decades
since, in contrast to phylogentic trees, they are also able to model reticulation events such as
hybridization and lateral gene transfer; see Huson et al. [6] and Chapter 10 in Steel [8].

We will start by defining them. A (binary) phylogenetic network is a rooted connected DAG
(directed acyclic graph) without double edges whose vertices belong to one of the following four
sets:

(a) A unique root which has indegree 0 and outdegree 2;
(b) Leaves of indegree 1 and outdegree 0;
(c) Tree vertices of indegree 1 and outdegree 2;
(d) Reticulation vertices of indegree 2 and outdegree 1.

Moreover, we say that a phylogenetic network is leaf-labeled if the leaves are bijectively labeled
and vertex-labeled if all vertices are bijectively labeled.

Next, we recall the two subclasses of phylogenetic networks which were investigated in [4].
The first subclass consists of tree-child networks which are phylogenetic networks where every
reticulation vertex is not directly followed by another reticulation vertex and every tree vertex has
at least one child which is not a reticulation vertex; see Cardona et al. [1]. The second subclass
are normal networks which are tree-child networks with the additional constraint that if there is
a (directed) path between two vertices of length at least 2, then there is no direct edge between
these vertices; see Willson [9, 10].

Finally, we recall the following notations:
T̃k,` number of leaf-labeled tree-child networks with ` leaves and k reticulation vertices;
Tk,n number of vertex-labeled tree-child networks with n vertices and k reticulation vertices;
Ñk,` number of leaf-labeled normal networks with ` leaves and k reticulation vertices;
Nk,n number of vertex-labeled normal networks with n vertices and k reticulation vertices.
The main purpose of [4] was the proof of the following asymptotic counting result: for fixed k,

we have

Tk,n ∼ Nk,n ∼ ck (1− (−1)n)

(√
2

e

)n
nn+2k−1, (n→∞), (1)
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where ck is a computable constant. Moreover, also in [4], a similar result for the leaf-labeled cases
was derived from this as a consequence: for fixed k, we have

T̃k,` ∼ Ñk,` ∼ 23k−1ck

(
2

e

)`
``+2k−1, (`→∞). (2)

In the recent paper [2], Cardona and Zhang introduced an algorithmic method which can be
used efficiently to compute the values of T̃k,` if k and ` are small. Moreover, they showed that
their method also yields formulas for T̃k,` for k = 1, 2 and all values of `. (The formula for k = 1
was also contained in Zhang [11].)

One purpose of this note, is to point out that the formulas for T̃k,` with k = 1, k = 2 and even
k = 3 also follow from our results in [4]. This is, because for these values of k we gave explicit
expressions for the exponential generating function Tk(z) of Tk,n in [4]. More precisely, we showed
in [4] that for fixed k:

Tk(z) = z
ã
[T ]
k (z2)− b̃[T ]

k (z2)
√

1− 2z2

(1− 2z2)2k−1/2
(3)

with polynomials ã[T ]
k (z) and b̃

[T ]
k (z) which we computed in [4] for k = 1, 2, 3; see below for

corrections for the expressions from [4]. (In principle, our method can also be used to compute these
polynomials for higher values of k but the computation becomes more and more cumbersome.)
From this, we obtain

Tk,2n+1 = (2n+ 1)![z2n+1]Tk(z)

= (2n+ 1)![zn]
ã
[T ]
k (z)− b̃[T ]

k (z)
√

1− 2z

(1− 2z)2k−1/2

= (2n+ 1)!

(
2−n

(
2n

n

)
r̃
[T ]
k (n)− 2np̃

[T ]
k (n)

)
, (4)

where r̃[T ]
k (n) is a rational function in n and p̃[T ]

k (n) is a polynomial in n; see the next section for
details and explicit expressions for r̃[T ]

k (n) and p̃[T ]
k (n) when k = 1, 2, 3. Then, from the equation

(see [4])

T̃k,` =
`!

(2`+ 2k − 1)!
Tk,2`+2k−1,

we also obtain explicit results for T̃k,` when k = 1, 2, 3. Our formula for k = 2 slightly simplifies
the one given in [2] and the formula for k = 3 correctly produces all the terms given for T̃3,` in
Table 3 in [2].

Similarly, we obtain explicit expressions for Nk,2n+1 and Ñk,` for k = 1, 2, 3 since for these
cases, we again have explicit results for the exponential generating function Nk(z) of Nk,n which
has the same form as that of tree-child networks:

Nk(z) = z
ã
[N ]
k (z2)− b̃[N ]

k (z2)
√

1− 2z2

(1− 2z2)2k−1/2
, (5)

where ã[N ]
k (z) and b̃

[N ]
k (z) are polynomials which where derived for k = 1, 2, 3 in [4] (again see

below for corrections). Thus, as above,

Nk,2n+1 = (2n+ 1)!

(
2−n

(
2n

n

)
r̃
[N ]
k (n)− 2np̃

[N ]
k (n)

)
(6)

with a rational function r̃[N ]
k (n) and a polynomial p̃[N ]

k (n) which are again given for k = 1, 2, 3 in
the next section. Moreover,

Ñk,` =
`!

(2`+ 2k − 1)!
Nk,2`+2k−1.

The explicit formula for Ñ1,` was already given in [11] and finding an explicit formula for Ñ2,` was
posed as an open problem in [2]. Our formula for Ñ2,` correctly produces all the corresponding
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values from Table 1 in [2]. Moreover, our formula for Ñ3,` correctly produces the first two values
in that table and corrects the remaining two. (See the end of Section 5 for details.)

When using the above mentioned results from [4] to derive the above formulas, our values for
k = 2 and k = 3 initially differed from those given in [2, 11]. The reason for this is that we forgot
to consider some cases in [4]. (These cases are asymptotically negligible and thus do not affect the
main results from [4] displayed in (1) and (2); however, they do affect the exponential generating
functions for k = 2, 3 from [4].) Thus, the second purpose of this note is to explain what we
forgot and give the correct expressions for the polynomials ã[?]k (z) and b̃

[?]
k (z) with k = 2, 3 and

? ∈ {T,N}. We collect them in the next two theorems, where, for the sake of completeness, we
also include the expressions for k = 1.

Theorem 1 (Tree-Child Networks). The polynomials ã[T ]
k (z) and b̃[T ]

k (z) in the expression (3) for
Tk(z) with k = 1, 2, 3 are as follows.

(i) ã[T ]
1 (z) = z and b̃[T ]

1 (z) = z;
(ii) ã[T ]

2 (z) = −z4 + 8z3 and b̃[T ]
2 (z) = 8z3;

(iii) ã[T ]
3 (z) = −35z6 + 175z5 and b̃[T ]

3 (z) = 34z6 + 175z5.

Theorem 2 (Normal Networks). The polynomials ã[N ]
k (z) and b̃[N ]

k (z) in the expression (5) for
Nk(z) with k = 1, 2, 3 are as follows.

(i) ã[N ]
1 (z) = 2− 3z and b̃[N ]

1 (z) = 2− z;
(ii) ã[N ]

2 (z) = 11z4 − 66z3 + 50z2 − 8z and b̃[N ]
2 (z) = −28z3 + 42z2 − 8z;

(iii) ã[N ]
3 (z) = 877z6−3065z5 +2392z4−628z3 +64z2 and b̃[N ]

3 (z) = 110z6−1455z5 +1860z4−
564z3 + 64z2.

We conclude the introduction by a short sketch of this note. In the next section, we will give
more details on the derivation of (4) and (6) and list the expressions for r̃[?]k (n) and p̃

[?]
k (n) for

k = 1, 2, 3 and ? ∈ {T,N}. In Section 3, we will recall the method from [4]. Then, we will explain
in Sections 4 and 5 how the method is corrected to yield the results from Theorem 1 for tree-child
networks and Theorem 2 for normal networks, respectively. Finally, an appendix will contain the
answer of a counting problem which is of independent interest and can be used to have a quick
verification of whether the values produced by the above formulas (and values published in other
works) are reasonable or not.

Type of networks EGFs in [4] Corrected
EGFs Formulas

Tree-child networks with one reticulation vertex Prop. 4.1 [2, 11], Thm. 3
Tree-child networks with two reticulation vertices Prop. 4.2 Thm. 1 [2], Thm. 3
Tree-child networks with three reticulation vertices Prop. 4.3 Thm. 3
Normal networks with one reticulation vertex Prop. 3.1 [11], Thm. 4
Normal networks with two reticulation vertices Prop. 3.2 Thm. 2 Thm. 4
Normal networks with three reticulation vertices Prop. 3.3 Thm. 4

Table 1. Overview of the main results. EGF means exponential generating function.
The results in the second column appeared in [4]. The third column contains the cor-
rected results from the current paper. (The results in the cases of one reticulation vertex
have already been correct in [4].) In the fourth column, previous known explicit formu-
las are listed together with the formulas derived in this paper. The formula for normal
networks with two reticulation vertices was mentioned in [2] as an open problem.
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2. Explicit Formulas for the Number of Tree-Child and Normal Networks with
k = 1, 2, 3.

In this section, we fill in the missing steps for (4) and (6). More precisely, we give more details
for the last equality in (4). Therefore, we drop the superscript and thus consider

[zn]
ãk(z)− b̃k(z)

√
1− 2z

(1− 2z)2k−1/2
.

First, note that

[zn]
zm

(1− 2z)α
= 2n−m

(
−α
n−m

)
(−1)n−m = 2n−m

(
n−m+ α− 1

n−m

)
.

Using this gives

[zn]
ãk(z)− b̃k(z)

√
1− 2z

(1− 2z)2k−1/2

=
∑
m≥0

([zm]ãk(z))2n−m
(
n−m+ 2k − 3/2

n−m

)
−
∑
m≥0

([zm]b̃k(z))2n−m
(
n−m+ 2k − 2

n−m

)
.

For the second term, we have(
n−m+ 2k − 2

n−m

)
=

(
n−m+ 2k − 2

2k − 2

)
which is a polynomial in n and thus

p̃k(n) =
∑
m≥0

([zm]b̃k(z))2−m
(
n−m+ 2k − 2

2k − 2

)
is also a polynomial in n.

For the first term, observe that(
n−m+ 2k − 3/2

n−m

)
= 4−n

(
2n

n

)
r̃k,m(n)

with a suitable rational function r̃k,m(n) in n whose coefficients depend on k and m. Thus,

r̃k(n) =
∑
m≥0

([zm]ãk(z))2−mr̃k,m(n)

is also a rational function in n.
Collecting everything gives now

[zn]
ãk(z)− b̃k(z)

√
1− 2z

(1− 2z)2k−1/2
= 2−n

(
2n

n

)
r̃k(n)− 2np̃k(n)

which is the claimed form in (4) and (6).
From Theorem 1 and Theorem 2 and some computation, we now can find explicit expres-

sions for r̃[?]k (n) and p̃
[?]
k (n) for k = 1, 2, 3 and ? ∈ {T,N} and thus have explicit formulas for

Tk,2n+1, T̃k,`, Nk,2n+1 and Ñk,` for k = 1, 2, 3.

Theorem 3 (Tree-Child Networks). The rational function r̃[T ]
k (n) and the polynomial p̃[T ]

k (n) in
the formula (4) for k = 1, 2, 3 are as follows:

(i) r̃[T ]
1 (n) = n and p̃[T ]

1 (n) = 1
2 ;

(ii) r̃[T ]
2 (n) =

n(n− 1)(n− 2)(3n− 1)

3(2n− 1)
and p̃[T ]

2 (n) = 1
2 (n− 1)(n− 2);

(iii) r̃[T ]
3 (n) =

n2(n− 1)(n− 2)(n− 3)(n− 4)

3(2n− 1)
and p̃[T ]

3 (n) = 1
192 (n−2)(n−3)(n−4)(48n−65).

Theorem 4 (Normal Networks). The rational function r̃[N ]
k (n) and the polynomial p̃[N ]

k (n) in the
formula (6) for k = 1, 2, 3 are as follows:
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(i) r̃[N ]
1 (n) = (n+ 2) and p̃[N ]

1 (n) = 3
2 ;

(ii) r̃[N ]
2 (n) =

n(3n− 7)(n2 + 9n− 4)

3(2n− 1)
and p̃[N ]

2 (n) =
(n+ 1)(3n− 7)

2
;

(iii) r̃[N ]
3 (n) =

n(n− 1)

3(2n− 1)
(n4 + 15n3 − 158n2 + 324n+ 40) and p̃[N ]

3 (n) = 1
192 (144n4 − 751n3 −

1089n2 + 9106n− 7080).

3. Summary of the Method from [4]

In this section, we recall the method from [4].
First, fix a vertex-labeled tree-child network with k reticulation vertices; see Figure 1 for an

example where we dropped all labels and directions are from the root downward. Then, in [4], we
performed the following two steps.

(i) Color all reticulation vertices red and for each reticulation vertex, pick an incoming edge
and color its parent green; then remove the picked edges. Note that the resulting graph is
a Motzkin tree (i.e., a rooted and vertex-labeled tree with binary vertices, unary vertices
and leaves) with exactly k red and k green unary vertices. We called in [4] this Motzkin
tree a colored Motzkin skeleton of the given tree-child network; see Figure 1 for an example.

(ii) Contract paths (and the subtrees dangling from them) between green vertices and between
green vertices and their last common ancestor, and also remove trees below green vertices
in the colored Motzkin skeleton so that a new Motzkin tree is obtained which describes the
ancestral relationship of the green vertices; see again Figure 1 for an example. We called
in [4] this new Motzkin tree the sparsened skeleton of the colored Motzkin skeleton.

Figure 1. A tree-child network (which is even normal) together with a possible choice
of a colored Motzkin skeleton and coresponding sparsened skeleton.

Now for the construction of all vertex-labeled tree-child or normal networks with k reticulation
vertices, we reversed the above process. More precisely, we first considered all possible sparsened
skeletons. Picking one of them, we added back the removed paths from step (ii) above and the trees
below the green vertices. Here, we worked with the symbolic method from [3] and multivariate
exponential generating functions.

More precisely, first consider Motzkin trees which satisfy the tree-child condition with unary
vertices playing the role of the reticulation vertices. Such trees are counted with the exponential
generating function M(z, y) where y marks unary vertices and z marks all vertices (M(y, z) is
only exponential in z and ordinary in y):

M(z, y) =
(1 + yz)

(
1−

√
1− 2z2 − 4yz3

)
z(1 + 2yz)

;

see [4] for details. Then, this exponential generating function is used to construct the above men-
tioned contracted paths with subtrees dangling from them where again the tree-child condition
for unary vertices must hold. For this, in [4], we used for tree-child networks the exponential
generating function P̂ (z, y, ỹ, ŷ) (again exponential in z and ordinary in y):

P̂ (z, y, ỹ, ŷ) =
1 + zŷ

1− zM(z, ỹ)− z2yM̃(z, ỹ)
,
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where y, ŷ mark unary vertices on the path with ŷ the first vertex on the path and ỹ marks unary
vertices in the subtrees dangling from the path. (Here, M̃(z, y) counts those labeled Motzkin trees
fromM(z, y) which do not start with a unary vertex.) For normal networks, the above exponential
generating function had to be replaced by

P (z, y, ỹ, ŷ) =
1 + zŷ

1− (z + 2z2y)M̃(z, ỹ)
, (7)

where M̃(z, y) and ŷ are as above, and y now marks unary vertices on the path or which are
children of vertices on the path and ỹ marks the remaining unary vertices; see [4].

Now, in [4], we used the above exponential generating functions to construct all colored Motzkin
skeletons for tree-child networks resp. normal networks. Finally, we added back the edges from
the green vertices to the red vertices by pointing (which on the level of generating functions
corresponds to differentiation).

g1 g2 g3 g4

g1 g2 g3 g4 g1 g2

g3

g4

(a)

(b) (c)

Figure 2. (a): The pointing of g2 and g3 creates the type of cycle which caused over-
counting in [4]; (b) and (c): The two possible types of near-cycles which caused over-
counting in [4] when counting normal networks.

For tree-child networks, the last step seems to be easy, because the above constructions already
guarantee that the tree-child condition will hold. However, one has to be careful not to create cycles
which could happen if a green vertex points on a vertex on a path from the root leading to it or
(less obviously) if for two green vertices gi, gj which are not on a same path, gi points on a vertex
on a path leading from the last common ancestor of gi and gj to gj , and gj points on a vertex on
a path leading from the last common ancestor of gi and gj to gi; see Figure 2-(a) for an example
with i = 2 and j = 3. We forgot to subtract networks containing the second type of cycles in [4]
and thus the generating functions Tk(z) in [4] overcounts the number of tree-child networks with
k reticulation vertices (however, asymptotically this overcount is not relevant). We will show in
the next section how to modify our approach from [4] to avoid counting these additional networks
containing these cycles.

For normal networks, even more care has to be taken in the above pointing step since, in addition
to cycles, one also has now to be careful not to create near-cycles by which we mean closed paths
where all edges except one are in the same direction (this is forbidden by the definition of normal
networks). In [4] the creation of most of these near-cycles was avoided, however, we missed the
following two more subtle ones: (i) if for two green vertices gi, gj which are not on the same path,
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gi points on a vertex on a path leading from the last common ancestor of gi and gj to gj , and gj
points on a child of a vertex on a path leading from the last common ancestor of gi and gj to gi
(or vice versa) and (ii) if for two green vertices gi, gj which are on the same path, both vertices
point at vertices on a path and the pointers cross each other; see Figure 2-(b) (i = 2 and j = 1)
and (c) (i = 3 and j = 4) for a depiction of these two cases. We will explain in Section 5 how to
modify our approach from [4] to avoid counting networks with these kinds of near-cycles as well
as the type of cycles from Figure 2-(a), which we also forgot to rule out for normal networks in
[4].

4. Tree-Child Networks with 2 and 3 Reticulation Vertices

Here, we will give details for the counting of tree-child networks. Since, as explained in the
previous section, we overcounted them in [4], we could just take our results from [4] and subtract
the networks containing the kind of cycles described in the last section. Alternatively, we can start
from the scratch and count these networks so that the occurrence of these cycles is avoided in
the first place. We will explain the second approach here (where subtractions are, however, still
necessary in some cases).

4.1. Tree-Child Networks with Two Reticulation Vertices. All possible sparsened skeletons
are listed in Figure 3. Note that the creation of the type of cycles explained in the last section in
the pointing step is not possible for the one in Figure 3-(a). Thus, no overcounting has occurred
in [4] for that sparsened skeleton and we can thus concentrate on the one in Figure 3-(b).

(a) (b)

Figure 3. All possible sparsened skeletons with two reticulation vertices.

For that one, we have to consider two cases which are listed in Figure 4, where the missing
pointers are not allowed to point at vertices on the paths which are contracted (and dangling
subtrees deleted) in step (ii) of the construction at the beginning of Section 3. We explain now
in detail the exponential generating functions for these two cases. First, for the networks arising
from the colored Motzkin skeletons from Figure 4-(i), we have

1

2
∂y1∂y2

(
z3M̃(z, y1 + y2)2P̂ (z, 0, y1 + y2, 0)3

) ∣∣∣
y1=y2=0

,

where y1 resp. y2 track possible targets of the pointers starting from g1 resp. g2, the factor 1/2
comes from symmetry, the factor z3 counts the two green vertices and their last common ancestor,
M̃(z, y1 + y2)2 counts the two subtrees dangling from the green vertices (note that pointing at the
roots of these subtrees is not allowed and we thus have to use M̃ instead of M), and P̂ (z, 0, y1 +
y2, 0)3 counts the three paths k, `, and r. Next, for the networks arising from the colored Motzkin
skeletons from Figure 4-(ii), we have

∂y1∂y2

(
z3M̃(z, y2)2P̂ (z, y1, y2, y1)P̂ (z, 0, y2, 0)2

) ∣∣∣
y1=y2=0

,

where the terms are explained as above with P̂ (z, y1, y2, y1) corresponding to path ` and
P̂ (z, 0, y2, 0)2 corresponding to the remaining two paths (note that since only g1 is allowed to
point at a vertex on a path, we do not have to consider symmetry).

Now, summing the above two exponential generating functions gives the exponential generating
function counting the tree-child networks arising from the sparsened skeleton in Figure 3-(b).
Adding with the exponential generating function of the networks arising from Figure 3-(a) and
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g1 g2

k

r

`

g1 g2

k

r

`

(i) (ii)

Figure 4. The colored Motzkin skeletons arising from the sparsened skeleton in Fig-
ure 3-(b) classified according to the indicated pointing rule; the remaining pointers from
green vertices have no restrictions except that they are not allowed to point at a vertex
on a path.

dividing the result by 2k = 4 (since every tree-child network is obtained from this procedure
exactly 4 times), we obtain

T2(z) = z
−z8 + 8z6 − 8z6

√
1− 2z2

(1− 2z2)7/2
.

This implies

T2,2n+1 = (2n+ 1)!

(
n(n− 1)(n− 2)(3n− 1)

3(2n− 1)2n

(
2n

n

)
− 2n−1(n− 1)(n− 2)

)
and

T̃2,` = `!

(
(`+ 1)`(`− 1)(3`+ 2)

6(2`+ 1)2`

(
2`+ 2

`+ 1

)
− 2``(`− 1)

)
. (8)

The latter sequence starts with (for ` ≥ 3)

42, 1272, 30300, 696600, 16418430, 405755280, . . .

which matches with the values from Table 3 in [2].

4.2. Tree-Child Networks with Three Reticulation Vertices. Next, we consider three retic-
ulation vertices. All sparsened skeletons are listed in Figure 5. As in the case k = 2, we do not have
to consider the sparsened skeleton in Figure 5-(a), because the exponential generating function for
counting all tree-child networks arising from it in [4] is already correct. All other cases have to be
re-considered, which we will do now.

(a) (b)

(c) (d)

Figure 5. All possible sparsened skeletons with three reticulation vertices.

First, for the colored Motzkin skeletons arising from the sparsened skeleton in Figure 5-(b), we
classify them according to the cases in Figure 6. Here, the exponential generating functions of the
first two cases have to be added up, whereas the exponential generating function of the last case
must be subtracted, because g1 and g3 are not allowed to point to the children of the last common
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g1 g2

g3

g1 g2

g3

g1 g2

g3

Figure 6. The colored Motzkin skeletons arising from the sparsened skeleton in Fig-
ure 5-(b) classified according to the indicated pointing rules; the missing pointers have
no restrictions except that the pointers from g1 and g2 are not allowed to point at ver-
tices on a path. The exponential generating function of the first two colored Motzkin
skeletons have to be added, whereas the one from the last one has to be subtracted.

ancestor of g1 and g2, because that ancestor is a tree vertex and thus cannot have two reticulation
vertices as children. Overall, we get for the exponential generating function in this case

1

2
Y
(
z4M̃(z, y1 + y2 + y3)2P̂ (z, y3, y1 + y2 + y3, y3)2P̂ (z, y3, y1 + y2 + y3, 0)

×P̂ (z, 0, y1 + y2 + y3, 0)
)

+Y
(
z4M̃(z, y2 + y3)2P̂ (z, y1 + y3, y2 + y3, y1 + y3)P̂ (z, y3, y2 + y3, y3)

×P̂ (z, y3, y2 + y3, 0)P̂ (z, 0, y2 + y3, 0)
)

−Y
(
z4M̃(z, y2)2P̂ (z, 0, y2, y1)P̂ (z, 0, y2, y3)P̂ (z, 0, y2, 0)2

)
,

where Y(·) is used as an abbreviation for ∂y1∂y2∂y3(·)
∣∣∣
y1=y2=y3=0

.

Next, we consider the sparsened skeleton in Figure 5-(c) whose colored Motzkin skeletons are
classified into the cases given in Figure 7. From them, we obtain the following equation for the
exponential generating function:

Y
(
z4M̃(z, y1 + y2 + y3)2P̂ (z, 0, y1 + y2 + y3, 0)4

)
+Y

(
z4M̃(z, y2 + y3)2P̂ (z, y1, y2 + y3, y1)P̂ (z, y2, y2 + y3, 0)P̂ (z, 0, y2 + y3, 0)2

)
+Y

(
z4M̃(z, y2 + y3)2P̂ (z, y1 + y2, y2 + y3, y1)P̂ (z, 0, y2 + y3, 0)3

)
+Y

(
z4M̃(z, y1 + y2)2P̂ (z, y3, y1 + y2, y3)P̂ (z, y2, y1 + y2, 0)P̂ (z, 0, y1 + y2, 0)3

)
+Y

(
z4M̃(z, y1 + y3)2P̂ (z, y2, y1 + y3, y2)P̂ (z, 0, y1 + y3, 0)3

)
+Y

(
z4M̃(z, y3)2P̂ (z, y2, y3, y2)P̂ (z, y1, y3, 0)P̂ (z, 0, y3, 0)2

)
+Y

(
z4M̃(z, y1)2P̂ (z, y2 + y3, y1, y2 + y3)P̂ (z, 0, y1, 0)3

)
.

Finally, the cases for the colored Motzkin skeletons arising from the sparsened skeleton in Fig-
ure 5-(d) are classified according to the indicated pointing rules in Figure 8. Here, the exponential
generating function of all except the last one have to be added, whereas the exponential generating
function of the last one has to be subtracted. This yields

1

2
Y
(
z5M̃(z, y1 + y2 + y3)3P̂ (z, 0, y1 + y2 + y3, 0)5

)
+ Y

(
z5M̃(z, y2 + y3)3P̂ (z, y1, y2 + y3, y1)P̂ (z, 0, y2 + y3, 0)4

)
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g1 g2

g3

g1 g2

g3

g1 g2

g3

g1 g2

g3

g1 g2

g3

g1 g2

g3

g1 g2

g3

Figure 7. The colored Motzkin skeletons arising from the sparsened skeleton in Fig-
ure 5-(c) classified according to the indicated pointing rules; the missing pointers of
green vertices have no restrictions except that g1 and g3 are not allowed to point at
vertices on a path and g2 is not allowed to points at a vertex of the path above it.

+ Y
(
z5M̃(z, y2 + y3)3P̂ (z, y1, y2 + y3, y1)P̂ (z, 0, y2 + y3, 0)4

)
+ Y

(
z5M̃(z, y1 + y2)3P̂ (z, y3, y1 + y2, y3)P̂ (z, 0, y1 + y2, 0)4

)
+

1

2
Y
(
z5M̃(z, y1 + y2)3P̂ (z, y3, y1 + y2, y3)P̂ (z, 0, y1 + y2, 0)4

)
+ Y

(
z5M̃(z, y3)3P̂ (z, y1, y3, y1)P̂ (z, y2, y3, y2)P̂ (z, 0, y3, 0)3

)
+

1

2
Y
(
z5M̃(z, y3)3P̂ (z, y1 + y2, y3, y1 + y2)P̂ (z, 0, y3, 0)4

)
+ Y

(
z5M̃(z, y2)3P̂ (z, y1, y2, y1)P̂ (z, y3, y2, y3)P̂ (z, 0, y2, 0)3

)
+ Y

(
z5M̃(z, y2)3P̂ (z, y1 + y3, y2, y1 + y3)P̂ (z, y3, y2, y3)P̂ (z, 0, y2, 0)3

)
+ Y

(
z5M̃(z, y2)3P̂ (z, y1, y2, y1)P̂ (z, y3, y2, y3)P̂ (z, 0, y2, 0)3

)
−Y

(
z5M̃(z, y2)3P̂ (z, 0, y2, y1)P̂ (z, 0, y2, y3)P̂ (z, 0, y2, 0)3

)
.

Adding up the above three exponential generating functions corresponding to the sparsened
skeletons in Figure 5-(b), (c), (d), then adding to this sum the one arising from the sparsened
skeleton in Figure 5-(a), and finally dividing by 2k = 8 (since every tree-child networks is generated
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g1 g2

g3

g1 g2

g3

g1 g2

g3

g1 g2

g3

g1 g2

g3

g1 g2

g3

g1 g2

g3

g1 g2

g3

g1 g2

g3

g1 g2

g3

g1 g2

g3

Figure 8. The colored Motzkin skeletons arising from the sparsened skeleton in Fig-
ure 5-(d) classified according to the indicated pointing rules; the missing pointers from
green vertices have no restrictions except that they are not allowed to point at vertices
on a path. The exponential generating function of all except the last have to be added,
whereas the one from the last one has to be subtracted.

from this 8 times), we get

T3(z) = z
−35z12 + 175z10 − (34z12 + 175z10)

√
1− 2z2

(1− 2z2)11/2
.
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Consequently,

T3,2n+1 = (2n+ 1)!

(
n2(n− 1)(n− 2)(n− 3)(n− 4)

3(2n− 1)2n

(
2n

n

)

− 2n

192
(n− 2)(n− 3)(n− 4)(48n− 65)

)
and

T̃3,` = `!

(
(`+ 2)2(`+ 1)`(`− 1)(`− 2)

12(2`+ 3)2`

(
2`+ 4

`+ 2

)
− 2`

48
`(`− 1)(`− 2)(48`+ 31)

)
, (9)

The latter sequence (for ` ≥ 4) starts with

2544, 154500, 6494400, 241204950, 8609378400, . . .

which is in accordance with the values in Table 3 of [2].

5. Normal Networks with 2 and 3 Reticulation Vertices

Here, we explain how to modify our approach from [4] to get the correct exponential generating
functions for the number of normal networks with k = 2 and k = 3. As explained in the last
paragraph in Section 3, apart from avoiding to create cycles in the pointing step, we also have to
be careful not to create the two near-cycles discussed from that paragraph.

In fact, avoiding the creation of cycles and the near-cycles in Figure 2-(b) is done by considering
the same cases as in the last section. Then, we will subtract all the networks which contain the
near-cycles in Figure 2-(c). For technical reasons, it will be advantageous to replace the exponential
generating function (7) for paths for normal networks by the following more detailed one:

P̃ (z, y, ỹ, ȳ, ŷ) =
1 + zŷ

1− (z + z2y + z2ȳ)M̃(z, ỹ)
,

where the only difference to the previous one is that now y marks unary vertices on the path and
ȳ marks unary vertices which are children of vertices on the path (in (7) both of these vertices
were marked by y).

5.1. Normal Networks with Two Reticulation Vertices. We again start from the two spars-
ened skeletons in Figure 3.

This time, we also have to consider the sparsened skeleton in Figure 3-(a), because it is possible
to create the near-cycles in Figure 2-(c) (which have to be subtracted). We consider in Figure 9
the colored Motzkin skeletons which arise from that sparsened skeleton (left) and the networks
containing the near-cycles in Figure 2-(c) which have to be subtracted (right; solid subtrees mean
that these subtrees must be there; also the pointing rules are indicated). Thus the exponential
generating function must satisfy the equation

∂y1∂y2

(
z2M̃(z, 0)P̃ (z, 0, y1, 0, 0)P̃ (z, 0, y1 + y2, 0, 0)

) ∣∣∣
y1=y2=0

− z7M̃(z, 0)4P̃ (z, 0, 0, 0, 0)5,

where in the first term, the z2 counts the two green vertices, M̃(z, 0) counts the tree dangling
from g1, and P̃ (z, 0, y1, 0, 0) and P̃ (z, 0, y1 + y2, 0, 0) count the two paths k and r. In the second
term, which is the subtraction term, z7 counts the two green vertices, the two endpoints of the
pointers, the last common ancestor of these four vertices, and the roots of the two solid subtrees
in the network on the right of Figure 9; M̃(z, 0)4 counts the subtree dangling from g1, the subtree
before the vertex to which the pointer from g1 points, and the two subtrees before and after the
vertex to which the pointer of g2 points; and P̃ (z, 0, 0, 0, 0)5 counts the five paths k, `2, `3, `4, `5.
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g1

g2

k

`2

`3

g1

k

r

g2
`4

`5

r

Figure 9. The colored Motzkin skeletons arising from Figure 3-(a) and the networks
containing near-cycles which have to be subtracted. Solid subtrees mean that these
subtrees must be there, because otherwise the tree-child condition would be violated.

For the sparsened skeleton in Figure 3-(b), we use the colored Motzkin skeletons from Figure 4,
where in the skeletons from Figure 4-(ii), the pointer of g2 is neither allowed to point at a vertex
on a path nor at the child of a vertex on a path. This implies that the exponential generating
function satisfies the equation

1

2
∂y1∂y2

(
z3M̃(z, y1)M̃(z, y2)P̃ (z, 0, y1 + y2, y1, 0)P̃ (z, 0, y1 + y2, y2, 0)P̃ (z, 0, y1 + y2, 0, 0)

+z3M̃(z, y2)M̃(z, 0)P̃ (z, y1, y2, 0, 0)P̃ (z, 0, y2, 0, 0)2
) ∣∣∣

y1=y2=0
.

Now, adding the exponential generating functions of the above two cases and dividing by 2k = 4
(since every network is obtained from this procedure exactly 4 times) gives

N2(z) = z
11z8 − 66z6 + 50z4 − 8z2 − (−28z6 + 42z4 − 8z2)

√
1− 2z2

(1− 2z2)7/2

from which we have

N2,2n+1 = (2n+ 1)!

(
n(3n− 7)(n2 + 9n− 4)

(2n− 1)2n

(
2n

n

)
− 2n−1(n+ 1)(3n− 7)

)
and

Ñ2,` = `!

(
(`+ 1)(3`− 4)(`2 + 11`+ 6)

6(2`+ 1)2`

(
2`+ 2

`+ 1

)
− 2`(`+ 2)(3`− 4)

)
. (10)

The latter sequence starts with (for ` ≥ 4)

48, 2310, 78120, 2377620, 70749000, . . .

which is in accordance with the values from Table 1 in [11].

5.2. Normal Networks with Three Reticulation Vertices. Finally, we consider normal net-
works with three reticulation vertices. The sparsened skeletons are again in Figure 5. We will
consider below the exponential generating function for the colored Motzkin skeletons arising from
each of them.

First, for the sparsened skeleton in Figure 5-(a), we consider the colored Motzkin-skeletons from
Figure 10 with the networks which have to be subtracted because they contain the near-cycle from
Figure 2-(c) (if the pointing of the missing pointers in the subtraction cases is not merely restricted
by the normal condition, we explain it in the figure; solid subtrees mean again that they must be
there). Overall, we get

Y
(
z3M(z, 0)P̃ (z, 0, y1, 0, 0)P̃ (z, 0, y1 + y2, 0, 0)P̃ (z, 0, y1 + y2 + y3, 0, 0)

)
− ∂y3

(
z8M̃(z, 0)4P̃ (z, 0, 0, 0, 0)5P̃ (z, 0, y3, 0, 0)

) ∣∣∣
y1=0
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g1

g3

g2

g1 g1

g1

g1 g1

g2

g2

g2

g2 g2

g3

g3

g3

g3 g3

(i) (ii)

(iii)

(iv) (v)

u u

Figure 10. The colored Motzkin skeletons arising from the sparsened skeleton in Fig-
ure 5-(a) with the five subtraction cases due to the creation of near-cycles from Fig-
ure 2-(c). The pointing rules for g3 in the five cases are as follows: (i): g3 can point at
any vertex so that the normal condition is not violated; (ii) and (iii): these are the cases
where g1 and g2 point ar a vertex on the same path. Thus, in (iii), g3 must point to
a vertex inside the circle, because otherwise there is no near-cycle from Figure 2-(c).
(iv) and (v): the remaining two cases with g1 and g2 not pointing at vertices on the
same path. Thus, in (iv) resp. (v), g2 resp. g1 is not allowed to point at a vertex of path
between u and the endpoint of the pointer from g1 resp. g2 and no vertex after that
endpoint.

− ∂y3
(
z8M̃(z, 0)M̃(z, y3)3P̃ (z, y3, y3, y3, 0)2P̃ (z, 0, 0, 0, 0)2P̃ (z, 0, y3, 0, 0)2

) ∣∣∣
y1=0

− ∂y3
(
z8M̃(z, 0)2M̃(z, y3)2P̃ (z, y3, y3, y3, 0)P̃ (z, 0, 0, 0, 0)5

) ∣∣∣
y1=0

− ∂y2
(
z8M̃(z, 0)3M̃(z, y2)P̃ (z, 0, y2, y2, 0)P̃ (z, 0, 0, 0, 0)2P̃ (z, 0, y2, 0, 0)3

) ∣∣∣
y1=0

− ∂y1
(
z8M̃(z, 0)3M̃(z, y1)P̃ (z, 0, y1, y1, 0)P̃ (z, 0, 0, 0, 0)P̃ (z, 0, y1, 0, 0)4

) ∣∣∣
y1=0

,
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g1 g1g2 g2

g3

(i) (ii)

g3

u

Figure 11. The subtraction cases for the colored Motzkin skeletons arising from the
sparsened skeleton in Figure 5-(b). In (i), the pointers of g1, g2 both cross the pointer of
g3 and point at vertices on the same path, whereas in (ii) only the pointers of g2 and g3
cross and point at vertices on the same path, i.e., g1 is not allowed to point at a vertex
of the path between u and the endpoint of the pointer from g3.

where Y(·) is as in the last section and the last five terms correspond to the cases (i) until (iv) in
Figure 10 in that order.

Next, for the sparsened skeleton in Figure 5-(b), we consider first the cases from Figure 6
to create networks which respect the tree-child condition and do not contain the near-cycle in
Figure 2-(b) (for this, we do not need the third network in Figure 6, because its creation will be
avoided by our method). Then, we subtract all networks containing the near-cycle in Figure 2-
(c); see Figure 11 where all the networks we have to subtract are listed (and restrictions to the
pointing of the missing pointers is explained in case pointing is not merely restricted by the normal
condition; solid subtrees meant that they must be there). This gives

1

2
Y
(
z4M̃(z, y1)M̃(z, y2)P̃ (z, 0, y1 + y2, y2, 0)P (z, 0, y1 + y2, y1, 0)P̃ (z, 0, y1 + y2, 0, 0)

×P̃ (z, 0, y1 + y2 + y3, 0, 0)
)

+ Y
(
z4M̃(z, 0)M̃(z, y2)P̃ (z, y1, y2, 0, 0)P̃ (z, 0, y2, 0, 0)2P̃ (z, 0, y2 + y3, 0, 0)

)
− 1

2
∂y1∂y2

(
z7M̃(z, 0)4P̃ (z, y1 + y2, 0, 0, 0)P̃ (z, 0, 0, 0, 0)5

) ∣∣∣
y1=y2=0

− ∂y1∂y2
(
z7M̃(z, 0)M̃(z, y1)3P̃ (z, y2, y1, y1, 0)P̃ (z, y1, y1, y1, 0)P̃ (z, 0, y1, 0, 0)4

) ∣∣∣
y1=y2=0

,

where the last two terms correspond to the cases (i) and (ii) in Figure 11 in that order.

Third, for the sparsened skeleton in Figure 5-(c), we start again with the cases from Figure 7 and
use them to create networks which do not contain the cycles from Figure 2-(a) and the near-cycles
from Figure 2-(b). This gives

Y
(
z4M̃(z, y1)M̃(z, y2 + y3)P̃ (z, 0, y1 + y2 + y3, y2 + y3, 0)P̃ (z, 0, y1 + y3, y1, 0)

×P̃ (z, 0, y1 + y2 + y3, y1, 0)P̃ (0, y1 + y2 + y3, 0, 0)
)

+ Y
(
z4M̃(z, 0)M̃(z, y2 + y3)P̃ (z, y1, y2 + y3, 0, 0)P̃ (z, 0, y2 + y3, 0, 0)2P̃ (z, 0, y3, 0, 0)

)
+ Y

(
z4M̃(z, 0)M̃(z, y2 + y3)P̃ (z, y1, y3, 0, 0)P̃ (z, 0, y2 + y3, y2, 0)P̃ (z, 0, y2 + y3, 0, 0)2

)
+ Y

(
z4M̃(z, y1)M̃(z, y2)P̃ (z, y3, y1 + y2, y2, 0)P̃ (z, 0, y1, 0, 0)P̃ (z, 0, y1 + y2, 0, 0)2

)
+ Y

(
z4M̃(z, y1)M̃(z, y3)P̃ (z, y2, y1 + y3, y3, 0)P̃ (z, 0, y1 + y3, y1, 0)P̃ (z, 0, y1 + y3, 0, 0)2

)
+ Y

(
z4M̃(z, 0)M̃(z, y1)P̃ (z, y2, y3, 0, 0)P̃ (z, y1, y3, 0, 0)P̃ (z, 0, y3, 0, 0)2

)
+ Y

(
z4M̃(z, 0)M̃(z, y1)P̃ (z, y2 + y3, y1, 0, 0)P̃ (z, 0, y1, 0, 0)3

)
.
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u
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Figure 12. The subtraction cases for the colored Motzkin skeletons arising from the
sparsened skeleton in Figure 5-(c). The first column contains the cases from Figure 7
which contain the near-cycles in the second column. In the first row, only g2 and g3 are
on the same path, so a near-cycle is only created if their pointers cross and point at a
vertex on the same path. That path can be after u (cases (i), (ii), and (v) in the second
column); between u and g2 (case (iii) in the second column); or before u (case (iv) in
the second column). In the second row g2, g3, and g1 are all on the same path (due to
the pointer of g3). So, one needs to subtract the cases where the pointers from g2 and g3
cross and point at vertices on the same path (case (i) in the second column) and where
the pointers from g1 and g2 cross and point at vertices on the same path (cases (i), (ii),
(iii), and (iv) in the second column).

Then, we subtract from this the exponential generating functions of all cases where networks
contain the cycles from Figure 2-(c). Here, in contrast to the other cases, there are many such
situations and all of them are listed in Figure 12. The sum of the exponential generating functions
of all these cases is given by

∂y1

(
z8M̃(z, 0)3M̃(z, y1)P̃ (z, y1, y1, y1, 0)2P̃ (z, 0, y1, 0, 0)2P̃ (z, 0, 0, 0)2

+ z9M̃(z, 0)M̃(z, y1)4P̃ (z, y1, y1, y1, 0)4P̃ (z, 0, y1, 0, 0)3

+ z9M̃(z, 0)M̃(z, y1)4P̃ (z, y1, y1, y1, 0)3P̃ (z, y1, y1, y1, y1)2P̃ (z, 0, y1, 0, 0)2
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+ z9M̃(z, 0)M̃(z, y1)4P̃ (z, y1, y1, y1, 0)4P̃ (z, 0, y1, 0, 0)3

+ z8M̃(z, 0)M̃(z, y1)3P̃ (z, 0, y1, y1, 0)2P̃ (z, y1, y1, y1, 0)P̃ (z, 0, y1, 0, 0)3
) ∣∣∣

y1=0

+ ∂y1∂y2

(
z6M̃(z, y2)M̃(z, y1)2P̃ (z, y2, y1 + y2, y2, 0)P̃ (z, 0, y1, 0, 0)4

) ∣∣∣
y1=0,y2=0

+ z10M̃(z, 0)5P̃ (z, 0, 0, 0)8 + z11M̃(z, 0)6P̃ (z, 0, 0, 0, 0)8 + z11M̃(z, 0)6P̃ (z, 0, 0, 0, 0)8,

where the terms in the first bracket correspond to the networks from row one and column two of
Figure 12 in the order from (i) to (v) and the remaining terms correspond to the networks from
row two and column two of Figure 12 in the order from (i) to (iv).

Finally, we consider the colored Motzkin skeletons arising from the sparsened skeleton in Fig-
ure 5-(d). Here, the creation of the near-cycles from Figure 2-(c) is impossible. Thus, we only have
to consider the cases from Figure 8 (except the last case in this figure since the occurrence of these
networks is already ruled out by the normal condition) and make sure that the creation of the
cycles and near-cycles from Figure 2-(a) and Figure 2-(b) is avoided. Overall, we obtain

1

2
Y
(
z5M̃(z, y1 + y2)M̃(z, y1 + y3)M̃(z, y2 + y3)P̃ (z, 0, y1 + y2 + y3, y1 + y2, 0)

× P̃ (z, 0, y1 + y2 + y3, y1 + y3, 0)P̃ (z, 0, y1 + y2 + y3, y2 + y3, 0)

× P̃ (z, 0, y1 + y2 + y3, y3, 0)P̃ (z, 0, y1 + y2 + y3, 0, 0)
)

+ Y
(
z5M̃(z, y2)M̃(z, y3)M̃(z, y2 + y3)P̃ (z, y1, y2 + y3, y3, 0)

× P̃ (z, 0, y2 + y3, y2, 0)P̃ (z, 0, y2 + y3, y3, 0)2P̃ (z, 0, y2 + y3, 0, 0)
)

+ Y
(
z5M̃(z, y2)M̃(z, y3)M̃(z, y2 + y3)P̃ (z, y1, y2 + y3, y2, 0)P̃ (z, 0, y2 + y3, y3, 0)

× P̃ (z, 0, y2 + y3, y2, 0)P̃ (z, 0, y2 + y3, 0, 0)2
)

+ Y
(
z5M̃(z, y1)M̃(z, y2)M̃(z, y1 + y2)P̃ (z, y3, y1 + y2, y2, y3)P̃ (z, 0, y1 + y2, y1, 0)

× P̃ (z, 0, y1 + y2, y2, 0)P̃ (z, 0, y1 + y2, 0, 0)2
)

+
1

2
Y
(
z5M̃(z, y1)M̃(z, y2)M̃(z, y1 + y2)P̃ (z, y3, y1 + y2, 0, 0)P̃ (z, 0, y1 + y2, y1, 0)

× P̃ (z, 0, y1 + y2, y2, 0)P̃ (z, 0, y1 + y2, 0, 0)2
)

+ Y
(
z5M̃(z, y3)2M̃(z, 0)P̃ (z, y1, y3, 0, 0)P̃ (z, y2, y3, 0, 0)P̃ (z, 0, y3, 0, 0)3

)
+

1

2
Y
(
z5M̃(z, y3)2M̃(z, 0)P̃ (z, y1 + y2, y3, 0, 0)P̃ (z, 0, y3, 0, 0)4

)
+ Y

(
z5M̃(z, y2)2M̃(z, 0)P̃ (z, y1, y2, 0, 0)P̃ (z, y3, y2, 0, y3)P̃ (z, 0, y2, 0, 0)3

)
+ Y

(
z5M̃(z, y2)2M̃(z, 0)P̃ (z, y1 + y3, y2, 0, y3)P̃ (z, y3, y2, 0, 0)P̃ (z, 0, y2, 0, 0)3

)
+ Y

(
z5M̃(z, y2)2M̃(z, 0)P̃ (z, y1, y2, 0, 0)P̃ (z, y3, y2, 0, 0)P̃ (z, 0, y2, 0, 0)3

)
.

Now, by combining all the contributions above and dividing the result by 2k = 8 (since every
normal network is created by the above procedure exactly 8 times), we have

N3(z) = z

(
877z12 − 3065z10 + 2392z8 − 628z6 + 64z4

(1− 2z2)11/2

−110z12 − 1455z10 + 1860z8 − 564z6 + 64z4

(1− 2z2)5

)
.
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From this, we obtain that

N3,2n+1 = (2n+ 1)!

(
n(n− 1)(n4 + 15n3 − 158n2 + 324n+ 40)

3(2n− 1)2n

(
2n

n

)

− 2n

192
(144n4 − 751n3 − 1089n2 + 9106n− 7080)

)
and

Ñ3,` = `!

(
(`+ 2)(`+ 1)(`4 + 23`3 − 44`2 − 96`+ 192)

12(2`+ 3)2`

(
2`+ 4

`+ 2

)

− 2`

48
(144`4 + 401`3 − 2139`2 + 346`+ 3072)

)
, (11)

The latter sequence (for ` ≥ 5) starts with

1920, 184680, 11059650, 547444800, . . . .

The first two values coincide with the values given in Table 1 in [11]. However, the next two are
different from the ones erroneously given in [11] as 11038530 and 536524830. In private communi-
cation, L. Zhang told us that these wrong values in [11] resulted from an overflow problem in his
C++ program and that our values are indeed the correct ones. In fact, it can be verified that the
previous values are erroneous, because

11038530

7!
=

367951

168
=

367951

23 · 3 · 7
and

536524830

8!
=

5961387

448
=

5961387

26 · 7
which is impossible since the denominators have to be powers of 2; see Corollary 1 in the Appendix.
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Appendix

In this appendix, we want to find the answer to the following question:

Question: Given a phylogenetic network N , how many different leaf-labeled networks can be gen-
erated from N by labeling its leaves?

For instance, in Example (a) in Figure 13, the answer to the question is 3 since there are 3! = 6
possible labelings of the 3 leaves, however, the leaf-labeled networks with the two lowest leaves are
the same when the labels of the leaves are interchanged.

Note that for phylogenetic trees (which are leaf-labeled phylogenetic networks without reticu-
lation vertices), the answer to the above question is known; see [5] and Section 2.4 in [7].

Now for general phylogenetic networks, we denote the set of leaf-labeled networks from the
above question by P (N). Let Ñ ∈ P (N) be any network from P (N), i.e., N together with any
labeling of its leaves. Then, by the Burnside lemma, we have

|P (N)| = `!

|F (Ñ)|
,

where ` is the number of labels of Ñ and F (Ñ) denotes the set of permutations π such that if the
labels of Ñ are permuted by π, then the resulting networks are the same.

We want to find |F (Ñ)|. Therefore, we need some notations.
First, a tree vertex v is said to root a subnetwork if the set of all vertices S which can be reached

from v (including v) has an induced subgraph Ñ(v) of Ñ which is connected to the set V (Ñ) \ S
only by the edge to v. Ñ(v) is called the subnetwork rooted at v. Moreover, we include the root
into this definition which always roots a subnetwork, namely, Ñ itself.

Next, a vertex v which roots a subnetwork is called symmetric if the subnetwork Ñ(v) can be
drawn in such a way that if it is reflected about the vertical line through v by the angle π, then
we obtain the same network if all labels of leaves are removed.

Likewise, we consider unordered pairs of tree vertices {v, w} such that for the set of vertices S
which can be reached from v and w (including v and w), the induced subnetwork of Ñ - denoted
by Ñ(v, w) - is connected to V (Ñ) \ S only via the edges to v and w. (Note that Ñ(v, w) is not a
phylogenetic networks since it has two roots.) Again, such a pair is said to be symmetric if Ñ(v, w)
can be drawn such the line through v and w is a symmetry line.

Finally, we call a symmetric vertex v (resp. symmetric pair of vertices {v, w}) independent if
either (i) at least one symmetric vertex or at least one symmetric pair of Ñ(v) (resp. Ñ(v, w)) does
not lie on the symmetry line or (ii) at least one leaf which is not contained in a proper subnetwork
of a symmetric vertex or symmetric pair of Ñ(v) (resp. Ñ(v, w)) does not lie on the symmetry
line; see Figure 13 for examples. (Proper here means that the subnetwork is not equal to Ñ(v)

(resp. Ñ(v, w)).)
Denote now by f the number of all independent vertices and pairs of vertices of Ñ . Then,

|F (Ñ)| = 2f .

Thus, the answer to the above question is as follows.

Theorem 5. Let N be a phylogenetic network with ` leaves and f the number of independent
vertices and independent pairs of vertices of N . Then, the number of different leaf-labeled networks
obtained from N by labeling the leaves is `!2−f .

Moreover, this theorem has the following corollary which was used at the end of Section 5.

Corollary 1. Let C be a class of leaf-labeled phylogenetic networks which is closed under permu-
tations of the labels. Denote by C` the networks from C with ` leaves. Then, |C`|/`! is a fraction
whose denominator is a power of 2.
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(a) (b) (c)

Figure 13. Three examples of phylogenetic networks with independent vertices in green
and the only independent pair of vertices in red. Note that in network (a), the root is
symmetric but not independent since all symmetric vertices are on the symmetry line
(dashed line) as is the sole leaf which is not contained in a proper subnetwork of a
symmetric vertex. On the other hand, in network (b), the root is independent, because
there are two leaves not on the symmetry line (again drawn as a dashed line) which
are not in a proper subnetwork of symmetric vertices. Finally, network (c) is the only
network containing a symmetric pair since what is dangling from the two red vertices
(namely, twice a reticulation vertex followed by a leaf) is clearly identical. The values of
f for the three networks are f = 1 (a), f = 2 (b), and f = 2 (c).
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